African Bat Conservation News
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Bat Conservation 2021
Bat Conservation Global evidence for the effects of interventions 2021 Edition Anna Berthinussen, Olivia C. Richardson & John D. Altringham Conservation Evidence Series Synopses 2 © 2021 William J. Sutherland This document should be cited as: Berthinussen, A., Richardson O.C. and Altringham J.D. (2021) Bat Conservation: Global Evidence for the Effects of Interventions. Conservation Evidence Series Synopses. University of Cambridge, Cambridge, UK. Cover image: Leucistic lesser horseshoe bat Rhinolophus hipposideros hibernating in a former water mill, Wales, UK. Credit: Thomas Kitching Digital material and resources associated with this synopsis are available at https://www.conservationevidence.com/ 3 Contents Advisory Board.................................................................................... 11 About the authors ............................................................................... 12 Acknowledgements ............................................................................. 13 1. About this book ........................................................... 14 1.1 The Conservation Evidence project ................................................................................. 14 1.2 The purpose of Conservation Evidence synopses ............................................................ 14 1.3 Who this synopsis is for ................................................................................................... 15 1.4 Background ..................................................................................................................... -
A New Species of Eumops (Chiroptera: Molossidae) from Southwestern Peru
Zootaxa 3878 (1): 019–036 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2014 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3878.1.2 http://zoobank.org/urn:lsid:zoobank.org:pub:FDE7F7A4-7DCC-4155-8D96-A0539229DBFE A new species of Eumops (Chiroptera: Molossidae) from southwestern Peru CÉSAR E. MEDINA1, RENATO GREGORIN2, HORACIO ZEBALLOS1,3, HUGO T. ZAMORA1 & LIGIANE M. MORAS4 1Museo de Historia Natural de la Universidad Nacional San Agustín (MUSA). Av. Alcides Carrión s/n. Arequipa, Perú. E-mail: [email protected] 2Departamento de Biologia, Universidade Federal de Lavras, Lavras, Minas Gerais, CEP 37200-000, Brazil. E-mail: [email protected] 3Instituto de Ciencias de la Naturaleza, Territorio y Energías Renovables, Pontificia Universidad Católica del Perú, Av. Universitaria 1801, San Miguel, Lima 32, Perú. E-mail: [email protected] 4Departamento de Zoologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil. E-mail: [email protected] Abstract The genus Eumops is the most diverse genera of molossid bats in the Neotropics. In Peru this genus is widely distributed and represented by nine species: E. auripendulus, E. delticus, E. hansae, E. maurus, E. nanus, E. patagonicus, E. perotis, E. trumbulli, and E. wilsoni. After several years of mammalian diversity surveys in the coastal desert and western slopes of southwestern Peru, a specimen of Eumops was collected whose unique set of traits allows us to assert that deserves to be described as a new species. Based on molecular and morphological evidence, the new species is related to medium- large sized species (i.e. -
A Novel Rhabdovirus Infecting Newly Discovered Nycteribiid Bat Flies
www.nature.com/scientificreports OPEN Kanyawara Virus: A Novel Rhabdovirus Infecting Newly Discovered Nycteribiid Bat Flies Received: 19 April 2017 Accepted: 25 May 2017 Infesting Previously Unknown Published: xx xx xxxx Pteropodid Bats in Uganda Tony L. Goldberg 1,2,3, Andrew J. Bennett1, Robert Kityo3, Jens H. Kuhn4 & Colin A. Chapman3,5 Bats are natural reservoir hosts of highly virulent pathogens such as Marburg virus, Nipah virus, and SARS coronavirus. However, little is known about the role of bat ectoparasites in transmitting and maintaining such viruses. The intricate relationship between bats and their ectoparasites suggests that ectoparasites might serve as viral vectors, but evidence to date is scant. Bat flies, in particular, are highly specialized obligate hematophagous ectoparasites that incidentally bite humans. Using next- generation sequencing, we discovered a novel ledantevirus (mononegaviral family Rhabdoviridae, genus Ledantevirus) in nycteribiid bat flies infesting pteropodid bats in western Uganda. Mitochondrial DNA analyses revealed that both the bat flies and their bat hosts belong to putative new species. The coding-complete genome of the new virus, named Kanyawara virus (KYAV), is only distantly related to that of its closest known relative, Mount Elgon bat virus, and was found at high titers in bat flies but not in blood or on mucosal surfaces of host bats. Viral genome analysis indicates unusually low CpG dinucleotide depletion in KYAV compared to other ledanteviruses and rhabdovirus groups, with KYAV displaying values similar to rhabdoviruses of arthropods. Our findings highlight the possibility of a yet- to-be-discovered diversity of potentially pathogenic viruses in bat ectoparasites. Bats (order Chiroptera) represent the second largest order of mammals after rodents (order Rodentia). -
Bat Rabies Surveillance in Europe J
Zoonoses and Public Health SPECIALISSUE–BATS Bat Rabies Surveillance in Europe J. Schatz1, A. R. Fooks2, L. McElhinney2, D. Horton2, J. Echevarria3,S.Va´ zquez-Moron3, E. A. Kooi4, T. B. Rasmussen5,T.Mu¨ ller1 and C. M. Freuling1 1 Institute of Molecular Biology, WHO Collaborating Centre for Rabies Surveillance and Research, Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany 2 Wildlife Zoonoses and Vector Borne Diseases Research Group, Animal Health and Veterinary Laboratories Agency (Weybridge), Surrey, UK 3 Instituto de Salud Carlos III, Majadahonda, Madrid, Spain 4 Central Veterinary Institute of Wageningen UR, Lelystad, The Netherlands 5 DTU National Veterinary Institute, Lindholm, Kalvehave, Denmark Impacts • Rabies in European bats is caused by at least four different lyssavirus species that seem to have an association with certain bat species, that is, the Serotine bat (EBLV-1), the Daubenton’s and Pond bat (EBLV-2), Schreiber’s long-fingered bat (WCBV) and the Natterer’s bat (BBLV). • Almost all bat rabies cases were detected in dead or clinically affected bats i.e. passive surveillance. This is a much more sensitive approach than active surveillance where oral swab samples taken from individuals randomly captured during planned surveys were screened for viral RNA and/or virus. • The focus of bat rabies surveillance should be on testing of dead or moribund animals, and resulting positive FAT results should be further analysed to identify the lyssavirus species and all bats submitted for testing should be identified to species level. Keywords: Summary Rabies; bats; lyssavirus; surveillance Rabies is the oldest known zoonotic disease and was also the first recognized bat Correspondence: associated infection in humans. -
For Review Only Journal of Zoological Systematics and Evolutionary Research Page 2 of 47
Journal of Zoological Systematics and Evolutionary Research Comparative phylogeography and asymmetric hybridization between cryptic bat species Journal: Journal of Zoological Systematics and Evolutionary Research Manuscript ID JZS.201900005.R2 Wiley - Manuscript type:ForOriginal Review Article Only Date Submitted by the n/a Author: Complete List of Authors: Centeno-Cuadros, Alejandro; Universidad de Cádiz Facultad de Ciencias del Mar y Ambientales, Biomedicina, Biotecnología y Salud Pública Razgour, Orly; University of Southampton Centre for Biological Sciences, Centre for Biological Sciences García-Mudarra, Juan Luís; Estacion Biologica de Donana CSIC, Ecología Evolutiva Mingo-Casas, Patricia; Instituto de Salud Carlos III Campus de Majadahonda, Instituto de Salud Carlos III Sandonís, Virginia; Instituto de Salud Carlos III Campus de Majadahonda, Instituto de Salud Carlos III Redondo, Adrián; Estacion Biologica de Donana CSIC, Ecología Evolutiva Ibáñez, Carlos; Estacion Biologica de Donana CSIC, Ecología Evolutiva de Paz, Óscar; Universidad de Alcala de Henares, Ciencias de la Vida Martinez-Alós, Susana; Universidad de Alcala de Henares, Ciencias de la Vida Pérez Suarez, Gonzalo; Universidad de Alcala de Henares, Ciencias de la Vida Echevarría, Juan; Instituto de Salud Carlos III Campus de Majadahonda, Instituto de Salud Carlos III; CIBER de Epidemiología y Salud Pública, CIBERESP Juste, Javier; Estacion Biologica de Donana CSIC, Ecología Evolutiva Eptesicus, isabellinus, serotinus, Approximate Bayesian Computation, Keywords: hybrids Cryptic speciation and hybridization are two key processes that affect the origin and maintenance of biodiversity and our ability to understand and estimate it. To determine how these two processes interact, we studied allopatric and sympatric colonies of two cryptic bat species (Eptesicus serotinus and E. isabellinus) with parapatric distribution in the Iberian Peninsula. -
(Townsend's Big-Eared Bat), Eptesicus Fuscus
América do Norte Antrozous pallidus (Pallid), Corynorhinus townsendii (Townsend's big-eared bat), Eptesicus fuscus (Big brown), Euderma maculatum (Spotted), Eumops floridanus (Bonneted), Eumops perotis (Western mastiff), Eumops underwoodi (Underwood's bonneted), Lasionycteris noctivagans (Silver- haired), Lasiurus blossevilli (Western red), Lasiurus borealis (Eastern red), Lasiurus cinereus (Hoary), Lasiurus ega (Southern yellow), Lasiurus intermedius (Northern yellow), Lasiurus seminolus (S eminole bat), Lasiurus xanthinus (Western yellow), Macrotus californicus (California leaf-nosed), Molossus molossus (Pallas's mastiff), Mormoops megalophylla (Ghost faced), Myotis austroriparius (Southeastern myotis), Myotis californicus (California myotis), Myotis ciliolabrum (Western Small-footed), Myotis evotis (Long- eared myotis), Myotis grisescens (Gray), Myotis leibii (Small-footed), Myotis lucifugus (Little brown), Myotis occultus (Arizona myotis), Myotis septentrionalis (Northern long-eared myotis), Myotis sodalis (Indiana), Myotis thysanodes (Fringed myotis), Myotis velifer (Cave myotis), Myotis volans (Long-legged myotis), Myotis yumanensis (Yuma myotis), Nycticeius humeralis (Evening), Nyctinomops femorosaccus (Pocketed free-tailed), Nyctinomops macrotis (Big free-tailed), Parastrellus hesperus (Western pipistrelle), Perimyotis subflavus (Tricolored), Tadarida brasiliensis (Mexican free-tailed) Reino unido e Europa Barbastella barbastellus (Western barbastelle)*, Eptesicus isabellinus (Meridional serotine), Eptesicus isabellinus (Meridional -
17 Roberts Road, Eastern Creek
17 ROBERTS ROAD, EASTERN CREEK SSD-10330 Proposed Data Centre Biodiversity Development Assessment Report Prepared for: Canberra Data Centres Pty Ltd PO Box 304 JERRABOMBERRA NSW 2619 SLR Ref: 610.18883-R05 Version No: -v2.0 November 2019 Canberra Data Centres Pty Ltd SLR Ref No: 610.18883-R05-v2.0-Eastern Creek BDAR-20191111.docx 17 Roberts Road, Eastern Creek November 2019 SSD-10330 Proposed Data Centre Biodiversity Development Assessment Report PREPARED BY SLR Consulting Australia Pty Ltd ABN 29 001 584 612 10 Kings Road New Lambton NSW 2305 Australia (PO Box 447 New Lambton NSW 2305 Australia) T: +61 2 4037 3200 E: [email protected] www.slrconsulting.com BASIS OF REPORT This report has been prepared by SLR Consulting Australia Pty Ltd (SLR) with all reasonable skill, care and diligence, and taking account of the timescale and resources allocated to it by agreement with Canberra Data Centres Pty Ltd (the Client). Information reported herein is based on the interpretation of data collected, which has been accepted in good faith as being accurate and valid. This report is for the exclusive use of the Client. No warranties or guarantees are expressed or should be inferred by any third parties. This report may not be relied upon by other parties without written consent from SLR. SLR disclaims any responsibility to the Client and others in respect of any matters outside the agreed scope of the work. DOCUMENT CONTROL Reference Date Prepared Checked Authorised 610.18883-R05-v2.0 11 November 2019 Fiona Iolini and David Martin Jeremy -
Vocalisations of the Seychelles Sheath-Tailed Bat Coleura Seychellensis
Le Rhinolophe (2009) 18 : 17-24 Vocalisations of the seychelles sheath-tailed bat Coleura seychellensis Justin Gerlach 133 Cherry Hinton Road, Cambridge CB1 7BX, U.K. E-mail : [email protected] Abstract. The vocalisations of the Critically Endangered Seychelles sheath-tailed bat Coleura seychellensis are described. Four call types are identified : complex social calls, orientation calls within the roost, open habitat orientation calls and foraging calls. The open habitat orientation calls and foraging calls are quasi-CF, the latter having alternating frequencies. The function of the alternating calls is discussed and it is concluded that in this species the lower frequency tone is used for navigation (being identical to the open habitat orientation calls) and the higher frequency tone for prey detection in cluttered environments. Key words : Coleura, echolocation, Emballonuridae, foraging, orientation. INTRODUCTION MeThODs Auditory communication is used by a wide range of Two sets of recordings were analysed from Silhouette animals, from insects to vertebrates. In most species and Mahé islands. On Silhouette an automated recording this is used for communication between individuals ; system comprising the Anabat II bat detector and ZCAIM in the case of bats vocalisations provide information storage system was used for recording bat calls at La Passe both to other individuals and to the calling individual in July 2005. The bat detector was left in place overnight in the form of sonar. This mechanism and use of such (18:00-07:00 hours) in the roost and in foraging areas. communication in bats is relatively well understood and The recordings were analysed with Analook 4.9j. -
Index of Handbook of the Mammals of the World. Vol. 9. Bats
Index of Handbook of the Mammals of the World. Vol. 9. Bats A agnella, Kerivoula 901 Anchieta’s Bat 814 aquilus, Glischropus 763 Aba Leaf-nosed Bat 247 aladdin, Pipistrellus pipistrellus 771 Anchieta’s Broad-faced Fruit Bat 94 aquilus, Platyrrhinus 567 Aba Roundleaf Bat 247 alascensis, Myotis lucifugus 927 Anchieta’s Pipistrelle 814 Arabian Barbastelle 861 abae, Hipposideros 247 alaschanicus, Hypsugo 810 anchietae, Plerotes 94 Arabian Horseshoe Bat 296 abae, Rhinolophus fumigatus 290 Alashanian Pipistrelle 810 ancricola, Myotis 957 Arabian Mouse-tailed Bat 164, 170, 176 abbotti, Myotis hasseltii 970 alba, Ectophylla 466, 480, 569 Andaman Horseshoe Bat 314 Arabian Pipistrelle 810 abditum, Megaderma spasma 191 albatus, Myopterus daubentonii 663 Andaman Intermediate Horseshoe Arabian Trident Bat 229 Abo Bat 725, 832 Alberico’s Broad-nosed Bat 565 Bat 321 Arabian Trident Leaf-nosed Bat 229 Abo Butterfly Bat 725, 832 albericoi, Platyrrhinus 565 andamanensis, Rhinolophus 321 arabica, Asellia 229 abramus, Pipistrellus 777 albescens, Myotis 940 Andean Fruit Bat 547 arabicus, Hypsugo 810 abrasus, Cynomops 604, 640 albicollis, Megaerops 64 Andersen’s Bare-backed Fruit Bat 109 arabicus, Rousettus aegyptiacus 87 Abruzzi’s Wrinkle-lipped Bat 645 albipinnis, Taphozous longimanus 353 Andersen’s Flying Fox 158 arabium, Rhinopoma cystops 176 Abyssinian Horseshoe Bat 290 albiventer, Nyctimene 36, 118 Andersen’s Fruit-eating Bat 578 Arafura Large-footed Bat 969 Acerodon albiventris, Noctilio 405, 411 Andersen’s Leaf-nosed Bat 254 Arata Yellow-shouldered Bat 543 Sulawesi 134 albofuscus, Scotoecus 762 Andersen’s Little Fruit-eating Bat 578 Arata-Thomas Yellow-shouldered Talaud 134 alboguttata, Glauconycteris 833 Andersen’s Naked-backed Fruit Bat 109 Bat 543 Acerodon 134 albus, Diclidurus 339, 367 Andersen’s Roundleaf Bat 254 aratathomasi, Sturnira 543 Acerodon mackloti (see A. -
A Comparative Study of the Habitats, Growth and Reproduction of Eight Species of Tropical Anchovy from Cleveland and Bowling Green Bays, North Queensland
ResearchOnline@JCU This file is part of the following reference: Hoedt, Frank Edward (1994) A comparative study of the habitats, growth and reproduction of eight species of tropical anchovy from Cleveland and Bowling Green Bays, North Queensland. PhD thesis, James Cook University. Access to this file is available from: http://eprints.jcu.edu.au/24109/ The author has certified to JCU that they have made a reasonable effort to gain permission and acknowledge the owner of any third party copyright material included in this document. If you believe that this is not the case, please contact [email protected] and quote http://eprints.jcu.edu.au/24109/ A comparative study of the habitats, growth and reproduction of eight species of tropical anchovy from Cleveland and Bowling Green Bays, North Queensland. Thesis submitted by Frank Edward Hoedt BSc (lions) (JCU) in September 1994 for the degree of Doctor of Philosophy in the Department of Marine Biology James Cook University of North Queensland STATEMENT ON ACCESS TO THESIS I, the undersigned, the author of this thesis, understand that James Cook University of North Queensland will make it available for use within the University Library and, by microfilm or other photographic means, allow access to users in other approved libraries. All users consulting this thesis will have to sign the following statement: "In consulting this thesis, I agree not to copy or paraphrase it in whole or in part without the written consent of the author; and to make proper written acknowledgment for any assistance which I have obtained from it." Beyond this, I do not wish to place any restrictions on access to this thesis. -
Espécies Potencialmente Ameaçadas 2019 VF4 Pivott.Xlsx
List of Potentially Impacted Species by EDP activities Legenda (1) threat levels: i. Critically endangered (CR); ii. Endangered (EN); iii. Vulnerable (VU); iv. Near threatened (NT) and v. Least concern (LC) 31/12/2019 Species IUCN Red List of Threatened Species (1) National Red List Occurrence Scientific name Common name (EN) Common name (country of occurrence) Reino/Kingdom Classe/Class 2020‐01 latest assessment National Red List Country Tecnology Acanthochelys spixii Black Spiny‐necked Swamp Turtle cágado‐feio Animalia Reptilia NT 1‐ago‐06 Brazil Windpower Acanthodactylus erythrurus Animalia Reptilia LC 14‐dez‐08 Portugal Windpower Spiny‐footed Lizard Lagartixa‐de‐dedos‐denteados NT Accipiter gentilis Northern Goshawk Açor Animalia Aves LC 31‐mar‐15 Portugal Windpower VU Accipiter gentilis Northern Goshawk Azor común Animalia Aves LC 31‐mar‐15 NE Spain Windpower Accipiter gentilis Animalia Aves LC 31‐mar‐15 n/a Poland Windpower Northern Goshawk Jastrząb zwyczajny Accipiter gentilis Northern Goshawk Azor común Animalia Aves LC 31‐mar‐15 NE Spain Transmision grid‐ Renew Accipiter gentilis Northern Goshawk Azor Aves LC 31‐mar‐15 Spain Solar FV Animalia NT Accipiter nisus Eurasian sparrowhawk Gavião Animalia Aves LC 1‐out‐16 Portugal Windpower LC Accipiter nisus Eurasian sparrowhawk Gavilán común Animalia Aves LC 1‐out‐16 NE Spain Windpower Accipiter nisus Eurasian sparrowhawk Eurasian sparrowhawk Animalia Aves LC 1‐out‐16 France Windpower LC Eurasian Sparrowhawk Eurasian Sparrowhawk Accipiter nisus Animalia Aves LC 1‐out‐16 Italy Windpower -
Fitz-Stirling 2007-2017 Ten-Year Evaluation Review
Fitz-Stirling 2007-2017 Ten-year Evaluation Review Feb / 2018 P a g e | 1 Acknowledgements: This report has benefited greatly from the discussion and guidance on content, presentation and editing by Annette Stewart, Clair Dougherty and Simon Smale. Their expert assistance is greatly appreciated. Volunteers have played a major and vital role in the monitoring and survey program over the past 5 years and I thank all of those involved. Special thanks go to Dr Sandra Gilfillan for her continuing dedication to the wallaby monitoring and research program. Volunteers Aaron Gove, who provided the bird data analysis and Richard Thomas, who provided the bat data analysis, have made a large contribution to this report and I thank them. I sincerely thank Bill and Jane Thompson who have regularly carried out all the pool monitoring for several years. Thanks also to Barry Heydenrych, Greening Australia, who provided restoration data. Funding to assist the monitoring program and UAV surveys during 2015 was gratefully received from South Coast NRM as part of the Australian Government funded ‘Restoring Gondwana’ program. Funding vital for wallaby monitoring and research was provided by the Diversicon Foundation. Citation: Sanders, A. (2018). Fitz-Stirling 2007-2017 ten-year evaluation review. Unpublished report for Bush Heritage Australia. P a g e | 2 Contents Overview of Fitz-Stirling Project ........................................................................................................ 6 This report evaluates our conservation impact .................................................................................