ABANDONED BEACHES ABOUT LAKE MICHIGAN I T Is Difficult to See the Force of This Suggestion of Mr

Total Page:16

File Type:pdf, Size:1020Kb

ABANDONED BEACHES ABOUT LAKE MICHIGAN I T Is Difficult to See the Force of This Suggestion of Mr BULLETIN OF THE GEOLOGICAL SOCIETY OF AMERICA VOL. 29, PP. 235-244 JUNE 30, 1918 EXPLANATION OF THE ABANDONED BEACHES ABOUT THE SOUTH END OF LAKE MICHIGAN1 BY 0. FREDERICK WRIGHT (Presented in abstract before the Society December 28, 1916) CONTENTS 1 a^e I’eat deposits between the second and third beaches................................ ... 2:iT 23S Supposed changes of land levels........................................................................ Supposed earlier opening of the Sat; outlet....................................................... 240 Effects of the diversion of the water in the glacial lakes in the Ei•ie- Ontario Basin...................................................................................................... ,241 Glacial and clay deposits underneath Chicago................................................ 24:; Provisional estimates of glacial time afforded in this area........................ 244 D e s c r ip t io n o f t h e B e a c h e s Three abandoned postglacial beaches at the south end of Lake Michigan have been known for many years. In 1870 Dr. Edmund Andrews de­ scribed them in a very elaborate paper published by the Chicago Academy of Sciences. Later, Mr. Leverett, in his monograph, “Illinois glacial lobe,” and Mr. William C. Alden, in his Chicago Folio of the U. S. Geological Survey, have collected the facts in very full measure. From these and other published observations it appears that, surrounding the south end of Lake Michigan from about the vicinity of Waukegan, on the west side, and extending indefinitely northward on the east side, there is an abandoned beach approximately 60 feet above the level of the lake. This is called the Glenwood beach. Twenty feet lower, or about 40 feet above the present level of the lake, occurs what is called the Calumet beach. Twenty feet lower still, or approximately 20 feet above the level of the lake, occurs the Tolle-ston beach. These are shown on the accompanying map (figure 1), compiled 1 Manuscript received by the Secretary o£ the Society March 10, 1918. (235) 236 236 G. G. F. WRIGHT--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ABANDONED BEACHES ABOUT LAKE MICHIGAN Compiled and drawn by Miss Lonie Shedd. The broken lines south of Galewood and Rosehill moraines indicate the probable extension of those moraines supposed to have been washed down by the waves of Lake Chicago. For a description of the beaches, see text. DESCRIPTION OE THE BEACHES 237 from the Chicago Polio of the region south of the lake. All these beaches are interrupted by the Chicago outlet along the line of the present drain­ age canal, this outlet having served its purpose during the formation of them all. P e a t D e p o s it s b e t w e e n t h e S ec o n d a n d T h ir d B e a c h e s The facts most difficult of explanation connected with these beaches are the accumulations of beds of peaty material underlying the second (Calu­ met) beach. These were noticed by Doctor Andrews at various places, especially near Evanston, where they not only underlie the second beach, but “extend eastward across the interval between It and the third beach. Its level is no higher than that of the third beach, being only 12 to 15 feet above the present level of Lake Michigan. The peat is immediately overlaid by about five feet of sand, above which there is a bed of coarse gravel. The gravel is thin near the borders of the bar, but has a thickness of 10 or 12 feet at the highest part It is capped by a thin deposit of sand, and has also layers of sand interbedded in its thickest parts. The presence of this gravel makes it certain that the old marshy land surface has not been buried by the drift­ ing of material from the lower beach. There seems no escape from the con­ clusion that the lake stood at a lower stage than the level of the second beach before that beach and the bar under discussion were formed.”2 Also, according to Leverett: 8 “For a few miles in the vicinity of the State line between Indiana and Michigan there are exposures of peaty material along the blufE of Lake Mich­ igan at levels ranging from about 15 feet above the lake down to the water’s edge. Near Michigan City peaty layers Just above the water’s edge are nearly continuous for a distance of a mile or more and occur at frequent inter­ vals from Michigan City to the Michigan State line. Above the peaty beds pebbly sand in places reaches an elevation of 30 feet above the lake, or nearly to the level of the second beach. The peat appears, therefore, to have been developed prior to the formation of that beach, and probably has the same age as that noted near Evanston, Illinois.” Later, however, in Monograph L III, Mr. Leverett hesitates about ac­ cepting this evidence as conclusive. Speaking of the Evanston peat deposits, he suggests that “a bar might beextended out over a peat deposit standing at the same level as the lake and press it down and thus give it a lower level than it had while in process of growth. At the Evanston locality this interpretation would seem very plausible, for the bar was built out into water of considerable depth by southward-moving currents.” 4 2 Leverett : Illinois glacial lobe, p. 445. » Ibid., p. 445. * Ibid., p. 356. 238 G. P. WRIGHT— ABANDONED BEACHES ABOUT LAKE MICHIGAN I t is difficult to see the force of this suggestion of Mr. Leverett. How could a thickness of 10 or 13 feet of gravel, capped by a thin deposit of sand, be pushed out into water of considerable depth to cover a deposit of peat that was originally at the level of the southward moving currents which deposited the bar? The conception is impossible. We shall be justified, therefore, in accepting the original conclusions of Doctor Andrews and Mr. Leverett, which were formed when these Evanston de­ posits were all exposed. Unfortunately, at the present time the growth of the city has so modified the shore that the facts are not now open to inspection. Speaking further of the peat deposits near Michigan City, he says: “The sand evidently was deposited during the development of that beach and the peat is certainly as old as the beach. The beach may have been ex­ tended out over a peaty deposit, as was suggested in the case of the JJvanston deposits, but the conditions on the whole do not strongly favor this view.” 5 To establish the early date of the peat, Mr. Leverett would demand the discovery of valleys which entered the lake at this lower stage, at a level below the Calumet beach, and which had been built across by the Calumet beach; but in the lack of such evidence it is not necessary to give it much weight. T he Seeies of Moraines As will be seen from the map, the' outlet has two branches coming to­ gether at the Sag. These are separated by Mount Forest Island, which is in the main a moraine deposit. From the Sag westward through Lemont to Lockport the channel is on a dead level, running over a rock shelf 8 feet above Lake Michigan. At Lockport it descends through Joliet and some distance below, 35 or 40 feet in a few miles. At the foot of this descent there are immense gravel deposits (including many boulders a foot or more in diameter) on the west side of the Des Plaines River, rising 60 feet above the river plane and covering fully a square mile. The gravel is also 40 feet in depth below the river plane. Properly to interpret the history of this outlet, we must consider the series of moraines on the west side of the lake. The outer moraine is many miles in width, extending all around the south end. It is called by Leverett the Valparaiso moraine. North of the outlet there are two or three narrow parallel moraines extending from the north, but at present not reaching the south end of the lake. Numbering from the west, the Gale wood moraine is separated from the Valparaiso moraine by a valley 2 or 3 miles wide, through which the Des Plaines River flows. A little “ Ibid.. p. ?56. THE SERIES OF MORAINES 239 farther east the Rose H ill moraine is found, but does not at present pro­ ject quite so far south. The space between this and the Galewood mo­ raine is occupied by the Chicago River. Going farther north, there are remnants of a parallel moraine above Evanston. These all seem to be lateral moraines formed when the ice in shrunken quantities extended toward the south end of the lake, but the erosion of the water has very likely removed their extreme southern ends, so that their existence can only be inferred; but Mr. Lcverett thinks it not at all improbable that the Rose H ill moraine extended southward to Blue Island, which is cer­ tainly a moraine formation 6 miles long, since the rock does not appear underneath it until a depth of 50 or GO feet is reached, while it rises more than 60 feet above the lake level. It would seem also likely that the Galewood moraine extended to Mount Forest Island, which is deeply covered with moraine material. As a partial proof of this, it is to be noted that the 60-foot terrace extends southward from Galewood through Oak Park well on toward Mount Forest Island. H ist o r y o f t h e C h ic a g o O u t let It is true that this 60-foot beach through Oak Park, like the 40-foot beach which extends toward Blue Island, is composed of stratified sand and gravel; but as the erosive agencies of the lake when at its higher levels probably operated for several thousand vears, and as these agencies are known at the present time to be eating into the bank at rates varying from 2 to 3 feet a year, there was ample opportunity for them to level these narrow moraines and so in part to account for the material forming the present Glenwood and Calumet beaches in that vicinity.
Recommended publications
  • Indiana Glaciers.PM6
    How the Ice Age Shaped Indiana Jerry Wilson Published by Wilstar Media, www.wilstar.com Indianapolis, Indiana 1 Previiously published as The Topography of Indiana: Ice Age Legacy, © 1988 by Jerry Wilson. Second Edition Copyright © 2008 by Jerry Wilson ALL RIGHTS RESERVED 2 For Aaron and Shana and In Memory of Donna 3 Introduction During the time that I have been a science teacher I have tried to enlist in my students the desire to understand and the ability to reason. Logical reasoning is the surest way to overcome the unknown. The best aid to reasoning effectively is having the knowledge and an understanding of the things that have previ- ously been determined or discovered by others. Having an understanding of the reasons things are the way they are and how they got that way can help an individual to utilize his or her resources more effectively. I want my students to realize that changes that have taken place on the earth in the past have had an effect on them. Why are some towns in Indiana subject to flooding, whereas others are not? Why are cemeteries built on old beach fronts in Northwest Indiana? Why would it be easier to dig a basement in Valparaiso than in Bloomington? These things are a direct result of the glaciers that advanced southward over Indiana during the last Ice Age. The history of the land upon which we live is fascinating. Why are there large granite boulders nested in some of the fields of northern Indiana since Indiana has no granite bedrock? They are known as glacial erratics, or dropstones, and were formed in Canada or the upper Midwest hundreds of millions of years ago.
    [Show full text]
  • Table of Contents. Letter of Transmittal. Officers 1910
    TWELFTH REPORT OFFICERS 1910-1911. OF President, F. G. NOVY, Ann Arbor. THE MICHIGAN ACADEMY OF SCIENCE Secretary-Treasurer, GEO. D. SHAFER, East Lansing. Librarian, A. G. RUTHVEN, Ann Arbor. CONTAINING AN ACCOUNT OF THE ANNUAL MEETING VICE-PRESIDENTS. HELD AT Agriculture, CHARLES E. MARSHALL, East Lansing. Geography and Geology, W. H. SHERZER, Ypsilanti. ANN ARBOR, MARCH 31, APRIL 1 AND 2, 1910. Zoology, A. S. PEARSE, Ann Arbor. Botany, C. H. KAUFFMAN, Ann Arbor. PREPARED UNDER THE DIRECTION OF THE Sanitary and Medical Science, GUY KIEFER, Detroit. COUNCIL Economics, H. S. SMALLEY, Ann Arbor. BY PAST-PRESIDENTS. GEO. D. SHAFER DR. W. J. BEAL, East Lansing. Professor W. H. SHERZER, Ypsilanti. BRYANT WALKER, ESQ. Detroit. BY AUTHORITY Professor V. M. SPALDING, Tucson, Arizona. LANSING, MICHIGAN DR. HENRY B. BAKER, Holland. WYNKOOP HALLENBECK CRAWFORD CO., STATE PRINTERS Professor JACOB REIGHARD, Ann Arbor. 1910 Professor CHARLES E. BARR, Albion. Professor V. C. VAUGHAN, Ann Arbor. Professor F. C. NEWCOMBE, Ann Arbor. TABLE OF CONTENTS. DR. A. C. LANE, Tuft's College, Mass. Professor W. B. BARROWS, East Lansing. DR. J. B. POLLOCK, Ann Arbor. Letter of Transmittal .......................................................... 1 Professor M. H. W. JEFFERSON, Ypsilanti. DR. CHARLES E. MARSHALL, East Lansing. Officers for 1910-1911. ..................................................... 1 Professor FRANK LEVERETT, Ann Arbor. Life of William Smith Sayer. .............................................. 1 COUNCIL. Life of Charles Fay Wheeler.............................................. 2 The Council is composed of the above named officers Papers published in this report: and all Resident Past-Presidents. President's Address—Outline of the History of the Great Lakes, Frank Leverett.......................................... 3 On the Glacial Origin of the Huronian Rocks of WILLIAM SMITH SAYER.
    [Show full text]
  • Geomorphic and Sedimentological History of the Central Lake Agassiz Basin
    Electronic Capture, 2008 The PDF file from which this document was printed was generated by scanning an original copy of the publication. Because the capture method used was 'Searchable Image (Exact)', it was not possible to proofread the resulting file to remove errors resulting from the capture process. Users should therefore verify critical information in an original copy of the publication. Recommended citation: J.T. Teller, L.H. Thorleifson, G. Matile and W.C. Brisbin, 1996. Sedimentology, Geomorphology and History of the Central Lake Agassiz Basin Field Trip Guidebook B2; Geological Association of CanadalMineralogical Association of Canada Annual Meeting, Winnipeg, Manitoba, May 27-29, 1996. © 1996: This book, orportions ofit, may not be reproduced in any form without written permission ofthe Geological Association ofCanada, Winnipeg Section. Additional copies can be purchased from the Geological Association of Canada, Winnipeg Section. Details are given on the back cover. SEDIMENTOLOGY, GEOMORPHOLOGY, AND HISTORY OF THE CENTRAL LAKE AGASSIZ BASIN TABLE OF CONTENTS The Winnipeg Area 1 General Introduction to Lake Agassiz 4 DAY 1: Winnipeg to Delta Marsh Field Station 6 STOP 1: Delta Marsh Field Station. ...................... .. 10 DAY2: Delta Marsh Field Station to Brandon to Bruxelles, Return En Route to Next Stop 14 STOP 2: Campbell Beach Ridge at Arden 14 En Route to Next Stop 18 STOP 3: Distal Sediments of Assiniboine Fan-Delta 18 En Route to Next Stop 19 STOP 4: Flood Gravels at Head of Assiniboine Fan-Delta 24 En Route to Next Stop 24 STOP 5: Stott Buffalo Jump and Assiniboine Spillway - LUNCH 28 En Route to Next Stop 28 STOP 6: Spruce Woods 29 En Route to Next Stop 31 STOP 7: Bruxelles Glaciotectonic Cut 34 STOP 8: Pembina Spillway View 34 DAY 3: Delta Marsh Field Station to Latimer Gully to Winnipeg En Route to Next Stop 36 STOP 9: Distal Fan Sediment , 36 STOP 10: Valley Fill Sediments (Latimer Gully) 36 STOP 11: Deep Basin Landforms of Lake Agassiz 42 References Cited 49 Appendix "Review of Lake Agassiz history" (L.H.
    [Show full text]
  • The Maumee River Watershed and Algal Blooms in Lake Erie1 2
    SESYNC Case Study The Maumee River Watershed and Algal Blooms in Lake Erie1 2 Ramiro Berardo3 & Ajay Singh4. Summary: The decay of Lake Erie’s environmental health and its impacts on local communities, including public health and the environment, was one of the focal events motivating the passage of the Clean Water Act in 1972. Despite the considerable improvement in water quality in the 1970s and 1980s because of implementation of agricultural best management practices to address soil erosion, seasonal algal blooms returned to Western Lake Erie. Potential causes of algal blooms may be a mixture of agricultural and urban practices that threaten ecological stability and public health for millions dependent on the lake for drinking water, tourism, and fisheries. For instance, in fall, 2014, national attention turned to the city of Toledo, Ohio as the city’s residents experienced disruption to city services such as access to potable water and certain medical services including child birth and surgery. For this case study we will study the relationship between human behavior and water quality impairments which lead to toxic algal blooms in the Western Lake Erie Basin, and in particular, the Maumee River Watershed. We will also review prior management and policy efforts of different stakeholders to improve water quality as well as issues surrounding the development of proposed policy and management changes. Multiple stakeholders from multiple states and Canadian provinces are involved in seeking solutions to the ongoing pollution problems. This case study will be ideal to examine how cooperation unfolds in the presence of collective action problems, and the interrelationships between human behavior and environmental outcomes.
    [Show full text]
  • Ellsworth American COUNTY Dunham’S Hotel
    Sbfcntfennmt*. Rsed, of Kllsworth, and Mrs. Annie 'Itjfnrtiacmmis. _ v- LOCAL AFFAIRS. Powers, of Bangor. Mrs. Higgins had friends in Ellsworth who NEW AI1VKUTIM M ENT* THIS WEEK. many regret C. 0. RURRILL & deeply to hear of her death. She visited SON, state assessor**’ notice. here about two *■* I‘s ('omtnissiiiu of fi-h and fisheries—Sealed years ago. ^ 1 proposals. The Mutual Life Insurance Co., of New Hancork lmll— M urrDon ( omeily « «>. m j of m qenekal INSURANCE Robert It H" in. < *<ut *\ culture *»ale- York, *, |Kent, of this city, j AGENTS, I’anook Is a speciafagent, has paid through Mr. Hi him Bank Bldg., ELLSWORTH, ME. Tyler, Fogg A « •»—Municipal bonds. Kent the policy of |15,0CK) on the life of ^ Rockland, My the late W. it. Blaisdell, of Franklin. ARSOL«JT.F*v 'piJRE Rockland Cumin* rc’.al < *•!!* ;<■. WE REPRESENT THE This is one of the largest policies of life \ A '•:iimri)1 '* > in«u1 me v; paid in this vicinity. Makes the food more de'icious and v 'v '. sew Most Kciiiihle Home ami Foreign Coni pan it's. Curtis Novelty < <>— Agent wanted George W. Davis, of Boston, formerly J'■■//> a ih/r V'i/h ! ■■■■■■■BHanannaHDunaniaaBHBaMHManiir^nMnnnnHr «ommJ9 L Safi )J. of this a brother of 10. Davis, t'nvijmt Far othrr focal news see pages •/, .7 and S. city, Henry lias purchased the Tontine house at Miss Mari* *i of Auburndaln, In sums to Hu it on real c.si ate and Morgan, Unitarian noinc. improved Brunswick. The Tontine is a popular re- of the engine had passed over the boy’s Conference at MON KY TO LOAN J is the guest of Miss Mabel —--- collateral.- ..
    [Show full text]
  • North Ridge Scenic Byway Geology
    GUIDE TO THE NORTH RIDGE SCENIC BYWAY GEOLOGY LANDFORMS The North Ridge Scenic Byway corridor lies in the Erie Lake Plain landform of the Central Lowlands Physiographic Province of the United States (Fenneman 1938; Brockman 2002). The Lake Plain consists of wide expanses of level or nearly level land interrupted only by sandy ridges that are remnants of glacial-lake beaches and by river valleys carved into Paleozoic bedrock. With the exception of the sandy ridges, much of the Lake Plain in Avon and Sheffeld was a dense swamp forest prior to settlement. The North Ridge Scenic Byway follows the northernmost ancient beach ridge as it traverses Sheffeld and Avon at an elevation ranging from 675 to 690 feet above sea level, some 105 to 120 feet above modern Lake Erie. Topography of Sheffeld and Avon Townships as surveyed in 1901, showing North Ridge near the center of the map (courtesy of U.S. Geological Survey, Oberlin, Ohio Quadrangle 1903). 2 GEOLOGY FORMATION OF NORTH RIDGE Approximately 18,000 years ago, the last The chronology of lake stages in the Lake continental glacier blanketed northern Ohio as Erie basin relates a fascinating story of glacial it pushed down from the north to its maximum action, movements of the earth’s crust and southern thrust. The ice sheet reached as far erosion by waves to form the body of water south as Cincinnati, Ohio, then it began to we see today. The story begins nearly 15,000 melt back. As the glacier paused in its retreat, years ago as the last glacier [known as the piles of rock and clay debris [known as end Wisconsinan ice sheet] temporarily halted to moraines] were built up at the ice margins.
    [Show full text]
  • Timothy Gordon Fisher EDUCATION
    Timothy Gordon Fisher CURRICULUM VITAE Chair of Environmental Sciences January 2020 Professor of Geology Department of Environmental Sciences University of Toledo Office (419) 530-2009 Ms#604, 2801 W. Bancroft St, Fax (24hr) (419) 530-4421 Toledo, OH 43606 [email protected] EDUCATION Ph.D. 1993 University of Calgary, Dept. of Geography (Geomorphology, Glaciology and Quaternary Research) Dissertation: “Glacial Lake Agassiz: The northwest outlet and paleoflood spillway, N.W. Saskatchewan and N.E. Alberta” 184p. M.Sc. 1989 Queen’s University, Dept. of Geography (Glacial Sedimentology and Geomorphology) Thesis: “Rogen Moraine formation: examples from three distinct areas within Canada” 196p. B.Sc. 1987 University of Alberta, Dept. of Geography, Physical Geography (Honors) Honors thesis: “Debris entrainment in the subpolar glaciers of Phillips Inlet, Northwest Ellesmere Island” 51p. ACADEMIC APPOINTMENTS 2010–present Chair, Department of Environmental Sciences, University of Toledo 2019–2020 Provost Fellow, University of Toledo 2016–2018 Interim Director of the Lake Erie Center, University of Toledo 2008–2009 Associate Chair, Department of Environmental Sciences, University of Toledo 2006–present Professor of Geology with tenure, University of Toledo 2005–present Graduate Faculty member, University of Toledo, full status 2003–2006 Associate Professor, tenure track, University of Toledo 2002–2003 Chair of the Department of Geosciences, Indiana University Northwest 1999–2003 Associate Professor of Geography with tenure, Indiana University Northwest 1999–2001 Chair of the Department of Geosciences, Indiana University Northwest 1998–2003 Faculty of the Indiana University Graduate School, associate status 1994–1998 Assistant Professor of Geography, tenure-track, Indiana University Northwest 1993–1994 Sessional Instructor, Red Deer College, Alberta, Canada 1993 Sessional Instructor, University of Calgary, Alberta, Canada AWARDS • Top ranking highest cited 2012–13 article (Fisher et al.
    [Show full text]
  • LAKES of the HURON BASIN: THEIR RECORD of RUNOFF from the LAURENTIDE ICE Sheetq[
    Quaterna~ ScienceReviews, Vol. 13, pp. 891-922, 1994. t Pergamon Copyright © 1995 Elsevier Science Ltd. Printed in Great Britain. All rights reserved. 0277-3791/94 $26.00 0277-3791 (94)00126-X LAKES OF THE HURON BASIN: THEIR RECORD OF RUNOFF FROM THE LAURENTIDE ICE SHEETq[ C.F. MICHAEL LEWIS,* THEODORE C. MOORE, JR,t~: DAVID K. REA, DAVID L. DETTMAN,$ ALISON M. SMITH§ and LARRY A. MAYERII *Geological Survey of Canada, Box 1006, Dartmouth, N.S., Canada B2 Y 4A2 tCenter for Great Lakes and Aquatic Sciences, University of Michigan, Ann Arbor, MI 48109, U.S.A. ::Department of Geological Sciences, University of Michigan, Ann Arbor, MI 48109, U.S.A. §Department of Geology, Kent State University, Kent, 0H44242, U.S.A. IIDepartment of Geomatics and Survey Engineering, University of New Brunswick, Fredericton, N.B., Canada E3B 5A3 Abstract--The 189'000 km2 Hur°n basin is central in the catchment area °f the present Q S R Lanrentian Great Lakes that now drain via the St. Lawrence River to the North Atlantic Ocean. During deglaciation from 21-7.5 ka BP, and owing to the interactions of ice margin positions, crustal rebound and regional topography, this basin was much more widely connected hydrologi- cally, draining by various routes to the Gulf of Mexico and Atlantic Ocean, and receiving over- ~ flows from lakes impounded north and west of the Great Lakes-Hudson Bay drainage divide. /~ Early ice-marginal lakes formed by impoundment between the Laurentide Ice Sheet and the southern margin of the basin during recessions to interstadial positions at 15.5 and 13.2 ka BE In ~ ~i each of these recessions, lake drainage was initially southward to the Mississippi River and Gulf of ~ Mexico.
    [Show full text]
  • Glacial Lakes Around Michigan
    The Glacial Lakes around Michigan By William R. Farrand, University of Michigan Bulletin 4, revised 1988 Geological Survey Division Michigan Department of Environmental Quality Bulletin 4 - Glacial Lakes Around Michigan By William R. Farrand, University of Michigan, 1967 revised 1998 Illustrated by Kathline Clahassey, University of Michigan Published by Michigan Department of Environmental Quality. Geological Survey Division Contents Preface............................................................................................................................................ 3 Abstract........................................................................................................................................... 3 Introduction ..................................................................................................................................... 4 Was There A Glacier?..................................................................................................................... 4 Figure 1: The modem Great Lakes have a water surface area greater than 95,000 square miles, a total drainage area of about 295,000 square miles, and a shore line 8,300 miles long. ................................................................................................4 Figure 2: Features originating at a glacier front occur in a definite order. ...................................................................................5 Figure 3: Landforms of continental glaciation are unmistakable. Compare with figure 2 ............................................................5
    [Show full text]
  • Late Glacial Origin of the Maumee Valley Terraces, Northwestern Ohio1
    Late Glacial Origin of the Maumee Valley Terraces, Northwestern Ohio1 JACK A. KLOTZ2 AND JANE L. FORSYTH, Department of Geology, Bowling Green State University, Bowling Green, OH 43403 ABSTRACT. Four major paired terraces and six short local terraces have been identified along the Maumee River valley between the Ohio-Indiana state line and Perrysburg in northwestern Ohio by detailed field mapping and study of gaging-station records, water-well logs, and soils data. From highest to lowest, the paired terraces have been named the Antwerp, Florida, Napoleon, and Grand Rapids terraces. The three higher terraces are correlated with Glacial Lakes Warren I and II, Lake Wayne, and Lake Grassmere, respectively, based on similarities in elevation of the lowest end of the terraces and the lake levels. The lowest of the four major terraces, the Grand Rapids Terrace, is rock-defended, controlled by outcrops of the Silurian Tymochtee Dolomite in its channel at Waterville. The short local terraces appear to be related to short-lived stages in the cutting of the Maumee Valley. Although some may correlate with one of the major terrace systems, such correlations remain tentative because of the isolation of these local terraces. OHIO J. SCI. 93 (5): 126-133, 1993 INTRODUCTION TABLE 1 The Maumee River is the largest river draining northwestern Ohio. It heads in Indiana, and is fed by Glacial Lakes in the Erie Basin. tributaries in Indiana, Michigan, and Ohio, creating a 2 drainage basin encompassing approximately 19,425 km Lake Elevation Outlet (7,500 mi2) (Cross and Weber 1959). The Maumee River flows across a broad, low lake plain formed by ice- dammed lakes in the Erie Basin during the retreat of the Modern Lake Erie 174 m (570 ft) Niagara Wisconsinan ice sheet (Leverett 1902; Leverett and Taylor Early Lake Erie 128 m (420 ft) Niagara 1915; Carman 1930; Forsyth 1966, 1970, 1973; Calkin and Feenstra 1985; Coakley and Lewis 1985; Eschman and Lundy 189 m (620 ft) east* Karrow 1985).
    [Show full text]
  • Contents List of Illustrations
    STATE OF MICHIGAN Deltas..................................................................... 41 MICHIGAN GEOLOGICAL AND BIOLOGICAL SURVEY Distributaries.......................................................... 42 Lake deposits ........................................................ 42 Publication 12. Geological Series 9. CHAPTER IV. Physical Geography (Continued). .......44 GEOLOGICAL REPORT ON WAYNE COUNTY Surface drainage..........................................................44 BY Stream development ............................................. 44 W. H. SHERZER. Drainage systems.................................................. 45 Lakes, ponds, swamps and drains ........................ 54 PUBLISHED AS A PART OF THE ANNUAL REPORT OF THE Soils and subsoils. .......................................................55 BOARD OF GEOLOGICAL SURVEY FOR 1911. General characteristics.......................................... 55 LANSING, MICHIGAN Clay soils ............................................................... 55 WYNKOOP HALLENBECK CRAWFORD CO., STATE PRINTERS Sand and gravel soils ............................................ 56 1913 Loam...................................................................... 57 Silt.......................................................................... 58 Contents Muck ...................................................................... 58 Amelioration of soils .............................................. 59 CHAPTER I. Geographical and Historical CHAPTER V. Physical geography (Continued)..........61
    [Show full text]
  • Geoscenario Resources—Glaciers
    Geoscenario Resources—Glaciers: Geologist Task Now that you have explored as a team the general story of how glaciers shaped the midwestern and northeastern United States, it is time for each of you to dive into more specialized information. The geologist focuses on regional features shaped by glaciers and how they formed. Add helpful details to your notes for Geoscenario Team Questions. Then work together and combine all the information to successfully present your story of glaciers. Questions for the Geologist to Consider • What geological features in this region were formed by glaciers? • What is the geological story of how the features were formed? Information Over a period of 10,000 years (100,000–110,000 years ago), the temperature dropped about 17°C, and the most recent glacial period began (evidence from oxygen ratios and foraminifera data). Around 20,000–35,000 years ago, the Laurentide (or Wisconsin) Ice Sheet covered most of Canada and a large portion of the northern United States. The massive ice sheet scraped away layers of earth materials as it pushed southward. Geologists look for clues today that help them determine the path and rate of glacial movement. The Great Lakes A glacier pushing poorly sorted glacial till in front of it. The glacial till forms a fill basins that the glaciers carved. In other areas, moraine. © iStockphoto/cotesebastien exposed rock displays scrape marks created by advancing ice carrying rocks and debris, called glacial till. Piles of glacial till form landmarks like moraines. Even huge boulders can be carried by glaciers. When geologists spot a boulder in an unexpected place, called an erratic, they often suspect a glacier carried it there.
    [Show full text]