The Analysis of the Butterfly Greenhouse Plant for the Butterfly Gardening*

Total Page:16

File Type:pdf, Size:1020Kb

The Analysis of the Butterfly Greenhouse Plant for the Butterfly Gardening* 韓國環境復元技術學會誌 20(1):35∼53(2017) DOI:https://doi.org/10.13087/kosert.2017.20.1.35 J. Korean Env. Res. Tech. 20(1):35∼53(2017) ISSN 1229-3032 국내 나비온실의 식물 식재현황 분석과 적용방안 연구* 손진관1)․강동현1)․이시영1)․윤성욱1)․김남춘2)․김창현2)․공민재1), 2)+ 1) 농촌진흥청 국립농업과학원 농업공학부․2) 단국대학교 녹지조경학과 The Analysis of the Butterfly Greenhouse Plant for the Butterfly Gardening* Son, Jinkwan1)ㆍKang Donghyeon1)ㆍLee Siyoung1)ㆍYun Sungwook1) Kim Namchoon2)ㆍKim Changhyun2)ㆍKong Minjae1), 2)+ 1) Dept. of Agricultural Engineering, National Institute of Agricultural Sciences, RDA, 2) Department of Landscape Architecture, Dankook University. ABSTRACT This study analyzed the relationship between butterflies and plants. We examined 8 butterfly greenhouse. Butterflies are 5 families, 22 species found in 8 locations. Papilio xuthus, Pieris rapae, Papilio bianor etc. was expected to be introduced in the garden. Plants were identified in the 8 green- house with a total 249 taxa to 82 families 186 gunus 224 species 23 variety 2 forma. The main planting species were Compositae, Liliaceae, Rosaceae, Umbelliferae, Crassulaceae, Rutaceae and Etc. A main life forms are Hemicryptophytes. The naturalized plants have been identified 7 families 11 species. And planting in the garden, we propose appropriate management. Host plant is confirmed Rutaceae, Umbelliferae Leguminosae, Cruciferae, Ulmaceae, Aristolochiaceae Etc.. Main nectar plant is Compositae, Liliaceae, Rosaceae, Crassulaceae, Labiatae. Nectar plant is proposed to be planted in con- sideration of the flowering period. Zanthoxylum piperitum, Zanthoxylum schinifolium, Phellodendron amurense, Poncirus trifoliata, Citrus junos, Ruta graveolens proposed design reflects the woody. Spiraea(Rosaceae) and Rhododendron(Ericaceae) proposed by Nectar plants of woody. We hope to be * 연구는 2017년도 농촌진흥청 국립농업과학원 농업과학기술 연구개발사업(PJ012654)의 지원에 의해 이루어진 것임. First author:SON Jinkwan, Dept. of Agricultural Engineering, National Institute of Agricultural Sciences, RDA, Tel:+82-63-238-4096, E-mail:[email protected] Corresponding author:KONG Minjae, Relationship of Dankook University and Rural Development Administration, Tel:+82-63-238-4099, E-mail:[email protected] Received:23 September, 2016. Revised:23 December, 2016. Accepted:2 November, 2016. - 35 - 36 손진관․강동현․이시영․윤성욱․김남춘․김창현․공민재 utilized in the planning and construction of a butterfly garden. Key Words:Gardening, Insect, Restoration, Creation, Conservation I. 서 론 완전변태의 과정인 알–애벌레–번데기–성충을 거치며, 각 나비에 따라 애벌레 경우 정해진 식 최근 근린공원, 도시공원, 생태공원 등 다양 물만 먹는 먹이식물이 있고 성충의 경우 식물의 한 공원을 조성, 계획, 복원 하여 녹지감소, 서식 꽃에서 흡밀을 하는 흡밀식물이 있어 식물과 매 처감소로 인한 생태적 기능 쇠퇴, 생물다양성 우 밀접한 관계를 가진다(Kim and Kang, 2011). 감소 등의 위협을 해결하고자 하고 있으며 식물과 나비의 서식 관계를 분석한 연구에는 (Seoul Metropolitan Governmen, 2012; Son et Kim(1984), Shin and Lee(1988), Kim and Kang al., 2015), 이외에도 교육, 체험, 커뮤니티 공간 (2011), Jeon et al.(2012), Kim et al.(2012) 등이 으로 공원의 기능이 부각되고 있다. 여러 종류 있으나, 나비와 먹이식물․흡밀식물의 관계에 의 공원이 조성되어 생태적, 생물다양성 기능을 대한 연구는 빈약하다. 대처 하고 주민들의 삶의 질 향상에 이바지하고 나비는 인간에게 다양한 이미지를 제공하고 있으나 이용자의 욕구를 충족시키기에는 현저 (UKAG, 2015), 관찰․체험․교육을 위해 최근 히 부족한 실정에 있다. 조성된 공간 또한 인간 함평, 남해, 양평 등에 대규모로 나비정원을 조 의 간섭과 환경오염, 무분별한 살충제의 사용 성한 사례가 있다. 소규모로는 서울숲, 인천나 및 관리 미흡으로 인해 생물의 실질적인 서식 비공원, 예천 곤충생태원 등에 체험관형태의 공간은 점차 줄어들고 있는 실정이다(Kil, 2001; 나비관찰원이 설치되어 있다. 하지만 대부분이 Choi et al., 2003). 해당지역의 적절한 생물공간 온실형태를 한 실내공간으로 사육 후 방사하는 을 조성하기 위해서는 현황조사 및 조사 자료에 나비만 활용하여 관찰과 체험이 이루어지는 것 대한 분석․평가, 목표 설정, 복원 계획수립 등 이 현실이다. 지속적으로 나비가 생활할 수 있 다양한 모니터링 과정이 필요하다(Lee et al., 는 공간제공과 향후 실외 나비정원을 조성함에 2011). 많은 생물 중 다른 분류군에 비하여 생태 있어 사육․방사 가능한 나비와 나비의 생육에 연구가 활발히 진행되어 있는 나비는 1차소비 있어 실질적으로 필요한 먹이식물과 흡밀식물 자, 2차소비자의 먹이원, 기생벌류의 숙주, 수분 을 알아보기 위해 본 연구를 진행하였다. 우리 매개자, 야생조류의 먹이자원의 역할을 하며, 나라에 설치되어 있는 실내 나비정원을 바탕으 기후변화와 서식지 환경변화에 민감하게 반응 로 식물과 나비를 조사․분석하여 추후 나비정 하기 때문에 지표종으로 활용하기 좋은 대상이 원 조성의 실증 시험자료 및 인간과 생물의 조 다(Blair, 1999; Heath et al., 1984; Thomas et al., 화로운 환경조성, 교육의 장으로 활용함에 있 2004; Pywell et al., 2004; Van Swaay et al., 어 기초자료를 제공하고자 하였다. 이러한 연 2008; Sawchik et al., 2005; Warren, 1992; 구를 통해 도시를 비롯하여 다양한 공간에 조 Parmesan et al., 1999). 성되고 있는 다양한 형태의 공원에 나비가 자 전 세계에 나비목은 약 120,000종, 대한민국 연스럽게 유도 될 수 있도록 식물식재 및 설계 에는 195종의 나비가 서식하는 것으로 알려져 에 활용 가능 할 것으로 판단된다. 있다(Choi and Na, 2005; Kwon, 2000). 나비는 국내 나비온실의 식물 식재현황 분석과 적용방안 연구 37 A : Jeonju B : Cheongju C : Sangju D : Hongcheon E : Incheon F : Yecheon G : Daegu H : Seoul Figure 1. The view of study sites. Table 1. The location of study sites. Sites Location Form Size N 35° 49' 45. 00" 2 A National Institute of Agricultural Sciences Jeonju E 127° 02' 18. 70" Open Wire 150m N 36° 37' 38. 97" 2 B Midongsan Arboretum Cheongju E 127° 40' 80. 77" Glass House 66m Gyeongbuk Foundation Original Seed N 36° 34' 40. 50" C Sangju Open Wire 700m2 Production Center E 128° 09' 35. 99" N 37° 45' 54. 19" 2 D Kangwon Nature Environment Research Park Hongcheon E 127° 50' 50. 21" Open Wire 350m N 37° 31' 11. 96" 2 E Incheon Butterfly Park Incheon E 126° 41' 33. 67" Open Wire 320m N 36° 49' 26. 64" 2 F Yecheon Insect Ecological Park Yecheon E 128° 27' 31. 14" Open Wire 1474m N 35° 55' 13. 85" 2 G Daegu Bongmu Park Daegu E 128° 39' 00. 36" Glass House 165m N 37° 32' 29. 11" 2 H Seoul Forest Seoul E 127° 02' 21. 34" Glass House 250m II. 연구 방법 Original Seed Production Center), 강원도 자연 환경연구공원(D, Kangwon Nature Environment 1. 연구대상지 Research Park), 인천 나비공원(E, Incheon 연구대상지는 국내 온실형태의 실내 나비정 Butterfly Park), 예천 곤충생태원(F, Yecheon 원으로 이용자의 사용빈도가 높으며, 나비서식 Insect Ecological Park), 대구 봉무공원(G, 을 위한 중점 식물이 조성된 곳으로 Table 1과 Daegu Bongmu Park), 서울숲(H, Seoul Forest) 같이 8개소를 선정하였다. 세부적으로 대상지를 등으로 선정하고 각각의 면적과 온실형태를 살펴보면 전주의 국립농업과학원(A; National Table 1, Figure 1.과 같이 제시하였다. Institute of Agricultural Sciences) 내 나비온실, 나비온실의 형태는 해당지역의 기상환경이 청주 미동산수목원(B, Midongsan Arboretum), 그대로 적용될 수 있도록 하며 방사한 나비가 경북 잠사곤충사업장(C, Gyeongbuk Foundation 외부로 탈출하지 못하도록 그물망으로 폐쇠시 38 손진관․강동현․이시영․윤성욱․김남춘․김창현․공민재 킨 형태(Open Wire) 5곳과 외부의 기상여건에 plant), 꽃의 꿀을 흡밀하기 위한 종은 흡밀식물 상관없이 독립된 환경을 조성하여 겨울철에도 (Nectar plant)로 구분하고 나비와 직접적으로 식물의 생육이 지장 없도록 한 유리온실(Glass 상관은 없지만 나비정원의 경관과 이용자의 선 House) 형태 3곳으로 구분되었다. 호도를 위해 조성한 식물은 경관식물(Landscape Plant)로 분류하였다. 분류된 목록은 최종적으로 2. 분석방법 나비전문가 3인에 제시하여 의견수렴을 거쳐 본 연구는 향후 나비정원을 조성함에 있어 참 Appendix 1.에 제시하였다. 고자료로 활용하기 위해 이루어 졌다. 따라서 연구대상지 8곳에 식재된 식물목록 작성과 조 III. 연구결과 사된 식물목록 분석을 통해 분류학적 구분을 진 행하였다. 수집된 식물목록은 국내 분포 종을 1. 실내 나비정원의 도입 나비 종 분류 구분을 위해 국가생물종지식정보시스템(www. 연구대상지 8곳에서 서식, 방사되고 있는 나 nature.go.kr)에서 제공하는 국가표준식물목록을 비종은 정원 담당자에게 인터뷰를 통해 수집하 확인하였다. 식물목록에서 정보를 제공하지 않 였다. 수집된 결과는 ‘한반도 나비도감’(Paek 는 종은 국내미확인종(Other)으로 구분하였다. and Shin, 2014)을 통해 분류하였으며, Table 2 생활형은 Raunkiær(1934)의 구분에 의해 대형 와 같다. 8곳의 나비정원에서 생육 중인 나비는 지상식물(M, Megaphanerophytes), 소형지상식 총 5과 22종으로 대만흰나비(Artogeia canidia), 물(N, Nanophanerophytes), 지중식물(G, Geo- 노랑나비(Colias erate), 남방노랑나비(Eurema phytes), 지표식물(CH, Chamaephytes), 반지중 mandarina), 큰줄흰나비(Pieris melete), 배추흰 식물(H, Hemicryptophytes), 수생식물(HH, Hyd- 나비(Pieris rapae), 사향제비나비(Atrophaneura rophytes), 일년생식물(Th, Therophytes)로 분류 alcinous), 제비나비(Papilio bianor), 무늬박이제 하고 미확인 종은 None으로 구분하였다. 귀화 비나비(Papilio helenus), 산제비나비(Papilio 식물은 Lee et al.(2011)이 새롭게 정리한 40과 maackii), 산호랑나비(Papilio machaon), 긴꼬리 175속 302종 15변종 4품종으로 총 321종류 제비나비(Papilio macilentus), 남방제비나비 (Taxa)를 대상으로 분석하여 향후 나비정원 활 (Papilio protenor), 호랑나비(Papilio xuthus), 꼬 용에 고려대상종으로 구분하였다. 귀화식물의 리명주나비(Sericinus montela), 암끝검은표범나 귀화도등급(N.D, Degree of Naturalization)은 비(Argyreus hyperbius), 흑백알락나비(Hestina Kariyama and Kobatake(1998)에 따라 5등급으 japonica), 들신선나비(Nymphalis xanthomelas), 로 구분하고 이입시기(Int-p, Introduced period) 네발나비(Polygonia c-aureum), 작은멋쟁이나비 는 1기(1921년 이전), 2기(1922년∼1963년), 3 (Vanessa cardui), 큰주홍부전나비(Lycaena dis- 기로 구분하였다. 생활형(L-f, Life form)은 초 par), 남방부전나비(Pseudozizeeria maha), 대왕 본, 목본, 1-2년생, 다년생으로 구분하고 원산지 팔랑나비(Satarupa nymphalis) 등으로 조사되었 를 분류하였다(Lee et al., 2011; Park et al., 다. 과별 분포를 살펴보면 흰나비과(Pieridae) 5 2002). 종, 호랑나비과(Papilionidae) 9종, 네발나비과 목록화 된 식물종은 Kim and Kang(2011), (Nymphalidae) 5종, 부전나비과(Lycaenidae) 2 Yeochon-gun(2011), Paek and Shin(2014), Son 종, 팔랑나비과(Hesperiinae) 1종이었으며, 호랑 et al.(2015), 현장 전문가 의견청취 등을 통해 나비과를 가장 많이 사육, 방사하고 있는 것으 나비에 먹이식물 되는 것은 기주식물(host 로 분석되었다. 개별 종에 대한 사육현황으로는 국내 나비온실의 식물 식재현황 분석과 적용방안 연구 39 Table 2. The butterflies list of eight sites. Table 3. The number of taxanomic at eight study sites. Classification A B C D E F G H Classification A B C D E F G H Total Phylum Arthropoda Family 44 29 35 22 31 16 26 16 82 Class Insecta Genus 63 37 61 31 44 29 33 23 186 Order Lepidoptera Species 62 38 65 33 42 29 36 23 218 Family Pieridae Sub-species 1 - - - 1 - - - 2 Artogeia canidia ‒ ‒ ‒ ‒ ‒ ‒ ‒ ○ Variety 6 7 6 4 10 3 2 1 23 Colias erate ○ ‒ ‒ ○ ○ ○ Forma 2 - 1 2 2 2 - - 6 Eurema mandarina ○ ‒ ‒ ‒ ‒ ‒ ○ Taxa 71 45 72 39 55 34 38 24 249 Pieris melete ‒ ‒ ‒ ‒ ‒ ‒ ○ ○ Pieris rapae ○ ○ ○ ○ ○ ○ ○ ‒ 2.
Recommended publications
  • Interspecific Variation in Competitor Avoidance and Foraging Success in Sap-Attracted Insects
    Eur. J. Entomol. 106: 529–533, 2009 http://www.eje.cz/scripts/viewabstract.php?abstract=1484 ISSN 1210-5759 (print), 1802-8829 (online) Interspecific variation in competitor avoidance and foraging success in sap-attracted insects JIICHIRO YOSHIMOTO* Laboratory of Insect Ecology, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan Key words. Aggressive interactions, community, foraging strategy, interference competition, resources, tree sap Abstract. Many insect species attracted to fermenting sap often fight for access to this resource, which results in the establishment of interspecific dominance hierarchies. In one such system, the hornet Vespa mandarinia (Hymenoptera: Vespidae) behaviourally dominates during the daytime and several subordinate species avoid aggressive interactions in various ways. In order to elucidate the interspecific variation in competitor-avoidance behaviour and its subsequent effect on foraging success, the behaviour of species of hornets, beetles and butterflies at patches (exudation spots) in Japan was recorded. The percentage of individuals that succeeded in visiting a patch following departure from one, or an attempted visit, or after waiting near a patch for t 10 s, did not differ greatly among species, despite the distinctive differences in dominance between V. mandarinia and the other species. These results suggest that subordinate species may be equally effective at foraging for sap as the dominant species. The competitor-avoidance behaviour differed among the species. Vespa crabro and satyrine butterflies mainly avoided competition by actively moving away from com- petitors. The beetle Rhomborrhina japonica (Coleoptera: Scarabaeidae) often remained close to an occupied patch and waited for the occupant to leave, whereas V.
    [Show full text]
  • The Evolutionary Biology of Herbivorous Insects
    GRBQ316-3309G-C01[01-19].qxd 7/17/07 12:07 AM Page 1 Aptara (PPG-Quark) PART I EVOLUTION OF POPULATIONS AND SPECIES GRBQ316-3309G-C01[01-19].qxd 7/17/07 12:07 AM Page 2 Aptara (PPG-Quark) GRBQ316-3309G-C01[01-19].qxd 7/17/07 12:07 AM Page 3 Aptara (PPG-Quark) ONE Chemical Mediation of Host-Plant Specialization: The Papilionid Paradigm MAY R. BERENBAUM AND PAUL P. FEENY Understanding the physiological and behavioral mecha- chemistry throughout the life cycle are central to these nisms underlying host-plant specialization in holo- debates. Almost 60 years ago, Dethier (1948) suggested that metabolous species, which undergo complete development “the first barrier to be overcome in the insect-plant relation- with a pupal stage, presents a particular challenge in that ship is a behavioral one. The insect must sense and discrim- the process of host-plant selection is generally carried out inate before nutritional and toxic factors become opera- by the adult stage, whereas host-plant utilization is more tive.” Thus, Dethier argued for the primacy of adult [AQ2] the province of the larval stage (Thompson 1988a, 1988b). preference, or detection and response to kairomonal cues, Thus, within a species, critical chemical, physical, or visual in host-plant shifts. In contrast, Ehrlich and Raven (1964) cues for host-plant identification may differ over the course reasoned that “after the restriction of certain groups of of the life cycle. An organizing principle for the study of insects to a narrow range of food plants, the formerly repel- host-range evolution is the preference-performance hypoth- lent substances of these plants might .
    [Show full text]
  • Interspecific Variation in Competitor Avoidance and Foraging Success in Sap-Attracted Insects
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/270496969 Interspecific variation in competitor avoidance and foraging success in sap- attracted insects Article in European Journal of Entomology · November 2009 DOI: 10.14411/eje.2009.066 CITATIONS READS 0 10 1 author: Jiichiro Yoshimoto University of the Valley of Guatemala 12 PUBLICATIONS 58 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Climate change effects on the biodiversity of the seasonally dry tropical forests of Motagua Valley in Guatemala View project All content following this page was uploaded by Jiichiro Yoshimoto on 28 January 2019. The user has requested enhancement of the downloaded file. Eur. J. Entomol. 106: 529–533, 2009 http://www.eje.cz/scripts/viewabstract.php?abstract=1484 ISSN 1210-5759 (print), 1802-8829 (online) Interspecific variation in competitor avoidance and foraging success in sap-attracted insects JIICHIRO YOSHIMOTO* Laboratory of Insect Ecology, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan Key words. Aggressive interactions, community, foraging strategy, interference competition, resources, tree sap Abstract. Many insect species attracted to fermenting sap often fight for access to this resource, which results in the establishment of interspecific dominance hierarchies. In one such system, the hornet Vespa mandarinia (Hymenoptera: Vespidae) behaviourally dominates during the daytime and several subordinate species avoid aggressive interactions in various ways. In order to elucidate the interspecific variation in competitor-avoidance behaviour and its subsequent effect on foraging success, the behaviour of species of hornets, beetles and butterflies at patches (exudation spots) in Japan was recorded.
    [Show full text]
  • Guidelines for the Capture and Management of Digital Zoological Names Information Francisco W
    Guidelines for the Capture and Management of Digital Zoological Names Information Francisco W. Welter-Schultes Version 1.1 March 2013 Suggested citation: Welter-Schultes, F.W. (2012). Guidelines for the capture and management of digital zoological names information. Version 1.1 released on March 2013. Copenhagen: Global Biodiversity Information Facility, 126 pp, ISBN: 87-92020-44-5, accessible online at http://www.gbif.org/orc/?doc_id=2784. ISBN: 87-92020-44-5 (10 digits), 978-87-92020-44-4 (13 digits). Persistent URI: http://www.gbif.org/orc/?doc_id=2784. Language: English. Copyright © F. W. Welter-Schultes & Global Biodiversity Information Facility, 2012. Disclaimer: The information, ideas, and opinions presented in this publication are those of the author and do not represent those of GBIF. License: This document is licensed under Creative Commons Attribution 3.0. Document Control: Version Description Date of release Author(s) 0.1 First complete draft. January 2012 F. W. Welter- Schultes 0.2 Document re-structured to improve February 2012 F. W. Welter- usability. Available for public Schultes & A. review. González-Talaván 1.0 First public version of the June 2012 F. W. Welter- document. Schultes 1.1 Minor editions March 2013 F. W. Welter- Schultes Cover Credit: GBIF Secretariat, 2012. Image by Levi Szekeres (Romania), obtained by stock.xchng (http://www.sxc.hu/photo/1389360). March 2013 ii Guidelines for the management of digital zoological names information Version 1.1 Table of Contents How to use this book ......................................................................... 1 SECTION I 1. Introduction ................................................................................ 2 1.1. Identifiers and the role of Linnean names ......................................... 2 1.1.1 Identifiers ..................................................................................
    [Show full text]
  • 2.2 Division of Forest and Biomaterials Science
    2.2 DIVISION OF FOREST AND BIOMATERIALS SCIENCE 1. Outline of the Division Forests play a very important role in the environment of the earth and provide wood resources that are continuously renewable in contrast with fossil resources such as petroleum and coal. Research and educational activities of this division cover not only preservation, cultivation, and continuous production of forest resources, but also utilization of forest products for our life and culture with the aim of coexistence of forest and human beings This division consists of 20 laboratories, including 2 laboratories of Field Science Education and Research Center and 5 laboratories of Research Institute for Sustainable Humanosphere (renamed Wood Research Institute reconstructed in April, 2005), and their activities are international and interdisciplinary 2. Number of students There are 96 students (48 freshmen and 48 2nd year students) in the Master’s program and 69 students in the doctor’s program of this division 3. Divisions and laboratories offering lectures Division of Forest and Biomaterials Science: Laboratories of Forest Resources and Society, Forest Environment Planning, Tropical Forest Resources and Environments, Forest Utilization, Forest Biology, Landscape Architecture, Erosion Control, Biomaterials Design, Wood Processing, Biofibrous Materials, Tree Cell Biology, Composite Materials Chemistry, and Chemistry of Biomaterials Field Science Education and Research Center: Laboratories of Forest Information, and Silviculture Research Institute for Sustainable Humanosphere: Laboratories of Active Bio-based Materials, Sustainable Materials, Structural Function, Innovative Humano-habitability, Biomass Morphologenesis and Information 4. Event in 2006 The orientation course for freshmen on April 7 at the Graduate School of Agriculture in Kitashirakawa Campus offered a curriculum-guidance.
    [Show full text]
  • EU Project Number 613678
    EU project number 613678 Strategies to develop effective, innovative and practical approaches to protect major European fruit crops from pests and pathogens Work package 1. Pathways of introduction of fruit pests and pathogens Deliverable 1.3. PART 7 - REPORT on Oranges and Mandarins – Fruit pathway and Alert List Partners involved: EPPO (Grousset F, Petter F, Suffert M) and JKI (Steffen K, Wilstermann A, Schrader G). This document should be cited as ‘Grousset F, Wistermann A, Steffen K, Petter F, Schrader G, Suffert M (2016) DROPSA Deliverable 1.3 Report for Oranges and Mandarins – Fruit pathway and Alert List’. An Excel file containing supporting information is available at https://upload.eppo.int/download/112o3f5b0c014 DROPSA is funded by the European Union’s Seventh Framework Programme for research, technological development and demonstration (grant agreement no. 613678). www.dropsaproject.eu [email protected] DROPSA DELIVERABLE REPORT on ORANGES AND MANDARINS – Fruit pathway and Alert List 1. Introduction ............................................................................................................................................... 2 1.1 Background on oranges and mandarins ..................................................................................................... 2 1.2 Data on production and trade of orange and mandarin fruit ........................................................................ 5 1.3 Characteristics of the pathway ‘orange and mandarin fruit’ .......................................................................
    [Show full text]
  • A List Ofjapanese Insect Collection by P. F. Von Siebold and H
    Bull. Kitakyushu Mus. Nat. Hist., 19: 43-75, pis. 5. March 31, 2000 A list ofJapanese Insect Collection by P. F. von Siebold and H. Burger preserved in Nationaal Natuurhistorisch Museum, Leiden, the Netherlands* Kyoichiro Ueda', Yoshihisa Sawada2, Yutaka Yoshiyasu3 and Toshiya Hirowatari4 'Kitakyushu Museum and Instituteof Natural History, 3-6-1 Nishihonmachi, Yahatahigashi-ku, Kitakyushu 805-0061 Japan 2Museum of Nature and Human Activities, Yayoigaoka, Sanda, Hyogo 669-13, Japan. sLaboratory of Applied Entomology, Faculty of Agriculture, Kyoto Prefectural University, Shimogamo, Kyoto, 606-8522Japan 4Entomological Laboratory, College of Agriculture, Osaka Prefecture University, Sakai, Osaka, 599-8531 Japan (Received November 25, 1999) Abstract Insect specimens collected by P. F. von Siebold and H. Burger with Japanese collaborators during their stay inJapan (1823-1829, 1825-1835) are reported on the basis of the collection preserved in Nationaal Natuurhistorisch Museum, Leiden, the Netherlands. A total 439 species (1,047 specimens) of the insects are listed and some of them are Figured. It is a scientifically important insect collection that reflects the old but rich Japanese insect fauna of circa the First half of the 19th century and includes many type-specimens. This is the First comprehensive report of the collection. Introduction Philipp Franz von Siebold (1796-1866) (Figs. 1-2) made an extensive re search on the natural history ofJapan with Heinrich Burger (1806-1858) (Fig. 3) during his first stay in Japan (1823-1829). Many Japanese naturalists, i.e., Mizutani Hobun, Okochi Sonshin, Ishii Soken and others contributed to their natural history collections (Ueno, 1987). These enormous collections were sent to Holland separately and almost arrived safely.
    [Show full text]
  • Lepidoptera) Communities in Korea: Conservation and Maintenance of Red Listed Species
    Eur. J. Entomol. 112(4): 770–777, 2015 doi: 10.14411/eje.2015.099 ISSN 1210-5759 (print), 1802-8829 (online) Effect of military activity on butterfly (Lepidoptera) communities in Korea: Conservation and maintenance of red listed species SUNG-SOO KIM 1, TAE-SUNG KWON 2 and CHEOL MIN LEE 3, * 1 Research Institute for East Asian Environment and Biology, 293-27 Amsa 3 dong, Angdong-gu, Seoul 143-203, Republic of Korea; e-mail: [email protected] 2 Division of Forest Insect Pests and Diseases, Korea Forest Research Institute, 57 Hoegi-ro, Dongdaemun-gu, Seoul 130-712, Republic of Korea; e-mail: [email protected] 3 Center for Forest and Climate Change, Korea Forest Research Institute, 57 Hoegi-ro, Dongdaemun-gu, Seoul 130-712, Republic of Korea; e-mail: [email protected] Key words. Lepidoptera, butterflies, red listed species, military training area, grassland, conservation Abstract. Military training areas are increasingly recognized as areas of high biodiversity and habitats for many wild organisms, in- cluding threatened or endangered species. However, the information on the ecological value of military training areas is limited because it is difficult access these sites. The aim of this study is to evaluate the effect of military activity on butterfly communities. The survey was carried out in a military training area (MTA) at Inje-gun near the demilitarized zone (DMZ), Inje forest (IJF) a secondary forest and Gwangneung forest (GWF) an old growth forest, from April to October 2008 to 2011. IJF and GWF were selected in order to determine the characteristics of a butterfly community differed in a MTA.
    [Show full text]
  • Annexes to the Minabe-Tanabe Ume System
    Annexes • Site location map and farmland distribution map • Statistical data • Biodiversity list • List of cultivated agricultural products サゲ 栾ヂワワユ벚ユヴ 籗Site location map and farmland distribution map Rice paddies Upland field* 璈璈*Upland field (consists of mostly ume orchard and other dry land crops) サコ 禽禽禽Statistical data (1) Local population Individuals 1990 1995 2000 2005 2010 Population 84,968 85,153 85,094 82,317 79,563 People 65 or older 12,681 15,274 17,683 19,138 20,635 Percent 65 or older 15% 18% 21% 23% 26% Source: National census; figures are for the GIAHS application area. (2) Number of farm households Households 1990 1995 2000 2005 2010 No. of farm households 臃殭1 3,751 3,646 3,484 3,313 No. growing ume 臃殭1 3,541 3,454 3,330 3,200 Percent growing ume 臃殭1 94% 95% 96% 97% Source: World Census of Agriculture and Forestry; figures are commercial farm households in the GIAHS application area. (3) Population engaged in farming Individuals 1990 1995 2000 2005 2010 No. engaged in farming 8,763 8,505 8,467 8,034 7,199 No. 65 or older 臃殭1 臃殭1 3,154 3,218 3,107 Percent 65 or older 臃殭1 臃殭1 37% 40% 43% Source: World Census of Agriculture and Forestry; figures are commercial farm households in the GIAHS application area. (4) Amount of abandoned farmland ha 1990 1995 2000 2005 2010 Amount of farmland 臃殭1 6,046 5,897 6,090 6,180 Abandoned farmland 臃殭1 72 126 127 277 Percent abandoned farmland 臃殭1 1.2% 2.1% 2.1% 4.5% Sources: Survey on Cultivated Land Area, World Census of Agriculture and Forestry; figures are for land inside administrative divisions.
    [Show full text]
  • Tve382 Tachi&Shima.Qxp
    TAKUJI TACHI & HIROSHI SHIMA Biosystematics Laboratory, Graduate School of Social and Cultural Studies, Kyushu University SYSTEMATIC STUDY OF THE GENUS PERIBAEA ROBINEAU-DESVOIDY OF EAST ASIA (DIPTERA: TACHINIDAE) Tachi, T. and H. Shima, 2002. Systematic study of the genus Peribaea Robineau-Desvoidy of East Asia (Diptera: Tachinidae).– Tijdschrift voor Entomologie 145: 115-144, figs. 1-19. [ISSN 0040-7496]. Published 1 June 2002. The East Asian species of the genus Peribaea Robineau-Desvoidy are revised. Twelve species are recognized, eleven of which are classified into four species groups: the fissicornis group, egesta group, orbata group, and minuta group. One species, P. trifurcata, is treated as incertae sedis. The autapomorphies of these species groups are defined and characters illustrated: fissicornis group: – male genitalia with distiphallus bearing strong spines ventrally; egesta group: – epiphal- lus absent, ventral part of distiphallus raised along midline; orbata group: – postgonite distinct- ly bifid apically, upper lobe short, lower lobe long and pointed apically; distiphallus subrectan- gular in shape, sclerotized on dorsal and ventral portion with some spinules ventrally in lateral view, middle portion weakly sclerotized or membranous; minuta group: – distiphallus suboval in shape, broadly sclerotized in lateral view bearing some spinules ventrally. The following six species are described from Japan and China: P. abbreviata sp. n., P. apaturae sp. n., P. caesiata sp. n., P. egesta sp. n., P. glabra sp. n., P. hongkongensis sp. n. Diagnoses of all species and de- scriptions of new species are given, and a key to the twelve species is provided. Takuji Tachi (& Hiroshi Shima); Biosystematics Laboratory, Graduate School of Social and Cultural Studies, Kyushu University; e-mail: [email protected] Key word.
    [Show full text]
  • Bas Metabolism of Caroteaoida La Pierls Brassioae Is* (The Large White Butterfly) Ia Relation to Its Foodplant Prassica Oleracea Var -Ca.'Oitata L* (The Cabbage)*^
    Bas Metabolism of Caroteaoida la Pierls brassioae Is* (The large White Butterfly) ia relation to its foodplant Prassica oleracea var -ca.'oitata L* (The Cabbage)*^ A thesis siabmitted for the degree of Doctor of Philosophy ia the TMlversity of London '1 ; ' . , - 11- y ii t by ' » Q G U j R . ' __#LJ John Stewart Edaonda Feltwell \ Eoyal Holloway College, ^ Cniversity of London 1973 ProQuest Number: 10096797 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest. ProQuest 10096797 Published by ProQuest LLC(2016). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. Microform Edition © ProQuest LLC. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 Pieris brassicae L * 9 underside K H. c. LfSRAHT A J i l U (u^crij of üÀ)XurU'S Uiseds luirtfuli in. mt jcurcUtv^, auoL licu^e, ail hunvu., a u d Ukelij m.e<xHS d^tr^y^lu^ ikâm, li/oalcL he alim éd ^ Ike pidlic h h& 0/ u ^ e fÀ ayid if^Apcviraui u/oré.:.. fL k^m/lMae cj ilie p^cpedtes^ earu^m ^, propo^aéùoLclm A ii^yfujrt oj^ Ute- lip r (uui c^ise^vcpicvi of -Htepe auinuiLs^ is a U£c6pfxy^ ^ p Iro leaxL as la jow£- yndliPcL of pnevadiAA^ Uiebr depredailcas.
    [Show full text]
  • 4.14 Allelochemicals in Plant–Insect Interactions
    4.14 Allelochemicals in Plant–Insect Interactions Keiichi Honda and Hisashi Oˆ mura, Hiroshima University, Higashihiroshima, Japan Masatoshi Hori, Tohoku University, Sendai, Japan Yooichi Kainoh, University of Tsukuba, Tsukuba, Japan ª 2010 Elsevier Ltd. All rights reserved. 4.14.1 Introduction 563 4.14.2 Host Selection 563 4.14.2.1 Phytochemicals Involved in Oviposition 563 4.14.2.2 Feeding Attractants and Stimulants 570 4.14.3 Flower-Visiting and Foraging 580 4.14.3.1 Floral Volatiles 580 4.14.3.1.1 Attractants in nursery pollination 580 4.14.3.1.2 Attractants in sexual mimicry 581 4.14.3.1.3 Attractants in abiotic mimicry 582 4.14.3.1.4 Repellent volatiles in floral scents 583 4.14.3.1.5 Transfer of volatiles from flowers to insects 583 4.14.3.2 Food Constituents Affecting Foraging 584 4.14.3.2.1 Sugars 584 4.14.3.2.2 Amino acids 584 4.14.3.2.3 Toxic components 584 4.14.4 Insect–Plant Interface in Multitrophic Interactions 585 4.14.4.1 Parasitic Wasps 585 4.14.4.2 Parasitic Flies 588 4.14.4.3 Predators 588 4.14.4.4 Elicitors 589 References 590 4.14.1 Introduction The majority of insects are herbivores that depend on plants for their nutrients. The chemicals produced by plants and insects can have significant effects on their lives, and insect–plant interactions have therefore been of long- standing interest in chemical ecology. Biological and chemical analyses of the interplay between insect pests and crops are of great importance from the perspective of future agriculture as the need to develop environmentally benign pest control agents for practical use continues to grow.1 Phytochemicals, particularly secondary metabolites, play important and often crucial roles in many types of insect behaviors, and can even regulate their growth and reproduction in various ways, thus ultimately exerting considerable influence on their fitness.
    [Show full text]