Muscle Contraction

Total Page:16

File Type:pdf, Size:1020Kb

Muscle Contraction 10/19/2009 CONTROL OF MOVEMENT: STRIATED MUSCLES SKELETAL (STRIATED) MUSCLE: - each muscle = ____________________________________ - each muscle cell = _______________________________________ -Myosin: Filamentous___________________________________________ protein with cross bridges -Actin: _________________________________________________Filamentous protein where cross bridges of myosin bind ANATOMY OF SKELETAL MUSCLE ______________ _____________ ________ Extrafusal muscle fiber ________ _________ Myofibril _____________ __________________ ___________ MUSCLE CONTRACTION Watch muscle contraction movie Myosin Myosin cross bridges filament Actin filaments Actin MtfMovement of filament actin filament Myosin cross bridge Movement of myosin filament Heads of cross bridges: 1. Attach to active sites on actin filaments 2. “Ratchet” forward 3. Release 4. Repeat -Onlyoccurs in the presence of ________ How is calcium released? From___________________________ activity at neuromuscular ________junction 1 10/19/2009 NEUROMUSCULAR JUNCTION Synapse between terminal of _________________ and a ___________ is called a neuromuscular junction; Terminals of alpha motor neurons synapse on _____________- grooves along the surface of muscle fibers; When motor neuron fires, _____________ is liberated from terminals at the endplate and depolarizes muscle fibers - ________________; Depolarization of muscle fiber opens ________ _________________________, producing a large calcium influx into the fiber; Calcium triggers the actin-myosin “rowing” action leading to the __________ of muscle fibers; Calcium is extruded from fiber by “pump”; Endplate potential ______ cause muscle fiber to fire = contraction or “twitch” of fiber. MOTOR UNITS Motor unit: _______________________________________ ___________________________________ Motor pool: All motor neurons that innervate fibers of a single muscle. Muscle fibers Alpha motor neurons Axons - weak muscular contraction = _______________________ - strong contraction = _______________________ - discrete/fine movements = __________________________ ____________ - crude/gross movements = __________________________ ____________ 2 10/19/2009 Localization and distribution of motor neurons in the spinal cord Somatosensory (mechano) and nociceptive (pain) receptors Glabrous skin: _________________________________ Hairy skin: skin__________________________________ that covers the rest of the body There are 3 groups of somatosensory receptors: 1. ______________ 2. ______________ 3. ______________ 3 10/19/2009 Somatosensory pathway from receptors to somatosensory (primary) cortex: How pain reaches the somatosensory cortex 4 10/19/2009 How is the phenomenon of “referred pain” produced? Arm and shoulder pain “referred” from heart pain receptors during heart attack. MONOSYNAPTIC STRETCH REFLEX Involves: - _________________ - _________________________________ - ________________________________________ __________________________ - ______________________________ - ____________________________________ Watch stretch reflex movie 5 10/19/2009 How muscle spindles work! - Gamma motor neurons provide the ________ ________________________________ - without gamma motor neurons, the spindles would become __________________________“slack” and unresponsive to_______________ stretch. - gamma motor neurons function __________to adjust the length_______________________ of intrafusal muscles titto an appropriate degree of tension Gamma motor neurons Muscle spindles Extrafusal muscle Spindle “slack” - insensitive to strech Spindle “tight” - ready to respond to strech POLYSYNAPTIC REFLEXES: EXAMPLE OF WITHDRAWAL FROM PAIN - reflexes requiring _________________________ - concept of _______________________________ ____________________________ - ex., biceps vs. triceps of arms - reciprocal innervation (excitatory vs. inhibitory) -excitatory ________________________________________ and inhibitory interneurons work ____________________________________together to withdraw limb from pain. 6 10/19/2009 CROSSED EXTENSOR REFLEX Think of this reflex as being ____________“connected” with previous polysynaptic withdrawal reflex For example, if flexion reflex triggered in one leg, ___________________________________ All thi s h appens _________________________; the brain has nothing to do with it. This serves to: - _______________________________________help remove or push entire body away from _______________________painful stimulus; - _______________________________________help restore balance when flexed leg is _____________________withdrawn. An example of a complex sensorimotor reflex is ________. - spinal cat, when placed on a treadmill can ______________________________________initiate normal walking when provided with ______________________________________somatosensory feedback of treadmill on feet. GOLGI TENDON REFLEX or how not to shred your muscles and bones! Golgi Tendon Organ: ______________________receptor organ sensitive ________________________________________to stretch and located at the junction of the _____________________________tendon and muscle. - only contacts ________________________ - if maximally activated, ___________________ ________________________________ - helps prevent tearing of muscles and tendons from bone Golgi____________ tendon organ_______ ____________________Pseudounipolar _________neuron alpha______________________ motor neuron inhibitory_________________________ interneuron 7.
Recommended publications
  • Microanatomy of Muscles
    Microanatomy of Muscles Anatomy & Physiology Class Three Main Muscle Types Objectives: By the end of this presentation you will have the information to: 1. Describe the 3 main types of muscles. 2. Detail the functions of the muscle system. 3. Correctly label the parts of a myocyte (muscle cell) 4. Identify the levels of organization in a skeletal muscle from organ to myosin. 5. Explain how a muscle contracts utilizing the correct terminology of the sliding filament theory. 6. Contrast and compare cardiac and smooth muscle with skeletal muscle. Major Functions: Muscle System 1. Moving the skeletal system and posture. 2. Passing food through the digestive system & constriction of other internal organs. 3. Production of body heat. 4. Pumping the blood throughout the body. 5. Communication - writing and verbal Specialized Cells (Myocytes) ~ Contractile Cells Can shorten along one or more planes because of specialized cell membrane (sarcolemma) and specialized cytoskeleton. Specialized Structures found in Myocytes Sarcolemma: The cell membrane of a muscle cell Transverse tubule: a tubular invagination of the sarcolemma of skeletal or cardiac muscle fibers that surrounds myofibrils; involved in transmitting the action potential from the sarcolemma to the interior of the myofibril. Sarcoplasmic Reticulum: The special type of smooth endoplasmic Myofibrils: reticulum found in smooth and a contractile fibril of skeletal muscle, composed striated muscle fibers whose function mainly of actin and myosin is to store and release calcium ions. Multiple Nuclei (skeletal) & many mitochondria Skeletal Muscle - Microscopic Anatomy A whole skeletal muscle (such as the biceps brachii) is considered an organ of the muscular system. Each organ consists of skeletal muscle tissue, connective tissue, nerve tissue, and blood or vascular tissue.
    [Show full text]
  • VIEW Open Access Muscle Spindle Function in Healthy and Diseased Muscle Stephan Kröger* and Bridgette Watkins
    Kröger and Watkins Skeletal Muscle (2021) 11:3 https://doi.org/10.1186/s13395-020-00258-x REVIEW Open Access Muscle spindle function in healthy and diseased muscle Stephan Kröger* and Bridgette Watkins Abstract Almost every muscle contains muscle spindles. These delicate sensory receptors inform the central nervous system (CNS) about changes in the length of individual muscles and the speed of stretching. With this information, the CNS computes the position and movement of our extremities in space, which is a requirement for motor control, for maintaining posture and for a stable gait. Many neuromuscular diseases affect muscle spindle function contributing, among others, to an unstable gait, frequent falls and ataxic behavior in the affected patients. Nevertheless, muscle spindles are usually ignored during examination and analysis of muscle function and when designing therapeutic strategies for neuromuscular diseases. This review summarizes the development and function of muscle spindles and the changes observed under pathological conditions, in particular in the various forms of muscular dystrophies. Keywords: Mechanotransduction, Sensory physiology, Proprioception, Neuromuscular diseases, Intrafusal fibers, Muscular dystrophy In its original sense, the term proprioception refers to development of head control and walking, an early im- sensory information arising in our own musculoskeletal pairment of fine motor skills, sensory ataxia with un- system itself [1–4]. Proprioceptive information informs steady gait, increased stride-to-stride variability in force us about the contractile state and movement of muscles, and step length, an inability to maintain balance with about muscle force, heaviness, stiffness, viscosity and ef- eyes closed (Romberg’s sign), a severely reduced ability fort and, thus, is required for any coordinated move- to identify the direction of joint movements, and an ab- ment, normal gait and for the maintenance of a stable sence of tendon reflexes [6–12].
    [Show full text]
  • Vocabulario De Morfoloxía, Anatomía E Citoloxía Veterinaria
    Vocabulario de Morfoloxía, anatomía e citoloxía veterinaria (galego-español-inglés) Servizo de Normalización Lingüística Universidade de Santiago de Compostela COLECCIÓN VOCABULARIOS TEMÁTICOS N.º 4 SERVIZO DE NORMALIZACIÓN LINGÜÍSTICA Vocabulario de Morfoloxía, anatomía e citoloxía veterinaria (galego-español-inglés) 2008 UNIVERSIDADE DE SANTIAGO DE COMPOSTELA VOCABULARIO de morfoloxía, anatomía e citoloxía veterinaria : (galego-español- inglés) / coordinador Xusto A. Rodríguez Río, Servizo de Normalización Lingüística ; autores Matilde Lombardero Fernández ... [et al.]. – Santiago de Compostela : Universidade de Santiago de Compostela, Servizo de Publicacións e Intercambio Científico, 2008. – 369 p. ; 21 cm. – (Vocabularios temáticos ; 4). - D.L. C 2458-2008. – ISBN 978-84-9887-018-3 1.Medicina �������������������������������������������������������������������������veterinaria-Diccionarios�������������������������������������������������. 2.Galego (Lingua)-Glosarios, vocabularios, etc. políglotas. I.Lombardero Fernández, Matilde. II.Rodríguez Rio, Xusto A. coord. III. Universidade de Santiago de Compostela. Servizo de Normalización Lingüística, coord. IV.Universidade de Santiago de Compostela. Servizo de Publicacións e Intercambio Científico, ed. V.Serie. 591.4(038)=699=60=20 Coordinador Xusto A. Rodríguez Río (Área de Terminoloxía. Servizo de Normalización Lingüística. Universidade de Santiago de Compostela) Autoras/res Matilde Lombardero Fernández (doutora en Veterinaria e profesora do Departamento de Anatomía e Produción Animal.
    [Show full text]
  • (7E) Powerpoint Lecture Outline Chapter 8: Control of Movement
    Carlson (7e) PowerPoint Lecture Outline Chapter 8: Control of Movement This multimedia product and its contents are protected under copyright law. The following are prohibited by law: •any public performance or display, including transmission of any image over a network; •preparation of any derivative work, including extraction, in whole or in part, of any images; •any rental, lease, or lending of the program. Copyright 2001 by Allyn & Bacon Skeletal Muscle n Movements of our body are accomplished by contraction of the skeletal muscles l Flexion: contraction of a flexor muscle draws in a limb l Extension: contraction of extensor muscle n Skeletal muscle fibers have a striated appearance n Skeletal muscle is composed of two fiber types: l Extrafusal: innervated by alpha-motoneurons from the spinal cord: exert force l Intrafusal: sensory fibers that detect stretch of the muscle u Afferent fibers: report length of intrafusal: when stretched, the fibers stimulate the alpha-neuron that innervates the muscle fiber: maintains muscle tone u Efferent fibers: contraction adjusts sensitivity of afferent fibers. 8.2 Copyright 2001 by Allyn & Bacon Skeletal Muscle Anatomy n Each muscle fiber consists of a bundle of myofibrils l Each myofibril is made up of overlapping strands of actin and myosin l During a muscle twitch, the myosin filaments move relative to the actin filaments, thereby shortening the muscle fiber 8.3 Copyright 2001 by Allyn & Bacon Neuromuscular Junction n The neuromuscular junction is the synapse formed between an alpha motor neuron
    [Show full text]
  • Tissue Engineered Myelination and the Stretch Reflex Arc Sensory Circuit: Defined Medium Ormulation,F Interface Design and Microfabrication
    University of Central Florida STARS Electronic Theses and Dissertations, 2004-2019 2009 Tissue Engineered Myelination And The Stretch Reflex Arc Sensory Circuit: Defined Medium ormulation,F Interface Design And Microfabrication John Rumsey University of Central Florida Part of the Biology Commons Find similar works at: https://stars.library.ucf.edu/etd University of Central Florida Libraries http://library.ucf.edu This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more information, please contact [email protected]. STARS Citation Rumsey, John, "Tissue Engineered Myelination And The Stretch Reflex Arc Sensory Circuit: Defined Medium Formulation, Interface Design And Microfabrication" (2009). Electronic Theses and Dissertations, 2004-2019. 3826. https://stars.library.ucf.edu/etd/3826 TISSUE ENGINEERED MYELINATION AND THE STRETCH REFLEX ARC SENSORY CIRCUIT: DEFINED MEDIUM FORMULATION, INTERFACE DESIGN AND MICROFABRICATION by JOHN WAYNE RUMSEY B.S. University of Florida, 2001 M.S. University of Central Florida, 2004 A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Burnett School of Biomedical Sciences in the College of Medicine at the University of Central Florida Orlando, Florida Fall Term 2009 Major Professor: James J. Hickman ABSTRACT The overall focus of this research project was to develop an in vitro tissue- engineered system that accurately reproduced the physiology of the sensory elements of the stretch reflex arc as well as engineer the myelination of neurons in the systems. In order to achieve this goal we hypothesized that myelinating culture systems, intrafusal muscle fibers and the sensory circuit of the stretch reflex arc could be bioengineered using serum-free medium formulations, growth substrate interface design and microfabrication technology.
    [Show full text]
  • CAP2 Deficiency Delays Myofibril Actin Cytoskeleton Differentiation and Disturbs Skeletal Muscle Architecture and Function
    CAP2 deficiency delays myofibril actin cytoskeleton differentiation and disturbs skeletal muscle architecture and function Lara-Jane Kepsera, Fidan Damara, Teresa De Ciccob, Christine Chaponnierc, Tomasz J. Prószynski b, Axel Pagenstecherd, and Marco B. Rusta,e,f,1 aMolecular Neurobiology Group, Institute of Physiological Chemistry, University of Marburg, 35032 Marburg, Germany; bLaboratory of Synaptogenesis, Nencki Institute of Experimental Biology PAS, 02-093 Warsaw, Poland; cDepartment of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland; dInstitute of Neuropathology, University of Marburg, 35032 Marburg, Germany; eCenter for Mind, Brain and Behavior, Research Campus of Central Hessen, 35032 Marburg, Germany; and fDFG Research Training Group “Membrane Plasticity in Tissue Development and Remodeling,” GRK 2213, University of Marburg, 35032 Marburg, Germany Edited by Yale E. Goldman, University of Pennsylvania/PMI, Philadelphia, PA, and approved March 14, 2019 (received for review August 7, 2018) Actin filaments (F-actin) are key components of sarcomeres, the have acquired specific functions. While previous analyses of mu- basic contractile units of skeletal muscle myofibrils. A crucial step tant mice demonstrated a role of CAP2 in neuron morphology and during myofibril differentiation is the sequential exchange of heart physiology (13–15), its function in skeletal muscles has not α-actin isoforms from smooth muscle (α-SMA) and cardiac (α-CAA) been investigated, yet. to skeletal muscle α-actin (α-SKA) that, in mice, occurs during early We here report a function for CAP2 in skeletal muscle de- postnatal life. This “α-actin switch” requires the coordinated activ- velopment. We found that CAP2 controls the exchange of ity of actin regulators because it is vital that sarcomere structure α-actin isoforms during myofibril differentiation.
    [Show full text]
  • Be Able to Describe a Stretch Reflex
    be able to describe a stretch reflex .(1) (2) Define muscle tone (3) be able to explain what is muscle tone (4) describe the structure , innervations and function of the muscle spindle . (5) explain what is meant by static and dynamic stretch reflex . (6) describe the spinal and supraspinal regulation of the stretch reflex . (7) describe the inverse stretch reflex and its function Stretch reflex: Whenever a muscle is stretched suddenly, excitation of the muscle spindle causes reflex contraction of the large muscle fiber (See the pictures). It is deep and monosynaptic reflex. Stretch response is produced by co-activation of alpha & gamma motor neurons. But it is maintained mainly by the tonic ( continuous) discharge of Gamma Efferent neurons. Muscle spindle: It is a sensory receptors which are distributed throughout the muscle and it sends information to nervous system about muscle length or rate of change in muscle length. - Each spindle is built around 3-12 intrafusal muscle fibers. - Muscle spindles are parallel to extrafusal muscle fibers and they are attached to them or to the tendon. Types of Intrafusal fibers Each intrafusal fiber consists of: (1) Central non-contractile area (receptor 2) Nuclear chain fibers: area). thinner and shorter 1) Nuclear bag fibers: than nuclear bag fibers (2) Peripheral contractile area. contain many nuclei in , and have one line of a dilated central area ( “ nuclei spread in a chain bag ” ) . Typically there along the receptor area are 2 nuclear bag fibers . There are 4 – 9 per spindle . nuclear chain
    [Show full text]
  • Nomina Histologica Veterinaria, First Edition
    NOMINA HISTOLOGICA VETERINARIA Submitted by the International Committee on Veterinary Histological Nomenclature (ICVHN) to the World Association of Veterinary Anatomists Published on the website of the World Association of Veterinary Anatomists www.wava-amav.org 2017 CONTENTS Introduction i Principles of term construction in N.H.V. iii Cytologia – Cytology 1 Textus epithelialis – Epithelial tissue 10 Textus connectivus – Connective tissue 13 Sanguis et Lympha – Blood and Lymph 17 Textus muscularis – Muscle tissue 19 Textus nervosus – Nerve tissue 20 Splanchnologia – Viscera 23 Systema digestorium – Digestive system 24 Systema respiratorium – Respiratory system 32 Systema urinarium – Urinary system 35 Organa genitalia masculina – Male genital system 38 Organa genitalia feminina – Female genital system 42 Systema endocrinum – Endocrine system 45 Systema cardiovasculare et lymphaticum [Angiologia] – Cardiovascular and lymphatic system 47 Systema nervosum – Nervous system 52 Receptores sensorii et Organa sensuum – Sensory receptors and Sense organs 58 Integumentum – Integument 64 INTRODUCTION The preparations leading to the publication of the present first edition of the Nomina Histologica Veterinaria has a long history spanning more than 50 years. Under the auspices of the World Association of Veterinary Anatomists (W.A.V.A.), the International Committee on Veterinary Anatomical Nomenclature (I.C.V.A.N.) appointed in Giessen, 1965, a Subcommittee on Histology and Embryology which started a working relation with the Subcommittee on Histology of the former International Anatomical Nomenclature Committee. In Mexico City, 1971, this Subcommittee presented a document entitled Nomina Histologica Veterinaria: A Working Draft as a basis for the continued work of the newly-appointed Subcommittee on Histological Nomenclature. This resulted in the editing of the Nomina Histologica Veterinaria: A Working Draft II (Toulouse, 1974), followed by preparations for publication of a Nomina Histologica Veterinaria.
    [Show full text]
  • Malak Shalfawi Noor Adnan Lina Abdelhadi Fasial Mohammad
    9 Noor Adnan Malak Shalfawi Lina abdelhadi Fasial Mohammad 0 Motor system – Motor of the spinal cord Before we start talking about the motor function of the spinal cord, let’s first take a quick look at the motor system and the incredible connections taking place inside it: [please refer to the pictures for better understanding] 1- Motor command For any motor function (movement) to occur, the nervous system has motor command that comes from the cerebral motor cortex to the spinal cord and these descending tracts (corticospinal) are called also pyramidal tracts and that’s because they pass through the pyramids of medulla oblongata. The neuronal fibers coming from the cortex ending in the spinal cord are considered upper motor neurons, while the neuronal fibers going out from the spinal cord to reach the muscles are called lower motor neurons. There are other origins for the motor commands such as the brain stem and the red nucleus that send neuronal fibers to the spinal cord in order to control the activity of the muscles. 2- Motor command intension At the same time, there are some tracts going from the cortex to the cerebellum through the brain stem like the corticopontocerebellar, corticoreticulocerebellar, corticolivarycerebellar tracts. And these tracts are telling the cerebellum about the intended movements. (= the movements we want to do) 3-motor command monitor/ feedback system a- Inside the muscles we have receptors (muscle spindles/ stretch receptors, Golgi tendon organs) that are connected to sensory (afferent) neuronal fibers that goes to the spinal cord relay nuclei. 1 | P a g e b- From the spinal cord they go to the cerebellum through ventral and dorsal spinocerebellar tracts to tell the cerebellum what is exactly happening down at the level of the muscles.
    [Show full text]
  • Breakdown of Filamentous Myofibrils by the UPS–Step by Step
    biomolecules Review Breakdown of Filamentous Myofibrils by the UPS–Step by Step Dina Aweida and Shenhav Cohen * Faculty of Biology, Technion Institute of Technology, Haifa 32000, Israel; [email protected] * Correspondence: [email protected]; Tel.: +972-4-8294214 Abstract: Protein degradation maintains cellular integrity by regulating virtually all biological pro- cesses, whereas impaired proteolysis perturbs protein quality control, and often leads to human disease. Two major proteolytic systems are responsible for protein breakdown in all cells: autophagy, which facilitates the loss of organelles, protein aggregates, and cell surface proteins; and the ubiquitin- proteasome system (UPS), which promotes degradation of mainly soluble proteins. Recent findings indicate that more complex protein structures, such as filamentous assemblies, which are not acces- sible to the catalytic core of the proteasome in vitro, can be efficiently degraded by this proteolytic machinery in systemic catabolic states in vivo. Mechanisms that loosen the filamentous structure seem to be activated first, hence increasing the accessibility of protein constituents to the UPS. In this review, we will discuss the mechanisms underlying the disassembly and loss of the intricate insoluble filamentous myofibrils, which are responsible for muscle contraction, and whose degradation by the UPS causes weakness and disability in aging and disease. Several lines of evidence indicate that myofibril breakdown occurs in a strictly ordered and controlled manner, and the function of AAA-ATPases is crucial for their disassembly and loss. Keywords: ubiquitin; proteasome; autophagy; muscle atrophy; intermediate filaments; myofibrils; AAA-ATPases 1. Introduction Citation: Aweida, D.; Cohen, S. Proteolysis promotes tissue homeostasis by controlling protein abundance in response Breakdown of Filamentous Myofibrils to extracellular and intracellular cues, and by preventing accumulation of misfolded or by the UPS–Step by Step.
    [Show full text]
  • Microfluidic Perfusion Shows Intersarcomere Dynamics Within Single Skeletal Muscle Myofibrils
    Microfluidic perfusion shows intersarcomere dynamics within single skeletal muscle myofibrils Felipe de Souza Leitea, Fabio C. Minozzoa, David Altmanb, and Dilson E. Rassiera,c,d,1 aDepartment of Kinesiology and Physical Education, McGill University, Montreal, QC, Canada, H2W 1S4; bDepartment of Physics, Willamette University, Salem, OR 97301; cDepartment of Physiology, McGill University, Montreal, QC, Canada, H3G 1Y6; and dDepartment of Physics, McGill University, Montreal, QC, Canada H3A 2T8 Edited by James A. Spudich, Stanford University School of Medicine, Stanford, CA, and approved July 5, 2017 (received for review January 30, 2017) The sarcomere is the smallest functional unit of myofibrils in passive force production, which enables the myofibrils to stabilize in striated muscles. Sarcomeres are connected in series through a a given activation condition. Because of technical limitations, the network of elastic and structural proteins. During myofibril activa- mechanisms governing the interactionofsarcomeresinamyofibril tion, sarcomeres develop forces that are regulated through complex and its consequences for force production remain unclear (11). dynamics among their structures. The mechanisms that regulate In this study, we tested the hypotheses that the mechanical work intersarcomere dynamics are unclear, which limits our understand- of one sarcomere effectively communicates with other sarcomeres ing of fundamental muscle features. Such dynamics are associated in series through the passive work of titin and that myofibril me- with the loss in forces caused by mechanical instability encountered chanics are largely governed by intersarcomere dynamics. To test in muscle diseases and cardiomyopathy and may underlie potential these hypotheses, we used microfluidic perfusions to locally control target treatments for such conditions. In this study, we developed a one sarcomere or a predetermined group of sarcomeres within an microfluidic perfusion system to control one sarcomere within a isolated myofibril.
    [Show full text]
  • Proteins of the Myofibril
    131. PROTEINS OF THE MYUFlBRIL A. G. SZEWT-GYORGYI Ladies and gentlemen, I would like to review here a number of questions which involve some properties of the fibrous muscle proteins, how these properties lead to contractions, what the changes are which occur during contractions, and also to expand on the paper presented by Dr. Cassens by discussing how some of these proteins are responsible for the specialized structure of muscle and what reactions may control the forma- tion of these structures and activities. The muscle proteins can be conveniently divided into different fractions according to solubility and also according to function. If you grind up muscle and add a solvent of low ionic strength you will find that 35% of the proteins will be readily solubilized without, as I think will be shown on the first slide, really disrupting the specialized structure of the muscle. The striated pattern that apgeass in unextracted muscle, as shown by Dr. Cassens, will remain. What is solubilized is the enzymes of the glycolytic cycle, the phosphate-producing enzymes like myokinase and creetinekinase, and really the residue, that is, the insoluble portion remaining, will show the structural regularity of the muscle even clearer than before the extraction, We do not know exactly where these soluble enzymes are localized or if they are localized, but we think they are somewhere in the sarcoplasm and that they are not associated with the filamentous structure of muscle. I will not discuss these proteins any more. They do not concern us nor have anything to do with the culinary aspects of meat.
    [Show full text]