A Critical Perspective on Space Governance and New Entrants to the Space Sector
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
1. Mission Shakti: India Successfully Tested an Anti-Satellite Missile
www.gradeup.co 27 March 2019 1. Mission Shakti: India successfully tested an anti-satellite missile • India has become 4th space superpower in the world after successfully testing of an anti-satellite missile. • India shot down a Low Earth Orbit (LEO) satellite by an anti-satellite weapon called A-SAT which was a pre-determined target conducted under Mission Shakti. • The action was not directed against any country and the satellite was a pre-determined target orbiting at an altitude of 300 km. Related Information Anti-satellite weapon • Anti-satellite weapons (ASAT) are space weapons designed to incapacitate or destroy satellites for strategic military purposes. • Only, the United States of America, Russia (using MSB expertise), China and India have demonstrated this capability successfully. Different Type of Orbits in Space Geostationary Orbit • often referred to as a GEO orbit, circles the Earth above the equator from west to east at a height of 36 000 km. • As it follows the Earth’s rotation, which takes 23 hours 56 minutes and 4 seconds, satellites in a GEO orbit appear to be ‘stationary’ over a fixed position. • This makes it an ideal orbit for telecommunications or for monitoring continent-wide weather patterns and environmental conditions. • It also decreases costs as ground stations do not need to track the satellite. Low Earth Orbit (LEO) • It is normally at an altitude of less than 1000 km and could be as low as 160 km above the Earth. • In general, these orbits are used for remote sensing, military purposes and for human spaceflight as they offer close proximity to the Earth’s surface for imaging and the short orbital periods allow for rapid revisits. -
Foi-R--5077--Se
Omvärldsanalys Rymd 2020 Fokus på försvar och säkerhet Sandra Lindström (red.), Kristofer Hallgren, Seméli Papadogiannakis, Ola Rasmusson, John Rydqvist och Jonatan Westman FOI-R--5077--SE Januari 2021 Sandra Lindström (red.), Kristofer Hallgren, Seméli Papadogiannakis, Ola Rasmusson, John Rydqvist och Jonatan Westman Omvärldsanalys Rymd 2020 Fokus på försvar och säkerhet FOI-R--5077--SE Titel Omvärldsanalys Rymd 2020 – Fokus på försvar och säkerhet Title Global Space Trends 2020 for Defence and Security Rapportnr/Report no FOI-R--5077--SE Månad/Month Januari Utgivningsår/Year 2021 Antal sidor/Pages 127 ISSN 1650-1942 Kund/Customer Försvarsmakten Forskningsområde Flygsystem och rymdfrågor FoT-område Sensorer och signaturanpassningsteknik Projektnr/Project no E60966 Godkänd av/Approved by Lars Höstbeck Ansvarig avdelning Försvars- och säkerhetssystem Bild/Cover: Tre gröna lasrar från Starfire Optical Range på Kirtland Air Force Base i New Mexico, USA. Anläggningen används bland annat för inmätning av objekt i låga satellitbanor. Den allmänna uppfattningen (men ej officiell) är att lasern även kan användas som ASAT-vapen. Källa: Directed Energy Directorate, US Air Force. Detta verk är skyddat enligt lagen (1960:729) om upphovsrätt till litterära och konstnärliga verk, vilket bl.a. innebär att citering är tillåten i enlighet med vad som anges i 22 § i nämnd lag. För att använda verket på ett sätt som inte medges direkt av svensk lag krävs särskild överenskommelse. This work is protected by the Swedish Act on Copyright in Literary and Artistic Works (1960:729). Citation is permitted in accordance with article 22 in said act. Any form of use that goes beyond what is permitted by Swedish copyright law, requires the written permission of FOI. -
Space: the New Frontier for War
Space: The New Frontier for War *Jubaida Auhana Faruque Synopsis: Space has emerged as the new arena where humans have seen the possibility to reach with its warfare and occupation to impose deterrence over each other. As technology is reaching its utmost peak in this century, so are the threats of new kinds of conflicts. This paper focuses on how space has been included in this critical design of warfare and what might it offer as implications for security. Commentary: Defense mechanisms and conventional warfare tactics have been revolutionized in the post- cold war era and space has become one of the most significant components of this dynamics. Most countries with modern military and surveillance depend on the protection of space to regulate their activities and any threat to that will inevitably lead to serious deterioration of peace. Countries are always in competition among each other and development of technologies has given them the opportunity to ensure better security. The use of satellites is playing an important role in this case, from communication, security maintenance, navigation, scientific research, commercial purposes, climate monitoring to even developmental projects. Any disruption to this mechanism might lead to collapse of a huge range of phenomena and states might cross the threshold of hostility to a violent armed collision. The security dilemma prevailing among these nations are encouraging them to deactivate or restrict other nations’ space control by developing weapons to destroy satellites, using space to run trial of weaponries, using dual-use robotic spacecraft to dismantle space machineries, hacking satellites to interrupt security system and developing variety of space- targeted offensive weapons. -
Analysis of the Indian ASAT Test on 27 March 2019. Vladimir Akhmetov1, Vadym Savanevych2, Evgen Dikov2 1Laboratory of Astrometry, Institute of Astronomy, V
Analysis of the Indian ASAT test on 27 March 2019. Vladimir Akhmetov1, Vadym Savanevych2, Evgen Dikov2 1 Laboratory of Astrometry, Institute of Astronomy, V. N. Karazin Kharkiv National University, Kharkiv, Ukraine, 2 Main Astronomical Observatory NASU, Kiev, Ukraine ABSTRACT On March 27, 2019, India tested its first anti-satellite (ASAT) missile against its own “live” satellite, Microsat-R, launched on 24 January, 2019, as part of ‘Mission Shakti’. The test parameters were chosen with extreme caution to minimize the hazard of post-impact debris predicted to re-enter the earth’s atmosphere within 45 days. Of the 400 pieces of debris identified by NASA, more than 60 were large enough to be tracked by the US Air Force’s Space Surveillance Network and US Strategic Command’s Combined Space Operations Center. Much of the information provided in the press about the ASAT missile and Microsat-R was inaccurate or misleading and did not appear to be based on scientific analysis of the data available to the public. To better understand the circumstances of this event, this paper will calculated and present detailed analysis of the tracked post-impact orbit debris from Microsat-R. All results in the current paper are based on orbital data, in the form of the NORAD two-line element (TLE) dataset from space-track.org and the own calculations of the CoLiTec group. 1. INTRODUCTION Microsat-R, along with KalamsatV2, was launched from the first launch pad of Satish Dhawan Space Centre at 23:37 on 24 January 2019. The launch marks the 46th flight of PSLV. -
India and China Space Programs: from Genesis of Space Technologies to Major Space Programs and What That Means for the Internati
University of Central Florida STARS Electronic Theses and Dissertations, 2004-2019 2009 India And China Space Programs: From Genesis Of Space Technologies To Major Space Programs And What That Means For The Internati Gaurav Bhola University of Central Florida Part of the Political Science Commons Find similar works at: https://stars.library.ucf.edu/etd University of Central Florida Libraries http://library.ucf.edu This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more information, please contact [email protected]. STARS Citation Bhola, Gaurav, "India And China Space Programs: From Genesis Of Space Technologies To Major Space Programs And What That Means For The Internati" (2009). Electronic Theses and Dissertations, 2004-2019. 4109. https://stars.library.ucf.edu/etd/4109 INDIA AND CHINA SPACE PROGRAMS: FROM GENESIS OF SPACE TECHNOLOGIES TO MAJOR SPACE PROGRAMS AND WHAT THAT MEANS FOR THE INTERNATIONAL COMMUNITY by GAURAV BHOLA B.S. University of Central Florida, 1998 A dissertation submitted in partial fulfillment of the requirements for the degree of Master of Arts in the Department of Political Science in the College of Arts and Humanities at the University of Central Florida Orlando, Florida Summer Term 2009 Major Professor: Roger Handberg © 2009 Gaurav Bhola ii ABSTRACT The Indian and Chinese space programs have evolved into technologically advanced vehicles of national prestige and international competition for developed nations. The programs continue to evolve with impetus that India and China will have the same space capabilities as the United States with in the coming years. -
Mission Shakti, ASAT and India
Mission Shakti, ASAT and India drishtiias.com/printpdf/mission-shakti-asat-and-india This editorial is based on the article “ASAT test: How India shifted gears to match changing geopolitical realities in space with Mission Shakti” which appeared in "Financial Express" on 9th May, 2019. The article talks about how the India’ space programme is in line with the changing geopolitical realities in Asia and beyond. Mission Shakti On march 27th, India completed its first successful attempt at shooting a satellite in lower earth orbit (LEO). In doing so, India has become the fourth country after the US, Russia and China to acquire the capability of space warfare. What is Mission Shakti and ASAT Missile? Mission Shakti was undertaken to develop highly-potent Anti-satellite weapons (ASAT). It is a joint programme of the Defence Research and Development Organisation (DRDO) and the Indian Space Research Organisation (ISRO). Anti-satellite (ASAT) System is missile-based system to attack moving satellites. Read More... ASAT propels India to the coveted space-superpower league. India will now have the power to decimate satellites for pure military and strategic purpose. With this missile, India will have the capability to interfere with satellites or engage in direct attacks. ASAT missile can be air, sea or land-based. Why is there a need to destroy Satellite? Satellites assume a great importance now-a days, because it is a part of critical civil and defence infrastructure of any country, manifested in the fact that a large number of crucial applications are dependent on it. 1/5 These include navigation systems, communication networks, broadcasting, banking systems, stock markets, weather forecasting, disaster management, land and ocean mapping and monitoring tools, and military applications. -
NASA, Israel Ink Space Cooperation Agreement 13 October 2015
NASA, Israel ink space cooperation agreement 13 October 2015 The agreement will enable NASA and ISA to conduct joint missions, exchange personnel and scientific data and share facilities, said the joint statement. NASA has recently made a series of groundbreaking announcements, including that its Reconnaissance Orbiter found the "strongest evidence yet" of water on Mars. © 2015 AFP The agreement will enable NASA and ISA to conduct joint missions, exchange personnel and scientific data and share facilities, said the joint statement NASA and the Israel Space Agency signed an agreement Tuesday to expand cooperation in civil space activities, the Israeli government said. The deal was signed by NASA administrator Charles Bolden and ISA director Menachem Kidron on the sidelines of the International Astronautical Congress in Jerusalem. Bolden said the agreement would enable the US space agency to tap Israeli innovation and technology in cooperation "Our two countries have had a long history of cooperation in space exploration, scientific discovery and research, and we look forward to the opportunities this new agreement provides us to build upon this partnership," he said in a statement. The Israel Space Agency expressed hope that the Jewish state's technology would play a key role in future missions to Mars. 1 / 2 APA citation: NASA, Israel ink space cooperation agreement (2015, October 13) retrieved 30 September 2021 from https://phys.org/news/2015-10-nasa-israel-ink-space-cooperation.html This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. -
Espinsights the Global Space Activity Monitor
ESPInsights The Global Space Activity Monitor Issue 1 January–April 2019 CONTENTS SPACE POLICY AND PROGRAMMES .................................................................................... 1 Focus .................................................................................................................... 1 Europe ................................................................................................................... 4 11TH European Space Policy Conference ......................................................................... 4 EU programmatic roadmap: towards a comprehensive Regulation of the European Space Programme 4 EDA GOVSATCOM GSC demo project ............................................................................. 5 Programme Advancements: Copernicus, Galileo, ExoMars ................................................... 5 European Space Agency: partnerships continue to flourish................................................... 6 Renewed support for European space SMEs and training ..................................................... 7 UK Space Agency leverages COMPASS project for international cooperation .............................. 7 France multiplies international cooperation .................................................................... 7 Italy’s PRISMA pride ................................................................................................ 8 Establishment of the Portuguese Space Agency: Data is King ................................................ 8 Belgium and Luxembourg -
Evaluation of the 27 March 2019 Indian Asat Demonstration
AAS 19-942 EVALUATION OF THE 27 MARCH 2019 INDIAN ASAT DEMONSTRATION Andrew J. Abraham* On 27 March 2019 India announced the successful demonstration of a Direct As- cent Anti-Satellite (DA-ASAT) weapon. India claims their Kinetic Kill Vehicle hit Microsat-R and destroyed it in a responsible manner that limited the debris cloud lifetime to 45 days. The Aerospace Corporation’s Debris Analysis Response Tool (DART) is a predictive model that can estimate the debris created from ASAT intercepts and other breakup events. The tool utilizes the target mass, pro- jectile mass, and relative velocity to statistically model debris created from a frag- mentation event. This report forensically evaluates India’s claim that the debris cloud will disperse and reenter in the weeks following the intercept. INTRODUCTION This paper will undertake a forensic reconstruction of the Indian ASAT demonstration which occurred on 27 March 2019. To provide the reader with a sense of the type of data products and after-action reports available during real-world operations using the DART software, it is here noted that the majority of the content in this report was generated within the initial hours following the intercept event. This software has been developed by The Aerospace Corporation and refined over the past decade to provide a rapid assessment of risk for key decision makers in the govern- ment. APPROACH AND TOOLS The Debris Analysis Response Tool (DART) is a predictive model that can estimate the debris created from ASAT intercepts and other breakup events. The tool utilizes the target mass, projectile mass, and relative velocity to statistically model the initial debris cloud created from a fragmenta- tion event using software called IMPACT. -
समाचार पत्र से चियत अंश Newspapers Clippings
समाचार पत्र से चियत अंश Newspapers Clippings दैिनक सामियक अिभज्ञता सेवा A Daily Current Awareness Service Vol. 45 No. 30 11 February 2020 रक्षा िवज्ञान पुतकालय Defence Science Library रक्षा वैज्ञािनक सूचना एवं प्रलेखन के द्र Defence Scientific Information & Documentation Centre मैटकॉफ हाऊस, िदली - 110 054 Metcalfe House, Delhi - 110 054 Tue, 11 Feb 2020 DRDO system to help Indian Navy's scorpene submarines stay hidden for longer periods The DRDO has been working with the Navy to develop it at the Naval Materials Research Laboratory (NMRL) in Pune In a major boost to Prime Minister Narendra Modi's Make in India programme, the Indian Navy would fit their Kalvari-class submarines with DRDO-built Air Independent Propulsion (AIP) systems, which would allow the underwater warships to remain below the surface for longer periods while carrying out their operations. An AIP is fitted on the conventional diesel-electric submarines and significantly enhances the capability of the boats to stay underwater, which, otherwise, have to come to the surface to charge their batteries frequently. "The DRDO-built AIP would be fitted on the Kalvari class submarines during their refit programme. The first refit of the first boat INS Kalvari is scheduled for the year 2023," French firm Naval Group's Senior Executive Vice President Alain Guillou told ANI. The French industry official was in India for the biennial DefExpo in Lucknow. He said the DRDO AIP has been found good and compliant and would add to the capabilities of the submarines. -
The Annual Compendium of Commercial Space Transportation: 2017
Federal Aviation Administration The Annual Compendium of Commercial Space Transportation: 2017 January 2017 Annual Compendium of Commercial Space Transportation: 2017 i Contents About the FAA Office of Commercial Space Transportation The Federal Aviation Administration’s Office of Commercial Space Transportation (FAA AST) licenses and regulates U.S. commercial space launch and reentry activity, as well as the operation of non-federal launch and reentry sites, as authorized by Executive Order 12465 and Title 51 United States Code, Subtitle V, Chapter 509 (formerly the Commercial Space Launch Act). FAA AST’s mission is to ensure public health and safety and the safety of property while protecting the national security and foreign policy interests of the United States during commercial launch and reentry operations. In addition, FAA AST is directed to encourage, facilitate, and promote commercial space launches and reentries. Additional information concerning commercial space transportation can be found on FAA AST’s website: http://www.faa.gov/go/ast Cover art: Phil Smith, The Tauri Group (2017) Publication produced for FAA AST by The Tauri Group under contract. NOTICE Use of trade names or names of manufacturers in this document does not constitute an official endorsement of such products or manufacturers, either expressed or implied, by the Federal Aviation Administration. ii Annual Compendium of Commercial Space Transportation: 2017 GENERAL CONTENTS Executive Summary 1 Introduction 5 Launch Vehicles 9 Launch and Reentry Sites 21 Payloads 35 2016 Launch Events 39 2017 Annual Commercial Space Transportation Forecast 45 Space Transportation Law and Policy 83 Appendices 89 Orbital Launch Vehicle Fact Sheets 100 iii Contents DETAILED CONTENTS EXECUTIVE SUMMARY . -
Download the SSP16 Program Handbook
International Space University Space Studies Program 2016 Program Handbook Design and edit: Zhuoyan Lu with contributions from SSP Team, Local Organizing Committee, Chairs, and Faculty Image courtesy: ISU and Technion (unless otherwise specified) Poster/Cover design: Mr. Omri Tal Information reflects planning as of 9 July, 2016 Changes may occur depending upon availability of personnel and resources SSP16 website: ssp16.isunet.edu ISU website: www.isunet.edu 1 ISU SSP16 is supported at different levels by the following organizations: Major Sponsors European Astronaut Centre (EAC) Adelis Foundation Gilat Satellite Networks Ltd. Axiom Space LLC Haifa University Haifa Municipality ImageSat International (ISI) Israel Aerospace Industries Ltd. Israel Oceanographic and Limnologic Research Institute Lockheed Martin Corporation Japanese Aerospace Exploration Agency (JAXA) The Aerospace Corporation Korean Airforce Kyushu Institute of Technology LOC Precision Rocketry Program Supported by Magellan Aerospace Corporation The Boeing Company ManSat LLC Centre National d’Etudes Spatiales (CNES) Massachusetts Institute of Technology (MIT) China Space Foundation (CSF) Mission Control Space Services Inc. China Aerospace Science & Technology Corporation (CASC) Moon Express European Space Agency (ESA) MOONA - A Space for Change Ilan Ramon Foundation NanoRacks LLC Indian Space Research Organisation (ISRO) Norwegian University of Science and Technology Israel Space Agency (ISA) Odyssey Space Research National Aeronautics and Space Administration (NASA) ORBIT Communication Systems Ltd. UK Space Agency (UKSA) Orbital ATK Planet Labs Host Institution Provectus Robotics Solutions Israel Institute of Technology - Technion Royal Canadian Air Force Asher Space Research Institute Royal Military College of Canada Secure World Foundation (SWF) Sponsor Singularity University SES Deutsches Zentrum fur Luft und Raumfahrt (DLR) SNECMA El Al Israel Airlines Ltd.