Annual Report of the National Nanotechnology Infrastructure Network
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Course in Micro and Nanoscale Mechanics
Session 1168 A Course in Micro- and Nanoscale Mechanics Wendy C. Crone, Robert W. Carpick, Kenneth W. Lux, Buck D. Johnson Department of Engineering Physics, Engineering Mechanics Program, Department of Biomedical Engineering, Materials Research Science and Engineering Center on Nanostructured Materials and Interfaces, University of Wisconsin-Madison, Madison, WI 53706, USA Abstract At small scales, mechanics enters a new regime where the role of surfaces, interfaces, defects, material property variations, and quantum effects play more dominant roles. A new course in nanoscale mechanics for engineering students was recently taught at the University of Wisconsin - Madison. This course provided an introduction to nanoscale engineering with a direct focus on the critical role that mechanics needs to play in this developing area. The limits of continuum mechanics were presented as well as newly developed mechanics theories and experiments tailored to study and describe micro- and nano-scale phenomena. Numerous demonstrations and experiments were used throughout the course, including synthesis and fabrication techniques for creating nanostructured materials, bubble raft models to demonstrate size scale effects in thin film structures, and a laboratory project to construct a nanofilter device. A primary focus of this paper is the laboratory content of this course, which includes an integrated series of laboratory modules utilizing atomic force microscopy, self-assembled monolayer deposition, and microfluidic technology. Introduction Nanoscale science and technology are inspiring a new industrial revolution that some predict will rival the development of the automobile and the introduction of the personal computer.1 By observing and manipulating materials at the nanoscale, researchers have been able to develop new materials with novel and extreme properties. -
Chapter 6 Online Nanoeducation Resources
Chapter 6 Online Nanoeducation Resources Sidney R. Cohen, Ron Blonder, Shelley Rap, and Jack Barokas Abstract The internet has influenced all aspects of modern society, yet likely none more than education—opening new possibilities for how, where, and when we learn. Nanoscience and nanotechnology have developed over a similar time frame as the rapid growth of the internet and thus the use of the internet for nanoscience education serves as an interesting paradigm for internet-enabled education in general. In this chapter we give an overview of use of internet in nanoeducation, first in terms of available resources, then by describing the technological, philo- sophical, and pedagogical approaches. In order to illustrate the concepts, we describe as example a for-credit nanoscience curriculum which the authors devel- oped recently as part of an international team. 6.1 Introduction and Background The nature and emphasis of education in formal pedagogical frameworks as well as informal learning has been irreversibly impacted by the world-wide web and other rapidly changing technologies. Online resources have become a major source of information and knowledge, replacing texts and face-to-face (F2F) traditional courses. In the past decade, complete course materials have been made public, ranging from uploaded lecture notes to full video recorded class presentations. Various degrees of interactivity have been implemented in the different formats [1]. Whether it is medical assays, materials, or devices, nanotechnology has firmly rooted itself in our modern lives. In order to meet the growing need for scientists, engineers, and technicians to service and further develop this trend, the educational system must provide suitable training [2]. -
Abstract Book
Plenary Lecture 1 Nanotechnology Path to Sustainable Society Mihail Roco (National Science Foundation and National Nanotechnology Initiative) Abstract: Nanoscale science and engineering supports a foundational technology with implications on sustainability of economy, environment and overall societal development. Special challenges are balanced, equitable and safe affirmation of the technology. By establishing controlled synthesis and processing of matter at the nanoscale, nanotechnology would require fewer amounts of materials, water, and energy; and with the high degree of precision in nanomanufacturing we are generating less pollution for the same functionality. This presentation will focus on evolution of priorities since 2000. The long-view of nanotechnology development has three stages, each dominated by a different focus: phenomenological basics and synthesis of nanocomponents (2000-2010), nanosystem integration by design for fundamentally new products (2010-2020), and creation of new technology platforms based on new nanosystem architectures (2020-2030)(www.wtec.org/nano2/). Such development raises significant sustainability opportunities and challenges. Nanoscale science and engineering is expected to converge with biotechnology, information technology, cognitive technologies and other knowledge and technology domains resulting in an increase of the complexity and uncertainty of the secondary effects (“Converging Knowledge, Technology and Society: Beyond Nano-Bio-Info-Cognitive Technologies”, Springer 2013, www.wtec.org/NBIC2-Report/). -
Nanotechnology in New South Wales
LEGISLATIVE COUNCIL Standing Committee on State Development Nanotechnology in New South Wales Ordered to be printed 29 October 2008 Report 33 - October 2008 LEGISLATIVE COUNCIL Nanotechnology in New South Wales New South Wales Parliamentary Library cataloguing-in-publication data: New South Wales. Parliament. Legislative Council. Standing Committee on State Development. Nanotechnology in NSW : [report] / Standing Committee on State Development. [Sydney, N.S.W.] : the Committee, 2008. – 180 p. ; 30 cm. (Report / Standing Committee on State Development ; no.33) Chair: Tony Catanzariti, MLC. “October 2008”. ISBN 9781920788209) 1. Nanotechnology—New South Wales. I. Title II. Title: Nanotechnology in New South Wales. III. Catanzariti, Tony. IV. New South Wales. Parliament. Standing Committee on State Development. Report ; no. 33 620.5 (DDC22) ii Report 33 - October 2008 STANDING COMMITTEE ON STATE DEVELOPMENT How to contact the Committee Members of the Standing Committee on State Development can be contacted through the Committee Secretariat. Written correspondence and enquiries should be directed to: The Director Standing Committee on State Development Legislative Council Parliament House, Macquarie Street Sydney New South Wales 2000 Internet www.parliament.nsw.gov.au Email [email protected] Telephone 02 9230 3504 Facsimile 02 9230 2981 Report 33 - October 2008 iii LEGISLATIVE COUNCIL Nanotechnology in New South Wales Terms of reference 1. That the Standing Committee on State Development inquire into and report on nanotechnology in New South Wales, in particular: a. current and future applications of nanotechnology for New South Wales industry and the New South Wales community b. the health, safety and environmental risks and benefits of nanotechnology c. -
Annual Report 2007
Annual Report 2007 ANNUAL REPORT 2007 MISSION STATEMENT AND OBJECTIVES ............................................................................. 3 Mission Statement....................................................................................................................... 3 Year 3 in Review ........................................................................................................................ 4 Structure and Management ......................................................................................................... 5 ACTIVITIES UNDERTAKEN BY ARCNN................................................................................. 9 DISTINGUISHED LECTURER TOURS ................................................................................ 11 Prof Jacob Israelachvili........................................................................................................ 11 Prof E.G. Wang.................................................................................................................... 12 Prof Selim Ünlü ................................................................................................................... 13 Dr H C Liu ........................................................................................................................... 15 SPECIAL LECTURES ............................................................................................................. 16 Prof Hiroaki Misawa........................................................................................................... -
Annual 2016-2017
ANNUAL 2016-2017 REPORT UCSB MARINE SCIENCE INSTITUTE | UC SANTA BARBARA Table of Contents Director’s Statement 3 Organizational Charts 5 Administrative Staff 6 Centers and Units 7 Other Projects & Activities 8 Seminars, Workshops, Conferences, and Meetings 9 Coastal Research Center 11 Marine Biotechnology Center 13 Ocean and Coastal Policy Center 20 UC Natural Reserve System 21 Analytical Laboratory 23 Education and Outreach 24 Awards Administered 25 Awards 26 Research Summaries 36 Space 129 Statistical Summary 135 Research Support Summary 136 Statistical Summary 2015-2016 138 Five-Year Research Support Summary 140 Funding Agencies 143 MSI Advisory Committee, 145 Administrative & Technical Staff Principal Investigators 148 2 DIRECTor’s STATEMENT 3 Director’s Statement As we move towards MSI’s 50th anniversary in 2019 the Marine Science Institute our scientists continue on a trajectory of engaging in cutting edge research and of solving pressing problems in ocean science. Our research portfolio continues to diversify with an ever growing set of funders representing a very large array of government agencies, private industry, non-profit foundations and individuals. Discoveries by MSI researchers are revealing wondrous new aspects of ocean systems from new insights into the ecology of coral reefs to the effects of ocean acidification. This new knowledge continues to improve our basic understanding of the seas and the wide range of services that they provide to society. I am proud of the contribution that our scientist make to society’s knowledge as these discoveries continually teach us how to be better stewards of the ocean realm. While ocean discovery is key to our mission, MSI researchers also act on this knowledge to solve pressing issues associated with the constructive use of ocean resources. -
Annual Report Marinemarine Science Science Institute Institute |• UC UC Santa Santa Barbara Barbara 2013 2014
ANNUAL REPORT MarineMarine Science Science Institute Institute |• UC UC Santa Santa Barbara Barbara 2013 2014 ANNUAL REPORT | 2013-2014 1 ANNUAL REPORT | 2013-2014 Table of Contents Director’s Statement 3 Organizational Charts 5 Administrative Staff 6 Centers and Units 7 Other Projects and Activities 8 Seminars, Workshops, Conferences, and Meetings 9 Coastal Research Center 17 EcoInformatics Center 19 Marine Biotechnology Center 21 National Center for Ecological Analysis and Synthesis 23 Ocean and Coastal Policy Center 25 UC Natural Reserve System 26 Analytical Laboratory 28 REEF/Outreach 29 Awards Administered 30 Awards 31 Research Summaries 39 Space 142 Statistical Summary 148 Research Support Summary 149 Statistical Summary 2013-2014 151 Five-Year Research Support Summary 153 Funding Agencies 156 MSI Advisory Committee, 158 Administrative and Technical Staff Principal Investigators 161 2 ANNUAL REPORT | 2013-2014 Director’s Statement 3 ANNUAL REPORT | 2013-2014 Director’s Statement This year marks the 10th anniversary of the opening of the Marine Science Institute’s Marine Science Research Building, a state-of-the-art facility located on the bluff overlooking the Pacific Ocean on the eastern edge of the University of California, Santa Barbara’s campus. It is an inspiring facility and location, and it has taken the hard work of many individuals to make it a reality. At UCSB in the 1980’s and 1990’s, Marine Science facilities could be described as dispersed, inadequate, and not up to the standards of a world class research institution. Long-standing efforts to get a facility approved and built had met with no success. However, things began to change with the identification of a State of California program that provided a financing mechanism for research facilities dedicated to long-term scientific activities. -
ANNUAL REPORT Marine Science Institute UC SANTA BARBARA Table of Contents
2018–2019 ANNUAL REPORT Marine Science Institute UC SANTA BARBARA Table of Contents 3 Mission Statement 4 From the Director Overview 5 Executive Summary 7 10 Organizational Charts Administrative Staff 11 Centers and Units 12 13 MSI Advisory Committee, Administrative & Technical Staff 16 Statistical Summary Research Support Summary 17 Statistical Summary 2018–2019 19 Five-Year Research Support 21 Summary Funding Agencies 22 24 Principal Investigators 30 Postdoctoral Researchers, Graduate and Undergraduate Students 33 Space 39 Other Projects & Activities Coastal Research Center 40 Marine Biotechnology Center 42 Ocean & Coastal Policy Center 52 Analytical Laboratory 54 Education and Outreach 55 56 Awards Administered Awards 57 Research Summaries 66 2 Mission Statement The Marine Science Institute at the University of California, Santa Barbara, is committed to fostering innovative and significant research, to promoting effective stewardship, and to sharing exciting discoveries of the world’s oceans. 3 From the Director 4 Overview The Marine Science Institute (MSI) provides an intellectual and physical environment at UCSB that fosters world-renowned marine research. The institute brings together marine researchers from across the UCSB campus and supports multi-investigator collaborative projects and individual research efforts. The scientific membership at MSI consists of both ladder faculty and professional researchers. In 2018-2019 MSI membership included 25 ladder faculty and 32 professional researchers with 228 additional participants distributed across postdoctoral scholars, graduate students and undergraduates. Beyond research, MSI’s Research Experience and Education Facility (REEF) educates UCSB students and the general public about MSI science. MSI is housed in the marine science research building (MSRB) on the UCSB campus. -
Evaluating Tradeoffs Among Ecosystem Services to Inform Marine Spatial Planning
Evaluating tradeoffs among ecosystem services to inform marine spatial planning Lester, S. E., Costello, C., Halpern, B. S., Gaines, S. D., White, C., & Barth, J. A. (2013). Evaluating tradeoffs among ecosystem services to inform marine spatial planning. Marine Policy, 38, 80-89. doi:10.1016/j.marpol.2012.05.022 10.1016/j.marpol.2012.05.022 Elsevier Accepted Manuscript http://cdss.library.oregonstate.edu/sa-termsofuse 1 Title: Evaluating tradeoffs among ecosystem services to inform marine spatial planning 2 3 Sarah E. Lestera, Christopher Costellob, Benjamin S. Halpernc, Steven D. Gainesd, Crow Whitee, 4 John A. Barthf 5 6 a Marine Science Institute and Bren School of Environmental Science & Management, 7 University of California, Santa Barbara, CA 93106-6150, USA. [email protected] 8 b Bren School of Environmental Science & Management, 4410 Bren Hall, University of 9 California, Santa Barbara, CA 93106, USA. [email protected] 10 c National Center for Ecological Analysis and Synthesis, 735 State Street, Suite 300, Santa 11 Barbara, CA 93101, USA. [email protected] 12 d Bren School of Environmental Science & Management, 4410 Bren Hall, University of 13 California, Santa Barbara, CA 93106, USA. [email protected] 14 e Bren School of Environmental Science & Management, 4410 Bren Hall, University of 15 California, Santa Barbara, CA 93106, USA. [email protected] 16 f College of Oceanic & Atmospheric Sciences, Oregon State University, 104 COAS Admin Bldg, 17 Corvallis, OR 97331, USA. [email protected] 18 19 Corresponding author: 20 Sarah E. Lester 21 Marine Science Institute / Bren School of Environmental Science & Management 22 University of California 23 Santa Barbara, CA 93106-6150, USA 24 Ph: 805.893.5175 25 Fax: 805.893.8062 26 Email: [email protected] 27 28 Running Title: Ecosystem service tradeoffs 1 Ecosystem service tradeoffs 1 Abstract 2 A central challenge for natural resource management is developing rigorous yet practical 3 approaches for balancing the costs and benefits of diverse human uses of ecosystems. -
Enriching the Health of Physics Education
Enriching the Health of Physics Education 2008 AAPT Winter Welcome to Baltimore .............. 3 Meeting Acknowledgments .................... 4 Meeting Information ................. 6 Baltimore, MD Contact Information ................. 6 Bus Schedule ............................ 7 About Baltimore ....................... 8 Special Events ......................... 10 January 19–23 Exhibitors ............................... 12 Baltimore Marriott Award Winners & Plenaries ..... 16 Committee Meetings .............. 23 Waterfront Hotel Meeting at a Glance ............... 24 Workshop Abstracts ................ 28 Commercial Workshops .......... 34 SUNDAY Poster Sessions ......... 38 MONDAY Sessions ................. .40 TUESDAY Sessions .................. 66 WEDNESDAY Sessions ............. 84 Index of Participants ................ 90 Index of Advertisers ................ 92 Donors .................................... 93 Maps ...................................... 94 Future Meetings ...................... 96 American Association of Physics Teachers One Physics Ellipse College Park, MD USA 20740-3845 301-209-3300, fax: 301-209-0845 [email protected], www.aapt.org InterActions Makes Its Official Debut at the 2008 Winter Meeting What Is InterActions? – The people, places, programs and policies defining physics teaching and learning – A glimpse Inside the physics education community openforum Synopsis iAmonitor QandA Focal Point ilearn Insight causeeffect endpoint Inside InterActions – human interest in physics Welcome to Baltimore Welcome to the -
(ATMAE) Accreditation Report for Industrial Technology
2019 Self-Study Accreditation Report for the Bachelor of Science in Industrial Technology at Prepared by: Department of Technology March 14, 2019 2 Table of Contents I. The On-Site Visit ........................................................................................................ 6 A. Date of Visit ...................................................................................................... 6 B. Visiting Team Members ................................................................................... 6 C. Proposed On-Site Visit Agenda ....................................................................... 6 D. Current Accreditation Status of Program ......................................................... 8 II. General Information ................................................................................................. 8 A. The Institution ................................................................................................... 8 1. Name and Address. .................................................................................... 8 2. Number of Students Enrolled. ..................................................................... 8 a. Total. ....................................................................................................... 8 b. Full-time. ................................................................................................. 8 c. Part-time. ................................................................................................. 8 d. Full-time Equivalent. -
A University-Community College Partnership Model for Meaningful
CENTER FOR NANOTECHNOLOGY EDUCATION AND UTILIZATION A University‐Community College Partnership Model for Meaningful Advanced Manufacturing Workforce Education Osama O. Awadelkarim Professor of Engineering Science and Mechanics Associate Director, Center for Nanotechnology Education and Utilization & the NSF National Nanotechnology Applications and Career Knowledge (NACK) Network CENTER FOR NANOTECHNOLOGY EDUCATION AND UTILIZATION Presentation Outline 1) Historical 2) CNEU/NACK Approach 3) Resource Sharing and the Pennsylvania Nanofabrication Manufacturing Technology Partnership 4) NACK Partnership and How it Works 5) What the Community Colleges Find Helpful 6) What the Community Colleges Utilize 7) Advantages to Research University in Partnering with Local Community Colleges, Colleges, and Small Universities 8) How to Implement Model for Other Advanced Manufacturing Fields 9) Conclusion Historical • Penn State’s Center for Nanotechnology Education and Utilization (CNEU) established in 1998. Focused on education across all aspects of micro‐ and nanofabrication • With PA state support PA Nanofabrication Manufacturing Technology (PA NMT) Partnership for nanofabrication workforce development established at CNEU in 1998 • National Science Foundation (NSF) Advanced Technology Education (ATE) Regional Center for nanotechnology workforce development at CNEU from 2001 to 2008 (National role since 2005) • NSF ATE National Nanotechnology Applications and Career Knowledge (NACK) Center created at CNEU in 2008 and funded through 2012 • Renewed by