A Profile of Nanotechnology Degree Programs in the United States

Total Page:16

File Type:pdf, Size:1020Kb

A Profile of Nanotechnology Degree Programs in the United States CNS-ASU Report #R09-0001 Heldrich Center’s Education Report May 2009 A Profile of Nanotechnology Degree Programs in the United States Carl Van Horn Rutgers, the State University of New Jersey Jennifer Cleary Rutgers, the State University of New Jersey Leela Hebbar Rutgers, the State University of New Jersey and Aaron Fichtner Rutgers, the State University of New Jersey John J. Heldrich Center for Workforce Development Edward J. Bloustein School for Planning and Public Policy Rutgers, The State University of New Jersey The Center for Nanotechnology in Society Arizona State University This research was conducted as part of the Center for Nanotechnology in Society at Arizona State University (CNS‐ASU). CNS‐ASU research, education and outreach activities are supported by the National Science Foundation under cooperative agreement #0531194. Education Report May 2009 CNS‐ASU Report #R09‐0001 This report is the third in a three-part workforce assessment study series that explores the emerging effects of nanotechnology on the demand for, and educational preparation of, skilled workers. The series was designed to build policy-relevant knowledge of the labor market dynamics of nanotechnology-enabled industries and to foster better alignment of nanotechnology education with the skill needs of employers. The first report, The Workforce Needs of Companies Engaged in Nanotechnology Research in Arizona, used interviews, focus groups, and an on-line questionnaire to profile a single labor market - identifying the skill needs of high-tech companies in Arizona and the types of nanotechnology educational programs being developed at post-secondary institutions in the region. In the second report, The Workforce Needs of Biotechnology and Pharmaceutical Companies in New Jersey That Use Nanotechnology, researchers used interviews of representatives from pharmaceutical and biotechnology companies to understand nanotechnology employer needs in New Jersey. This third report examines the emerging development of nanotechnology degree programs. 1 Education Report May 2009 CNS‐ASU Report #R09‐0001 REPORT SUMMARY Research suggests that new degree programs are one way that postsecondary institutions respond to perceived labor shortages in areas of emerging technology (Stephan et al., 2007). This study offers a “snapshot” profile of nanotechnology degree programs in the United States. While not the most common, or even necessarily the most effective form of nanotechnology postsecondary education, nanotechnology degree programs represent institution‐level change, presumably to address new knowledge and employment needs posed by nanotechnology. Nanotechnology degree programs are defined here as associate’s, bachelor’s, master’s and doctoral degrees that use the term “nano” in the formal degree title. To ensure the most complete coverage possible, researchers did not include certificates, minors, tracks, or concentrations in nanotechnology. Researchers used structured Internet searches, expert recommendations, and existing degree program lists, several of which are funded by the National Science Foundation, to identify degree programs (See Figure 1 below). The study also involved the analysis of institutional data, 15 interviews with faculty associated with active degree programs, and reviews of program‐related Websites. Researchers also conducted a total of 14 interviews with faculty from inactive or ineligible programs during the course of the study to better understand the obstacles to establishing degree programs in nanotechnology. Figure 1. Comparison of nanotechnology degree programs, by list source # Nanotechnology Nanotechnology Degree Program Lists Degree Programs* This Research 49 The Penn State University Center for Nanotechnology Education and Utilization 33 National Nanotechnology Initiative (NNI) 14 National Center for Learning and Teaching Nanoscale Science and Engineering (NCLT) 13 Small Times Survey 2007 9 * Only programs meeting the definition established for this study were counted above. 2 Education Report May 2009 CNS‐ASU Report #R09‐0001 FINDINGS Seven findings emerged from the study, as follows: Finding 1: The total number of formal nanotechnology degree programs in the United States is small, with associate’s degrees being the most prevalent, followed by doctoral degrees. Researchers identified 49 degree programs with the term “nano” in the degree title at 38 postsecondary institutions in the U.S. Thirty‐two (65%) of these programs are associate’s degree programs, more than half of which (18) are in Pennsylvania. One program exists at the bachelor’s level, eight at the master’s level, and eight at the doctoral level. Finding 2: Nanotechnology degree programs are not concentrated in areas of high nanotechnology publication activity, but rather, clustered in response to federal and state investments. While the majority of graduate‐level degree programs are housed at research institutions, researchers found no correlation between the location of nanotechnology degree programs and metro areas with high levels of nanotechnology publication and patent activity, which are important indicators of innovation. Eleven of the sixteen graduate programs identified were offered by institutions that perform high or very high levels of research according to the Carnegie Classification system.1 Only 2 of the 38 institutions, however, were in one of the top 10 “nanodistricts”, metropolitan areas with the highest rates of nanotechnology publication and patent activity (Shapira and Youtie, 2008). Instead, programs are clustered in areas where state and/or federal investments promoted their growth. In the cases of Pennsylvania and New York, needs of current employers and economic development goals drove the creation of statewide nanotechnology initiatives, which in turn supported the development of degree programs. In the Midwest, the National Science Foundation supported the development of NANO‐LINK, a set of six associate’s degree programs linked across five states. 1 The Carnegie classification system is a coding system developed by the Carnegie Commission on Higher Education to assist researchers and policy analysts to categorize schools by key characteristics. For more information see: http://www.carnegiefoundation.org/classifications/ 3 Education Report May 2009 CNS‐ASU Report #R09‐0001 Finding 3: Workforce and economic development are key motivators for the creation of associate’s degree programs in nanotechnology, while reasons for creating other types of degrees are more diverse. All ten associate’s degree program faculty interviewed cited workforce development and business attraction as key reasons for creating their programs. For example, the Pennsylvania Nanofabrication Manufacturing Technology Network, which links 18 nanotechnology degrees across 16 institutions to a capstone semester at Pennsylvania State University, began as a result of employers asking state workforce and economic development officials for help in training nanotechnology technicians. According to administrators, the program is also designed to attract more nanotechnology-enabled manufacturers to the state. At the bachelor’s level and above, motivations for creating degree programs were more variable. Some, such as The College of Nanoscale Science and Engineering at the University at Albany, State University of New York, were created as part of state or local initiatives to support and grow nanotechnology businesses. However, other programs cited a desire to attract more students and faculty interest in formally linking nanotechnology education across disciplines. Finding 4: Employer involvement in degree programs is inconsistent. Employer involvement in nanotechnology degree programs varies across programs, even among those with a workforce development mission. While all associate’s degree programs contacted reported some level of employer involvement, the degree and type of involvement varied from initial consultation about program design, to ongoing involvement in curriculum development, internships, funding assistance and job placement. At higher levels of education, where motivations for program development are more variable, employer involvement of any kind was less common. The major exception to this is at the College of Nanoscale Science and Engineering in New York, where six graduate degree programs involve high levels of industry partnership. Finding 5: A shortage of qualified faculty, limited consensus on learning needs, and other factors contribute to varied approaches to the interdisciplinary aspects of nanotechnology education in degree programs. All programs contacted use pre‐existing courses from different disciplines – an approach known as “synthetic interdisciplinarity” (Lattucca 2001). Several, however, involved faculty from multiple disciplines to create new course content 4 Education Report May 2009 CNS‐ASU Report #R09‐0001 that emphasized the common elements linking various disciplines, known as a “transdisciplinary” approach (Lattucca 2001). Especially at the associate’s level, the lack of transdisciplinary courses was linked to difficulties finding qualified faculty. This issue is often addressed through partnerships with four‐year universities, where students have access to more transdisciplinary coursework, as well as advanced lab equipment. Program purpose, faculty perceptions of needed knowledge, and structural barriers, such as faculty reward structures and accreditation requirements also appear to contribute to differences in program approaches
Recommended publications
  • A Course in Micro and Nanoscale Mechanics
    Session 1168 A Course in Micro- and Nanoscale Mechanics Wendy C. Crone, Robert W. Carpick, Kenneth W. Lux, Buck D. Johnson Department of Engineering Physics, Engineering Mechanics Program, Department of Biomedical Engineering, Materials Research Science and Engineering Center on Nanostructured Materials and Interfaces, University of Wisconsin-Madison, Madison, WI 53706, USA Abstract At small scales, mechanics enters a new regime where the role of surfaces, interfaces, defects, material property variations, and quantum effects play more dominant roles. A new course in nanoscale mechanics for engineering students was recently taught at the University of Wisconsin - Madison. This course provided an introduction to nanoscale engineering with a direct focus on the critical role that mechanics needs to play in this developing area. The limits of continuum mechanics were presented as well as newly developed mechanics theories and experiments tailored to study and describe micro- and nano-scale phenomena. Numerous demonstrations and experiments were used throughout the course, including synthesis and fabrication techniques for creating nanostructured materials, bubble raft models to demonstrate size scale effects in thin film structures, and a laboratory project to construct a nanofilter device. A primary focus of this paper is the laboratory content of this course, which includes an integrated series of laboratory modules utilizing atomic force microscopy, self-assembled monolayer deposition, and microfluidic technology. Introduction Nanoscale science and technology are inspiring a new industrial revolution that some predict will rival the development of the automobile and the introduction of the personal computer.1 By observing and manipulating materials at the nanoscale, researchers have been able to develop new materials with novel and extreme properties.
    [Show full text]
  • Chapter 6 Online Nanoeducation Resources
    Chapter 6 Online Nanoeducation Resources Sidney R. Cohen, Ron Blonder, Shelley Rap, and Jack Barokas Abstract The internet has influenced all aspects of modern society, yet likely none more than education—opening new possibilities for how, where, and when we learn. Nanoscience and nanotechnology have developed over a similar time frame as the rapid growth of the internet and thus the use of the internet for nanoscience education serves as an interesting paradigm for internet-enabled education in general. In this chapter we give an overview of use of internet in nanoeducation, first in terms of available resources, then by describing the technological, philo- sophical, and pedagogical approaches. In order to illustrate the concepts, we describe as example a for-credit nanoscience curriculum which the authors devel- oped recently as part of an international team. 6.1 Introduction and Background The nature and emphasis of education in formal pedagogical frameworks as well as informal learning has been irreversibly impacted by the world-wide web and other rapidly changing technologies. Online resources have become a major source of information and knowledge, replacing texts and face-to-face (F2F) traditional courses. In the past decade, complete course materials have been made public, ranging from uploaded lecture notes to full video recorded class presentations. Various degrees of interactivity have been implemented in the different formats [1]. Whether it is medical assays, materials, or devices, nanotechnology has firmly rooted itself in our modern lives. In order to meet the growing need for scientists, engineers, and technicians to service and further develop this trend, the educational system must provide suitable training [2].
    [Show full text]
  • Enhancing Undergraduate Students' Learning and Research
    Paper ID #13595 Enhancing Undergraduate Students’ Learning and Research Experiences through Hands on Experiments on Bio-nanoengineering Dr. Narayan Bhattarai, North Carolina A&T State University Narayan Bhattarai is Assistant Professor of Bioengineering, Department of Chemical, Biological and Bioengineering, North Carolina A&T State University (NCAT). Dr. Bhattarai teaches biomaterials and nanotechnology to undergraduate and graduate students. He is principal investigator of NUE Enhancing Undergraduate Students’ Learning Experiences on Bio-Nanoengineering project at NCAT. Mrs. Courtney Lambeth, North Carolina A&T State University Mrs. Lambeth serves as the Educational Assessment and Administrative Coordinator for the Engineering Research Center for Revolutionizing Metallic Biomaterials at North Carolina Agricultural and Technical State University in Greensboro, North Carolina. Dr. Dhananjay Kumar, North Carolina A&T State University Dr. Cindy Waters, North Carolina A&T State University Her research team is skilled matching these newer manufacturing techniques to distinct material choices and the unique materials combination for specific applications. She is also renowned for her work in the Engineering Education realm working with faculty motivation for change and re-design of Material Science courses for more active pedagogies Dr. Devdas M. Pai, North Carolina A&T State University Devdas Pai is a Professor of Mechanical Engineering and Director of Education and Outreach of the Engineering Research Center for Revolutionizing Metallic Biomaterials at North Carolina A&T State University. His teaching and research is in the areas of manufacturing processes and materials. Dr. Matthew B. A. McCullough, North Carolina A&T State University An assistant professor in the department of Chemical, Biological, and Bioengineering, he has his B.S.
    [Show full text]
  • Introducing Nanoengineering and Nanotechnology to the First Year Students Through an Interactive Seminar Course
    Introducing nanoengineering and nanotechnology to the first year students through an interactive seminar course Hassan Raza1, Tehseen Z. Raza2 1 Department of Electrical and Computer Engineering, University of Iowa, Iowa City, Iowa 52242, USA [email protected] 2 Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa 52242, USA [email protected] Abstract: We report a first year seminar course on nanoengineering, which provides a unique opportunity to get exposed to the bottom-up approach and novel nanotechnology applications in an informal small class setting early in the undergraduate engineering education. Our objective is not only to introduce the fundamentals and applications of nanoengineering but also the issues related to ethics, environmental and societal impact of nanotechnology used in engineering. To make the course more interactive, laboratory tours for microfabrication facility, microscopy facility, and nanoscale laboratory at the University of Iowa are included, which inculcate the practical feel of the technology. The course also involves active student participation through weekly student presentations, highlighting topics of interest to this field, with the incentive of “nano is everywhere!” Final term papers submitted by the students involve a rigorous technology analysis through various perspectives. Furthermore, a student based peer review process is developed which helps them to improve technical writing skills, as well as address the ethical issues of academic honesty while reviewing and getting introduced to a new aspect of the area presented by their colleagues. Based on the chosen paper topics and student ratings, the student seemed motivated to learn about the novel area introduced to them through theoretical, computational and experimental aspects of the bottom-up approach.
    [Show full text]
  • Abstract Book
    Plenary Lecture 1 Nanotechnology Path to Sustainable Society Mihail Roco (National Science Foundation and National Nanotechnology Initiative) Abstract: Nanoscale science and engineering supports a foundational technology with implications on sustainability of economy, environment and overall societal development. Special challenges are balanced, equitable and safe affirmation of the technology. By establishing controlled synthesis and processing of matter at the nanoscale, nanotechnology would require fewer amounts of materials, water, and energy; and with the high degree of precision in nanomanufacturing we are generating less pollution for the same functionality. This presentation will focus on evolution of priorities since 2000. The long-view of nanotechnology development has three stages, each dominated by a different focus: phenomenological basics and synthesis of nanocomponents (2000-2010), nanosystem integration by design for fundamentally new products (2010-2020), and creation of new technology platforms based on new nanosystem architectures (2020-2030)(www.wtec.org/nano2/). Such development raises significant sustainability opportunities and challenges. Nanoscale science and engineering is expected to converge with biotechnology, information technology, cognitive technologies and other knowledge and technology domains resulting in an increase of the complexity and uncertainty of the secondary effects (“Converging Knowledge, Technology and Society: Beyond Nano-Bio-Info-Cognitive Technologies”, Springer 2013, www.wtec.org/NBIC2-Report/).
    [Show full text]
  • Nanotechnology in New South Wales
    LEGISLATIVE COUNCIL Standing Committee on State Development Nanotechnology in New South Wales Ordered to be printed 29 October 2008 Report 33 - October 2008 LEGISLATIVE COUNCIL Nanotechnology in New South Wales New South Wales Parliamentary Library cataloguing-in-publication data: New South Wales. Parliament. Legislative Council. Standing Committee on State Development. Nanotechnology in NSW : [report] / Standing Committee on State Development. [Sydney, N.S.W.] : the Committee, 2008. – 180 p. ; 30 cm. (Report / Standing Committee on State Development ; no.33) Chair: Tony Catanzariti, MLC. “October 2008”. ISBN 9781920788209) 1. Nanotechnology—New South Wales. I. Title II. Title: Nanotechnology in New South Wales. III. Catanzariti, Tony. IV. New South Wales. Parliament. Standing Committee on State Development. Report ; no. 33 620.5 (DDC22) ii Report 33 - October 2008 STANDING COMMITTEE ON STATE DEVELOPMENT How to contact the Committee Members of the Standing Committee on State Development can be contacted through the Committee Secretariat. Written correspondence and enquiries should be directed to: The Director Standing Committee on State Development Legislative Council Parliament House, Macquarie Street Sydney New South Wales 2000 Internet www.parliament.nsw.gov.au Email [email protected] Telephone 02 9230 3504 Facsimile 02 9230 2981 Report 33 - October 2008 iii LEGISLATIVE COUNCIL Nanotechnology in New South Wales Terms of reference 1. That the Standing Committee on State Development inquire into and report on nanotechnology in New South Wales, in particular: a. current and future applications of nanotechnology for New South Wales industry and the New South Wales community b. the health, safety and environmental risks and benefits of nanotechnology c.
    [Show full text]
  • College of Engineering, Architecture and Technology
    113 2011-2012 UNIVERSITY CATALOG College of Engineering, Architecture and Technology College Administration with an option in environmental; Computer Engineering; Electrical Khaled A.M. Gasem, PhD, Bartlett Chair and Interim Dean Engineering; Industrial Engineering and Management; and Mechanical David R. Thompson, PhD, Associate Dean for Instruction and Outreach Engineering with an option in premedical. D. Alan Tree, PhD, Associate Dean for Research Master of Science in Biosystems Engineering, Chemical Engineering, Civil Kevin Moore, MBA, Director of Student Academic Services Engineering, Electrical Engineering with options in Control Systems 201 Advanced Technology Research Center and Optics and Photonics, Engineering and Technology Management, 405-744-5140 Environmental Engineering, Industrial Engineering and Management, and www.ceat.okstate.edu Mechanical and Aerospace Engineering. Doctor of Philosophy in Biosystems Engineering, Chemical Engineering, The mission of the College of Engineering, Architecture and Technology is Civil Engineering, Electrical Engineering, Industrial Engineering and to advance the quality of human life through strategically selected programs Management, and Mechanical and Aerospace Engineering. of instruction, research and public service, incorporating social, economic School of Architecture: and environmental dimensions and emphasizing advanced level programs in Bachelor of Architecture, Bachelor of Architectural Engineering. engineering that are internationally recognized for excellence. Division of Engineering
    [Show full text]
  • Engineering and Engineering Technology
    Engineering and Engineering Technology Career Information Definition according to the Accreditation Board for Engineering and Technology (ABET): Engineering is the profession in which knowledge of the mathematical and natural sciences gained by study, experience, and practice is applied with judgment to develop ways to utilize economically the materials and forces of nature for the benefit of mankind. Engineering Technology is the part of the technological field that requires the application of scientific and engineering knowledge and methods combined with technical skills in support of engineering activities; it lies in the occupational spectrum between the craftsman and the engineer at the end of the spectrum closest to the engineer. Difference between Engineering Technology and Engineering Technical engineering projects involve research, complex analysis/design, development, manufacturing, test/evaluation, production, operation and distribution/sales of a finished and successful product. Engineers are mostly involved in the initial phase, whereas engineering technologists are mostly involved in the final phases. Their roles overlap in the development, manufacturing and test/evaluation of a product. Therefore, Engineering Technology is all about applying engineering principles to get the job done successfully (Applications Engineering). Engineers are the scientists within the team with in-depth math/science knowledge. Engineering technologists work as technical members of the engineering team with math/science background. Cal Poly
    [Show full text]
  • Nanoengineering Is Thriving
    TINY SOLUTIONS FOR BIG PROBLEMS At U of T, nanoengineering is thriving. Our unique facilities RESEARCH IN FOCUS: enable our partners in industry to build the 21st century nanotechnologies needed to provide faster, greener and more resilient products. Whether you are a sector-leading company looking for new innovations or a nimble startup aiming to bridge the gap between concept and commercialization, NANOENGINEERING U of T Engineering has what you need to take your project to the next level. We have a strong track record of success, entrepreneurship, patents, inventions and industry solutions. HERE’S WHAT PARTNERING WITH U OF T ENGINEERING DELIVERS: — An inside track to breakthrough technologies — Customized solutions to industrially relevant problems — An extra spark of innovation to your company CHALLENGE: — Collaboration with U of T Engineering’s world-leading researchers, including top How can we make smartphones smarter, graduate students, undergraduate students and alumni solar energy less expensive and medical conditions easier to diagnose? RESEARCH SOLUTION: IMPACT Leverage the power of nanoengineering. EDUCATION PARTNERSHIPS OFFICE OF THE VICE-DEAN, RESEARCH FACULTY OF APPLIED SCIENCE & ENGINEERING UNIVERSITY OF TORONTO 416-946-3038 | [email protected] uoft.me/collaboration PROFESSOR GLENN HIBBARD NANOARCHITECTURE FOR STRONGER MATERIALS THE POWER OF PARTNERSHIP A bridge is mostly empty space; it is the unique shape of the trusses and struts that provide its strength. Professor Glenn Hibbard and his team are applying that same principle on the nano scale, designing intricate 3D One nanometre is to the thickness of a human hair as Department of Materials Science & Engineering and structures that lead to lighter, stronger materials for use in the aerospace one inch is to a mile.
    [Show full text]
  • Annual Report 2007
    Annual Report 2007 ANNUAL REPORT 2007 MISSION STATEMENT AND OBJECTIVES ............................................................................. 3 Mission Statement....................................................................................................................... 3 Year 3 in Review ........................................................................................................................ 4 Structure and Management ......................................................................................................... 5 ACTIVITIES UNDERTAKEN BY ARCNN................................................................................. 9 DISTINGUISHED LECTURER TOURS ................................................................................ 11 Prof Jacob Israelachvili........................................................................................................ 11 Prof E.G. Wang.................................................................................................................... 12 Prof Selim Ünlü ................................................................................................................... 13 Dr H C Liu ........................................................................................................................... 15 SPECIAL LECTURES ............................................................................................................. 16 Prof Hiroaki Misawa...........................................................................................................
    [Show full text]
  • Nano-Process-Technology
    Why NanoEngineering? About the program Nano-Process-Technology Nanotechnology in general is the science of The interdisciplinary Master’s program in The profile Nano-Process-Technology prepares realization and use of structures with at least one NanoEngineering addresses motivated students the students to meet challenges in nanoparticle dimension smaller than 100 nm. Such structures with a good first degree in electrical or mechanical and nanostructure production and process enable new and advanced material and device engineering, physics or chemistry, with an techno-logy. Main courses in the curriculum are properties. In order to become a key technology emphasis on material sciences or nanotechnology. fluid dynamics, process automation, nanoparticle of the present century, nanoscience and nano- The program has a modular structure and will last formation, aerosol technology and nano technology have to advance fundamental 2 years or 4 semesters, respectively. For both crystalline materials. research in the lab and develop industrial appli- profiles the students will have the same advanced cations. For this industry needs highly specialized basics courses, e. g. advanced mathematics, NanoElectronics / and well educated engineers in the field of nano- surface science, laser technology, and micro and technology. Engineers will transform nano effects nano systems. A research project is mandatory, NanoOptoelectronics into nano products. where a small group of students work together on a Master‘s with this profile are working in the field joint topic. Depending on the chosen profile, the of optoelectronic and nanoelectronic devices. The pioneering master-program NanoEngineer- students have different main courses. The study The students gain experience in quantum theory, ing at the University Duisburg-Essen prepares will finish with a master’s thesis lasting six months.
    [Show full text]
  • Coping with the Delineation of Emerging Fields: Nanoscience and Nanotechnology As a Case Study
    Coping with the delineation of emerging fields: Nanoscience and Nanotechnology as a case study. Journal of Informetrics, forthcoming; v. December 20,2018 Teresa Muñoz-Écija, Benjamín Vargas-Quesada, Zaida Chinchilla Rodríguez* Abstract Proper field delineation plays an important role in scientometric studies, although it is a tough task. Based on an emerging and interdisciplinary field —nanoscience and nanotechnology— this paper highlights the problem of field delineation. First we review the related literature. Then, three different approaches to delineate a field of knowledge were applied at three different levels of aggregation: subject category, publication level, and journal level. Expert opinion interviews served to assess the data, and precision and recall of each approach were calculated for comparison. Our findings confirm that field delineation is a complicated issue at both the quantitative and the qualitative level, even when experts validate results. Keywords: Field delineation; Science classification; Research topics; Bibliometrics; Scientometrics Highlights: This study offers an updated literature review of NST as a delineated field. We provide an extended and unified NST search strategy suitable for two databases, Scopus and Web of Science. After formulating a conceptual framework as to how to employ different approaches described in the literature, we tried to delineate the NST field at the journal level through a seven-step procedure. Three approaches —at subject category, publication and journal levels— were adopted to explore and analyze these two databases. The results are compared, and we offer a detailed explanation of the topics related to the journals included in each level. At the publication level, we compare the potential of the micro-field classification system developed by Waltman and van Eck (2012) with the other two approaches.
    [Show full text]