Planktonic Food Webs: Microbial Hub Approach
Vol. 365: 289–309, 2008 MARINE ECOLOGY PROGRESS SERIES Published August 18 doi: 10.3354/meps07467 Mar Ecol Prog Ser OPENPEN ACCESSCCESS REVIEW Planktonic food webs: microbial hub approach Louis Legendre1, 2,*, Richard B. Rivkin3 1UPMC Univ Paris 06, UMR 7093, Laboratoire d’Océanographie de Villefranche, 06230 Villefranche-sur-Mer, France 2CNRS, UMR 7093, LOV, 06230 Villefranche-sur-Mer, France 3Ocean Sciences Centre, Memorial University of Newfoundland, St. John’s, Newfoundland A1C 5S7, Canada ABSTRACT: Our review consolidates published information on the functioning of the microbial heterotrophic components of pelagic food webs, and extends this into a novel approach: the ‘micro- bial hub’ (HUB). Crucial to our approach is the identification and quantification of 2 groups of organ- isms, each with distinct effects on food-web flows and biogeochemical cycles: microbes, which are generally responsible for most of the organic carbon respiration in the euphotic zone, and metazoans, which generally account for less respiration than microbes. The key characteristics of the microbial- hub approach are: all heterotrophic microbes are grouped together in the HUB, whereas larger heterotrophs are grouped into a metazoan compartment (METAZ); each food-web flow is expressed as a ratio to community respiration; summary respiration flows through, between, and from the HUB and METAZ are computed using flows from observations or models; both the HUB and METAZ receive organic carbon from several food-web sources, and redirect this carbon towards other food- web compartments and their own respiration. By using the microbial-hub approach to analyze a wide range of food webs, different zones of the world ocean, and predicted effects of climate change on food-web flows, we conclude that heterotrophic microbes always dominate respiration in the euphotic zone, even when most particulate primary production is grazed by metazoans.
[Show full text]