Ontario's Concise Native Plant Catalogue
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Scientific Name Species Common Name Abies Lasiocarpa FIR Subalpine Acacia Macracantha ACACIA Long-Spine
Scientific Name Species Common Name Abies lasiocarpa FIR Subalpine Acacia macracantha ACACIA Long-spine Acacia roemeriana CATCLAW Roemer Acer grandidentatum MAPLE Canyon Acer nigrum MAPLE Black Acer platanoides MAPLE Norway Acer saccharinum MAPLE Silver Aesculus pavia BUCKEYE Red Aesculus sylvatica BUCKEYE Painted Ailanthus altissima AILANTHUS Tree-of-heaven Albizia julibrissin SILKTREE Mimosa Albizia lebbek LEBBEK Lebbek Alnus iridis ssp. sinuata ALDER Sitka Alnus maritima ALDER Seaside Alvaradoa amorphoides ALVARADOA Mexican Amelanchier laevis SERVICEBERRY Allegheny Amyris balsamifera TORCHWOOD Balsam Annona squamosa SUGAR-APPLE NA Araucaria cunninghamii ARAUCARIA Cunningham Arctostaphylos glauca MANZANITA Bigberry Asimina obovata PAWPAW Bigflower Bourreria radula STRONGBACK Rough Brasiliopuntia brasiliensis PRICKLY-PEAR Brazilian Bursera simaruba GUMBO-LIMBO NA Caesalpinia pulcherrima FLOWERFENCE NA Capparis flexuosa CAPERTREE Limber CRUCIFIXION- Castela emoryi THORN NA Casuarina equisetifolia CASUARINA Horsetail Ceanothus arboreus CEANOTHUS Feltleaf Ceanothus spinosus CEANOTHUS Greenbark Celtis lindheimeri HACKBERRY Lindheimer Celtis occidentalis HACKBERRY Common Cephalanthus occidentalis BUTTONBUSH Common Cercis canadensis REDBUD Eastern Cercocarpus traskiae CERCOCARPUS Catalina Chrysophyllum oliviforme SATINLEAF NA Citharexylum berlandieri FIDDLEWOOD Berlandier Citrus aurantifolia LIME NA Citrus sinensis ORANGE Orange Coccoloba uvifera SEAGRAPE NA Colubrina arborescens COLUBRINA Coffee Colubrina cubensis COLUBRINA Cuba Condalia globosa -
State of New York City's Plants 2018
STATE OF NEW YORK CITY’S PLANTS 2018 Daniel Atha & Brian Boom © 2018 The New York Botanical Garden All rights reserved ISBN 978-0-89327-955-4 Center for Conservation Strategy The New York Botanical Garden 2900 Southern Boulevard Bronx, NY 10458 All photos NYBG staff Citation: Atha, D. and B. Boom. 2018. State of New York City’s Plants 2018. Center for Conservation Strategy. The New York Botanical Garden, Bronx, NY. 132 pp. STATE OF NEW YORK CITY’S PLANTS 2018 4 EXECUTIVE SUMMARY 6 INTRODUCTION 10 DOCUMENTING THE CITY’S PLANTS 10 The Flora of New York City 11 Rare Species 14 Focus on Specific Area 16 Botanical Spectacle: Summer Snow 18 CITIZEN SCIENCE 20 THREATS TO THE CITY’S PLANTS 24 NEW YORK STATE PROHIBITED AND REGULATED INVASIVE SPECIES FOUND IN NEW YORK CITY 26 LOOKING AHEAD 27 CONTRIBUTORS AND ACKNOWLEGMENTS 30 LITERATURE CITED 31 APPENDIX Checklist of the Spontaneous Vascular Plants of New York City 32 Ferns and Fern Allies 35 Gymnosperms 36 Nymphaeales and Magnoliids 37 Monocots 67 Dicots 3 EXECUTIVE SUMMARY This report, State of New York City’s Plants 2018, is the first rankings of rare, threatened, endangered, and extinct species of what is envisioned by the Center for Conservation Strategy known from New York City, and based on this compilation of The New York Botanical Garden as annual updates thirteen percent of the City’s flora is imperiled or extinct in New summarizing the status of the spontaneous plant species of the York City. five boroughs of New York City. This year’s report deals with the City’s vascular plants (ferns and fern allies, gymnosperms, We have begun the process of assessing conservation status and flowering plants), but in the future it is planned to phase in at the local level for all species. -
Checklist of Illinois Native Trees
Technical Forestry Bulletin · NRES-102 Checklist of Illinois Native Trees Jay C. Hayek, Extension Forestry Specialist Department of Natural Resources & Environmental Sciences Updated May 2019 This Technical Forestry Bulletin serves as a checklist of Tree species prevalence (Table 2), or commonness, and Illinois native trees, both angiosperms (hardwoods) and gym- county distribution generally follows Iverson et al. (1989) and nosperms (conifers). Nearly every species listed in the fol- Mohlenbrock (2002). Additional sources of data with respect lowing tables† attains tree-sized stature, which is generally to species prevalence and county distribution include Mohlen- defined as having a(i) single stem with a trunk diameter brock and Ladd (1978), INHS (2011), and USDA’s The Plant Da- greater than or equal to 3 inches, measured at 4.5 feet above tabase (2012). ground level, (ii) well-defined crown of foliage, and(iii) total vertical height greater than or equal to 13 feet (Little 1979). Table 2. Species prevalence (Source: Iverson et al. 1989). Based on currently accepted nomenclature and excluding most minor varieties and all nothospecies, or hybrids, there Common — widely distributed with high abundance. are approximately 184± known native trees and tree-sized Occasional — common in localized patches. shrubs found in Illinois (Table 1). Uncommon — localized distribution or sparse. Rare — rarely found and sparse. Nomenclature used throughout this bulletin follows the Integrated Taxonomic Information System —the ITIS data- Basic highlights of this tree checklist include the listing of 29 base utilizes real-time access to the most current and accept- native hawthorns (Crataegus), 21 native oaks (Quercus), 11 ed taxonomy based on scientific consensus. -
American Forests National Big Tree Program Species Without Champions
American Forests National Big Tree Program Champion trees are the superstars of their species — and there are more than 700 of them in our national register. Each champion is the result of a lucky combination: growing in a spot protected by the landscape or by people who have cared about and for it, good soil, the right amount of water, and resilience to the elements, surviving storms, disease and pests. American Forests National Big Tree Program was founded to honor these trees. Since 1940, we have kept the only national register of champion trees (http://www.americanforests.org/explore- forests/americas-biggest-trees/champion-trees-national-register/) Champion trees are found by people just like you — school teachers, kids fascinated by science, tree lovers of all ages and even arborists for whom a fun day off is measuring the biggest tree they can find. You, too, can become a big tree hunter and compete to find new champions. Species without Champions (March, 2018) Gold rows indict species that have Idaho State Champions but the nominations are too old to be submitted for National Champion status. Scientific Name Species Common Name Abies lasiocarpa FIR Subalpine Acacia macracantha ACACIA Long-spine Acacia roemeriana CATCLAW Roemer Acer grandidentatum MAPLE Canyon or bigtooth maple Acer nigrum MAPLE Black Acer platanoides MAPLE Norway Acer saccharinum MAPLE Silver Aesculus pavia BUCKEYE Red Aesculus sylvatica BUCKEYE Painted Ailanthus altissima AILANTHUS Tree-of-heaven Albizia julibrissin SILKTREE Mimosa Albizia lebbek LEBBEK Lebbek -
Crataegus in Ohio with Description of One New Species
CRATAEGUS IN OHIO WITH DESCRIPTION OF ONE NEW SPECIES ERNEST J. PALMER Webb City, Missouri This review of Crataegus in Ohio has been made in cooperation with the Ohio Flora Committee of the Ohio Academy of Science as a contribution to their forth- coming flora of the state. Many of the universities and colleges of the state have sent collections of herbarium specimens to me for examination, and information has been drawn from these and other sources including some private collections. The large collection in the herbarium of the Ohio State University, covering most of the state, has been particularly helpful. Other institutions sending large col- lections were the University of Cincinnati, Oberlin College, Miami University, and Defiance College. Dr. E. Lucy Braun also sent many interesting collections from her private herbarium; and she has given invaluable assistance in outlining the work and in cooperating with it in many ways. In addition to the larger collections mentioned above, specimens have been received from Ohio University, Dennison University, Kent State University, Antioch College, and from the private collection of Mr. John Guccion of Cleveland. Dr. Gerald B. Ownbey also sent a number of collections from Ohio deposited in the herbarium of the University of Minnesota. The large amount of material from Ohio in the her- barium of the Arnold Arboretum, Jamaica Plain, Massachusetts, was also checked, including duplicates of many of the collections seen in Ohio herbaria, and also fuller collections made by R. E. Horsey in many parts of the state, and by F. J. Tyler, Harry Crowfoot, and C. -
The Vascular Flora of Boone County, Iowa (2005-2008)
Journal of the Iowa Academy of Science: JIAS Volume 117 Number 1-4 Article 5 2010 The Vascular Flora of Boone County, Iowa (2005-2008) Jimmie D. Thompson Let us know how access to this document benefits ouy Copyright © Copyright 2011 by the Iowa Academy of Science, Inc. Follow this and additional works at: https://scholarworks.uni.edu/jias Part of the Anthropology Commons, Life Sciences Commons, Physical Sciences and Mathematics Commons, and the Science and Mathematics Education Commons Recommended Citation Thompson, Jimmie D. (2010) "The Vascular Flora of Boone County, Iowa (2005-2008)," Journal of the Iowa Academy of Science: JIAS, 117(1-4), 9-46. Available at: https://scholarworks.uni.edu/jias/vol117/iss1/5 This Research is brought to you for free and open access by the Iowa Academy of Science at UNI ScholarWorks. It has been accepted for inclusion in Journal of the Iowa Academy of Science: JIAS by an authorized editor of UNI ScholarWorks. For more information, please contact [email protected]. Jour. Iowa Acad. Sci. 117(1-4):9-46, 2010 The Vascular Flora of Boone County, Iowa (2005-2008) JIMMIE D. THOMPSON 19516 515'h Ave. Ames, Iowa 50014-9302 A vascular plant survey of Boone County, Iowa was conducted from 2005 to 2008 during which 1016 taxa (of which 761, or 75%, are native to central Iowa) were encountered (vouchered and/or observed). A search of literature and the vouchers of Iowa State University's Ada Hayden Herbarium (ISC) revealed 82 additional taxa (of which 57, or 70%, are native to Iowa), unvouchered or unobserved during the current study, as having occurred in the county. -
Plant List for VC54, North Lincolnshire
Plant List for Vice-county 54, North Lincolnshire 3 Vc61 SE TA 2 Vc63 1 SE TA SK NORTH LINCOLNSHIRE TF 9 8 Vc54 Vc56 7 6 5 Vc53 4 3 SK TF 6 7 8 9 1 2 3 4 5 6 Paul Kirby, 31/01/2017 Plant list for Vice-county 54, North Lincolnshire CONTENTS Introduction Page 1 - 50 Main Table 51 - 64 Summary Tables Red Listed taxa recorded between 2000 & 2017 51 Table 2 Threatened: Critically Endangered & Endangered 52 Table 3 Threatened: Vulnerable 53 Table 4 Near Threatened Nationally Rare & Scarce taxa recorded between 2000 & 2017 54 Table 5 Rare 55 - 56 Table 6 Scarce Vc54 Rare & Scarce taxa recorded between 2000 & 2017 57 - 59 Table 7 Rare 60 - 61 Table 8 Scarce Natives & Archaeophytes extinct & thought to be extinct in Vc54 62 - 64 Table 9 Extinct Plant list for Vice-county 54, North Lincolnshire The main table details all the Vascular Plant & Stonewort taxa with records on the MapMate botanical database for Vc54 at the end of January 2017. The table comprises: Column 1 Taxon and Authority 2 Common Name 3 Total number of records for the taxon on the database at 31/01/2017 4 Year of first record 5 Year of latest record 6 Number of hectads with records before 1/01/2000 7 Number of hectads with records between 1/01/2000 & 31/01/2017 8 Number of tetrads with records between 1/01/2000 & 31/01/2017 9 Comment & Conservation status of the taxon in Vc54 10 Conservation status of the taxon in the UK A hectad is a 10km. -
Checklist Flora of the Former Carden Township, City of Kawartha Lakes, on 2016
Hairy Beardtongue (Penstemon hirsutus) Checklist Flora of the Former Carden Township, City of Kawartha Lakes, ON 2016 Compiled by Dale Leadbeater and Anne Barbour © 2016 Leadbeater and Barbour All Rights reserved. No part of this publication may be reproduced, stored in a retrieval system or database, or transmitted in any form or by any means, including photocopying, without written permission of the authors. Produced with financial assistance from The Couchiching Conservancy. The City of Kawartha Lakes Flora Project is sponsored by the Kawartha Field Naturalists based in Fenelon Falls, Ontario. In 2008, information about plants in CKL was scattered and scarce. At the urging of Michael Oldham, Biologist at the Natural Heritage Information Centre at the Ontario Ministry of Natural Resources and Forestry, Dale Leadbeater and Anne Barbour formed a committee with goals to: • Generate a list of species found in CKL and their distribution, vouchered by specimens to be housed at the Royal Ontario Museum in Toronto, making them available for future study by the scientific community; • Improve understanding of natural heritage systems in the CKL; • Provide insight into changes in the local plant communities as a result of pressures from introduced species, climate change and population growth; and, • Publish the findings of the project . Over eight years, more than 200 volunteers and landowners collected almost 2000 voucher specimens, with the permission of landowners. Over 10,000 observations and literature records have been databased. The project has documented 150 new species of which 60 are introduced, 90 are native and one species that had never been reported in Ontario to date. -
Floristic Quality Assessment and Monitoring of Brown Bridge Quiet Area Wetlands
Floristic Quality Assessment and Monitoring of Brown Bridge Quiet Area Wetlands Prepared by: Phyllis J. Higman Michigan Natural Features Inventory P.O. Box 13036 Lansing, MI 48901-3036 For: Grand Traverse Conservation District 1450 Cass Road, Traverse City, Michigan, 49685 October 30, 2013 Report Number 2013-17 Acknowledgements This work was made possible by a Great Hyde assisted with early surveys and delivery of Lake Restoration Initiative grant through the a workshop for local stewards. Brian Klatt and Environmental Protection Agency, awarded to Glenn Palmgren provided valuable guidance on the Grand Traverse Conservation District in sampling strategies and Reb Ratliff provided Traverse City, Michigan. Many thanks to Robin enthusiastic energy to kick off the field sampling Christensen for writing the grant and for inviting and assemble necessary field gear. Thanks to us to do this work. Suzan Campbell and Daria you all. Cover photos by Phyllis J. Higman, 2012- 2013. Clockwise from left to right: Brown Bridge Pond, Brown Bridge Dam, The Boardman River Coursing through the Brown Bridge Quiet Area after Dam Removal, and Newly Exposed Bottomlands at Brown Bridge Quiet Area after Dam Removal. Copyright 2013 Michigan State University Board of Trustees. Michigan State University Extension programs and materials are open to all without regard to race, color, national origin, gender, religion, age, disability, political beliefs, sexual orientation, marital status, or family status. Table of Contents Table of Contents .................................................................................................................................... -
Proceedings of the Indiana Academy of Science
List of Extirpated, Endangered, Threatened and Rare Vascular Plants in Indiana: An Update James R. Aldrich, John A. Bacone and Michael A. Homoya Indiana Department of Natural Resources Indianapolis, Indiana 46204 Introduction The status of Indiana's rarest vascular plants was last revised in 1981 by Bacone et al. (3). Since that publication much additional field work has been undertaken and accordingly, our knowledge of Indiana's rarest plant species has greatly increased. The results of some of this extensive field work have been discussed by Homoya (9) and Homoya and Abrell (10) for southern Indiana and by Aldrich et al. (1) for northern Indiana. Wilhelm's (17) discussion on the special vegetation of the Indiana Dunes Na- tional Lakeshore has also provided us with a much clearer understanding of the status of rare, threatened and endangered plants in northwest Indiana. Unfortunately, the number of species thought to be extinct in Indiana has more than tripled. Previous reports (2, 3) indicated that 26 species were extirpated in In- diana. The work that has been conducted to date leads us to believe that as many as 90 species may be extirpated. Without a doubt, the single factor most responsible for this extirpation has been and continues to be, the destruction of natural habitat. Compilation and Selection Criteria Lists of Bacone and Hedge (2), Bacone et al. (3), Barnes (4), Crankshaw (5) and Crovello (6) were consulted and provide the foundation for this report. New additions to this list include state records discovered since Deam (7) and a number of recommen- dations from field botanists. -
Using Chloroplast Trnl-Trnf Sequence Data
BIOLOGIJA. 2006. Nr. 1. P. 60–63 © Lietuvos mokslų akademija, 2006 60 R. Verbylaitė, B. Ford-Lloyd, J. Newbury © Lietuvos mokslų akademijos leidykla, 2006 The phylogeny of woody Maloideae (Rosaceae) using chloroplast trnL-trnF sequence data R. Verbylaitė, In this study, the most suitable DNA extraction protocols for Maloideae sub- family species were determined. Also, it was shown that the most suitable B. Ford-Lloyd, method to analyse phylogenetic data, such as observed in this study is the maximum parsimony method. J. Newbury The monophyletic origin of Maloideae subfamily including Vauquelinia and Kageneckia were confirmed. Close relationships between Crataegus and School of Biosciences, Mespilus were obtained. However, no intra-specific variation within the Ma- University of Birmingham, U. K. loideae genera according to trnL-trnF plastid region was observed, and the hypothesis of Mespilus canescens origin still needs more data to be confir- med or rejected. Key words: phylogeny, Maloideae, trnL-trnF, sequencing INTRODUCTION quelinia and Lindleya genera which have drupaceous or follicle fruits [3]. A recent phylogenetic analysis The Rosaceae family is subdivided into four subfami- in the subfamily Maloideae, based on ITS1, 5.8S lies. The subfamilies are: Spiraeoideae, Rosoideae, rDNA and ITS2, shows that the genus Mespilus is Amygdaloideae and Maloideae. To the family Rosace- nested within the Crataegus clade. This study also ae belong trees, shrubs and herbs. Leaves are usually suggests that endemic to Arkansas Mespilus canes- deciduous; some members of the family are evergre- cens could be of hybrid origin [4]. en. Rosaceae family plants have hermaphrodite flo- Though a huge amount of work has already been wers and are mostly entomophilous, pollinated by flies. -
Crataegus (Hawthorn)
nysipm.cornell.edu 2019 Search for this title at the NYSIPM Publications collection: ecommons.cornell.edu/handle/1813/41246 Disease and Insect Resistant Ornamental Plants Mary Thurn, Elizabeth Lamb, and Brian Eshenaur New York State Integrated Pest Management Program, Cornell University CRATAEGUS Hawthorn pixabay.com Crataegus is a large genus of shrubs and small trees in the rose family commonly known as hawthorn. This popular ornamental has showy pink or white flowers in spring and colorful berry-like fruit. Some species also have long thorns that provide protection for wildlife but may be a hazard in the landscape–thornless cultivars are available. Like other rosaceous plants, hawthorns are sus- ceptible to a number of diseases including fire blight, scab, leaf spot and several types of rust. Insect pests include lace bugs and leaf miners. DISEASES Cedar Rust diseases on hawthorn, which include hawthorn rust and quince rust, are caused by sev- eral fungi in the genus Gymnosporangium that spend part of their life cycle on Eastern red cedar (Juni- perus virginiana) and other susceptible junipers, and another part of their life cycle on plants in the rose family, especially Malus and Crataegus. Since two hosts are required for these fungi to complete their life cycle, one way to reduce disease problems is to avoid planting alternate hosts near each other. Hawthorn Rust, caused by Gymnosporangium globosum, is a significant concern for Crataegus spp. in the Northeast (7). Hawthorns are the main broadleaved host for this rust, and yellow-orange leaf spots are the most common symptom. (8). With severe infections, foliage may turn bright yellow and drop prematurely (15).