Halobates</I> in the Banda Sea (Indonesia
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Banda Islands, Indonesia
INSULARITY AND ADAPTATION INVESTIGATING THE ROLE OF EXCHANGE AND INTER-ISLAND INTERACTION IN THE BANDA ISLANDS, INDONESIA Emily J. Peterson A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Washington 2015 Reading Committee: Peter V. Lape, Chair James K. Feathers Benjamin Marwick Program Authorized to Offer Degree: Anthropology ©Copyright 2015 Emily J. Peterson University of Washington Abstract Insularity and Adaptation Investigating the role of exchange and inter-island interaction in the Banda Islands, Indonesia Emily J. Peterson Chair of the Supervisory Committee: Professor Peter V. Lape Department of Anthropology Trade and exchange exerted a powerful force in the historic and protohistoric past of Island Southeast Asian communities. Exchange and interaction are also hypothesized to have played an important role in the spread of new technologies and lifestyles throughout the region during the Neolithic period. Although it is clear that interaction has played an important role in shaping Island Southeast Asian cultures on a regional scale, little is known about local histories and trajectories of exchange in much of the region. This dissertation aims to improve our understanding of the adaptive role played by exchange and interaction through an exploration of change over time in the connectedness of island communities in the Banda Islands, eastern Indonesia. Connectedness is examined by measuring source diversity for two different types of archaeological materials. Chemical characterization of pottery using LA-ICP-MS allows the identification of geochemically different paste groups within the earthenware assemblages of two Banda Islands sites. Source diversity measures are employed to identify differences in relative connectedness between these sites and changes over time. -
Ambon – Banda Sea – Alor- Maumere
DAY ITINERARY WITH MV MERMAID I BIODIVERSITY SPECIAL RING DIVES OF FIRE – AMBON – BANDA SEA – ALOR- MAUMERE DAY 1 Check-in on board Mermaid I. After arriving at Ambon and a safety briefing. You will do dives two dives at Ambon Bay in some fabulous muck dives with critters galore. This area is known for many rare and unusual species including the psychedelic frogfish and 2 Rhinopias. DAY 2-3 The next two days will be spent in the Banda Islands, formerly known as the Spice dives Islands. Many of the dive sites around the Banda islands are wall dives. The walls are covered in massive gorgonians, soft corals, barrel sponges and have some very 7 interesting swim throughs. But there are other attractive dive sites such as pinnacles with enormous groups of schooling pyramid butterflyfish, triggerfish and pelagic fishes such as tunas passing through, spectacular hard coral reefs next to the volcano, and great muck dives with lots of mandarin fish at the local jetty. The Banda Islands are much more than diving. It is also a cultural and historical experience. You will spend one morning walking around the village of Banda Neira the main island, with a local guide, visiting the local museum, the old Dutch fort, the old colonial governor’s house, the local fish market and a nutmeg plantation, where you will have breakfast. DAY 4 Manuk – Snake Volcano – sometimes has more snakes than Gunung Api. Still no need dives to be afraid! The site also offers a black sand reef dive with loads of fish and pretty hard corals. -
Biological Oceanography - Legendre, Louis and Rassoulzadegan, Fereidoun
OCEANOGRAPHY – Vol.II - Biological Oceanography - Legendre, Louis and Rassoulzadegan, Fereidoun BIOLOGICAL OCEANOGRAPHY Legendre, Louis and Rassoulzadegan, Fereidoun Laboratoire d'Océanographie de Villefranche, France. Keywords: Algae, allochthonous nutrient, aphotic zone, autochthonous nutrient, Auxotrophs, bacteria, bacterioplankton, benthos, carbon dioxide, carnivory, chelator, chemoautotrophs, ciliates, coastal eutrophication, coccolithophores, convection, crustaceans, cyanobacteria, detritus, diatoms, dinoflagellates, disphotic zone, dissolved organic carbon (DOC), dissolved organic matter (DOM), ecosystem, eukaryotes, euphotic zone, eutrophic, excretion, exoenzymes, exudation, fecal pellet, femtoplankton, fish, fish lavae, flagellates, food web, foraminifers, fungi, harmful algal blooms (HABs), herbivorous food web, herbivory, heterotrophs, holoplankton, ichthyoplankton, irradiance, labile, large planktonic microphages, lysis, macroplankton, marine snow, megaplankton, meroplankton, mesoplankton, metazoan, metazooplankton, microbial food web, microbial loop, microheterotrophs, microplankton, mixotrophs, mollusks, multivorous food web, mutualism, mycoplankton, nanoplankton, nekton, net community production (NCP), neuston, new production, nutrient limitation, nutrient (macro-, micro-, inorganic, organic), oligotrophic, omnivory, osmotrophs, particulate organic carbon (POC), particulate organic matter (POM), pelagic, phagocytosis, phagotrophs, photoautotorphs, photosynthesis, phytoplankton, phytoplankton bloom, picoplankton, plankton, -
Translation Series No.1839
FISHERIES RESEARCH BOARD OF CANADA Translation Series No 1839 Marine neustbnology by Yu. P. Zaitsev Original title: - Morskaya Neistonologiya From: Marine Neustonology, Academy of Sciences of the . Ukrainian SSR, Kiev, : 5-262 '1970 Translated by the Translation Bureau(P. • Foreign Languages Division Department of the Secretary of State of Canada Fisheries Research Board of Canada Marine Ecology Laboratory Dartmouth, N. S. 1971_ 401 pages typescript , yu, ID. Zaltriev: arine -NoustonoIoGy, '.aukova duka",10v,.19 ri 2i Introduction ....... 1.44 •ed ' y .... .... »,. • Part .one. Peculiarity of ecoloi3ical conditions of th fflost u,pper reGion of the seas and oceans . ...... ;11 Qhapter I. Illumination, temperature and salinity of water..11 Chapter II. NonlivinG oranic matter 17• Chapter rh e Mololcal activity of sea. foam . • . • chapter IV. Enviroament biotic factors .55 ' Chapter V. co1oica1 peculiarity of "the near-surface sca 1 biotope as the cause of delopin speciai biolQe;ical . structure in it • • e• * 4 4, léte•e. •44 , •....42 Part two. :2éthods of neustonolo&ical research • • • . • Chapter VI. npDssibility of usin existin plFÂnton nct models for neustonoloical purooses . .4*;- Chaoter ome principals upon which the workinG out of .,' the method. of col ec 1rç ond studyin e:; sea neuston cre-bas .47 Direction of haulin and the up,it of_quantittiyo - Calculation , A A C C a 3 C AA•CAAC A A * ('s 47 Optimal se.:)ced of haulins by iaeans of a net . 143 I'animusa disturbance in the natural ;.ater stratification': 'and quantity of population in the net haulinÉ, sono . .51 • . Some technical properties of nets considered While • •roducini; gears for haulin hyponeuston ..... -
Chapter 15 Marrone
Chapter 15 Life Near the Surface Pelagic Zone • Pelagic Zone – The vast open sea – Contains almost all of the liquid water on earth Pelagic Zone • Pelagic zone benefits – Regulates our climate – Provides food. • Pelagic organisms live suspended in the water • Lacks the solid substrate provided by the bottom • No place for attachment, no bottom for burrowing, nothing to hide behind Epipelagic Zone • Epipelagic – Upper pelagic – Zone from the surface down to a given depth commonly 200 m (650 ft) – Warmest – Best lit • The photic zone - area where photosynthesis can occur Epipelagic Zone • The epipelagic zone has two main components • Coastal or Nertic – epipelagic waters that lie over the continental shelf – Lies close to shore – Supports most of the world’s marine fisheries production • Oceanic part – Waters beyond the continental shelf The Organisms of the Epipelagic The Epipelagic Zone • Fueled by solar energy captured in photosynthesis • Nearly all primary production takes place within the epiplagic zone. • Supplies food to other communities The Epipelagic Zone • Lacks deposit feeders • Suspension feeders are very common • There are also many large predators like fishes, squids and marine mammals • Plankton is abundant Plankton Plankton • Plankton - live in the water column and cannot swim against the current. • Phytoplankton are autotrophs. – Perform photosynthesis • Zooplankton – are heterotrophs • Plankton can be grouped based on their size – Picoplankton – smallest – Nanoplankton – Microplankton – Mesoplankton – Macroplankton – -
Glossary Animal Physiology
Limnology 1 Weisse - WS99/00 Glossary Limnology 1 Biological Zonation of a lentic System: Most organisms can be classified on the basis of their typical habitat. Benthos: The community of plants and animals that live permanently in or on the sea bottom. Littoral (intertidal zone): The trophogenic zone along the shore till the compensation depth where NPP occurs. It is rich in species diversity and number - especially algae and higher plants. • Epilittoral: Sedentary organisms of the shoreline; e.g. macrophytes, diatoms, etc. • Profundal: Depths of 180m and deeper. Limnion: Temperature related zonation of the open water body of lentic systems; i.e. summer stratification due to solar radiation produces several trophic zones - see also ecological aspects - depth zones. • Epilimnion: The upper warm and illuminated surface layer of a lake; narrower than the trophogenic zone. • Metalimnion: The transitional zone between epi- and hypolimnion; i.e. the zone of the thermocline. • Hypolimnion: The cool and poorly illuminated bottom layer of a lake, below the thermocline. Nekton: Pelagic animals that are active swimmers; i.e. most of the adult fishes. Pelagial: The environment of the open water of a lake, away from the bottom, and not in close proximity to the shoreline. It is Lower in species number and diversity than the benthos. The pelagial of rivers exhibits a directed and continuos flux (spatial relocation = amountH2O/cross-surface area). Plankton: Passively drifting or weakly swimming organisms in fresh waters; i.e. microscopic plants, eggs, larval stages of the nekton and benthos (such as phyto-plankton, zoo-plankton). • Neuston: The epipelagic zone few centimeters below the waterline; i.e. -
The Neustonic Fauna in Coastal Waters of the Northeast Pacific:Abundance, Distribution, and Utilization by Juvenile Salmonicis
The Neustonic Fauna in Coastal Waters of theNortheast Pacific:Abundance, Distribution, and Utilization by Juvenile Salmonids Richard D. Brodeur Bruce C. Mundy William G. Pearcy Robert W. Wisseman The Neustonic Fauna in Coastal Waters of the Northeast Pacific:Abundance, Distribution, and Utilization by Juvenile Salmonicis Richard D. Brodeur William G. Pearcy Bruce C. Mundy Robert W. Wisseman Oregon State University Sea Grant College Program AdS 402 Corvallis, Oregon 97331 Publication No. ORESU-T-87-001 © 1987 by Oregon State University.All rights reserved. AUTHORS Richard 0. Brodeur, senior research assistant, and William G. Pearcy, professor, are with the College of Oceanography at Oregon State University. Bruce C. Mundy works as a fishery biologist at the Honolulu laboratory of the National Marine Fisheries Service. Robert W. Wisseman is a research assistant in the Department of Entomology at Oregon State University. SUPPORT This publication is the result, in part, of research sponsored by Oregon Sea Grant through NOAA Office of Sea Grant, Department of Commerce, under Grant No. NA79AA-D-OO1O (Project No. RICE-jo). The U.S. Government is authorized to produce and distribute reprints for governmental purposes, notwithstanding any copyright notation that may appear hereon. The Oregon State University Sea Grant College Program is supported cooperatively by the National Oceanic and AtmosphericAdministration, U.S. Department of Commerce, by the state of Oregon, and by participating localgovernments and private industry. ORDERING PUBLICATIONS Copies of this publication are available from Sea Grant Communications Oregon State University AdS MO? Corvallis, OR 97331 Please include author, title, and publication number. Upon request, we will also send a free copy of our catalogue of Oregon State University marine-related puhi ications. -
The Tectonic History of the Banda Arcs, Eastern Indonesia: a Review
J. geol. Soc. London, Vol. 136, 1979, pp. 519-527,2 figs. Printed inNorthern Ireland. The tectonic history of the Banda Arcs, eastern Indonesia: a review M. S. Norvick SUMMARY: The Banda Sea is underlain by a small marginal oceanic plate, which is believed to have formed during the early Tertiary. Unlike other marginal seas to the N, the spreading of the Banda platelet was restricted by surrounding continental blocks. Its present complexity is a result of late Miocene-earlyPliocene collision and obduction of theBanda Sea island arc system over the leading edge of the Australian-lrian continental plate. Transcurrent faultingon the northern limb of the collision zone may have accentuated curvature of the arc. Subduction and volcanicitv ceased after collision in the Timor and Seram sectors, but are still active at the eastern extremity of the arc. Adouble spiral line of geologicallyvery complex, based on bathymetry (Mammerickx et al. 1976), reg- small, mountainous islands make up the Banda Arcs ional gravity (Vening Meinesz 1954; Chamalaun et al. of eastern Indonesia (Fig. 1). Although onshore out- 1976; Milsom 1977)and earthquake distribution crop information is scattered, and geophysical data on (Hamilton 1974a; Cardwell & Isacks1978). Seismic the deep seas that cover 90% of the area sparse, the lineshave been published across the Timor region tectonic history of the region has stimulated discussion (Branson1974; Beck & Lehner1974; Crostella & formany years, and produced different (sometimes Powell 1975) and the Seram Trough (Audley-Charles conflicting) interpretations. The present review attempts& Carter 1978). Two 1976 oceanographic surveys run to reinterpretto critically thedata and some of by Scripps(‘Indopac’ programme) and CCOP (‘Val- theplate tectonic theories on theevolution of the divia’ cruise) collected valuable seismic refraction and Banda Arcs in the light of recent geological mapping reflection data over the deep water areas (Purdy et al. -
Lithosphere Structure and Dynamics of the Banda Arc Collision Zone, Eastern Indonesia
GeowgicaL Soci£ty of MalayJUz - circum-Pacific Council for Energy a/lu MineraL I!':0urc~ Tectonic Fl'flITUwork and Energy Ruourcu of tbe W(Jtern Margin of the PacifIC Btum November 27 December 2, 1992, Kuo.Ia Lumpur, MalayJUz Lithosphere structure and dynamics of the Banda Arc collision zone, Eastern Indonesia ADRIAN RICHARDSON Geological Research in Southeast Asia, Department of Geology Royal Holloway and Bedford New College, Egham, Surrey, TW20 O~X, England Present Address: Shellinternationale Petroleum MaatschapplJ B.V. Postbus 162, 2501, AN Den Haag, Oostduinlaan 75, Nederland Abstract: Timor and adjacent islands in Eastern Indonesia are the site of a currentl~ active col~ision between the Australian continental shelf and the volcanic islands of the Banda Arc. PreVIously pubhshed sedimentological and micro-paleontological data from the islands and the subduction trench date the start of this collision at 2.5 to 3 Ma. Previously published work on seismicity in the Banda Arc shows the geometry of the subduction zone to be fairly simple and continuous down to below 650 km depth. In this paper, the geometry of both the top and bottom surfaces of the subd~cting sla~ is mapp~d to a hl:gh~r degree of accuracy than before. The edge of Australia, which was preVIously a rifted paSSIve margm, IS shown to be markedly thickened in the collision zone itself and has been subducted to a depth of about 200 km. In addition, it appears that the subduction zone has major lateral and vertical discontinuities at depth. It is proposed that these discontinuities reflect slab separation during a previous micro continental collisional event some 10 to 7 million years ago and that this collision was related to the transfer of continental lithosphere from the Indo-Australian plate to the South East Asian plate. -
Current Status of the Seabird Colony on Suanggi Island, Banda Sea
Kukila 15 2011 Short Communication 93 Current status of the seabird colony on Suanggi Island, Banda Sea GERRIT D.C. DE JONG Dutch Foundation for Research on Seabirds, c/o Vierwindenstraat 28, 1013 LB Amsterdam. Email: [email protected] Ringkasan. Pulau Suanggi dikunjungi bulan Juli 2008 dan Desember 2009 sebagai bagian kegiatan survei koloni burung laut Pelecaniform yang masih tersisa di Indonesia, semuanya berlokasi di Laut Banda dan Flores. Koloni-koloni Pelecaniformes saat ini memainkan peran penting di Asia Tenggara karena di banyak lokasi jenis-jenis angsa dan cikalang ini sudah menghilang. Sekitar 3500 burung Angsabatu Kakimerah Sula sula teramati termasuk 500 pasang sedang berbiak selama kurun waktu kedua kunjungan lapangan tersebut, dan ini mengindikasikan bahwa di Suanggi mungkin tidak ada musim berbiak yang jelas bagi spesies ini. Sekitar 300 burung Angsabatu Coklat S. leucogaster dan 400 ekor burung Cikalang Besar Fregata minor teramati sedang bertengger di pulau itu. Para nelayan dari kepulauan Banda telah mengunjungi Suanggi selama beberapa dekade dan sudah mengganti sebagian vegetasi asli (Pisonia dan pohon-pohon Ficus) dan menjadikannya perkebunan kelapa, jeruk, pisang, ketimun dan singkong. Angsabatu Kakimerah dan Cikalang Besar berbiak di pohon tapi bukan pohon kelapa sehingga pengrusakan habitat ini telah mengurangi habitat berbiaknya. Namun demikian foto-foto yang ada menunjukkan bahwa pengrusakan habitat tidak berlangsung setelah setelah 1981 (de Korte 1984). Koloni burung Angsabatu Kakimerah nampaknya stabil sekarang dan sepertinya toleran terhadap tingkat gangguan tertentu oleh masyarakat lokal yang masih mengunjungi pulau itu. Direkomenasikan agar pulau itu mendapatkan status perlindungan resmi sebagai Suaka Margasatwa, dan wisata alam oleh organisasi- organisasi setempat diijinkan jika terkontrol dan dampaknya terbatas. -
UNIVERSITY of CALIFORNIA, SAN DIEGO Abundance and Ecological
UNIVERSITY OF CALIFORNIA, SAN DIEGO Abundance and ecological implications of microplastic debris in the North Pacific Subtropical Gyre A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Oceanography by Miriam Chanita Goldstein Committee in charge: Professor Mark D. Ohman, Chair Professor Lihini I. Aluwihare Professor Brian Goldfarb Professor Michael R. Landry Professor James J. Leichter 2012 Copyright Miriam Chanita Goldstein, 2012 All rights reserved. SIGNATURE PAGE The Dissertation of Miriam Chanita Goldstein is approved, and it is acceptable in quality and form for publication on microfilm and electronically: PAGE _____________________________________________________________________ _____________________________________________________________________ _____________________________________________________________________ _____________________________________________________________________ _____________________________________________________________________ Chair University of California, San Diego 2012 iii DEDICATION For my mother, who took me to the tidepools and didn’t mind my pet earthworms. iv TABLE OF CONTENTS SIGNATURE PAGE ................................................................................................... iii DEDICATION ............................................................................................................. iv TABLE OF CONTENTS ............................................................................................. v LIST OF FIGURES -
UC San Diego Electronic Theses and Dissertations
UC San Diego UC San Diego Electronic Theses and Dissertations Title Abundance and ecological implications of microplastic debris in the North Pacific Subtropical Gyre Permalink https://escholarship.org/uc/item/6xf4w8b6 Author Goldstein, Miriam Chanita Publication Date 2012 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA, SAN DIEGO Abundance and ecological implications of microplastic debris in the North Pacific Subtropical Gyre A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Oceanography by Miriam Chanita Goldstein Committee in charge: Professor Mark D. Ohman, Chair Professor Lihini I. Aluwihare Professor Brian Goldfarb Professor Michael R. Landry Professor James J. Leichter 2012 Copyright Miriam Chanita Goldstein, 2012 All rights reserved. SIGNATURE PAGE The Dissertation of Miriam Chanita Goldstein is approved, and it is acceptable in quality and form for publication on microfilm and electronically: PAGE _____________________________________________________________________ _____________________________________________________________________ _____________________________________________________________________ _____________________________________________________________________ _____________________________________________________________________ Chair University of California, San Diego 2012 iii DEDICATION For my mother, who took me to the tidepools and didn’t mind my pet earthworms.