Town of Longboat Key, Florida Initial Assessment to Address Sea Level Rise and Recurring Flooding

Total Page:16

File Type:pdf, Size:1020Kb

Town of Longboat Key, Florida Initial Assessment to Address Sea Level Rise and Recurring Flooding TOWN OF LONGBOAT KEY, FLORIDA INITIAL ASSESSMENT TO ADDRESS SEA LEVEL RISE AND RECURRING FLOODING Prepared for: Town of Longboat Key, Florida Prepared by: Aptim Environmental & Infrastructure, Inc. December 2018 APTIM ENVIRONMENTAL & INFRASTRUCTURE, INC. TOWN OF LONGBOAT KEY, FLORIDA INITIAL ASSESSMENT TO ADDRESS SEA LEVEL RISE AND RECURRING FLOODING EXECUTIVE SUMMARY This report represents an initial assessment of the potential for sea level rise and recurring flooding to impact the Town of Longboat Key. In this assessment, a review of historical water levels was performed to identify historical trends in sea level rise and to determine the elevations of recurring storms. A review of historical data also was performed to assess if the historical records suggested that extreme water levels had occurred in the vicinity of Longboat Key. A survey of the public was performed to assess their concerns regarding sea level rise, and recurring flooding. A public workshop was held and provided an opportunity to gather public input into this assessment. Meetings were held with key Town staff to solicit information regarding Town facilities, storm response procedures, as well as public safety response challenges. This initial assessment has led to the following preliminary conclusions: 1. Sea levels have been rising at a rate of +0.11 inches per year (+1.1 inches per decade; +0.90 feet per century). Relevant future scenarios suggest to expect a rise of between 6 and 17 inches by 2050. These rates have been, and will continue to be, manageable rates of increase. 2. The Town has been, and continues to be, vulnerable to storm surge associated with recurring storm events. Recurring storm events will result in flooding of low lying streets, adjacent lands, and some residences and commercial property that were constructed prior to the adoption of minimum flood elevations. 3. Return period analysis of measured elevation data are lower than National Flood Insurance Studies’ estimates, which may be due to the lack of recent land falling hurricanes and tropical storms in the Longboat Key area. 4. On a relative scale, the vulnerability of private and public infrastructure to storm surges (measured in feet) is much greater than the impacts solely due to sea level rise (which is measured in inches). Prudent planning for the effects of recurring storm events will address long term sea level rise due to the relative magnitudes of the vertical scales. i APTIM ENVIRONMENTAL & INFRASTRUCTURE, INC. 5. A survey of residents of the Town indicates that they seem to be most concerned about emergency response times, the temporary displacement of residents in the event of flooding, the impacts of flooded homes, the disruption of public utilities, and the overall impact of storms and sea level rise on property values. 6. Previous Town efforts have improved the resiliency of Town infrastructure. There is no backlog of immediate needs. Town administration and planning have adequately provided a framework to address the potential impacts of recurring storms. This report outlines the next steps toward the development of an adaptation plan for addressing sea level rise and recurring flooding. The report also identifies grant funding opportunities that may allow the Town to receive financial assistance with the planning and implementation efforts. ii APTIM ENVIRONMENTAL & INFRASTRUCTURE, INC. TOWN OF LONGBOAT KEY, FLORIDA INITIAL ASSESSMENT TO ADDRESS SEA LEVEL RISE AND RECURRING FLOODING TABLE OF CONTENTS EXECUTIVE SUMMARY................................................................................................................. i I. INTRODUCTION .................................................................................................................. 1 II. PROJECT FRAMEWORK ..................................................................................................... 1 III. HISTORICAL DATA AND FUTURE SCENARIOS ........................................................... 4 A. Sea Levels .................................................................................................................. 4 B. Storm Surge .............................................................................................................. 11 C. Rainfall ..................................................................................................................... 14 IV. PUBLIC OUTREACH.......................................................................................................... 16 V. WORK COMPLETED BY THE TOWN ............................................................................. 18 VI. VULNERABILITIES ........................................................................................................... 19 VII. CONCLUSIONS................................................................................................................... 21 VIII. NEXT STEPS ....................................................................................................................... 22 IX. REFERENCES ..................................................................................................................... 24 APPENDIX A: Digital Elevation Maps APPENDIX B: Historical Data and Future Scenarios APPENDIX C: Work Completed by the Town APPENDIX D: Vulnerabilities and Preliminary Considerations APPENDIX E: Funding Opportunities iii APTIM ENVIRONMENTAL & INFRASTRUCTURE, INC. TOWN OF LONGBOAT KEY, FLORIDA INITIAL ASSESSMENT TO ADDRESS SEA LEVEL RISE AND RECURRING FLOODING I. INTRODUCTION The Town of Longboat Key is subject to long-term sea level rise and recurring storm events. The Town requested that Aptim Environmental & Infrastructure, Inc. (APTIM) develop an initial assessment of high-level resiliency/sea level rise that will help guide the Town moving forward. This is the 1st phase of a multi-step comprehensive planning effort. This work effort is intended to lead the Town toward implementing a comprehensive adaptation plan to address possible impacts from sea level rise and recurring storm vulnerability. The plan is intended to fit the size and character of the Town, and be grounded in the general economic resource capabilities of the Town1. The plan will not be an all-encompassing list of future public and private projects; but rather a road map to developing long-range adaptation strategies that will maintain flood protection and provide for the resiliency of the Town. II. PROJECT FRAMEWORK To ensure the long-term resilience of Longboat Key, the Town should develop and implement a 1. INITIAL ASSESSMENT comprehensive sea level rise adaptation plan. A 2. VULNERABILITY ASSESSMENT framework to execute a comprehensive adaptation plan is summarized in Figure 1. The plan is based 3. ADAPTATION STRATEGIES on guidance provided by the Florida Adaptation Planning Guidebook (FDEP, 2018). 4. IMPLEMENTATION PLAN 1. Initial Assessment Figure 1. Phases of a Comprehensive Sea Level Rise Adaptation Plan The initial assessment, inclusive of this report, is the preliminary action that the Town is taking to facilitate a planning process going forward to address sea level rise and associated flooding events. The purpose of the initial assessment is to establish context early in the planning process to provide working knowledge of the variables at play, as well as to identify areas and priorities to focus on later in the Town’s planning process. Included in the initial assessment is engagement of the local community and relevant stakeholders to offer the opportunity to participate in the planning process and become vested in activities that directly affect them. The information gathered in the Initial Assessment also allows the Town to better guide the adaptation planning process as it unfolds. 1 In response to Hurricane Sandy in 2012, the State of New York pledged over $0.5B to a program called RaiseNY which aims to elevate homes out of low lying areas of the New York City region. The program likely received additional federal or local funding as well. Similar actions of this scope are not considered as part of this study. 1 APTIM ENVIRONMENTAL & INFRASTRUCTURE, INC. 2. Vulnerability Assessment The vulnerability assessment quantifies the vulnerability of Longboat Key and its sensitivity to sea level rise and storm impacts. Vulnerability of the Town’s infrastructure, natural environment, and safety of residents is assessed for current conditions and future scenarios of sea level rise and storms. Specific critical infrastructure and assets will be inventoried and assessed. This vulnerability assessment is scheduled for a future work assignment. 3. Adaptation Strategies Adaptation strategies are the toolkit of responses for a community to address sea level rise. Actionable adaptation strategies are developed by combining engineering protection measures, policy initiatives, and land use management strategies. A range of adaptation strategies are prioritized based on established vulnerability metrics. Preferred adaptation strategies will be identified and tailored that best fit the needs and goals of Longboat Key. This assessment of strategies is scheduled for a future work assignment. Some communities, who are also working to address sea level rise, have considered options in evaluating which adaptation strategies best fit their community. The following is provided to the Town of Longboat Key for future consideration. Some strategies may not be applicable Town- wide, but may be applicable to some sections of the Town. Some of the strategies listed below
Recommended publications
  • NOAA Technical Memorandum NWS HYDR0-20 STORM TIDE
    NOAA Technical Memorandum NWS HYDR0-20 STORM TIDE FREQUENCY ANALYSIS FOR THE GULF COAST OF FLORIDA FROM CAPE SAN BLAS TO ST. PETERSBURG BEACH Francis P. Ho and Robert J. Tracey Office of Hydrology Silver Spring, Md. April 1975 UNITED STATES /NATIONAL OCEANIC AND / National Weather DEPARTMENT OF COMMERCE ATMOSPHERIC ADMINISTRATION Service Frederick B. Dent, Secretar1 Robert M. White, Administrator George P, Cressman, Director CONTENTS 1. Introduction. • • • • • • • 1 1.1 Objective and scope •• 1 1.2 Authorization •• 1 1.3 Study method •• 2 2. Summary of historical hurricanes •• 2 2.1 Hurricane tracks 2 2.2 Historical notes 3 3. Climatology of hurricane characteristics. 8 3.1 Frequency of hurricane tracks •••. 8 3.2 Probability distribution of hurricane intensity. 8 3.3 Probability distribution of radius of maximum winds. 9 3.4 Probability distribution of speed and direction of forward motion • . • • • • • • • • 9 4. Hurricane surge • • • • 9 4.1 Surge model ••• 9 4.2 Shoaling factor •• 10 5. Tide frequency analysis by joint probability method • 10 5.1 The joint probability method • 10 5.2 Astronomical tides •••••• 11 5.2.1 Reference datum •.•••• 11 Table 1. Tropical storm parameters - Clearwater, Fla 12 Table 2. Tropical storm parameters - Bayport, Fla •• 13 Table 3. Tropical storm parameters - Cedar Key, Fla. 14 Table 4. Tropical storm parameters- Rock ·Islands, Fla .. 15 Table 5. Tropical storm parameters - Carrabelle, Fla • 16 Table 6. Tropical storm parameters - Apalachicola, Fla 17 5.2.2 Astronomical tide • • • •.• 19 5.3 Prestorm water level ••••••. 19 5.4 Tide frequencies • • • • . • ••• 19 5.5 Adjustment along coast ••••••.•••.•••. 19 5.6 Comparison of frequency curves with observed tides and high-water marks • • • • • • • • • • • .
    [Show full text]
  • Florida's Water Resources1
    FE757 Florida’s Water Resources1 Tatiana Borisova and Tara Wade2 Introduction: Why Water Resources Are Important “Water is the lifeblood of our bodies, our economy, our nation and our well-being” (Stephen Lee Johnson, Head of EPA under G.W. Bush Administration). This quote sums up the importance of water resources. We use water for drinking, gardening, and other household uses, in agriculture (e.g., for irrigation), and in energy production and industrial processes (e.g., for cooling in thermoelectric power generation). Clean and plentiful water resources are also important for our recreational activities (e.g., boating, swimming, or fishing). Water also Figure 1. In November, manatees migrate to warmer coastal waters, sustains wildlife (such as manatees) and is an integral part such as Crystal River on the west coast of Florida (Source: UF/IFAS/ICS) of Florida’s environment (Figure 1). The use of water is increasing along with Florida’s of Florida’s water resources is a first step toward optimizing population. Floridians rely on underground freshwater current freshwater supply use and ensuring adequate water reserves, called aquifers, to supply our diverse water needs resources in the future. (USGS 2016a). In some Florida regions, this underground freshwater reserve can no longer sustain the growing water demands of the population, while also feeding Florida’s riv- Hydrologic Cycle: Where Water ers, springs, and lakes. With periodic droughts, shortages of Originates and Where It Goes freshwater may occur. Drought and water shortages in the Toni Morrison, an American novelist, once said that “all state have caused urban planners and policy makers to pay water has a perfect memory and is forever trying to get closer attention to water use, water supply development, back to where it was.” Indeed, water is constantly moving.
    [Show full text]
  • Florida Hurricanes and Tropical Storms
    FLORIDA HURRICANES AND TROPICAL STORMS 1871-1995: An Historical Survey Fred Doehring, Iver W. Duedall, and John M. Williams '+wcCopy~~ I~BN 0-912747-08-0 Florida SeaGrant College is supported by award of the Office of Sea Grant, NationalOceanic and Atmospheric Administration, U.S. Department of Commerce,grant number NA 36RG-0070, under provisions of the NationalSea Grant College and Programs Act of 1966. This information is published by the Sea Grant Extension Program which functionsas a coinponentof the Florida Cooperative Extension Service, John T. Woeste, Dean, in conducting Cooperative Extensionwork in Agriculture, Home Economics, and Marine Sciences,State of Florida, U.S. Departmentof Agriculture, U.S. Departmentof Commerce, and Boards of County Commissioners, cooperating.Printed and distributed in furtherance af the Actsof Congressof May 8 andJune 14, 1914.The Florida Sea Grant Collegeis an Equal Opportunity-AffirmativeAction employer authorizedto provide research, educational information and other servicesonly to individuals and institutions that function without regardto race,color, sex, age,handicap or nationalorigin. Coverphoto: Hank Brandli & Rob Downey LOANCOPY ONLY Florida Hurricanes and Tropical Storms 1871-1995: An Historical survey Fred Doehring, Iver W. Duedall, and John M. Williams Division of Marine and Environmental Systems, Florida Institute of Technology Melbourne, FL 32901 Technical Paper - 71 June 1994 $5.00 Copies may be obtained from: Florida Sea Grant College Program University of Florida Building 803 P.O. Box 110409 Gainesville, FL 32611-0409 904-392-2801 II Our friend andcolleague, Fred Doehringpictured below, died on January 5, 1993, before this manuscript was completed. Until his death, Fred had spent the last 18 months painstakingly researchingdata for this book.
    [Show full text]
  • Vulnerability of the Suncoast Connector Toll Road Study Area to Future Storms and Sea Level Rise
    Vulnerability of the Suncoast Connector Toll Road Study Area to Future Storms and Sea Level Rise Michael I. Volk, Belinda B. Nettles, Thomas S. Hoctor University of Florida April, 2020 Suncoast Connector Coastal Vulnerability Assessment 2 Abstract The Multi-use Corridors of Regional Economic Significance Program (M-CORES) authorizes the design and construction of three new toll road corridors through portions of Florida, including the proposed Suncoast Connector. This paper assesses the potential vulnerability of the Suncoast Connector study area and specifically the U.S. 19/U.S. 27/U.S. 98 corridor to coastal hazards including storms and sea level rise. The results of this analysis indicate that the study area and existing U.S. 19/U.S. 27/U.S. 98 corridor are not only currently at risk from flooding and coastal storms, but that sea level rise and climate change will significantly exacerbate these risks in the future. Findings include that at least 30 percent of the study area is already at risk from a Category 5 storm surge, with sea level rise projected to increase that risk even further. This region also provides one of the best opportunities for coastal biodiversity to functionally respond to increasing sea level rise, but a new major highway corridor along with the additional development that it facilitates will complicate biodiversity conservation and resiliency efforts. With these concerns in mind, it is critical to ensure that investment in new infrastructure, if pursued within the study area, is strategic and located in areas least vulnerable to impacts and repeat loss and least likely to conflict with efforts for facilitating the adaptation of regional natural systems to sea level rise and other related impacts.
    [Show full text]
  • P1.28 a Digital Archive of Significant Florida Weather Events to Improve the Public’S Response to Future Warnings
    P1.28 A Digital Archive of Significant Florida Weather Events to Improve the Public’s Response to Future Warnings Charles H. Paxton1,2, Jennifer M. Collins2, Kortnie J. Pugh1,2,3, and Jennifer L. Colson1 1. National Weather Service, Tampa Bay Florida 2. University of South Florida, Tampa, FL 3. National Marine Fisheries Service, St. Petersburg, FL I. Introduction other artifacts. These resources are of immense The past is our guide, our manual, it helps value not only to NOAA but also the American illuminate actions for the future. Through a NOAA people their true owners. Two frail leather-bound Preserve America Initiative grant obtained in U.S. Weather Bureau means books dating back to collaboration between the NWS (Tampa Bay 1890 needed rebinding. The office also has a region) and the University of South Florida (USF) wealth of other record books, older original two students were hired by NMFS Regional office weather maps depicting major events, news to work at the Tampa Bay Area NWS to document articles, and photos of major past events. historic weather events (Fig 1) and preserve weather relics. In an effort to save items of historical content, President Bush through his Preserve America executive order (E.O. 13287) called on NOAA and other federal agencies to inventory, preserve, and showcase federally- managed historic, cultural, or "heritage" resources and foster tourism in partnership with local communities. Fig. 2. Scanned weather photos. Many old weather artifacts from the past have been photographed and existing photographs of past weather events were scanned too (Fig. 2). When in electronic form, the pages of the books make accessible viewing on the Internet.
    [Show full text]
  • Suncoast Weather Observer
    Suncoast Weather Observer Summer 2010 Issue 1, Volume 15 Inside This Issue... NWS Forecasters Help Australia with Fire Weather Support Visibility Sensors to Shed Light for Marine Vessels Forecaster Spends a Month at the Southern Region Operations Center in Texas Busy 2010 So Far for Spanish Outreach CQ’s the Word! TARC and CERT Clubs Join NWS Outreach Efforts Decision Support Services Preparing the Public for the 2010 Hurricane Season Hurricane Climatology 2010 Hurricane Outlook SPECIAL FEATURE: So What Has Happened to the Summer Thunderstorms That You Can Usually Set Your Watch By? NWS Forecasters Help Australia with Fire Weather Support By: Rick Davis NWS TBW senior meteorologist and Incident Meteorologist (IMET) Rick Davis worked with the Australian Bureau of Meteorology (BoM) in Melbourne, providing fire weather decision support services, to the State of Victoria, for the month of April 2010. He was part of a small group of NWS forecasters to do so during their active fire season. Typically, El Niño produces warmer and drier than normal summer conditions for Southeast Australia, and this was generally true this year as well. In Melbourne, a record number of days above 20 C (68 F) was set at 123 consecutive days ending April 11th, smashing the previous record, which helped make this the warmest summer on record, while rainfall was generally near normal. Fire Danger Ratings varied through the month but usually ranged from high to very high, then a cold weather outbreak brought cooler and more moist conditions with scattered rain for much of the state, reducing the fire danger ratings at the end of the month.
    [Show full text]
  • Probable Maximum Precipitation East of the 105Th Meridian for Areas from 10 to 1,000 Square Miles and Durations of 6, 12, 24, and 48 Hours
    HYDROMETEOROLOGICAL REPORT NO. 41 Probable Maximum and TYA Precipitation over the Tennessee River Basin above Chattanooga u.s. DEPARTMENT OF COMMERCE WEATHER BUREAU Washington June 1965 HYDROMETEOROLOGICAL REPORTS (Nos. 6-22 NUlnbered Retroactively) *No. 1. Maximum possible precipitation over the Ompompanoosuc Basin above Union Village, Vt. 1943. *No. 2. Maximum possible precipitation over the Ohio River Basin above Pittsburgh, Pa. 1942. *No. 3. Maximum possible precipitation over the Sacramento Basin of California. 1943. *No. 4. Maximum possible precipitation over the Panama Canal Basin. 1943. *No. 5. Thunderstorm rainfall. 1947. *No. 6. A preliminary report on th,e probable occurrence of excessive precipitation over Fort Supply Basin, Okla. 1938. *No. 7. Worst probable meteorological condition on Mill Creek, Butler and Hamilton Counties, Ohio. 1937. (Unpub- lished.) Supplement, 1938. *No. 8. A hydrometeorological analysis of possible maximum precipitation over St. Francis River Basin above Wappa­ . pello, Mo. 1938. *No. 9. A report on the possible occurrence of maximum precipitation over White River Basin above Mud Mountain Dam site, Wash. 1939. *No. 10. Maximum possible rainfall over the Arkansas River Basin above Caddoa, Colo. 1939. Supplement, 1939. *No. 11. A preliminary report on the maximum possible precipitation over the Dorena, Cottage Grove, and Fern Ridge Basins in the Willamette Basin, Oreg. 1939. *No. 12. Maximum possible precipitation over the Red River Basin above Denison, Tex. 1939. *No. 13. A report on the maximum possible precipitation over Cherry Creek Basin in Colorado. 1940. *No. 14. The frequency of flood-producing rainfall over the Pajaro River Basin in California. 1940. *No. 15. A report on depth-frequency relations of thunderstorm rainfall on the Sevier Basin, Utah.
    [Show full text]
  • Volume 1-3 North Central Florida Region Technical Data Report
    Volume 1-3 North Central Florida Region Technical Data Report CHAPTER II REGIONAL HAZARDS ANALYSIS This page intentionally left blank. Statewide Regional Evacuation Studies Program Volume 1-3 North Central Florida Table of Contents CHAPTER II REGIONAL HAZARDS ANALYSIS .................................................................... 1 A. Hazards Identification and Risk Assessment ........................................................................ 1 1. Frequency of Occurrence .................................................................................................... 1 2. Vulnerability Factors ............................................................................................................ 1 3. Vulnerability Impact Areas .................................................................................................. 1 B. Coastal Storms and Hurricanes .............................................................................................. 5 1. Coastal Storm /Hurricane Hazard Profile .......................................................................... 5 2. Hurricane Hazards ................................................................................................................ 7 3. Storm Surge: The SLOSH Model ........................................................................................ 8 4. Hurricane Wind Analysis.................................................................................................... 17 5. Tornadoes ..........................................................................................................................
    [Show full text]
  • Hurricanes and Climate Change
    Special Report: Hurricanes and Climate Change Judith Curry Climate Forecast Applications Network Version 2 4 September 2019 Contact information: Judith Curry, President Climate Forecast Applications Network Reno, NV 89519 404 803 2012 [email protected] http://www.cfanclimate.net 1 Hurricanes and Climate Change Judith Curry Climate Forecast Applications Network Executive summary . 4 1. Introduction . 5 2. Hurricane terminology, structure and mechanisms . 6 2.1 Hurricane processes 2.2 Factors contributing to landfall impacts 2.2.1 Wind damage 2.2.2 Storm surge 2.2.3 Rainfall 3. Historical variability and trends . 12 3.1 Global 3.2 Atlantic 3.3 Pacific 3.4 Conclusions 4. Detection and attribution . 26 4.1 Detection 4.2 Sources of variability and change 4.3 Natural multi-decadal climate modes 4.4 Attribution – models 4.5 Attribution – physical understanding 4.6 Conclusions 5. Landfalling hurricanes . 43 5.1 Continental U.S. 5.2 Caribbean 5.3 Global 5.4 Water – rainfall and storm surge 5.5 Hurricane size 5.6 Damage and losses 5.7 Conclusions 6. Attribution: recent U.S. landfalling hurricanes . 58 6.1 Detection and attribution of extreme weather events 6.2 Sandy 6.3 Harvey 6.4 Irma 6.5 Florence 6.6 Michael 6.7. Conclusions 2 7. 21st century projections . 66 7.1 Climate model projections 7.2 2100 – manmade climate change 7.3 2050 – decadal variability 7.3 Landfall impacts 8. Conclusions . 78 References . 80 3 Executive summary This Report assesses the scientific basis for projections of future hurricane activity. The Report evaluates the assessments and projections from the Intergovernmental Panel on Climate Change (IPCC) and recent national assessments regarding hurricanes.
    [Show full text]
  • September Weather History for the 1St - 30Th
    SEPTEMBER WEATHER HISTORY FOR THE 1ST - 30TH AccuWeather Site Address- http://forums.accuweather.com/index.php?showtopic=7074 West Henrico Co. - Glen Allen VA. Site Address- (Ref. AccWeather Weather History) -------------------------------------------------------------------------------------------------------- -------------------------------------------------------------------------------------------------------- AccuWeather.com Forums _ Your Weather Stories / Historical Storms _ Today in Weather History Posted by: BriSr Sep 1 2008, 11:37 AM September 1 MN History 1807 Earliest known comprehensive Minnesota weather record began near Pembina. The temperature at midday was 86 degrees and a "strong wind until sunset." 1894 The Great Hinckley Fire. Drought conditions started a massive fire that began near Mille Lacs and spread to the east. The firestorm destroyed Hinckley and Sandstone and burned a forest area the size of the Twin City Metropolitan Area. Smoke from the fires brought shipping on Lake Superior to a standstill. 1926 This was perhaps the most intense brief thunderstorm ever in downtown Minneapolis. 1.02 inches of rain fell in six minutes, starting at 2:59pm in the afternoon according to the Minneapolis Weather Bureau. The deluge, accompanied with winds of 42mph, caused visibility to be reduced to a few feet at times and stopped all streetcar and automobile traffic. At second and sixth street in downtown Minneapolis rushing water tore a manhole cover off and a geyser of water spouted 20 feet in the air. Hundreds of wooden paving blocks were uprooted and floated onto neighboring lawns much to the delight of barefooted children seen scampering among the blocks after the rain ended. U.S. History # 1897 - Hailstone drifts six feet deep were reported in Washington County, IA.
    [Show full text]
  • Spatial and Temporal Variability of Tropical Storm and Hurricane Strikes
    Louisiana State University LSU Digital Commons LSU Master's Theses Graduate School 2007 Spatial and temporal variability of tropical storm and hurricane strikes in the Bahamas, and the Greater and Lesser Antilles Alexa Jo Andrews Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_theses Part of the Social and Behavioral Sciences Commons Recommended Citation Andrews, Alexa Jo, "Spatial and temporal variability of tropical storm and hurricane strikes in the Bahamas, and the Greater and Lesser Antilles" (2007). LSU Master's Theses. 3558. https://digitalcommons.lsu.edu/gradschool_theses/3558 This Thesis is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Master's Theses by an authorized graduate school editor of LSU Digital Commons. For more information, please contact [email protected]. SPATIAL AND TEMPORAL VARIABILITY OF TROPICAL STORM AND HURRICANE STRIKES IN THE BAHAMAS, AND THE GREATER AND LESSER ANTILLES A Thesis Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Master of Science in The Department of Geography and Anthropology by Alexa Jo Andrews B.S., Louisiana State University, 2004 December, 2007 Table of Contents List of Tables.........................................................................................................................iii
    [Show full text]
  • "Liquid" Sunshine State by Melissa Griffin, Assistant State Climatologist
    Florida . The "Liquid" Sunshine State By Melissa Griffin, Assistant State Climatologist and Florida CoCoRaHS Coordinator Climate is Florida's most important physical resource, a fact well recognized by its citizens, whose state government officially designated it the Sunshine State in 1970. Florida is mainly a long peninsula, and with the exception of the northwestern part of the state, no place is more than 80 miles from both the Gulf of Mexico and the Atlantic Ocean. This proximity to water has an impact on both temperatures and precipitation across the state. The Atlantic Ocean and the Gulf of Mexico act as major modifiers of the state's temperature during all seasons, but particularly in the winter. During Florida's coldest month (January), average temperatures range from the lower 50s in the north to the upper 60s in the south. The mild temperatures give way to the "dog days of summer," when average temperatures across the entire state are about the same (lower 80s). Florida's summer high temperatures can be extremely draining, even though Florida experiences far fewer days of 100F days than most other states. This is because Florida is among the wettest states in the nation and its atmosphere is so humid that its summers are among the most uncomfortable. Despite these typical temperature patterns, Florida has had its fair share of extremes. The state record for minimum temperature is -2F set in Tallahassee, Florida, on February 13, 1899, while the hottest temperature recorded in the state was 109F on June 29, 1931, in Monticello, Florida. Oddly enough, the two record-holding stations are only 25 miles apart.
    [Show full text]