Glossary Animal Physiology
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Response of Marine Food Webs to Climate-Induced Changes in Temperature and Inflow of Allochthonous Organic Matter
Response of marine food webs to climate-induced changes in temperature and inflow of allochthonous organic matter Rickard Degerman Department of Ecology and Environmental Science 901 87 Umeå Umeå 2015 1 Copyright©Rickard Degerman ISBN: 978-91-7601-266-6 Front cover illustration by Mats Minnhagen Printed by: KBC Service Center, Umeå University Umeå, Sweden 2015 2 Tillägnad Maria, Emma och Isak 3 Table of Contents Abstract 5 List of papers 6 Introduction 7 Aquatic food webs – different pathways Food web efficiency – a measure of ecosystem function Top predators cause cascade effects on lower trophic levels The Baltic Sea – a semi-enclosed sea exposed to multiple stressors Varying food web structures Climate-induced changes in the marine ecosystem Food web responses to increased temperature Responses to inputs of allochthonous organic matter Objectives 14 Material and Methods 14 Paper I Paper II and III Paper IV Results and Discussion 18 Effect of temperature and nutrient availability on heterotrophic bacteria Influence of food web length and labile DOC on pelagic productivity and FWE Consequences of changes in inputs of ADOM and temperature for pelagic productivity and FWE Control of pelagic productivity, FWE and ecosystem trophic balance by colored DOC Conclusion and future perspectives 21 Author contributions 23 Acknowledgements 23 Thanks 24 References 25 4 Abstract Global records of temperature show a warming trend both in the atmosphere and in the oceans. Current climate change scenarios indicate that global temperature will continue to increase in the future. The effects will however be very different in different geographic regions. In northern Europe precipitation is projected to increase along with temperature. -
Microbial Loop' in Stratified Systems
MARINE ECOLOGY PROGRESS SERIES Vol. 59: 1-17, 1990 Published January 11 Mar. Ecol. Prog. Ser. 1 A steady-state analysis of the 'microbial loop' in stratified systems Arnold H. Taylor, Ian Joint Plymouth Marine Laboratory, Prospect Place, West Hoe, Plymouth PLl 3DH, United Kingdom ABSTRACT. Steady state solutions are presented for a simple model of the surface mixed layer, which contains the components of the 'microbial loop', namely phytoplankton, picophytoplankton, bacterio- plankton, microzooplankton, dissolved organic carbon, detritus, nitrate and ammonia. This system is assumed to be in equilibrium with the larger grazers present at any time, which are represented as an external mortality function. The model also allows for dissolved organic nitrogen consumption by bacteria, and self-grazing and mixotrophy of the microzooplankton. The model steady states are always stable. The solution shows a number of general properties; for example, biomass of each individual component depends only on total nitrogen concentration below the mixed layer, not whether the nitrogen is in the form of nitrate or ammonia. Standing stocks and production rates from the model are compared with summer observations from the Celtic Sea and Porcupine Sea Bight. The agreement is good and suggests that the system is often not far from equilibrium. A sensitivity analysis of the model is included. The effect of varying the mixing across the pycnocline is investigated; more intense mixing results in the large phytoplankton population increasing at the expense of picophytoplankton, micro- zooplankton and DOC. The change from phytoplankton to picophytoplankton dominance at low mixing occurs even though the same physiological parameters are used for both size fractions. -
Biological Oceanography - Legendre, Louis and Rassoulzadegan, Fereidoun
OCEANOGRAPHY – Vol.II - Biological Oceanography - Legendre, Louis and Rassoulzadegan, Fereidoun BIOLOGICAL OCEANOGRAPHY Legendre, Louis and Rassoulzadegan, Fereidoun Laboratoire d'Océanographie de Villefranche, France. Keywords: Algae, allochthonous nutrient, aphotic zone, autochthonous nutrient, Auxotrophs, bacteria, bacterioplankton, benthos, carbon dioxide, carnivory, chelator, chemoautotrophs, ciliates, coastal eutrophication, coccolithophores, convection, crustaceans, cyanobacteria, detritus, diatoms, dinoflagellates, disphotic zone, dissolved organic carbon (DOC), dissolved organic matter (DOM), ecosystem, eukaryotes, euphotic zone, eutrophic, excretion, exoenzymes, exudation, fecal pellet, femtoplankton, fish, fish lavae, flagellates, food web, foraminifers, fungi, harmful algal blooms (HABs), herbivorous food web, herbivory, heterotrophs, holoplankton, ichthyoplankton, irradiance, labile, large planktonic microphages, lysis, macroplankton, marine snow, megaplankton, meroplankton, mesoplankton, metazoan, metazooplankton, microbial food web, microbial loop, microheterotrophs, microplankton, mixotrophs, mollusks, multivorous food web, mutualism, mycoplankton, nanoplankton, nekton, net community production (NCP), neuston, new production, nutrient limitation, nutrient (macro-, micro-, inorganic, organic), oligotrophic, omnivory, osmotrophs, particulate organic carbon (POC), particulate organic matter (POM), pelagic, phagocytosis, phagotrophs, photoautotorphs, photosynthesis, phytoplankton, phytoplankton bloom, picoplankton, plankton, -
Developments in Aquatic Microbiology
INTERNATL MICROBIOL (2000) 3: 203–211 203 © Springer-Verlag Ibérica 2000 REVIEW ARTICLE Samuel P. Meyers Developments in aquatic Department of Oceanography and Coastal Sciences, Louisiana State University, microbiology Baton Rouge, LA, USA Received 30 August 2000 Accepted 29 September 2000 Summary Major discoveries in marine microbiology over the past 4-5 decades have resulted in the recognition of bacteria as a major biomass component of marine food webs. Such discoveries include chemosynthetic activities in deep-ocean ecosystems, survival processes in oligotrophic waters, and the role of microorganisms in food webs coupled with symbiotic relationships and energy flow. Many discoveries can be attributed to innovative methodologies, including radioisotopes, immunofluores- cent-epifluorescent analysis, and flow cytometry. The latter has shown the key role of marine viruses in marine system energetics. Studies of the components of the “microbial loop” have shown the significance of various phagotrophic processes involved in grazing by microinvertebrates. Microbial activities and dissolved organic carbon are closely coupled with the dynamics of fluctuating water masses. New biotechnological approaches and the use of molecular biology techniques still provide new and relevant information on the role of microorganisms in oceanic and estuarine environments. International interdisciplinary studies have explored ecological aspects of marine microorganisms and their significance in biocomplexity. Studies on the Correspondence to: origins of both life and ecosystems now focus on microbiological processes in the Louisiana State University Station. marine environment. This paper describes earlier and recent discoveries in marine Post Office Box 19090-A. Baton Rouge, LA 70893. USA (aquatic) microbiology and the trends for future work, emphasizing improvements Tel.: +1-225-3885180 in methodology as major catalysts for the progress of this broadly-based field. -
Translation Series No.1839
FISHERIES RESEARCH BOARD OF CANADA Translation Series No 1839 Marine neustbnology by Yu. P. Zaitsev Original title: - Morskaya Neistonologiya From: Marine Neustonology, Academy of Sciences of the . Ukrainian SSR, Kiev, : 5-262 '1970 Translated by the Translation Bureau(P. • Foreign Languages Division Department of the Secretary of State of Canada Fisheries Research Board of Canada Marine Ecology Laboratory Dartmouth, N. S. 1971_ 401 pages typescript , yu, ID. Zaltriev: arine -NoustonoIoGy, '.aukova duka",10v,.19 ri 2i Introduction ....... 1.44 •ed ' y .... .... »,. • Part .one. Peculiarity of ecoloi3ical conditions of th fflost u,pper reGion of the seas and oceans . ...... ;11 Qhapter I. Illumination, temperature and salinity of water..11 Chapter II. NonlivinG oranic matter 17• Chapter rh e Mololcal activity of sea. foam . • . • chapter IV. Enviroament biotic factors .55 ' Chapter V. co1oica1 peculiarity of "the near-surface sca 1 biotope as the cause of delopin speciai biolQe;ical . structure in it • • e• * 4 4, léte•e. •44 , •....42 Part two. :2éthods of neustonolo&ical research • • • . • Chapter VI. npDssibility of usin existin plFÂnton nct models for neustonoloical purooses . .4*;- Chaoter ome principals upon which the workinG out of .,' the method. of col ec 1rç ond studyin e:; sea neuston cre-bas .47 Direction of haulin and the up,it of_quantittiyo - Calculation , A A C C a 3 C AA•CAAC A A * ('s 47 Optimal se.:)ced of haulins by iaeans of a net . 143 I'animusa disturbance in the natural ;.ater stratification': 'and quantity of population in the net haulinÉ, sono . .51 • . Some technical properties of nets considered While • •roducini; gears for haulin hyponeuston ..... -
Controls and Structure of the Microbial Loop
Controls and Structure of the Microbial Loop A symposium organized by the Microbial Oceanography summer course sponsored by the Agouron Foundation Saturday, July 1, 2006 Asia Room, East-West Center, University of Hawaii Symposium Speakers: Peter J. leB Williams (University of Bangor, Wales) David L. Kirchman (University of Delaware) Daniel J. Repeta (Woods Hole Oceanographic Institute) Grieg Steward (University of Hawaii) The oceans constitute the largest ecosystems on the planet, comprising more than 70% of the surface area and nearly 99% of the livable space on Earth. Life in the oceans is dominated by microbes; these small, singled-celled organisms constitute the base of the marine food web and catalyze the transformation of energy and matter in the sea. The microbial loop describes the dynamics of microbial food webs, with bacteria consuming non-living organic matter and converting this energy and matter into living biomass. Consumption of bacteria by predation recycles organic matter back into the marine food web. The speakers of this symposium will explore the processes that control the structure and functioning of microbial food webs and address some of these fundamental questions: What aspects of microbial activity do we need to measure to constrain energy and material flow into and out of the microbial loop? Are we able to measure bacterioplankton dynamics (biomass, growth, production, respiration) well enough to edu/agouroninstitutecourse understand the contribution of the microbial loop to marine systems? What factors control the flow of material and energy into and out of the microbial loop? At what scales (space and time) do we need to measure processes controlling the growth and metabolism of microorganisms? How does our knowledge of microbial community structure and diversity influence our understanding of the function of the microbial loop? Program: 9:00 am Welcome and Introductory Remarks followed by: Peter J. -
Chapter 15 Marrone
Chapter 15 Life Near the Surface Pelagic Zone • Pelagic Zone – The vast open sea – Contains almost all of the liquid water on earth Pelagic Zone • Pelagic zone benefits – Regulates our climate – Provides food. • Pelagic organisms live suspended in the water • Lacks the solid substrate provided by the bottom • No place for attachment, no bottom for burrowing, nothing to hide behind Epipelagic Zone • Epipelagic – Upper pelagic – Zone from the surface down to a given depth commonly 200 m (650 ft) – Warmest – Best lit • The photic zone - area where photosynthesis can occur Epipelagic Zone • The epipelagic zone has two main components • Coastal or Nertic – epipelagic waters that lie over the continental shelf – Lies close to shore – Supports most of the world’s marine fisheries production • Oceanic part – Waters beyond the continental shelf The Organisms of the Epipelagic The Epipelagic Zone • Fueled by solar energy captured in photosynthesis • Nearly all primary production takes place within the epiplagic zone. • Supplies food to other communities The Epipelagic Zone • Lacks deposit feeders • Suspension feeders are very common • There are also many large predators like fishes, squids and marine mammals • Plankton is abundant Plankton Plankton • Plankton - live in the water column and cannot swim against the current. • Phytoplankton are autotrophs. – Perform photosynthesis • Zooplankton – are heterotrophs • Plankton can be grouped based on their size – Picoplankton – smallest – Nanoplankton – Microplankton – Mesoplankton – Macroplankton – -
Glossary Animal Physiology
Limnology 1 Weisse - WS99/00 Glossary Limnology 1 Biological Zonation of a lentic System: Most organisms can be classified on the basis of their typical habitat. Benthos: The community of plants and animals that live permanently in or on the sea bottom. Littoral (intertidal zone): The trophogenic zone along the shore till the compensation depth where NPP occurs. It is rich in species diversity and number - especially algae and higher plants. • Epilittoral: Sedentary organisms of the shoreline; e.g. macrophytes, diatoms, etc. • Profundal: Depths of 180m and deeper. Limnion: Temperature related zonation of the open water body of lentic systems; i.e. summer stratification due to solar radiation produces several trophic zones - see also ecological aspects - depth zones. • Epilimnion: The upper warm and illuminated surface layer of a lake; narrower than the trophogenic zone. • Metalimnion: The transitional zone between epi- and hypolimnion; i.e. the zone of the thermocline. • Hypolimnion: The cool and poorly illuminated bottom layer of a lake, below the thermocline. Nekton: Pelagic animals that are active swimmers; i.e. most of the adult fishes. Pelagial: The environment of the open water of a lake, away from the bottom, and not in close proximity to the shoreline. It is Lower in species number and diversity than the benthos. The pelagial of rivers exhibits a directed and continuos flux (spatial relocation = amountH2O/cross-surface area). Plankton: Passively drifting or weakly swimming organisms in fresh waters; i.e. microscopic plants, eggs, larval stages of the nekton and benthos (such as phyto-plankton, zoo-plankton). • Neuston: The epipelagic zone few centimeters below the waterline; i.e. -
The Neustonic Fauna in Coastal Waters of the Northeast Pacific:Abundance, Distribution, and Utilization by Juvenile Salmonicis
The Neustonic Fauna in Coastal Waters of theNortheast Pacific:Abundance, Distribution, and Utilization by Juvenile Salmonids Richard D. Brodeur Bruce C. Mundy William G. Pearcy Robert W. Wisseman The Neustonic Fauna in Coastal Waters of the Northeast Pacific:Abundance, Distribution, and Utilization by Juvenile Salmonicis Richard D. Brodeur William G. Pearcy Bruce C. Mundy Robert W. Wisseman Oregon State University Sea Grant College Program AdS 402 Corvallis, Oregon 97331 Publication No. ORESU-T-87-001 © 1987 by Oregon State University.All rights reserved. AUTHORS Richard 0. Brodeur, senior research assistant, and William G. Pearcy, professor, are with the College of Oceanography at Oregon State University. Bruce C. Mundy works as a fishery biologist at the Honolulu laboratory of the National Marine Fisheries Service. Robert W. Wisseman is a research assistant in the Department of Entomology at Oregon State University. SUPPORT This publication is the result, in part, of research sponsored by Oregon Sea Grant through NOAA Office of Sea Grant, Department of Commerce, under Grant No. NA79AA-D-OO1O (Project No. RICE-jo). The U.S. Government is authorized to produce and distribute reprints for governmental purposes, notwithstanding any copyright notation that may appear hereon. The Oregon State University Sea Grant College Program is supported cooperatively by the National Oceanic and AtmosphericAdministration, U.S. Department of Commerce, by the state of Oregon, and by participating localgovernments and private industry. ORDERING PUBLICATIONS Copies of this publication are available from Sea Grant Communications Oregon State University AdS MO? Corvallis, OR 97331 Please include author, title, and publication number. Upon request, we will also send a free copy of our catalogue of Oregon State University marine-related puhi ications. -
01 Delong 2-8 6/9/05 8:58 AM Page 2
01 Delong 2-8 6/9/05 8:58 AM Page 2 INSIGHT REVIEW NATURE|Vol 437|15 September 2005|doi:10.1038/nature04157 Genomic perspectives in microbial oceanography Edward F. DeLong1 and David M. Karl2 The global ocean is an integrated living system where energy and matter transformations are governed by interdependent physical, chemical and biotic processes. Although the fundamentals of ocean physics and chemistry are well established, comprehensive approaches to describing and interpreting oceanic microbial diversity and processes are only now emerging. In particular, the application of genomics to problems in microbial oceanography is significantly expanding our understanding of marine microbial evolution, metabolism and ecology. Integration of these new genome-enabled insights into the broader framework of ocean science represents one of the great contemporary challenges for microbial oceanographers. Marine ecosystems are complex and dynamic. A mechanistic under- greatly aid in these efforts. The correlation between organism- and habi- standing of the susceptibility of marine ecosystems to global environ- tat-specific genomic features and other physical, chemical and biotic mental variability and climate change driven by greenhouse gases will variables has the potential to refine our understanding of microbial and require a comprehensive description of several factors. These include biogeochemical process in ocean systems. marine physical, chemical and biological interactions including All these advances — improved cultivation, environmental genomic thresholds, negative and positive feedback mechanisms and other approaches and in situ microbial observatories — promise to enhance nonlinear interactions. The fluxes of matter and energy, and the our understanding of the living ocean system. Below, we provide a brief microbes that mediate them, are of central importance in the ocean, recent history of marine microbiology and outline some of the recent yet remain poorly understood. -
UNIVERSITY of CALIFORNIA, SAN DIEGO Abundance and Ecological
UNIVERSITY OF CALIFORNIA, SAN DIEGO Abundance and ecological implications of microplastic debris in the North Pacific Subtropical Gyre A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Oceanography by Miriam Chanita Goldstein Committee in charge: Professor Mark D. Ohman, Chair Professor Lihini I. Aluwihare Professor Brian Goldfarb Professor Michael R. Landry Professor James J. Leichter 2012 Copyright Miriam Chanita Goldstein, 2012 All rights reserved. SIGNATURE PAGE The Dissertation of Miriam Chanita Goldstein is approved, and it is acceptable in quality and form for publication on microfilm and electronically: PAGE _____________________________________________________________________ _____________________________________________________________________ _____________________________________________________________________ _____________________________________________________________________ _____________________________________________________________________ Chair University of California, San Diego 2012 iii DEDICATION For my mother, who took me to the tidepools and didn’t mind my pet earthworms. iv TABLE OF CONTENTS SIGNATURE PAGE ................................................................................................... iii DEDICATION ............................................................................................................. iv TABLE OF CONTENTS ............................................................................................. v LIST OF FIGURES -
Microbial Loop Carbon Cycling in Ocean Environments Studied Using a Simple Steady-State Model
AQUATIC MICROBIAL ECOLOGY Vol. 26: 37–49, 2001 Published October 26 Aquat Microb Ecol Microbial loop carbon cycling in ocean environments studied using a simple steady-state model Thomas R. Anderson1,*, Hugh W. Ducklow2 1Southampton Oceanography Centre, Waterfront Campus, European Way, Southampton SO14 3ZH, United Kingdom 2College of William and Mary School of Marine Science, Rte 1208, Box 1346, Gloucester Point, Virginia 23062, USA ABSTRACT: A simple steady-state model is used to examine the microbial loop as a pathway for organic C in marine systems, constrained by observed estimates of bacterial to primary production ratio (BP:PP) and bacterial growth efficiency (BGE). Carbon sources (primary production including extracellular release of dissolved organic carbon, DOC), cycling via zooplankton grazing and viral lysis, and sinks (bacterial and zooplankton respiration) are represented. Model solutions indicate that, at least under near steady-state conditions, recent estimates of BP:PP of about 0.1 to 0.15 are consistent with reasonable scenarios of C cycling (low BGE and phytoplankton extracellular release) at open ocean sites such as the Sargasso Sea and subarctic North Pacific. The finding that bacteria are a major (50%) sink for primary production is shown to be consistent with the best estimates of BGE and dissolved organic matter (DOM) production by zooplankton and phytoplankton. Zooplank- ton-related processes are predicted to provide the greatest supply of DOC for bacterial consumption. The bacterial contribution to C flow in the microbial loop, via bacterivory and viral lysis, is generally low, as a consequence of low BGE. Both BP and BGE are hard to quantify accurately.