3 the Blue Mussel – Irreplaceable Filter-Feeder and Geneticist's Favourite

Total Page:16

File Type:pdf, Size:1020Kb

3 the Blue Mussel – Irreplaceable Filter-Feeder and Geneticist's Favourite The Blue mussel – irreplaceable filter-feeder and geneticist’s favourite | Kamila Sfugier | EDUKACJA BIOLOGICZNA I ŚRODOWISKOWA 1/2015 3 The Blue mussel Biological and ecological characteristics between 0 ppm and 31 ppm. Their growth rate, how- ever, significantly decreases in salinity below 12.8 ppm. – irreplaceable filter-feeder The Mytilus edulis spp. complex includes the three This bivalve attains an average length of 3 to 5 cm, but in and geneticist’s favourite taxa: Mytilus edulis, Linnaeus, 1758; Mytilus gallopro- deeper water forms larger shells of about 9 cm. vincialis, Lamarck, 1819; Mytilus trossulus, Gould, 1850. The outer part of the blue mussel shell is often dark Kamila Sfugier All these species are widely distributed and hybridise blue, blackish or brown. The inner part is silvery and within areas where their habitats overlap (McDonald et slightly pearly. Blue mussels grow a shell consisting of al., 1991). two valves that are opened by two dorsal muscles and coherence with the Curriculum – see. p. 10 Size, shape and colour Scientific classification closed by sphincters (Jura, 2004). Summary: of blue mussels depend Blue mussels are gonochoric, but it is only possible Mussels from Mytilus spp. complex are important in on their habitat. Growth Kingdom: Animalia to identify their gender during the breeding season. In aquatic ecosystems as well as their worldwide economic rate is influenced largely Phylum: Mollusca the Atlantic Ocean breeding takes place from mid-May importance. Annual world production of marine mussels by water temperature, sa- Class: Bivalvia to the end of September. Duration is dependent on nu- for consumption is around one million tons and in Eu- linity, quality and avail- Subclass: Pteriomorphia merous factors, such as food, water temperature and SCIENCE rope exceeds 600.000 tons. These bivalves contain nutri- ability of food. The ideal Order: Mytiloida physical processes in the water column. In stagnant wa- tious proteins, carbohydrates, mineral salts and a small temperature for growth Family: Mytilidae ter it is also possible to find hermaphroditic blue mus- amount of fat, but apart from cooks they fascinate sci- varies between 10 and sels (Saavedra, 1997). entists. The sensitivity of mussels to environmental pol- Subfamily: Mytilinae 200C, while temperatures The breeding strategy of blue mussels is a combina- lution allows their exploitation as bioindicators. Addi- Genus: Mytilus above 270C are consid- tion of three features, i.e., relative fecundity (Bayne et tionally their inheritance of mitochondrial DNA is quite Species: extraordinary. This article aims to present the blue mussel ered lethal. Blue mus- Mytilus edulis (Linnaeus, 1758) al., 1983; Sprung, 1983), comparatively high mortality in the light of its ecology and genetics. sels have a cosmopolitan Mytilus trossulus (Gould, 1850) of larvae (Yap, 1977) and plankton dispersal (Crisp, distribution, inhabiting Mytilus galloprovincialis 1975). Gametes are discharged once or several times SCHOOL Key words: blue mussel, doubly uniparental inheritance, hy- (Lamarck, 1819) bridisation, masculinization water bodies of salinity directly into the water, where fertilisation occurs. In- received: 16.01.2015; accepted: 12.02.2015; published: 27.03.2015 mgr Kamila Sfugier: Institute of Oceanology of the Polish Academy of Sciences, Genetics and Marine Biotechnology Department, [email protected] IN SHORT The Author – Kamila Sfugier – is a participant of the project „Stypendia dla doktorantów województwa podlaskiego”, co-financed within the Operational Programme Human Capital, measure 8.2 Transfer of knowledge, sub-measure 8.2.2 Regional Innovation Strategies, from the European Social Fund, state budget and Podlaskie Voivodship budget. Figure 1. Shape of the shell: Mytilus galloprovincialis, Lamarck, 1819; Mytilus trossulus, Gould, 1850; Mytilus edulis, Linnaeus, 1758 Source: http://naturalhistory.museumwales.ac.uk/britishbivalves EDUKACJA BIOLOGICZNA I ŚRODOWISKOWA | ebis.ibe.edu.pl | [email protected] | © for the article by the Authors 2015 © for the edition by Instytut Badań Edukacyjnych 2015 The Blue mussel – irreplaceable filter-feeder and geneticist’s favourite | Kamila Sfugier | EDUKACJA BIOLOGICZNA I ŚRODOWISKOWA 1/2015 4 Fig. 2. Blue mussel anatomy Due to the low salinity of the Baltic Sea, blue mus- Source: http://www.design-site.net sels have developed a dwarf form (up to 5 cm long), but they constitute about 75% of the epifauna (Jura, 2004). The total population of blue mussels inhabiting the Bal- tic proper to a maximum depth of 25 m (with shell) is estimated at 8 million tons dry weight (Kautsky, 1991). Aquaculture and use in food industry In many countries blue mussels are harvested for consumption. In Poland, however, blue mussels are not commercial owing to their small size. The first men- tion of human blue mussel cultivation in Europe is de- scribed on wooden stakes in 1235 AD, in France. From SCIENCE that time, blue mussel breeding started in Europe over the full area of their distribution. Subsequently breed- dividual development stages of Mytilus have been de- The bivalve lives in shoals in coastal zones. The belt ing techniques emerged in the late 19th century when scribed by Field (1922) and Bayne (1976) and have been of blue mussels starts at a depth of several-metres and aquaculture began to be regarded as a cheap protein divided into three separate phases (Sprung, 1984). The spreads to a depth of 30 m. Blue mussels are highly im- source. Blue mussels then became a very popular dish first larval stage ofMytilus a trochophore is formed – portant filter feeders. They transform the sea water sus- in Western Europe. characterized by the presence of cilia. A larva reaches pension into high-quality proteins which can be used Aquaculture is always in phytoplankton rich zones. a length of up to 120 µm and has a D-shaped shell. Dur- by animals and humans. Individual shoals filter hun- There are several methods used depending on type of SCHOOL ing the growth phase the larva feeds and increases in dreds of cubic metres of water daily. Within an area of size. It loses its D-shape with a velum in its prostomium, 160 km2 near Asko (Sweden) in the northern part of the functioning as a swim organ. In the setting phase, the Baltic proper, all bivalves are capable of filtering the to- planktonic larva is distinguished by the germ of the tal water mass in two and a half months. Shoals of blue foot, head, mantle and mantle cavity. In the pediveliger mussels also provide a good food source for flounder, stage it has a shell, 360 µm in length. Throughout the cod, ray and sturgeon. In the upper water zone, blue various larval stages, the veliger struggles to settle on mussels are eaten mainly by common eiders which can IN SHORT a firm foundation in order to transform into the ulti- dive to a depth of 10 m. The blue mussel’s main preda- mate juvenile form (Flyachinskaya and Kulakowski, tors in Kattegat, the Asterias rubens starfish and Carci- 1991; Sprung, 1984). nus meanas littoral crab, were not able to adapt to the Larvae, capable of floating in the water column, may low salinity of the Baltic. This explains why the blue travel with ocean currents and long distance passive mussel has found such favourable conditions to develop migration is also possible in ballast water (Carlton and in the Baltic Sea, despite its weakened shell structure Fig. 3. Mussel on a rocky shore Geller, 1993). Adult forms may travel attached to hard in lower salinity waters (Reimer and Harms-Ringdahl, Source: http://en.academic.ru/pictures/enwiki/66/Blue_mus- surfaces, like the hulls of ships. 2001). sel_Mytilus_edulis.jpg EDUKACJA BIOLOGICZNA I ŚRODOWISKOWA | ebis.ibe.edu.pl | [email protected] | © for the article by the Authors 2015 © for the edition by Instytut Badań Edukacyjnych 2015 The Blue mussel – irreplaceable filter-feeder and geneticist’s favourite | Kamila Sfugier | EDUKACJA BIOLOGICZNA I ŚRODOWISKOWA 1/2015 5 coast. In Holland, the young are spread over boards in The blue mussel as an indicator species shallow gulfs or sheltered areas where they are attached to the sea floor. They are harvested by dredging with Bio-indication uses life forms as indicators for envi- special nets. In France, cultivation is on rows of wooden ronmental pollution. In general, it is used as a way to as- stakes positioned within the tidal zone. In Spain, blue sess environmental degradation or observe changes in mussels are bred on lines. The Spanish Atlantic coast the biocoenosis or ecosystem. Animals and plants can is favourable for blue mussel growth because of high act as indicator species if they exhibit a narrow band tides which ensure regular exchange of water. Blue of tolerance to a specific factor (stenobiont species). mussels reach commercial sizes after 7-8 months, while Bioindicators are chosen for their particular sensitiv- in other regions (e.g., England) such sizes might be ity to substances of interest. Their reaction functions as reached after 4-5 years. In some places blue mussels are the alarm to warn about contamination. Behavioural farmed just like oysters – in bags on platforms mount- changes in bioindicators indicate stress from disad- ed within a tidal flat or fixed directly to the bottom vantageous or detrimental external factors. To classify species as bioindicators, they must meet several criteria. (Breber and Sirocco, 1998; Bishop, 2001; Bürgin et al., SCIENCE 2001). Primarily, a bioindicator cannot have inherent prob- Bivalves contain high-quality proteins which pro- lems with identification and at the same time it must vide essential building blocks for nutrition. They are be accurately identified, morphologically, anatomically also a perfect source of calcium, fluorine as well as sele- and physiologically. Bioindicators are characteristi- nium that can protect against cancer. They also contain cally species which respond to specific changes in the B and D vitamins which are important for healthy skin, environment in a manner, appropriate to the degree of the central nervous system and structural and function- contamination.
Recommended publications
  • Marine Bivalve Molluscs
    Marine Bivalve Molluscs Marine Bivalve Molluscs Second Edition Elizabeth Gosling This edition first published 2015 © 2015 by John Wiley & Sons, Ltd First edition published 2003 © Fishing News Books, a division of Blackwell Publishing Registered Office John Wiley & Sons, Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK Editorial Offices 9600 Garsington Road, Oxford, OX4 2DQ, UK The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK 111 River Street, Hoboken, NJ 07030‐5774, USA For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com/wiley‐blackwell. The right of the author to be identified as the author of this work has been asserted in accordance with the UK Copyright, Designs and Patents Act 1988. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher. Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book. Limit of Liability/Disclaimer of Warranty: While the publisher and author(s) have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose.
    [Show full text]
  • Full Annual Report 1999
    NORTH PACIFIC MARINE SCIENCE ORGANIZATION (PICES) ANNUAL REPORT EIGHTH MEETING VLADIVOSTOK, RUSSIA OCTOBER 8 - 17, 1999 January 2000 Secretariat / Publisher North Pacific Marine Science Organization (PICES) c/o Institute of Ocean Sciences P.O. Box 6000, Sidney, British Columbia, Canada. V8L 4B2 e-mail: [email protected] web: http://pices.ios.bc.ca TABLE OF CONTENTS W X Page Proceedings of the Eighth Annual Meeting Agenda 3 Report of Opening Session 5 Report of Governing Council Meetings 25 Reports of Science Board and Committees Science Board 45 Biological Oceanography Committee 57 Fishery Science Committee 63 Working Group 12: Crabs and Shrimps 67 Marine Environmental Quality Committee 73 Working Group 8: Practical Assessment Methodology 76 Physical Oceanography and Climate Committee 93 Working Group 13: CO2 in the North Pacific 97 Implementation Panel on the CCCC Program 105 Technological Committee on Data Exchange 117 Publication Committee 123 Finance and Administration Report of Finance and Administration Committee 127 Assets on 31st of December, 1998 132 Income and Expenditures for 1998 133 Budget for 2000 136 Composition of the Organization Officers, Delegates, Finance and Administration Committee, Science Board, Secretariat, Scientific and Technical Committees 139 List of Participants 149 List of Acronyms 171 iii REPORT OF OPENING SESSION W X The Opening Session was called to order at 8:30 scientists increase. Also of paramount importance th am on of October 11 . The Chairman, Dr. is research of both ecosystems and the prediction Hyung-Tack Huh, who welcomed delegates, of environmental long term changes. observers and researchers to the Eighth Annual Meeting. Dr. Huh called upon Vice-Governor The changes occurring in the resource structure of Vladimir A.
    [Show full text]
  • Poloprieto Maria 2019URD.Pdf (823.7Kb)
    THE CHILEAN BLUE MUSSEL HAS AN INDEPENDENT CONTAGIOUS CANCER LINEAGE --------------------------------------------------- A Senior Honors Thesis Presented to the Faculty of the Department of Biology & Biochemistry University of Houston --------------------------------------------------- In Partial Fulfillment of the Requirements for the Degree Bachelor of Science --------------------------------------------------- By Maria Angelica Polo Prieto May 2019 THE CHILEAN BLUE MUSSEL HAS AN INDEPENDENT CONTAGIOUS CANCER LINEAGE ____________________________________ Maria Angelica Polo Prieto APPROVED: ____________________________________ Dr. Ann Cheek ____________________________________ Dr. Michael Metzger Pacific Northwest Research Institute 98122 ____________________________________ Dr. ElizaBeth Ostrowski Massey University Auckland, New Zealand _____________________________________ Dr. Dan Wells, Dean College of Natural Sciences and Mathematics ii Acknowledgements I have decided to express my gratitude in my native language. Estoy profundamente agradecida con Dios por haberme dado la oportunidad de participar en este proyecto de investigación. Quiero agradecerle al Dr. Michael Metzger por haber depositado la confianza en mi para la elaboración de este proyecto. Su guianza y apoyo a, pesar de la distancia, permitió un excelente trabajo en equipo. Estoy agradecida con el Dr. Goff y con todos los integrantes de su laboratorio, en especial Kenia y Marta de los Santos, Martine Lecorps, Helen Hong Wang, y los Dres. Yiping Zhu, Yosef Sabo y Oya Cingoz. Gracias por hacer mi estadía en Columbia University una experiencia inolvidable. Quiero también agradecerle a la Dra. Elizabeth Ostrowski por su enseñanza y dedicación, y a los miembros de su laboratorio por haberme entrenado en los procedimientos que hicieron este proyecto realidad. Estoy muy agradecida con la Dra. Ann Cheek, por haber creído en mi y por su apoyo constante aun en medio de las dificultades.
    [Show full text]
  • Diversity of Malacofauna from the Paleru and Moosy Backwaters Of
    Journal of Entomology and Zoology Studies 2017; 5(4): 881-887 E-ISSN: 2320-7078 P-ISSN: 2349-6800 JEZS 2017; 5(4): 881-887 Diversity of Malacofauna from the Paleru and © 2017 JEZS Moosy backwaters of Prakasam district, Received: 22-05-2017 Accepted: 23-06-2017 Andhra Pradesh, India Darwin Ch. Department of Zoology and Aquaculture, Acharya Darwin Ch. and P Padmavathi Nagarjuna University Nagarjuna Nagar, Abstract Andhra Pradesh, India Among the various groups represented in the macrobenthic fauna of the Bay of Bengal at Prakasam P Padmavathi district, Andhra Pradesh, India, molluscs were the dominant group. Molluscs were exploited for Department of Zoology and industrial, edible and ornamental purposes and their extensive use has been reported way back from time Aquaculture, Acharya immemorial. Hence the present study was focused to investigate the diversity of Molluscan fauna along Nagarjuna University the Paleru and Moosy backwaters of Prakasam district during 2016-17 as these backwaters are not so far Nagarjuna Nagar, explored for malacofauna. A total of 23 species of molluscs (16 species of gastropods belonging to 12 Andhra Pradesh, India families and 7 species of bivalves representing 5 families) have been reported in the present study. Among these, gastropods such as Umbonium vestiarium, Telescopium telescopium and Pirenella cingulata, and bivalves like Crassostrea madrasensis and Meretrix meretrix are found to be the most dominant species in these backwaters. Keywords: Malacofauna, diversity, gastropods, bivalves, backwaters 1. Introduction Molluscans are the second largest phylum next to Arthropoda with estimates of 80,000- 100,000 described species [1]. These animals are soft bodied and are extremely diversified in shape and colour.
    [Show full text]
  • Blue Mussel Feeding
    MARINE ECOLOGY PROGRESS SERIES Vol. 192: 181-193.2000 Published January 31 Mar Ecol Prog Ser Influence of a selective feeding behaviour by the blue mussel Mytilus trossulus on the assimilation of lo9cdfrom environmentally relevant seston matrices Zainal ~rifinll~,Leah I. ende ell-~oung'" '~ept.of Biological Sciences, Simon Fraser University, 8888 University Ave., Burnaby, British Columbia V5A 1S6, Canada 'R & D Centre for Oceanology, LIPI, Poka, Ambon 97233, Indonesia ABSTRACT: The objective of this study was to determine the influence of a selective feeding strategy on the assimilation efficiency of lo9Cd (Io9Cd-AE)by the blue mussel Mytilus trossulus. Two comple- mentary experiments which used 5 seston matrices of different seston quality (SQ) were implemented: (1)algae labeled with Io9Cd was mixed with unlabeled silt, and (2) labeled silt was mixed with unla- beled algae. Io9Cd-A~was determined by a dual-tracer ratio (109~d/241~m)method (DTR) and based on the ingestion rate of '09Cd by the mussel (IRM) (total amount of Io9Cd ingested over the 4 h feeding period). As a result of the non-conservative behavior of u'~m,the DTR underestimated mussel lo9Cd- AEs as compared to the IRM. Therefore only IRM-determined 'O@C~-AEwas considered further. When only algae was spiked, jdgcd-A~swere proportional to diet quality (DQ), (r = 0.98; p < 0.05) with max- imum 'OgCd-AE occurring at the mussel's filter-feeding 'optimum' and where maximum carbon assim- ilation rates have been observed. However, for the spiked-silt exposures, IWcd-A~was independent of DQ, with maximum values of -85 % occurring in all diets except for silt alone.
    [Show full text]
  • New Records of Three Deep-Sea Bathymodiolus Mussels (Bivalvia: Mytilida: Mytilidae) from Hydrothermal Vent and Cold Seeps in Taiwan
    352 Journal of Marine Science and Technology, Vol. 27, No. 4, pp. 352-358 (2019) DOI: 10.6119/JMST.201908_27(4).0006 NEW RECORDS OF THREE DEEP-SEA BATHYMODIOLUS MUSSELS (BIVALVIA: MYTILIDA: MYTILIDAE) FROM HYDROTHERMAL VENT AND COLD SEEPS IN TAIWAN Meng-Ying Kuo1, Dun- Ru Kang1, Chih-Hsien Chang2, Chia-Hsien Chao1, Chau-Chang Wang3, Hsin-Hung Chen3, Chih-Chieh Su4, Hsuan-Wien Chen5, Mei-Chin Lai6, Saulwood Lin4, and Li-Lian Liu1 Key words: new record, Bathymodiolus, deep-sea, hydrothermal vent, taiwanesis (von Cosel, 2008) is the only reported species of cold seep, Taiwan. this genus from Taiwan. It was collected from hydrothermal vents near Kueishan Islet off the northeast coast of Taiwan at depths of 200-355 m. ABSTRACT Along with traditional morphological classification, mo- The deep sea mussel genus, Bathymodiolus Kenk & Wilson, lecular techniques are commonly used to study the taxonomy 1985, contains 31 species, worldwide. Of which, one endemic and phylogenetic relationships of deep sea mussels. Recently, species (Bathymodiolus taiwanesis) was reported from Taiwan the complete mitochondrial genomes have been sequenced (MolluscaBase, 2018). Herein, based on the mitochondrial COI from mussels of Bathymodiolus japonicus, B. platifrons and results, we present 3 new records of the Bathymodiolus species B. septemdierum (Ozawa et al., 2017). Even more, the whole from Taiwan, namely Bathymodiolus platifrons, Bathymodiolus genome of B. platifrons was reported with sequence length of securiformis, and Sissano Bathymodiolus sp.1 which were collected 1.64 Gb nucleotides (Sun et al., 2017). from vent or seep environments at depth ranges of 1080-1380 Since 2013, under the Phase II National energy program of m.
    [Show full text]
  • First Record of the Mediterranean Mussel Mytilus Galloprovincialis (Bivalvia, Mytilidae) in Brazil
    ARTICLE First record of the Mediterranean mussel Mytilus galloprovincialis (Bivalvia, Mytilidae) in Brazil Carlos Eduardo Belz¹⁵; Luiz Ricardo L. Simone²; Nelson Silveira Júnior³; Rafael Antunes Baggio⁴; Marcos de Vasconcellos Gernet¹⁶ & Carlos João Birckolz¹⁷ ¹ Universidade Federal do Paraná (UFPR), Centro de Estudos do Mar (CEM), Laboratório de Ecologia Aplicada e Bioinvasões (LEBIO). Pontal do Paraná, PR, Brasil. ² Universidade de São Paulo (USP), Museu de Zoologia (MZUSP). São Paulo, SP, Brasil. ORCID: http://orcid.org/0000-0002-1397-9823. E-mail: [email protected] ³ Nixxen Comercio de Frutos do Mar LTDA. Florianópolis, SC, Brasil. ORCID: http://orcid.org/0000-0001-8037-5141. E-mail: [email protected] ⁴ Universidade Federal do Paraná (UFPR), Departamento de Zoologia (DZOO), Laboratório de Ecologia Molecular e Parasitologia Evolutiva (LEMPE). Curitiba, PR, Brasil. ORCID: http://orcid.org/0000-0001-8307-1426. E-mail: [email protected] ⁵ ORCID: http://orcid.org/0000-0002-2381-8185. E-mail: [email protected] (corresponding author) ⁶ ORCID: http://orcid.org/0000-0001-5116-5719. E-mail: [email protected] ⁷ ORCID: http://orcid.org/0000-0002-7896-1018. E-mail: [email protected] Abstract. The genus Mytilus comprises a large number of bivalve mollusk species distributed throughout the world and many of these species are considered invasive. In South America, many introductions of species of this genus have already taken place, including reports of hybridization between them. Now, the occurrence of the Mediterranean mussel Mytilus galloprovincialis is reported for the first time from the Brazilian coast. Several specimens of this mytilid were found in a shellfish growing areas in Florianópolis and Palhoça, Santa Catarina State, Brazil.
    [Show full text]
  • List of Bivalve Molluscs from British Columbia, Canada
    List of Bivalve Molluscs from British Columbia, Canada Compiled by Robert G. Forsyth Research Associate, Invertebrate Zoology, Royal BC Museum, 675 Belleville Street, Victoria, BC V8W 9W2; [email protected] Rick M. Harbo Research Associate, Invertebrate Zoology, Royal BC Museum, 675 Belleville Street, Victoria BC V8W 9W2; [email protected] Last revised: 11 October 2013 INTRODUCTION Classification rankings are constantly under debate and review. The higher classification utilized here follows Bieler et al. (2010). Another useful resource is the online World Register of Marine Species (WoRMS; Gofas 2013) where the traditional ranking of Pteriomorphia, Palaeoheterodonta and Heterodonta as subclasses is used. This list includes 237 bivalve species from marine and freshwater habitats of British Columbia, Canada. Marine species (206) are mostly derived from Coan et al. (2000) and Carlton (2007). Freshwater species (31) are from Clarke (1981). Common names of marine bivalves are from Coan et al. (2000), who adopted most names from Turgeon et al. (1998); common names of freshwater species are from Turgeon et al. (1998). Changes to names or additions to the fauna since these two publications are marked with footnotes. Marine groups are in black type, freshwater taxa are in blue. Introduced (non-indigenous) species are marked with an asterisk (*). Marine intertidal species (n=84) are noted with a dagger (†). Quayle (1960) published a BC Provincial Museum handbook, The Intertidal Bivalves of British Columbia. Harbo (1997; 2011) provided illustrations and descriptions of many of the bivalves found in British Columbia, including an identification guide for bivalve siphons and “shows”. Lamb & Hanby (2005) also illustrated many species.
    [Show full text]
  • The Root of the Transmissible Cancer: First Description of a Widespread Mytilus Trossulus-Derived Cancer Lineage in M. Trossulus
    bioRxiv preprint doi: https://doi.org/10.1101/2020.12.25.424161; this version posted December 26, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 The root of the transmissible cancer: first description of a widespread 2 Mytilus trossulus-derived cancer lineage in M. trossulus 3 4 Maria Skazina1*, Nelly Odintsova2, Maria Maiorova2, Angelina Ivanova3, 5 Risto Väinölä4, Petr Strelkov3 6 7 1Department of Applied Ecology, Saint-Petersburg State University, Saint-Petersburg 199178, Russia 8 2A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch of the Russian 9 Academy of Sciences, Vladivostok 690041, Russia 10 3Department of Ichthyology and Hydrobiology, Saint-Petersburg State University, Saint-Petersburg 11 199178, Russia 12 4Finnish Museum of Natural History, University of Helsinki, Helsinki P. O. Box 17, FI-00014, Finland 13 *Corresponding author [email protected] 14 Abstract 15 Two lineages of bivalve transmissible neoplasia (BTN), BTN1 and BTN2, are known in blue 16 mussels Mytilus. Both lineages derive from the Pacific mussel M. trossulus and are identified 17 primarily by the unique genotypes of the nuclear gene EF1α. BTN1 is found in populations of 18 M. trossulus from the Northeast Pacific, while BTN2 has been detected in populations of other 19 Mytilus species worldwide but not in M. trossulus itself. The aim of our study was to examine 20 mussels M. trossulus from the Sea of Japan (Northwest Pacific) for the presence of BTN.
    [Show full text]
  • Physiological and Gene Transcription Assays to Assess Responses of Mussels to Environmental Changes
    Physiological and gene transcription assays to assess responses of mussels to environmental changes Katrina L. Counihan1, Lizabeth Bowen2, Brenda Ballachey3, Heather Coletti4, Tuula Hollmen5, Benjamin Pister6 and Tammy L. Wilson4,7 1 Alaska SeaLife Center, Seward, AK, United States of America 2 US Geological Survey, Western Ecological Research Center, Davis, CA, United States of America 3 US Geological Survey, Alaska Science Center, Anchorage, AK, United States of America 4 Inventory and Monitoring Program, Southwest Alaska Network, National Park Service, Anchorage, AK, United States of America 5 College of Fisheries and Ocean Sciences, University of Alaska—Fairbanks and Alaska SeaLife Center, Seward, AK, United States of America 6 Ocean Alaska Science and Learning Center, National Park Service, Anchorage, AK, United States of America 7 Department of Natural Resource Management, South Dakota State University, Brookings, SD, United States of America ABSTRACT Coastal regions worldwide face increasing management concerns due to natural and anthropogenic forces that have the potential to significantly degrade nearshore marine resources. The goal of our study was to develop and test a monitoring strategy for nearshore marine ecosystems in remote areas that are not readily accessible for sampling. Mussel species have been used extensively to assess ecosystem vulnerability to multiple, interacting stressors. We sampled bay mussels (Mytilus trossulus) in 2015 and 2016 from six intertidal sites in Lake Clark and Katmai National Parks and Preserves, in south-central Alaska. Reference ranges for physiological assays and gene transcription were determined for use in future assessment efforts. Both techniques identified differences among sites, suggesting influences of both large-scale and local environmental factors and underscoring the value of this combined approach to ecosystem health monitoring.
    [Show full text]
  • Toxic Contaminants in Puget Sound's Nearshore Biota: a Large-Scale Synoptic Survey Using Transplanted Mussels (Mytilus Tross
    Puget Sound Ecosystem Monitoring Program (PSEMP) Toxic Contaminants in Puget Sound’s Nearshore Biota: A Large-Scale Synoptic Survey Using Transplanted Mussels (Mytilus trossulus) Final Report September 4, 2014 Jennifer A. Lanksbury, Laurie A. Niewolny, Andrea J. Carey and James E. West WDFW Report Number FPT 14-08 TABLE OF CONTENTS TABLE OF CONTENTS ......................................................................................................................................... i LIST OF FIGURES ................................................................................................................................................ v LIST OF TABLES ................................................................................................................................................ vii EXECUTIVE SUMMARY .................................................................................................................................... 1 1 INTRODUCTION ........................................................................................................................................... 3 1.1 Project Goals ............................................................................................................................................ 4 1.2 Background .............................................................................................................................................. 5 1.2.1 Mussels as Biomonitors ...................................................................................................................
    [Show full text]
  • Marlin Marine Information Network Information on the Species and Habitats Around the Coasts and Sea of the British Isles
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Plymouth Marine Science Electronic Archive (PlyMSEA) MarLIN Marine Information Network Information on the species and habitats around the coasts and sea of the British Isles Common mussel (Mytilus edulis) MarLIN – Marine Life Information Network Biology and Sensitivity Key Information Review Dr Harvey Tyler-Walters 2008-06-03 A report from: The Marine Life Information Network, Marine Biological Association of the United Kingdom. Please note. This MarESA report is a dated version of the online review. Please refer to the website for the most up-to-date version [https://www.marlin.ac.uk/species/detail/1421]. All terms and the MarESA methodology are outlined on the website (https://www.marlin.ac.uk) This review can be cited as: Tyler-Walters, H., 2008. Mytilus edulis Common mussel. In Tyler-Walters H. and Hiscock K. (eds) Marine Life Information Network: Biology and Sensitivity Key Information Reviews, [on-line]. Plymouth: Marine Biological Association of the United Kingdom. DOI https://dx.doi.org/10.17031/marlinsp.1421.1 The information (TEXT ONLY) provided by the Marine Life Information Network (MarLIN) is licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 2.0 UK: England & Wales License. Note that images and other media featured on this page are each governed by their own terms and conditions and they may or may not be available for reuse. Permissions beyond the scope of this license are available here. Based on a work at www.marlin.ac.uk (page left blank) Date: 2008-06-03 Common mussel (Mytilus edulis) - Marine Life Information Network See online review for distribution map Clump of mussels.
    [Show full text]