Lost Fungi Help Us Find Our Uncommon Victorian Fungi
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
MYCOTAXON Volume 96, Pp
MYCOTAXON Volume 96, pp. 181–191 April–June 2006 The genus Chlorophyllum (Basidiomycetes) in China Z. W. GE1, 2 & Zhu L. YANG1, * [email protected] [email protected] 1 Laboratory of Biodiversity and Biogeography, Kunming Institute of Botany Chinese Academy of Sciences, Heilongtan, Kunming 650204, Yunnan, P. R. China 2 Graduate School of the Chinese Academy of Sciences Beijing 100039, P. R. China Abstract—Species of the genus Chlorophyllum (Agaricaceae) in China are described and illustrated with line drawings. Among them, C. sphaerosporum is new to science, and C. hortense is new to China. A key to the Chlorophyllum species in China is also provided. Key words—Agaricales, new taxon, new record, taxonomy, distribution Introduction The genus Chlorophyllum Massee (Agaricaceae, Agaricales, Basidiomycetes) in its amended sense is characterized by a hymenidermal pileus covering, a smooth stipe, and basidiospores without a germ pore or with a germ pore but just caused by a depression in the episporium. A hyaline covering on the germ pore is absent. The basidiospores may be white, green, brownish or brown in deposit, and the habit varies from agaricoid to secotioid (Vellinga 2001, 2002, 2003a, b; Vellinga & de Kok 2002; Vellinga et al. 2003). During our survey of the lepiotoid fungi in China, several species were identified, and one new species of the genus was encountered and thus described below. Differences between similar species are provided and discussed. Material and methods All material examined collected in China, and deposited in three Herbaria. Herbarium codes used follow Holmgren et al. (1990) with one exception: HKAS = Herbarium of Cryptogams, Kunming Institute of Botany, Chinese Academy of Sciences, which is not listed in the index or relevant publications. -
DPR Journal 2016 Corrected Final.Pmd
Bul. Dept. Pl. Res. No. 38 (A Scientific Publication) Government of Nepal Ministry of Forests and Soil Conservation Department of Plant Resources Thapathali, Kathmandu, Nepal 2016 ISSN 1995 - 8579 Bulletin of Department of Plant Resources No. 38 PLANT RESOURCES Government of Nepal Ministry of Forests and Soil Conservation Department of Plant Resources Thapathali, Kathmandu, Nepal 2016 Advisory Board Mr. Rajdev Prasad Yadav Ms. Sushma Upadhyaya Mr. Sanjeev Kumar Rai Managing Editor Sudhita Basukala Editorial Board Prof. Dr. Dharma Raj Dangol Dr. Nirmala Joshi Ms. Keshari Maiya Rajkarnikar Ms. Jyoti Joshi Bhatta Ms. Usha Tandukar Ms. Shiwani Khadgi Mr. Laxman Jha Ms. Ribita Tamrakar No. of Copies: 500 Cover Photo: Hypericum cordifolium and Bistorta milletioides (Dr. Keshab Raj Rajbhandari) Silene helleboriflora (Ganga Datt Bhatt), Potentilla makaluensis (Dr. Hiroshi Ikeda) Date of Publication: April 2016 © All rights reserved Department of Plant Resources (DPR) Thapathali, Kathmandu, Nepal Tel: 977-1-4251160, 4251161, 4268246 E-mail: [email protected] Citation: Name of the author, year of publication. Title of the paper, Bul. Dept. Pl. Res. N. 38, N. of pages, Department of Plant Resources, Kathmandu, Nepal. ISSN: 1995-8579 Published By: Mr. B.K. Khakurel Publicity and Documentation Section Dr. K.R. Bhattarai Department of Plant Resources (DPR), Kathmandu,Ms. N. Nepal. Joshi Dr. M.N. Subedi Reviewers: Dr. Anjana Singh Ms. Jyoti Joshi Bhatt Prof. Dr. Ram Prashad Chaudhary Mr. Baidhya Nath Mahato Dr. Keshab Raj Rajbhandari Ms. Rose Shrestha Dr. Bijaya Pant Dr. Krishna Kumar Shrestha Ms. Shushma Upadhyaya Dr. Bharat Babu Shrestha Dr. Mahesh Kumar Adhikari Dr. Sundar Man Shrestha Dr. -
Mantar Dergisi
11 6845 - Volume: 20 Issue:1 JOURNAL - E ISSN:2147 - April 20 e TURKEY - KONYA - FUNGUS Research Center JOURNAL OF OF JOURNAL Selçuk Selçuk University Mushroom Application and Selçuk Üniversitesi Mantarcılık Uygulama ve Araştırma Merkezi KONYA-TÜRKİYE MANTAR DERGİSİ E-DERGİ/ e-ISSN:2147-6845 Nisan 2020 Cilt:11 Sayı:1 e-ISSN 2147-6845 Nisan 2020 / Cilt:11/ Sayı:1 April 2020 / Volume:11 / Issue:1 SELÇUK ÜNİVERSİTESİ MANTARCILIK UYGULAMA VE ARAŞTIRMA MERKEZİ MÜDÜRLÜĞÜ ADINA SAHİBİ PROF.DR. GIYASETTİN KAŞIK YAZI İŞLERİ MÜDÜRÜ DR. ÖĞR. ÜYESİ SİNAN ALKAN Haberleşme/Correspondence S.Ü. Mantarcılık Uygulama ve Araştırma Merkezi Müdürlüğü Alaaddin Keykubat Yerleşkesi, Fen Fakültesi B Blok, Zemin Kat-42079/Selçuklu-KONYA Tel:(+90)0 332 2233998/ Fax: (+90)0 332 241 24 99 Web: http://mantarcilik.selcuk.edu.tr http://dergipark.gov.tr/mantar E-Posta:[email protected] Yayın Tarihi/Publication Date 27/04/2020 i e-ISSN 2147-6845 Nisan 2020 / Cilt:11/ Sayı:1 / / April 2020 Volume:11 Issue:1 EDİTÖRLER KURULU / EDITORIAL BOARD Prof.Dr. Abdullah KAYA (Karamanoğlu Mehmetbey Üniv.-Karaman) Prof.Dr. Abdulnasır YILDIZ (Dicle Üniv.-Diyarbakır) Prof.Dr. Abdurrahman Usame TAMER (Celal Bayar Üniv.-Manisa) Prof.Dr. Ahmet ASAN (Trakya Üniv.-Edirne) Prof.Dr. Ali ARSLAN (Yüzüncü Yıl Üniv.-Van) Prof.Dr. Aysun PEKŞEN (19 Mayıs Üniv.-Samsun) Prof.Dr. A.Dilek AZAZ (Balıkesir Üniv.-Balıkesir) Prof.Dr. Ayşen ÖZDEMİR TÜRK (Anadolu Üniv.- Eskişehir) Prof.Dr. Beyza ENER (Uludağ Üniv.Bursa) Prof.Dr. Cvetomir M. DENCHEV (Bulgarian Academy of Sciences, Bulgaristan) Prof.Dr. Celaleddin ÖZTÜRK (Selçuk Üniv.-Konya) Prof.Dr. Ertuğrul SESLİ (Trabzon Üniv.-Trabzon) Prof.Dr. -
A Preliminary Checklist of Arizona Macrofungi
A PRELIMINARY CHECKLIST OF ARIZONA MACROFUNGI Scott T. Bates School of Life Sciences Arizona State University PO Box 874601 Tempe, AZ 85287-4601 ABSTRACT A checklist of 1290 species of nonlichenized ascomycetaceous, basidiomycetaceous, and zygomycetaceous macrofungi is presented for the state of Arizona. The checklist was compiled from records of Arizona fungi in scientific publications or herbarium databases. Additional records were obtained from a physical search of herbarium specimens in the University of Arizona’s Robert L. Gilbertson Mycological Herbarium and of the author’s personal herbarium. This publication represents the first comprehensive checklist of macrofungi for Arizona. In all probability, the checklist is far from complete as new species await discovery and some of the species listed are in need of taxonomic revision. The data presented here serve as a baseline for future studies related to fungal biodiversity in Arizona and can contribute to state or national inventories of biota. INTRODUCTION Arizona is a state noted for the diversity of its biotic communities (Brown 1994). Boreal forests found at high altitudes, the ‘Sky Islands’ prevalent in the southern parts of the state, and ponderosa pine (Pinus ponderosa P.& C. Lawson) forests that are widespread in Arizona, all provide rich habitats that sustain numerous species of macrofungi. Even xeric biomes, such as desertscrub and semidesert- grasslands, support a unique mycota, which include rare species such as Itajahya galericulata A. Møller (Long & Stouffer 1943b, Fig. 2c). Although checklists for some groups of fungi present in the state have been published previously (e.g., Gilbertson & Budington 1970, Gilbertson et al. 1974, Gilbertson & Bigelow 1998, Fogel & States 2002), this checklist represents the first comprehensive listing of all macrofungi in the kingdom Eumycota (Fungi) that are known from Arizona. -
The Genus Crepidotus (Fr.) Staude in Europe
PERSOON I A Published by Rijksherbarium / Honus 8 01anicus. Leiden Volume 16. Part I. pp. 1-80 ( 1995) THE GENUS CREPIDOTUS (FR.) STAUDE IN EUROPE BEATRICE SENN-IRLET Systematisch-Gcobotanischcs lnsti1u1 dcr Univcrsit!lt Bern. C H-3013 Dern. Switzerland The gcnu~ Crepidotus in Europe is considered. After an examination of 550 collce1ions seven1ccn species and eigh1 varie1ies ore recognized. Two keys ore supplied; all taxa accept ed ore typified. Morphological. ecological and chorological chamc1ers arc cri1ically cvalua1cd. De crip· tivc stotis1ies arc used for basidiospore size. An infrageneric classifica1ion is proposed based on phcnctic rela1ionships using differcn1 cluster methods. The new combinations C. calo lepi.r var. sq11amulos1,s and C. cesatii var. subsplwerosporus arc inlroduced. The spore oma memouon as seen in the scanning electron microscope provides 1hc best character for species dclimilntion and classification. INTRODUCTION Fries ( 1821 : 272) established Agaricus eries De rm illus tribus Crepido111s for more or less pleurotoid species with ferruginous or pale argillaceous spores and an ephemeral. fibrillose veil (!). His fourteen species include such taxa as Paxillus arrorome111osus, Le11ti11el/11s v11/pi11us. Panel/us violaceo-fulvus and £1110/oma deplue11s which nowadays are placed in quite different genera and families. Only three of Fries' species belong to the genu Crepidotus as conceived now. T his demonstrates the importance of microscopic characters, neglected by Fries, for the circumscription of species and genera. Staude ( 1857) raised the tribus Crepidorus to generic rank with C. mollis as the sole species. Hesler & Smith ( 1965) dealt with the history of th e genus Crepido111s in more detail. In recent years several regional floras have been published, e.g. -
Arizona Gasteroid Fungi I: Lycoperdaceae (Agaricales, Basidiomycota)
Fungal Diversity Arizona gasteroid fungi I: Lycoperdaceae (Agaricales, Basidiomycota) Bates, S.T.1*, Roberson, R.W.1 and Desjardin, D.E.2 1School of Life Sciences, Arizona State University, Tempe, Arizona 85287, USA 2Department of Biology, San Francisco State University, 1600 Holloway Ave., San Francisco, California 94132, USA Bates, S.T., Roberson, R.W. and Desjardin, D.E. (2009). Arizona gasteroid fungi I: Lycoperdaceae (Agaricales, Basidiomycota). Fungal Diversity 37: 153-207. Twenty-eight species in the family Lycoperdaceae, commonly called ‘puffballs’, are reported from Arizona, USA. In addition to widely distributed species, understudied species (e.g., Calvatia cf. leiospora and Holocotylon brandegeeanum) are treated. Taxonomic descriptions and illustrations, which include microscopic characters, are given for each species, and a dichotomous key is presented to facilitate identification. Basidiospore morphology was also examined ultrastructurally using scanning electron microscopy, and phylogenetic analyses were carried out on nrRNA gene sequences (ITS1, ITS2, and 5.8S) from 42 species within (or closely allied to) the Lycoperdaceae. Key words: Agaricales, euagarics, fungal taxonomy, gasteroid fungi, gasteromycete, Lycoperdaceae, puffballs. Article Information Received 22 August 2008 Accepted 25 November 2008 Published online 1 August 2009 *Corresponding author: Scott T. Bates; e-mail: [email protected] Introduction Agaricales, Boletales, and Russulales. Accordingly, a vigorous debate concerning the Lycoperdaceae Chevall. -
Fungi from the Owyhee Region
FUNGI FROM THE OWYHEE REGION OF SOUTHERN IDAHO AND EASTERN OREGON bY Marcia C. Wicklow-Howard and Julie Kaltenecker Boise State University Boise, Idaho Prepared for: Eastside Ecosystem Management Project October 1994 THE OWYHEE REGION The Owyhee Region is south of the Snake River and covers Owyhee County, Idaho, Malheur County, Oregon, and a part of northern Nevada. It extends approximately from 115” to 118” West longitude and is bounded by parallels 41” to 44”. Owyhee County includes 7,662 square miles, Malheur County has 9,861 square miles, and the part of northern Nevada which is in the Owyhee River watershed is about 2,900 square miles. The elevations in the region range from about 660 m in the Snake River Plains and adjoining Owyhee Uplands to 2522 m at Hayden Peak in the Owyhee Mountains. Where the Snake River Plain area is mostly sediment-covered basalt, the area south of the Snake River known as the Owyhee Uplands, includes rolling hills, sharply dissected by basaltic plateaus. The Owyhee Mountains have a complex geology, with steep slopes of both basalt and granite. In the northern areas of the Owyhee Mountains, the steep hills, mountains, and escarpments consist of basalt. In other areas of the mountains the steep slopes are of granitic or rhyolitic origin. The mountains are surrounded by broad expanses of sagebrush covered plateaus. The soils of the Snake River Plains are generally non-calcareous and alkaline. Most are well-drained, with common soil textures of silt loam, loam and fine sand loam. In the Uplands and Mountains, the soils are often coarse textured on the surface, while the subsoils are loamy and non-calcareous. -
Notes, Outline and Divergence Times of Basidiomycota
Fungal Diversity (2019) 99:105–367 https://doi.org/10.1007/s13225-019-00435-4 (0123456789().,-volV)(0123456789().,- volV) Notes, outline and divergence times of Basidiomycota 1,2,3 1,4 3 5 5 Mao-Qiang He • Rui-Lin Zhao • Kevin D. Hyde • Dominik Begerow • Martin Kemler • 6 7 8,9 10 11 Andrey Yurkov • Eric H. C. McKenzie • Olivier Raspe´ • Makoto Kakishima • Santiago Sa´nchez-Ramı´rez • 12 13 14 15 16 Else C. Vellinga • Roy Halling • Viktor Papp • Ivan V. Zmitrovich • Bart Buyck • 8,9 3 17 18 1 Damien Ertz • Nalin N. Wijayawardene • Bao-Kai Cui • Nathan Schoutteten • Xin-Zhan Liu • 19 1 1,3 1 1 1 Tai-Hui Li • Yi-Jian Yao • Xin-Yu Zhu • An-Qi Liu • Guo-Jie Li • Ming-Zhe Zhang • 1 1 20 21,22 23 Zhi-Lin Ling • Bin Cao • Vladimı´r Antonı´n • Teun Boekhout • Bianca Denise Barbosa da Silva • 18 24 25 26 27 Eske De Crop • Cony Decock • Ba´lint Dima • Arun Kumar Dutta • Jack W. Fell • 28 29 30 31 Jo´ zsef Geml • Masoomeh Ghobad-Nejhad • Admir J. Giachini • Tatiana B. Gibertoni • 32 33,34 17 35 Sergio P. Gorjo´ n • Danny Haelewaters • Shuang-Hui He • Brendan P. Hodkinson • 36 37 38 39 40,41 Egon Horak • Tamotsu Hoshino • Alfredo Justo • Young Woon Lim • Nelson Menolli Jr. • 42 43,44 45 46 47 Armin Mesˇic´ • Jean-Marc Moncalvo • Gregory M. Mueller • La´szlo´ G. Nagy • R. Henrik Nilsson • 48 48 49 2 Machiel Noordeloos • Jorinde Nuytinck • Takamichi Orihara • Cheewangkoon Ratchadawan • 50,51 52 53 Mario Rajchenberg • Alexandre G. -
Agaricaceae, Basidiomycota): New Species
A peer-reviewed open-access journal MycoKeysA 32: multi-gene 65–90 (2018) phylogeny of Chlorophyllum (Agaricaceae, Basidiomycota): new species... 65 doi: 10.3897/mycokeys.32.23831 RESEARCH ARTICLE MycoKeys http://mycokeys.pensoft.net Launched to accelerate biodiversity research A multi-gene phylogeny of Chlorophyllum (Agaricaceae, Basidiomycota): new species, new combination and infrageneric classification Zai-Wei Ge1, Adriaana Jacobs2, Else C. Vellinga3, Phongeun Sysouphanthong4, Retha van der Walt2, Carmine Lavorato5, Yi-Feng An1, Zhu L. Yang1 1 Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China 2 National Collection of Fungi, Biosystematics Division, ARC, Plant Health and Protection, Queenswood 9012, Pretoria, South Africa 3 111 Koshland Hall 3102, Univer- sity of California at Berkeley, Berkeley, California 94720-3102, USA 4 Ecology Division, Biotechnology and Ecology Institute, Ministry of Science and Technology, P.O.Box: 2279, Vientiane Capital, Lao PDR 5 C/da Calamia 10 – I-87069 San Demetrio Corone (CS), Italy Corresponding author: Zai-Wei Ge ([email protected]) Academic editor: S. Redhead | Received 23 January 2018 | Accepted 5 March 2018 | Published 20 March 2018 Citation: Ge Z-W, Jacobs A, Vellinga EC, Sysouphanthong P, van der Walt R, Lavorato C, An Y-F, Yang ZL (2018) A multi-gene phylogeny of Chlorophyllum (Agaricaceae, Basidiomycota): new species, new combination and infrageneric classification. MycoKeys 32: 65–90. https://doi.org/10.3897/mycokeys.32.23831 Abstract Taxonomic and phylogenetic studies of Chlorophyllum were carried out on the basis of morphological differences and molecular phylogenetic analyses. Based on the phylogeny inferred from the internal tran- scribed spacer (ITS), the partial large subunit nuclear ribosomal DNA (nrLSU), the second largest subunit of RNA polymerase II (rpb2) and translation elongation factor 1-α (tef1) sequences, six well-supported clades and 17 phylogenetic species are recognised. -
Biological Diversity and Conservation ISSN
www.biodicon.com Biological Diversity and Conservation ISSN 1308-8084 Online; ISSN 1308-5301 Print 10/2 (2017) 8-13 Research article/Araştırma makalesi New additions to Turkish Agaricales Yasin UZUN 1, Abdullah KAYA *1, İbrahim Halil KARACAN 2, Semiha YAKAR 1 1 Karamanoğlu Mehmetbey University, Kâmil Özdağ Science Faculty, Department of Biology, 70100, Karaman, Turkey 2 Ömer Özmimar Religious Anatolian High School, 27220, Gaziantep, Turkey Abstract Six members of Agaricales, Chromocyphella muscicola (Fr.) Donk (Chromocyphellaceae), Crepidotus pallidus (Berk. & Broome) Knudsen (Inocybaceae), Mycena meliigena (Berk. & Cooke) Sacc. (Mycenaceae), Lachnella villosa (Pers.) Donk (Niaceae), Cryptomarasmius corbariensis (Roum.) T.S. Jenkinson & Desjardin (Physalacriaceae) and Typhula setipes (Grev.) Berthier (Typhulaceae) are recorded for the first time from Turkey. The taxa are described briefly and photographs related to macro and micromorphologies are given. Key words: new records, Chromocyphella, Cryptomarasmius, Agaricales, Turkey ---------- ---------- Türkiye Agaricales’lerine yeni ilaveler Özet Altı Agaricales üyesi, Chromocyphella muscicola (Fr.) Donk (Chromocyphellaceae), Crepidotus pallidus (Berk. & Broome) Knudsen (Inocybaceae), Mycena meliigena (Berk. & Cooke) Sacc. (Mycenaceae), Lachnella villosa (Pers.) Donk (Niaceae), Cryptomarasmius corbariensis (Roum.) T.S. Jenkinson & Desjardin (Physalacriaceae) and Typhula setipes (Grev.) Berthier (Typhulaceae) Türkiye’den ilk kez kaydedilmiştir. Taksonlar kısaca betimlenmiş ve makro ve mikro -
Do Fungal Fruitbodies and Edna Give Similar Biodiversity Assessments Across Broad Environmental Gradients?
Supplementary material for Man against machine: Do fungal fruitbodies and eDNA give similar biodiversity assessments across broad environmental gradients? Tobias Guldberg Frøslev, Rasmus Kjøller, Hans Henrik Bruun, Rasmus Ejrnæs, Anders Johannes Hansen, Thomas Læssøe, Jacob Heilmann- Clausen 1 Supplementary methods. This study was part of the Biowide project, and many aspects are presented and discussed in more detail in Brunbjerg et al. (2017). Environmental variables. Soil samples (0-10 cm, 5 cm diameter) were collected within 4 subplots of the 130 sites and separated in organic (Oa) and mineral (A/B) soil horizons. Across all sites, a total of 664 soil samples were collected. Organic horizons were separated from the mineral horizons when both were present. Soil pH was measured on 10g soil in 30 ml deionized water, shaken vigorously for 20 seconds, and then settling for 30 minutes. Measurements were done with a Mettler Toledo Seven Compact pH meter. Soil pH of the 0-10 cm soil layer was calculated weighted for the proportion of organic matter to mineral soil (average of samples taken in 4 subplots). Organic matter content was measured as the percentage of the 0-10 cm core that was organic matter. 129 of the total samples were measured for carbon content (LECO elemental analyzer) and total phosphorus content (H2SO4-Se digestion and colorimetric analysis). NIR was used to analyze each sample for total carbon and phosphorus concentrations. Reflectance spectra was analyzed within a range of 10000-4000 cm-1 with a Antaris II NIR spectrophotometer (Thermo Fisher Scientific). A partial least square regression was used to test for a correlation between the NIR data and the subset reference analyses to calculate total carbon and phosphorous (see Brunbjerg et al. -
Complete References List
Aanen, D. K. & T. W. Kuyper (1999). Intercompatibility tests in the Hebeloma crustuliniforme complex in northwestern Europe. Mycologia 91: 783-795. Aanen, D. K., T. W. Kuyper, T. Boekhout & R. F. Hoekstra (2000). Phylogenetic relationships in the genus Hebeloma based on ITS1 and 2 sequences, with special emphasis on the Hebeloma crustuliniforme complex. Mycologia 92: 269-281. Aanen, D. K. & T. W. Kuyper (2004). A comparison of the application of a biological and phenetic species concept in the Hebeloma crustuliniforme complex within a phylogenetic framework. Persoonia 18: 285-316. Abbott, S. O. & Currah, R. S. (1997). The Helvellaceae: Systematic revision and occurrence in northern and northwestern North America. Mycotaxon 62: 1-125. Abesha, E., G. Caetano-Anollés & K. Høiland (2003). Population genetics and spatial structure of the fairy ring fungus Marasmius oreades in a Norwegian sand dune ecosystem. Mycologia 95: 1021-1031. Abraham, S. P. & A. R. Loeblich III (1995). Gymnopilus palmicola a lignicolous Basidiomycete, growing on the adventitious roots of the palm sabal palmetto in Texas. Principes 39: 84-88. Abrar, S., S. Swapna & M. Krishnappa (2012). Development and morphology of Lysurus cruciatus--an addition to the Indian mycobiota. Mycotaxon 122: 217-282. Accioly, T., R. H. S. F. Cruz, N. M. Assis, N. K. Ishikawa, K. Hosaka, M. P. Martín & I. G. Baseia (2018). Amazonian bird's nest fungi (Basidiomycota): Current knowledge and novelties on Cyathus species. Mycoscience 59: 331-342. Acharya, K., P. Pradhan, N. Chakraborty, A. K. Dutta, S. Saha, S. Sarkar & S. Giri (2010). Two species of Lysurus Fr.: addition to the macrofungi of West Bengal.