Physical Landscape (PDF)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Last Maximum Ice Extent and Subsequent Deglaciation of the Pyrenees: an Overview of Recent Research
Cuadernos de Investigación Geográfica 2015 Nº 41 (2) pp. 359-387 ISSN 0211-6820 DOI: 10.18172/cig.2708 © Universidad de La Rioja THE LAST MAXIMUM ICE EXTENT AND SUBSEQUENT DEGLACIATION OF THE PYRENEES: AN OVERVIEW OF RECENT RESEARCH M. DELMAS Université de Perpignan-Via Domitia, UMR 7194 CNRS, Histoire Naturelle de l’Homme Préhistorique, 52 avenue Paul Alduy 66860 Perpignan, France. ABSTRACT. This paper reviews data currently available on the glacial fluctuations that occurred in the Pyrenees between the Würmian Maximum Ice Extent (MIE) and the beginning of the Holocene. It puts the studies published since the end of the 19th century in a historical perspective and focuses on how the methods of investigation used by successive generations of authors led them to paleogeographic and chronologic conclusions that for a time were antagonistic and later became complementary. The inventory and mapping of the ice-marginal deposits has allowed several glacial stades to be identified, and the successive ice boundaries to be outlined. Meanwhile, the weathering grade of moraines and glaciofluvial deposits has allowed Würmian glacial deposits to be distinguished from pre-Würmian ones, and has thus allowed the Würmian Maximum Ice Extent (MIE) –i.e. the starting point of the last deglaciation– to be clearly located. During the 1980s, 14C dating of glaciolacustrine sequences began to indirectly document the timing of the glacial stades responsible for the adjacent frontal or lateral moraines. Over the last decade, in situ-produced cosmogenic nuclides (10Be and 36Cl) have been documenting the deglaciation process more directly because the data are obtained from glacial landforms or deposits such as boulders embedded in frontal or lateral moraines, or ice- polished rock surfaces. -
Physical Limnology of Saginaw Bay, Lake Huron
PHYSICAL LIMNOLOGY OF SAGINAW BAY, LAKE HURON ALFRED M. BEETON U. S. Bureau of Commercial Fisheries Biological Laboratory Ann Arbor, Michigan STANFORD H. SMITH U. S. Bureau of Commercial Fisheries Biological Laboratory Ann Arbor, Michigan and FRANK H. HOOPER Institute for Fisheries Research Michigan Department of Conservation Ann Arbor, Michigan GREAT LAKES FISHERY COMMISSION 1451 GREEN ROAD ANN ARBOR, MICHIGAN SEPTEMBER, 1967 PHYSICAL LIMNOLOGY OF SAGINAW BAY, LAKE HURON1 Alfred M. Beeton, 2 Stanford H. Smith, and Frank F. Hooper3 ABSTRACT Water temperature and the distribution of various chemicals measured during surveys from June 7 to October 30, 1956, reflect a highly variable and rapidly changing circulation in Saginaw Bay, Lake Huron. The circula- tion is influenced strongly by local winds and by the stronger circulation of Lake Huron which frequently causes injections of lake water to the inner extremity of the bay. The circulation patterns determined at six times during 1956 reflect the general characteristics of a marine estuary of the northern hemisphere. The prevailing circulation was counterclockwise; the higher concentrations of solutes from the Saginaw River tended to flow and enter Lake Huron along the south shore; water from Lake Huron entered the northeast section of the bay and had a dominant influence on the water along the north shore of the bay. The concentrations of major ions varied little with depth, but a decrease from the inner bay toward Lake Huron reflected the dilution of Saginaw River water as it moved out of the bay. Concentrations in the outer bay were not much greater than in Lake Huronproper. -
The Huron River History Book
THE HURON RIVER Robert Wittersheim Over 15,000 years ago, the Huron River was born as a small stream draining the late Pleistocene landscape. Its original destination was Lake Maumee at present day Ypsilanti where a large delta was formed. As centuries passed, ceding lake levels allowed the Huron to meander over new land eventually settling into its present valley. Its 125 mile journey today begins at Big Lake near Pontiac and ends in Lake Erie. The Huron’s watershed, which includes 367 miles of tributaries, drains over 900 square miles of land. The total drop in elevation from source to mouth is nearly 300 feet. The Huron’s upper third is clear and fast, even supporting a modest trout fishery. The middle third passes through and around many lakes in Livingston and Washtenaw Counties. Eight dams impede much of the Huron’s lower third as it flows through populous areas it helped create. Over 47 miles of this river winds through publicly owned lands, a legacy from visionaries long since passed. White Lake White Lake Mary Johnson The Great Lakes which surround Michigan and the thousands of smaller lakes, hundreds of rivers, streams and ponds were formed as the glacier ice that covered the land nearly 14,000 years ago was melting. The waters filled the depressions in the earth. The glaciers deposited rock, gravel and soil that had been gathered in their movement. This activity sculpted the land creating our landscape. In section 28 of Springfield Township, Oakland County, a body of water names Big Lake by the area pioneers is the source of the Huron River. -
Lake Huron Scuba Diving
SOUTHERN LAKE ASSESSMENT SOUTHERN RECREATION PROFILE LAKE Scuba Diving: OPPORTUNITIES FOR LAKE HURON ASSESSMENT FINGER LAKES SCUBA LAKES FINGER The southern Lake Huron coast is a fantastic setting for outdoor exploration. Promoting the region’s natural assets can help build vibrant communities and support local economies. This series of fact sheets profiles different outdoor recreation activities that could appeal to residents and visitors of Michigan’s Thumb. We hope this information will help guide regional planning, business develop- ment and marketing efforts throughout the region. Here we focus on scuba diving – providing details on what is involved in the sport, who participates, and what is unique about diving in Lake Huron. WHY DIVE IN LAKE HURON? With wildlife, shipwrecks, clear water and nearshore dives, the waters of southern Lake Huron create a unique environment for scuba divers. Underwater life abounds, including colorful sunfish and unusual species like the longnose gar. The area offers a large collection of shipwrecks, and is home to two of Michigan’s 12 underwater preserves. Many of the wrecks are in close proximity to each other and are easily accessed by charter or private boat. The fresh water of Lake Huron helps to preserve the wrecks better than saltwater, and the lake’s clear water offers excellent visibility – often up to 50 feet! With many shipwrecks at different depths, the area offers dives for recreational as well as technical divers. How Popular is Scuba Diving? Who Scuba Dives? n Scuba diving in New York’s Great Lakes region stimulated more than $108 In 2010, 2.7 million Americans went scuba A snapshot of U.S. -
Sea Level and Global Ice Volumes from the Last Glacial Maximum to the Holocene
Sea level and global ice volumes from the Last Glacial Maximum to the Holocene Kurt Lambecka,b,1, Hélène Roubya,b, Anthony Purcella, Yiying Sunc, and Malcolm Sambridgea aResearch School of Earth Sciences, The Australian National University, Canberra, ACT 0200, Australia; bLaboratoire de Géologie de l’École Normale Supérieure, UMR 8538 du CNRS, 75231 Paris, France; and cDepartment of Earth Sciences, University of Hong Kong, Hong Kong, China This contribution is part of the special series of Inaugural Articles by members of the National Academy of Sciences elected in 2009. Contributed by Kurt Lambeck, September 12, 2014 (sent for review July 1, 2014; reviewed by Edouard Bard, Jerry X. Mitrovica, and Peter U. Clark) The major cause of sea-level change during ice ages is the exchange for the Holocene for which the direct measures of past sea level are of water between ice and ocean and the planet’s dynamic response relatively abundant, for example, exhibit differences both in phase to the changing surface load. Inversion of ∼1,000 observations for and in noise characteristics between the two data [compare, for the past 35,000 y from localities far from former ice margins has example, the Holocene parts of oxygen isotope records from the provided new constraints on the fluctuation of ice volume in this Pacific (9) and from two Red Sea cores (10)]. interval. Key results are: (i) a rapid final fall in global sea level of Past sea level is measured with respect to its present position ∼40 m in <2,000 y at the onset of the glacial maximum ∼30,000 y and contains information on both land movement and changes in before present (30 ka BP); (ii) a slow fall to −134 m from 29 to 21 ka ocean volume. -
A Changing Lake Huron
A Changing Lake Huron The Lake Huron Food Web total phosphorus levels in the spring and summer. The source of food for all living things in Lake Huron are microscopic aquatic Total phosphorus declined by 50% plants called algae. Every other living from 1995 to 2003 (4 mg/L to 2 mg/l). organism in the lake must either eat live Levels have since increased slightly or dead algae directly or eat another and stabilized at approximately 2.5-3.0 organism that depends on algae. mg/L. The decline in nutrients means Although algae can reach nuisance levels that Lake Huron can support under certain conditions, it is essential less overall fish biomass than it did to the life of the lake. All aquatic animals before 2000 (Fig. 2). in the lake are connected to algae through a food web (Fig. 1). Lake Huron can support less Phosphorus overall fish biomass than it and Fish Biomass did before 2000. Phosphorus is an essential nutrient required for algae growth. The total weight of all living fish, termed the fish Food Web Trophic biomass, is positively related to total phosphorus, but other factors change Transfer Efficiency the amount of fish biomass that can A food web can be organized into be sustained (Fig. 2). These modifying trophic (energy) levels (Fig. 3, overleaf). Living factors include changes to food web algae and organic material are the first, or structure caused by invasions (e.g., lowest, trophic level (TL-1). Small animals, quagga mussels), habitat availability, like small zooplankton, quagga mussels, and water clarity, level of fishing, stocking, Diporeia consume algae and represent TL-2. -
Huron River Water Trail Trip Description 1 Hudson Mills Metropark
Huron River Water Trail Trip Description Hudson Mills Metropark (Mile 67) to Delhi Metropark (Mile 58.3) - 3.5 hours; 8.7 miles Launch at the Rapids View Picnic Area in Hudson Mills Metropark, near North Territorial Road. This trip provides easy access to both launch and take-out sites. Paddle through parkland and then into Dexter. TRIP DESCRIPTION: Excerpt from “Canoeing Michigan Rivers: A Comprehensive Guide to 45 Rivers” by Jerry Dennis and Craig Date provided with permission from Thunder Bay Press. Put in at Hudson Mills Metropark, where there is good access and parking just below Territorial Road [at the Rapids View Picnic Area]. Upstream, fair access and parking are found a Bell Road. [Note: Launching at Bell Road will take you past the Hudson Mills canoe campground and rapids where a portage is recommended.] The river here is 60-90 feet wide and alternates sections of slow water one to four feet deep with sections of very shallow riffles. Low water in summer will produce some bottom-bumping. Hudson Mills has been the site of a saw mill, grist mill, cider mill and plaster mill, the earliest dating back to 1827. Today, only the ruins of foundations and a short stretch of light rapids mark the spot just below Territorial Road Bridge where the mills were located. The rapids can be run down the chute at left center. Pumpkin- to bushel-size rocks create standing waves that could become fairly high during high water. If in doubt, portage on the left just beyond the bridge. Light riffles extend well into Hudson Mills Metropark, where there are several access sites and two overnight canoe campgrounds. -
Delhi Metropark
PARK MAP Park Entrance H udso GPS: 42º23’18.52”N 83º54’12.17”W n Mills M etropa te rk i s S s West HUR e c c River ON RIVER DR Trail to g A n Dexter i CHAMBERLIN RD h s Fi Hur HUR o r n R e Group iv D ON RIVER DR e r elh Camp i n Riv Me o tr r op u ar H Labyrinth k 1 3 2 NOR PARK ENTRANCE TH TERRIT GPS: 42º23’11.88”N 83º54’31.13”W ORIAL RD DEXTER-HURON METROPARK 6535 Huron River Drive, Dexter, MI 48130 (Administered through Hudson Mills Metropark) Rapids View 734-426-8211 • www.metroparks.com Service 23 Area MAP KEY PICNIC SHELTERS Outdoor Sports Small Boat Launch 1 West HUR Restroom Toll Booth 2 Central River Grove ON RIVER DR Oak ROADS AND TRAILS 3 East 2 Meadows Paved Road Paved Hike-Bike Trail Dirt Road Railroad Track Nature Trail FEET 0 250 500 750 1000 MILES 0 ¼ lls Met Y RD Y Mi ropa son rks ud H & on ur H r- W HUR te Activity Center ex E TER PINCKN TER D ON RIVER DR Hur X DE on Riv r 4 ive West er ron R Delhi HUR u H DELHI CT ON RIVER DR DELHI METROPARK 1 3902 East Delhi Road Ann Arbor, MI 48103 HUDSON MILLS (Administered through E DELHI RD Hudson Mills Metropark) East METROPARK 5 734-426-8211 Park Entrance Delhi 8801 North Territorial Road www.metroparks.com GPS: 42º19’55.99”N 83º48’37.65”W Pineview A Dexter, MI 48130 n GREGORY RD MAP KEY n 734-426-8211 A r www.metroparks.com Restrooms b RAILR o H OAD ST r u Small Boat Launch ro MAP KEY n R iv Camping er Boat Rental D Toll Booth Disc Golf e x t e r - Playground Outdoor Sports H u r o n Outdoor Sports & D e Paved Road Playground lh i FLEMMING RD M e Dirt Road Golf t r o p a r Railroad Track Restroom k s Small Boat Launch PICNIC SHELTERS FEET 0 250 500 750 1000 1 North Shelter Toll Booth MILES 0 ¼ Trail-head Waterslide WHITMORE Paved Roads LAKE 23 Dirt Roads N. -
Table of Contents. Letter of Transmittal. Officers 1910
TWELFTH REPORT OFFICERS 1910-1911. OF President, F. G. NOVY, Ann Arbor. THE MICHIGAN ACADEMY OF SCIENCE Secretary-Treasurer, GEO. D. SHAFER, East Lansing. Librarian, A. G. RUTHVEN, Ann Arbor. CONTAINING AN ACCOUNT OF THE ANNUAL MEETING VICE-PRESIDENTS. HELD AT Agriculture, CHARLES E. MARSHALL, East Lansing. Geography and Geology, W. H. SHERZER, Ypsilanti. ANN ARBOR, MARCH 31, APRIL 1 AND 2, 1910. Zoology, A. S. PEARSE, Ann Arbor. Botany, C. H. KAUFFMAN, Ann Arbor. PREPARED UNDER THE DIRECTION OF THE Sanitary and Medical Science, GUY KIEFER, Detroit. COUNCIL Economics, H. S. SMALLEY, Ann Arbor. BY PAST-PRESIDENTS. GEO. D. SHAFER DR. W. J. BEAL, East Lansing. Professor W. H. SHERZER, Ypsilanti. BRYANT WALKER, ESQ. Detroit. BY AUTHORITY Professor V. M. SPALDING, Tucson, Arizona. LANSING, MICHIGAN DR. HENRY B. BAKER, Holland. WYNKOOP HALLENBECK CRAWFORD CO., STATE PRINTERS Professor JACOB REIGHARD, Ann Arbor. 1910 Professor CHARLES E. BARR, Albion. Professor V. C. VAUGHAN, Ann Arbor. Professor F. C. NEWCOMBE, Ann Arbor. TABLE OF CONTENTS. DR. A. C. LANE, Tuft's College, Mass. Professor W. B. BARROWS, East Lansing. DR. J. B. POLLOCK, Ann Arbor. Letter of Transmittal .......................................................... 1 Professor M. H. W. JEFFERSON, Ypsilanti. DR. CHARLES E. MARSHALL, East Lansing. Officers for 1910-1911. ..................................................... 1 Professor FRANK LEVERETT, Ann Arbor. Life of William Smith Sayer. .............................................. 1 COUNCIL. Life of Charles Fay Wheeler.............................................. 2 The Council is composed of the above named officers Papers published in this report: and all Resident Past-Presidents. President's Address—Outline of the History of the Great Lakes, Frank Leverett.......................................... 3 On the Glacial Origin of the Huronian Rocks of WILLIAM SMITH SAYER. -
PROGRESS REPORT NUMBER THREE Geology of Arenac County
STATE OF MICHIGAN Standish Structure........................................................14 PROGRESS REPORT NUMBER THREE Chapter - V OIL AND GAS PRODUCTION....................15 Geology of Arenac County Gas Production.............................................................15 by Oil Production...............................................................15 Gordon H. Pringle CONCLUSION.................................................................16 Assistant Petroleum Geologist Geological Survey Division Department of Conservation Plates May, 1937 Plate 1. Surface geology of Arenac County. ...........................2 Plate 2. Areal geology of Arenac County. ...............................3 Plate 3. Subsurface structural contour map of Arenac Contents County............................................................................12 Chapter I - INTRODUCTION............................................ 1 Plate 4. Structural contours drawn on the top of the Berea Formation. ......................................................................13 Chapter II - PHYSIOGRAPHY ......................................... 2 Plate 5. Geological cross-section along Line A-B..................13 Chapter III - AREAL GEOLOGY AND STRATIGRAPHY 3 Plate 6. Composite section along Lake Huron in Section 13, Areal Geology................................................................ 3 T.20N., R.7E. .................................................................14 Pennsylvanian System .................................................. 3 Saginaw -
History of the Lake St. Clair Fisheries Research Station, 1966 - 2003
DEPARTMENT OF NATURAL RESOURCES History of the Lake St. Clair Fisheries Research Station, 1966 - 2003 Mike Thomas, Research Biologist (retired) and Todd Wills, Area Station Manager Email: [email protected] Email: [email protected] The Lake St. Clair Great Lakes Station was constructed on a confined dredge disposal site at the mouth of the Clinton River and opened for business in 1974. In this photo, the Great Lakes Station (red roof) is visible in the background behind the lighter colored Macomb County Sheriff Marine Division Office. Lake St. Clair Fisheries Research Station Website: http://www.michigan.gov/dnr/0,4570,7-153-10364_52259_10951_11304---,00.html FISHERIES DIVISION LSCFRS History - 1 History of the Lake St. Clair Fisheries Research Station, 1966-2003 Preface: the other “old” guys at the station. It is my From 1992 to 2016, it was my privilege to hope that this “report” will be updated serve as a fisheries research biologist at the periodically by Station crew members who Lake St. Clair Fisheries Research Station have an interest in making sure that the (LSCFRS). During my time at the station, I past isn’t forgotten. – Mike Thomas learned that there was a rich history of fisheries research and assessment work The Beginning - 1966-1971: that was largely undocumented by the By 1960, Great Lakes fish populations and standard reports or scientific journal the fisheries they supported had been publications. This history, often referred to decimated by degraded habitat, invasive as “institutional memory”, existed mainly in species, and commercial overfishing. The the memories of station employees, in invasive alewife was overabundant and vessel logs, in old 35mm slides and prints, massive die-offs ruined Michigan beaches. -
Detroit River Group in the Michigan Basin
GEOLOGICAL SURVEY CIRCULAR 133 September 1951 DETROIT RIVER GROUP IN THE MICHIGAN BASIN By Kenneth K. Landes UNITED STATES DEPARTMENT OF THE INTERIOR Oscar L. Chapman, Secretary GEOLOGICAL SURVEY W. E. Wrather, Director Washington, D. C. Free on application to the Geological Survey, Washington 25, D. C. CONTENTS Page Page Introduction............................ ^ Amherstburg formation................. 7 Nomenclature of the Detroit River Structural geology...................... 14 group................................ i Geologic history ....................... ^4 Detroit River group..................... 3 Economic geology...................... 19 Lucas formation....................... 3 Reference cited........................ 21 ILLUSTRATIONS Figure 1. Location of wells and cross sections used in the study .......................... ii 2. Correlation chart . ..................................... 2 3. Cross sections A-«kf to 3-G1 inclusive . ......................;.............. 4 4. Facies map of basal part of Dundee formation. ................................. 5 5. Aggregate thickness of salt beds in the Lucas formation. ........................ 8 6. Thickness map of Lucas formation. ........................................... 10 7. Thickness map of Amherstburg formation (including Sylvania sandstone member. 11 8. Lime stone/dolomite facies map of Amherstburg formation ...................... 13 9. Thickness of Sylvania sandstone member of Amherstburg formation.............. 15 10. Boundary of the Bois Blanc formation in southwestern Michigan.