Montreal Protocol on Substances That Deplete The

Total Page:16

File Type:pdf, Size:1020Kb

Montreal Protocol on Substances That Deplete The Methyl Bromide Technical Options Committee 2018 Assess ment Report Montreal Protocol on Substances that Deplete the Ozone Layer Ozone Secretariat MONTREAL PROTOCOL ON SUBSTANCES THAT DEPLETE THE OZONE LAYER 2018 REPORT OF THE METHYL BROMIDE TECHNICAL OPTIONS COMMITTEE 2018 Assessment Montreal Protocol on Substances that Deplete the Ozone Layer United Nations Environment Programme (UNEP) 2018 Report of the Methyl Bromide Technical Options Committee 2018 Assessment The text of this report is composed mainly in Times New Roman. Composition of the Report: Methyl Bromide Technical Option Committee Coordination: Marta Pizano, Ian Porter, MBTOC Co-Chairs. Final editing and layout: Marta Pizano, Ian Porter, MBTOC co-chairs Reproduction: Ozone Secretariat, Nairobi Date: January, 2019 Under certain conditions, printed copies of this report are available from: United Nations Environment Programme Ozone Secretariat P.O. Box 30552 Nairobi, Kenya This document is also available in portable document format from: https://ozone.unep.org/science/assessment/teap No copyright involved. This publication may be freely copied, abstracted and cited, with acknowledgement of the source of the material. Methyl Bromide Technical Options Committee: Co-Chairs: Marta Pizano (Colombia); Ian Porter (Australia) Members: Jonathan Banks (Australia), Mohammed Besri (Morocco), Fred Bergwerff (The Netherlands), Aocheng Cao (China), Sait Erurk (Turkey), Ken Glassey (New Zealand), Alfredo Gonzalez (Philippines), Rosalind James (USA), Takashi Misumi (Japan), Christoph Reichmuth (Germany), Jordi Riudavets (Spain), Akio Tateya (Japan), Alejandro Valeiro (Argentina), Nick Vink (South Africa). Acknowledgments: MBTOC acknowledges support from Dr Paul Fraser, Dr Steve Montzka and Nada Derek for Chapter 4 of this report in assisting with preparation of some text, figures and review of information. ISBN: 978-9966-076-57-1 MBTOC 2018 Assessment Report iii In Memoriam Raquel Ghini The 2018 MBTOC Assessment Report is dedicated to our dear friend and colleague Raquel Ghini who passed away in 2018. We will always remember Raquel for her kind disposition, her willingness to help and her commitment to protecting our planet’s environment, especially the ozone layer. iv MBTOC 2018 Assessment Report Table of Contents EXECUTIVE SUMMARY ........................................................................................................................................ 1 1.1. MANDATE AND REPORT STRUCTURE .............................................................................................. 1 1.2. THE METHYL BROMIDE TECHNICAL OPTIONS COMMITTEE (MBTOC) ......................................... 1 1.3. METHYL BROMIDE CONTROL MEASURES ....................................................................................... 1 1.4. PRODUCTION AND CONSUMPTION TRENDS ..................................................................................... 2 1.5. ALTERNATIVES TO METHYL BROMIDE ........................................................................................... 2 1.5.1. Alternatives for soil treatments ............................................................................................................ 3 1.5.2. Alternatives for treatment structures and durable commodities (non-QPS) ........................................ 3 1.6. ALTERNATIVES TO METHYL BROMIDE FOR QUARANTINE AND PRE-SHIPMENT (QPS) APPLICATIONS (EXEMPTED USES) ................................................................................................... 4 1.7. EMISSIONS FROM METHYL BROMIDE USE AND THEIR REDUCTION ................................................. 7 1.8. ECONOMIC ISSUES .......................................................................................................................... 8 CHAPTER 2. INTRODUCTION TO THE ASSESSMENT ............................................................................... 9 2.1. INTRODUCTION ............................................................................................................................... 9 2.2 GLOBAL OVERVIEW OF METHYL BROMIDE USES ............................................................................ 9 2.2.1. MB uses identified in Articles of the Protocol ...................................................................................... 9 2.3. MBTOC MANDATE ....................................................................................................................... 11 2.4. COMMITTEE PROCESS AND COMPOSITION .................................................................................... 12 2.5. MBTOC ASSESSMENTS ON METHYL BROMIDE ............................................................................ 12 2.6. DEFINITION OF AN ALTERNATIVE ................................................................................................. 12 2.7. REPORT STRUCTURE .................................................................................................................... 13 REFERENCES .............................................................................................................................................. 14 CHAPTER 3. METHYL BROMIDE PRODUCTION, CONSUMPTION AND PROGRESS IN PHASE- OUT (CONTROLLED USES) ................................................................................................................................ 15 3.1 INTRODUCTION ............................................................................................................................. 15 3.2. METHYL BROMIDE GLOBAL PRODUCTION AND SUPPLY FOR CONTROLLED USES ......................... 15 3.2.1. Global production for all uses............................................................................................................ 16 3.2.1.1 Quarantine and pre-shipment ....................................................................................................... 17 3.2.1.2 Non-QPS sectors (controlled uses) ............................................................................................. 17 3.3. TRENDS IN GLOBAL MB CONSUMPTION (AND PHASE-OUT) FOR CONTROLLED USES ................... 18 3.3.1. Global consumption by geographical region ..................................................................................... 19 3.3.2. Production vs. Consumption .............................................................................................................. 20 3.4. TRENDS IN MB CONSUMPTION (AND PHASE-OUT) IN NON-ARTICLE 5 PARTIES .......................... 20 3.5 TRENDS IN MB CONSUMPTION (AND PHASE-OUT) IN ARTICLE 5 PARTIES ................................... 23 3.5.1. Factors assisting MB phase-out in Article 5 Parties .......................................................................... 24 3.6. TRENDS IN NOMINATIONS FOR CRITICAL USE EXEMPTIONS ......................................................... 25 3.6.1. Trends for preplant soil uses ............................................................................................................. 25 3.6.2. Trends in postharvest and structure uses .......................................................................................... 26 3.7 METHYL BROMIDE USE BY SECTOR – CONTROLLED USES .......................................................... 27 3.7.1. Where Methyl Bromide was historically used ........................................................................................ 27 3.7.2. Present MB applications (controlled uses in 2018) ................................................................................ 28 3.7.3. Critical Use Nominations from Article 5 Parties ............................................................................... 28 3.8. REFERENCES ................................................................................................................................. 28 CHAPTER 4. METHYL BROMIDE EMISSIONS AND EMISSIONS REDUCTION ................................ 31 4.1 INTRODUCTION ............................................................................................................................. 31 MBTOC 2018 Assessment Report v 4.2 ATMOSPHERIC METHYL BROMIDE ............................................................................................... 32 4.2.1. Global Sources and Emissions ........................................................................................................... 32 4.3. SUMMARY OF IMPACT OF MONTREAL PROTOCOL CONTROL MEASURES AND OTHER REGULATIONS ON GLOBAL MB EMISSIONS .................................................................................. 34 4.4. MB EMISSIONS FROM CURRENT USES FOR SOIL, COMMODITIES AND STRUCTURES ..................... 37 4.5. EMISSION REDUCTION THROUGH BETTER CONTAINMENT, RECAPTURE OR DESTRUCTION ........ 38 4.5.1. Preventing Emissions From Soil fumigation ...................................................................................... 39 4.5.1.1. Use of barrier films and other plastic covers to reduce emissions ............................................................. 39 4.5.1.2 Regulatory practices to reduce MB emissions from soil..................................................................................... 39 4.5.2. Reducing Emissions from Structural and Commodity Fumigation .................................................... 40 4.6. FUMIGANT RECAPTURE AND DESTRUCTION ............................................................................... 40 4.6.1 Scope for emission reduction by recapture .......................................................................................
Recommended publications
  • Environmental Properties of Chemicals Volume 2
    1 t ENVIRONMENTAL 1 PROTECTION Esa Nikunen . Riitta Leinonen Birgit Kemiläinen • Arto Kultamaa Environmental properties of chemicals Volume 2 1 O O O O O O O O OO O OOOOOO Ol OIOOO FINNISH ENVIRONMENT INSTITUTE • EDITA Esa Nikunen e Riitta Leinonen Birgit Kemiläinen • Arto Kultamaa Environmental properties of chemicals Volume 2 HELSINKI 1000 OlO 00000001 00000000000000000 Th/s is a second revfsed version of Environmental Properties of Chemica/s, published by VAPK-Pub/ishing and Ministry of Environment, Environmental Protection Department as Research Report 91, 1990. The pubiication is also available as a CD ROM version: EnviChem 2.0, a PC database runniny under Windows operating systems. ISBN 951-7-2967-2 (publisher) ISBN 952-7 1-0670-0 (co-publisher) ISSN 1238-8602 Layout: Pikseri Julkaisupalvelut Cover illustration: Jussi Hirvi Edita Ltd. Helsinki 2000 Environmental properties of chemicals Volume 2 _____ _____________________________________________________ Contents . VOLUME ONE 1 Contents of the report 2 Environmental properties of chemicals 3 Abbreviations and explanations 7 3.1 Ways of exposure 7 3.2 Exposed species 7 3.3 Fffects________________________________ 7 3.4 Length of exposure 7 3.5 Odour thresholds 8 3.6 Toxicity endpoints 9 3.7 Other abbreviations 9 4 Listofexposedspecies 10 4.1 Mammais 10 4.2 Plants 13 4.3 Birds 14 4.4 Insects 17 4.5 Fishes 1$ 4.6 Mollusca 22 4.7 Crustaceans 23 4.8 Algae 24 4.9 Others 25 5 References 27 Index 1 List of chemicals in alphabetical order - 169 Index II List of chemicals in CAS-number order
    [Show full text]
  • Veterinary Toxicology
    GINTARAS DAUNORAS VETERINARY TOXICOLOGY Lecture notes and classes works Study kit for LUHS Veterinary Faculty Foreign Students LSMU LEIDYBOS NAMAI, KAUNAS 2012 Lietuvos sveikatos moksl ų universitetas Veterinarijos akademija Neužkre čiam ųjų lig ų katedra Gintaras Daunoras VETERINARIN Ė TOKSIKOLOGIJA Paskait ų konspektai ir praktikos darb ų aprašai Mokomoji knyga LSMU Veterinarijos fakulteto užsienio studentams LSMU LEIDYBOS NAMAI, KAUNAS 2012 UDK Dau Apsvarstyta: LSMU VA Veterinarijos fakulteto Neužkre čiam ųjų lig ų katedros pos ėdyje, 2012 m. rugs ėjo 20 d., protokolo Nr. 01 LSMU VA Veterinarijos fakulteto tarybos pos ėdyje, 2012 m. rugs ėjo 28 d., protokolo Nr. 08 Recenzavo: doc. dr. Alius Pockevi čius LSMU VA Užkre čiam ųjų lig ų katedra dr. Aidas Grigonis LSMU VA Neužkre čiam ųjų lig ų katedra CONTENTS Introduction ……………………………………………………………………………………… 7 SECTION I. Lecture notes ………………………………………………………………………. 8 1. GENERAL VETERINARY TOXICOLOGY ……….……………………………………….. 8 1.1. Veterinary toxicology aims and tasks ……………………………………………………... 8 1.2. EC and Lithuanian legal documents for hazardous substances and pollution ……………. 11 1.3. Classification of poisons ……………………………………………………………………. 12 1.4. Chemicals classification and labelling ……………………………………………………… 14 2. Toxicokinetics ………………………………………………………………………...………. 15 2.2. Migration of substances through biological membranes …………………………………… 15 2.3. ADME notion ………………………………………………………………………………. 15 2.4. Possibilities of poisons entering into an animal body and methods of absorption ……… 16 2.5. Poison distribution
    [Show full text]
  • Smithsonian Miscellaneous Collections
    Ubr.C-ff. SMITHSONIAN MISCELLANEOUS COLLECTIONS VOLUME 143, NO. 3 SUPPLEMENT TO THE ANNOTATED, SUBJECT-HEADING BIBLIOGRAPHY OF TERMITES 1955 TO I960 By THOMAS E. SNYDER Honorary Research Associate Smithsonian Institution (Publication 4463) CITY OF WASHINGTON PUBLISHED BY THE SMITHSONIAN INSTITUTION DECEMBER 29, 1961 SMITHSONIAN MISCELLANEOUS COLLECTIONS VOLUME 143, NO. 3 SUPPLEMENT TO THE ANNOTATED, SUBJECT-HEADING BIBLIOGRAPHY OF TERMITES 1955 TO 1960 By THOMAS E. SNYDER Honorary Research Associate Smithsonian Institution ><%<* Q (Publication 4463) CITY OF WASHINGTON PUBLISHED BY THE SMITHSONIAN INSTITUTION DECEMBER 29, 1961 PORT CITY PRESS, INC. BALTIMORE, NID., U. S. A. CONTENTS Pagre Introduction i Acknowledgments i List of subject headings 2 Subject headings 3 List of authors and titles 72 Index 115 m SUPPLEMENT TO THE ANNOTATED, SUBJECT-HEADING BIBLIOGRAPHY OF TERMITES 1955 TO 1960 By THOMAS E. SNYDER Honorary Research Associate Smithsonian Institution INTRODUCTION On September 25, 1956, an "Annotated, Subject-Heading Bibliography of Ter- mites 1350 B.C. to A.D. 1954," by Thomas E. Snyder, was published as volume 130 of the Smithsonian Miscellaneous Collections. A few 1955 papers were included. The present supplement covers publications from 1955 through i960; some 1961, as well as some earlier, overlooked papers, are included. A total of 1,150 references are listed under authors and tides, and 2,597 references are listed under subject headings, the greater number being due to cross references to publications covering more than one subject. New subject headings are Radiation and Toxicology. ACKNOWLEDGMENTS The publication of this bibliography was made possible by a grant from the National Science Foundation, Washington, D.C.
    [Show full text]
  • Termites (Isoptera) in the Azores: an Overview of the Four Invasive Species Currently Present in the Archipelago
    Arquipelago - Life and Marine Sciences ISSN: 0873-4704 Termites (Isoptera) in the Azores: an overview of the four invasive species currently present in the archipelago MARIA TERESA FERREIRA ET AL. Ferreira, M.T., P.A.V. Borges, L. Nunes, T.G. Myles, O. Guerreiro & R.H. Schef- frahn 2013. Termites (Isoptera) in the Azores: an overview of the four invasive species currently present in the archipelago. Arquipelago. Life and Marine Sciences 30: 39-55. In this contribution we summarize the current status of the known termites of the Azores (North Atlantic; 37-40° N, 25-31° W). Since 2000, four species of termites have been iden- tified in the Azorean archipelago. These are spreading throughout the islands and becoming common structural and agricultural pests. Two termites of the Kalotermitidae family, Cryp- totermes brevis (Walker) and Kalotermes flavicollis (Fabricius) are found on six and three of the islands, respectively. The other two species, the subterranean termites Reticulitermes grassei Clemént and R. flavipes (Kollar) of the Rhinotermitidae family are found only in confined areas of the cities of Horta (Faial) and Praia da Vitória (Terceira) respectively. Due to its location and weather conditions the Azorean archipelago is vulnerable to coloni- zation by invasive species. The fact that there are four different species of termites in the Azores, all of them considered pests, is a matter of concern. Here we present a comparative description of these species, their known distribution in the archipelago, which control measures are being used against them, and what can be done in the future to eradicate and control these pests in the Azores.
    [Show full text]
  • Blattodea: Hodotermitidae) and Its Role As a Bioindicator of Heavy Metal Accumulation Risks in Saudi Arabia
    Article Characterization of the 12S rRNA Gene Sequences of the Harvester Termite Anacanthotermes ochraceus (Blattodea: Hodotermitidae) and Its Role as A Bioindicator of Heavy Metal Accumulation Risks in Saudi Arabia Reem Alajmi 1,*, Rewaida Abdel-Gaber 1,2,* and Noura AlOtaibi 3 1 Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia 2 Zoology Department, Faculty of Science, Cairo University, Cairo 12613, Egypt 3 Department of Biology, Faculty of Science, Taif University, Taif 21974, Saudi Arabia; [email protected] * Correspondence: [email protected] (R.A.), [email protected] (R.A.-G.) Received: 28 December 2018; Accepted: 3 February 2019; Published: 8 February 2019 Abstract: Termites are social insects of economic importance that have a worldwide distribution. Identifying termite species has traditionally relied on morphometric characters. Recently, several mitochondrial genes have been used as genetic markers to determine the correlation between different species. Heavy metal accumulation causes serious health problems in humans and animals. Being involved in the food chain, insects are used as bioindicators of heavy metals. In the present study, 100 termite individuals of Anacanthotermes ochraceus were collected from two Saudi Arabian localities with different geoclimatic conditions (Riyadh and Taif). These individuals were subjected to morphological identification followed by molecular analysis using mitochondrial 12S rRNA gene sequence, thus confirming the morphological identification of A. ochraceus. Furthermore, a phylogenetic analysis was conducted to determine the genetic relationship between the acquired species and other termite species with sequences previously submitted in the GenBank database. Several heavy metals including Ca, Al, Mg, Zn, Fe, Cu, Mn, Ba, Cr, Co, Be, Ni, V, Pb, Cd, and Mo were measured in both collected termites and soil samples from both study sites.
    [Show full text]
  • Pesticide Composition Comprising Propamocarb-Fosetylate and an Insecticide Active Substance
    (19) & (11) EP 2 255 638 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 01.12.2010 Bulletin 2010/48 A01N 57/12 (2006.01) A01N 59/06 (2006.01) A01N 43/90 (2006.01) (21) Application number: 10167840.7 (22) Date of filing: 21.12.2007 (84) Designated Contracting States: (72) Inventors: AT BE BG CH CY CZ DE DK EE ES FI FR GB GR • Van den Eynde, Koen HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE B-1785 Merchtem (BE) SI SK TR • Andrieux, Marc Designated Extension States: 40699 Erkrath (DE) AL BA HR MK RS • Hundenberg, Heike 40764, Langenfeld (DE) (30) Priority: 22.12.2006 EP 06127172 • Thielert, Wolfgang 51519 Odenthal (DE) (62) Document number(s) of the earlier application(s) in •Suty-Heinze, Anne accordance with Art. 76 EPC: 40764 Langenfeld (DE) 07858039.6 / 2 124 566 Remarks: (71) Applicant: Bayer CropScience AG This application was filed on 30-06-2010 as a 40789 Monheim (DE) divisional application to the application mentioned under INID code 62. (54) Pesticide composition comprising propamocarb-fosetylate and an insecticide active substance (57) The present invention relates to a pesticide com- invention is a pesticide composition based on propamo- position intended for protecting plants, crops or seeds carb-fosetylate, an insecticide active substance and op- against phyto-pathogenic fungi or damaging insects, and tionally a further fungicide active substance. the corresponding methods of treatment using the said composition. More precisely, the subject of the present EP 2 255 638 A2 Printed by Jouve, 75001 PARIS (FR) EP 2 255 638 A2 Description [0001] The present invention relates to a pesticide composition intended for protecting plants, crops or seeds against fungal diseases or insect damages, and the corresponding methods of protection by application of the said composition.
    [Show full text]
  • Dark Southern Drywood Termite (Suggested Common Name) Kalotermes Approximatus Snyder (Insecta: Blattodea: Kalotermitidae)1 Joseph F
    EENY-699 Dark Southern Drywood Termite (suggested common name) Kalotermes approximatus Snyder (Insecta: Blattodea: Kalotermitidae)1 Joseph F. Velenovsky and Rudolf H. Scheffrahn2 Introduction Distribution and History The termite genus Kalotermes was first described and Kalotermes approximatus was first described and named named by Hagen (1853) (Krishna et al. 2013). The type by Snyder (1920) based on specimens collected in Ortega, species for Kalotermes is Termes flavicolle Fabricius, a spe- Florida, on March 5th, 1919. To date, Kalotermes ap- cies that is now known as Kalotermes flavicollis (Fabricius) proximatus has been found within Florida, Georgia, (Fabricius 1793; Krishna et al. 2013). Based on Krishna Louisiana, Texas, Virginia, North Carolina, South Carolina, et al. (2013), there are a total of twenty living species and and Bermuda (Snyder 1925; Weesner 1965; Araujo 1977; seven fossil species of Kalotermes that have been described. Scheffrahn et al. 1988; Scheffrahn et al. 1994; Nalepa 1998; Hathorne et al. 2001; Scheffrahn et al. 2001; Krishna et al. Extant Kalotermes species are present in many areas within 2013) (Figure 1). Within the United States, Kalotermes ap- temperate and subtropical zones throughout the globe. proximatus is the only Kalotermes species that has been These areas include, but are not limited to: Australia, described to date (Krishna et al. 2013). Bermuda, the southeastern United States, Tasmania, New Zealand, South Africa, Algeria, Egypt, Greece, Syria, Within Florida, Kalotermes approximatus has been found
    [Show full text]
  • Roisinitermes Ebogoensis Gen. & Sp. N., an Outstanding Drywood Termite
    A peer-reviewed open-access journal ZooKeys 787: 91–105Roisinitermes (2018) ebogoensis gen. & sp. n., an outstanding drywood termite... 91 doi: 10.3897/zookeys.787.28195 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research Roisinitermes ebogoensis gen. & sp. n., an outstanding drywood termite with snapping soldiers from Cameroon (Isoptera, Kalotermitidae) Rudolf H. Scheffrahn1, Thomas Bourguignon2,3, Pierre Dieudonné Akama4, David Sillam-Dussès5,6, Jan Šobotník3 1 Fort Lauderdale Research and Education Center, Institute for Food and Agricultural Sciences, 3205 College Avenue, Davie, Florida 33314, USA 2 Okinawa Institute of Science & Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan 3 Faculty of Forestry and Wood Sciences, Czech Uni- versity of Life Sciences, Prague, Czech Republic 4 Département des sciences biologiques, Ecole normale supérieu- re, Université de Yaoundé I, BP 47 Yaoundé, Cameroon 5 University Paris 13 - Sorbonne Paris Cité, LEEC, EA4443, Villetaneuse, France 6 IRD – Sorbonne Universités, iEES-Paris, Bondy, France Corresponding author: Rudolf H. Scheffrahn ([email protected]) Academic editor: P. Stoev | Received 5 July 2018 | Accepted 27 August 2018 | Published 2 August 2018 http://zoobank.org/C6973DAD-84F4-4C54-87D0-4EDFBEDFF161 Citation: Scheffrahn RH, Bourguignon T, Akama PD, Sillam-Dussès D, Šobotník J (2018) Roisinitermes ebogoensis gen. & sp. n., an outstanding drywood termite with snapping soldiers from Cameroon (Isoptera, Kalotermitidae). ZooKeys 787: 91–105. https://doi.org/10.3897/zookeys.787.28195 Abstract Termites have developed a wide array of defensive mechanisms. One of them is the mandibulate soldier caste that crushes or pierces their enemies. However, in several lineages of Termitinae, soldiers have long and slender mandibles that cannot bite but, instead, snap and deliver powerful strikes to their opponents.
    [Show full text]
  • Phylogeny and Population Dynamics in European Reticulitermes and Kalotermes Genera (Insecta, Isoptera)
    Alma Mater Studiorum – Università di Bologna DOTTORATO DI RICERCA IN BIODIVERSITÀ ED EVOLUZIONE Ciclo XXIII Settore scientifico-disciplinare di afferenza: BIO-05 PHYLOGENY AND POPULATION DYNAMICS IN EUROPEAN RETICULITERMES AND KALOTERMES GENERA (INSECTA, ISOPTERA) Presentata da: Dr. Alessandro Velonà Coordinatore Dottorato Relatore Prof. Barbara Mantovani Prof. Barbara Mantovani Esame finale anno 2011 CHAPTER 1 5 ISOPTERA 1.1 MORPHOLOGY 5 1.2 PHYLOGENY AND SYSTEMATICS 6 1.2.1 Origin of the order 6 1.2.2 Intra-order relationships 7 1.3 SOCIAL ORGANIZATION 8 1.3.1 Reproductives 9 1.3.2 Soldiers 10 1.3.3 Workers 11 1.4 COLONY ESTABLISHMENT 11 1.4.1 Swarming 12 1.4.2 Budding 12 1.4.3 Sociotomy 13 1.5 COLONY STRUCTURE 13 1.6 ECOLOGY 14 1.6.1 Feeding behaviour 14 1.6.2 Communication 15 1.6.3 Termite lifetypes 16 1.6.4 Distribution 17 CHAPTER 2 19 MOLECULAR MARKERS 2.1 MITOCHONDRIAL DNA 19 2.2 MICROSATELLITES 20 2.3 INTER-SINE 21 CHAPTER 3 23 STATE OF THE ART AND RESEARCH AIMS 3.1 EUROPEAN TERMITES PHYLOGENY 23 3.2 COLONY GENETIC STRUCTURE 26 3.3 RESEARCH AIMS 27 CHAPTER 4 29 STARTING FROM CRETE, A PHYLOGENETIC RE-ANALYSIS OF THE GENUS RETICULITERMES IN THE MEDITERRANEAN AREA CHAPTER 5 43 MITOCHONDRIAL AND NUCLEAR MARKERS HIGHLIGHT THE BIODIVERSITY OF KALOTERMES FLAVICOLLIS (FABRICIUS, 1793) (INSECTA, ISOPTERA, KALOTERMITIDAE) IN THE MEDITERRANEAN AREA CHAPTER 6 62 COLONY GENETIC STRUCTURE OF THE INVASIVE FORM R. URBIS (ISOPTERA, RHINOTERMITIDAE) AT BAGNACAVALLO (RAVENNA, ITALY) CHAPTER 7 80 COLONY GENETIC STRUCTURE OF THE KALOTERMES FLAVICOLLIS POPULATION FROM THE NATURAL RESERVE “DUNA DI FENIGLIA” (GROSSETO, ITALY) CHAPTER 8 100 CONCLUSIONS 8.1 PHYLOGENETIC CONSIDERATIONS 100 8.2 POPULATION DYNAMICS CONSIDERATIONS 101 8.3 PERSPECTIVES 102 REFERENCES 104 ACKNOWLEDGMENTS 111 APPENDIX 112 CHAPTER 1 *** ISOPTERA 1.1 MORPHOLOGY Given that the order Isoptera embodies around 2,600 species, each of them subdivided in different castes (figure 1.1), it’s difficult to give a unique description of the morphology of these organisms.
    [Show full text]
  • Expression and Functional Analysis of the Propamocarb-Related Gene
    Liu et al. BMC Plant Biology (2018) 18:16 DOI 10.1186/s12870-018-1236-2 RESEARCHARTICLE Open Access Expression and functional analysis of the Propamocarb-related gene CsDIR16 in cucumbers Chunhong Liu1,2, Zhiwei Qin1*, Xiuyan Zhou1, Ming Xin1, Chunhua Wang1, Dong Liu1 and Shengnan Li1 Abstract Background: Cucumber downy mildew is among the most important diseases that can disrupt cucumber production. Propamocarb, also known as propyl-[3-(dimethylamino)propyl]carbamate (PM), is a systemic carbamate fungicide pesticide that is widely applied in agricultural production because of its high efficiency of pathogens control, especially cucumber downy mildew. However, residual PM can remain in cucumbers after the disease has been controlled. To explore the molecular mechanisms of PM retention, cucumber cultivars ‘D9320’ (with the highest residual PM content) and ‘D0351’ (lowest residual PM content) were studied. High-throughput tag-sequencing (Tag-Seq) results showed that the CsDIR16 gene was related to PM residue, which was verified using transgenic technology. Results: We investigated the activity of a dirigent cucumber protein encoded by the CsDIR16 in gene response to stress induced by PM treatment. Gene-expression levels of CsDIR16 were up-regulated in the fruits, leaves, and stems of ‘D0351’ plants in response to PM treatment. However, in cultivar ‘D9320’, CsDIR16 levels were down-regulated in the leaves and stems after PM treatment, with no statistically significant differences observed in the fruits. Induction by jasmonic acid, abscisic acid, polyethylene glycol 4000, NaCl, and Corynespora cassiicola Wei (Cor) resulted in CsDIR16 up-regulation in ‘D0351’ and ‘D9320’. Expression after salicylic acid treatment was up-regulated in ‘D0351’, but was down-regulated in ‘D9320’.
    [Show full text]
  • Raport Tehnic Privind Metodologia Utilizată Pentru Alcătuirea Bazei
    Cod și Nume proiect: POIM 2014+ 120008 Managementul adecvat al speciilor invazive din România, în conformitate cu Regulamentul UE 1143/2014 referitor la prevenirea și gestionarea introducerii și răspândirii speciilor alogene invazive Raport tehnic privind metodologia utilizată pentru alcătuirea bazei de date cu căile de pătrundere identificate cel puțin pentru speciile selectate din lista DAISE – 100 of the Worst Activitatea 2.1. Căi de introducere prioritare a speciilor alogene din România Subactivitatea 2.1.1. Identificarea căilor de introducere prioritare a speciilor alogene din România Proiect cofinanțat din Fondul European de Dezvoltare Regională prin Programul Operațional Infrastructură Mare 2014-2020 Titlul proiectului: Managementul adecvat al speciilor invazive din România, în conformitate cu Regulamentul UE 1143/2014 referitor la prevenirea și gestionarea introducerii și răspândirii speciilor alogene invazive Cod proiect: POIM2014+ 120008 Obiectivul general al proiectului este de a crea instrumentele științifice și administrative necesare pentru managementul eficient al speciilor invazive din România, în conformitate cu Regulamentul UE 1143/2014 privind prevenirea si gestionarea introducerii si răspândirii speciilor alogene invazive. Data încheierii contractului: 27 noiembrie 2018 Valoarea totală a contractului: 29.507.870,54 lei Contractant: Ministerul Mediului Apelor și Pădurilor Echipa de experți: • POPA Oana Paula– Coordonator activitate / Expert specii invazive • COGĂLNICEANU Dan - Expert coordonator național specii invazive
    [Show full text]
  • The Insecticides Act, 1968 (Act No.46 of 1968)
    The Insecticides Act, 1968 (Act No.46 of 1968) An Act to regulate the import, manufactures, sale, transport, distribution and use of insecticides with a view to prevent risk to human beings or animals and for matters connected therewith. [2 nd September 1968] Be it enacted by Parliament in the Nineteenth Year of the Republic of India as follows: 1. Short title, extent and commencement. * a. This Act may be called the Insecticides Act, 1968. b. It extends to the whole of India. c. It shall come into force on such date as the Central Government may, by notification in the official Gazette, appoint and different dates may be appointed for different States and for different provisions of Act. 2. Application of other laws not barred * The provisions of this Act shall be in addition to, and not in derogation of, any other law for the time being in force. 3. Definitions- In this Act, unless the context otherwise requires- a. "animals" means animals useful to human beings and includes fish and fowl, and such kinds of wild life as the Central Government may, by notification in the official Gazette, specify, being kinds which in its opinion, it is desirable to protect or preserve; b. "Board" means the Central Insecticides Board constituted under Sec.4; c. "Central Insecticides Laboratory" means the Central Insecticides Laboratory established, or as the case may be, the institution specified under Sec.16; d. "Import" means bringing into any place within the territories to which this Act extends from a place outside those territories; e. "Insecticide" means- i.
    [Show full text]