Field Science Manual: Oyster Restoration Station.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Field Science Manual: Oyster Restoration Station.Pdf Field Science Manual: Oyster Restoration Station 1 Copyright © 2016 New York Harbor Foundation Contents All rights reserved Published by Background 5 New York Harbor Foundation Introduction 13 Battery Maritime Building, Slip 7 10 South Street Teacher’s Timetable 15 New York, NY 10004 The Billion Oyster Project Curriculum and The Expedition Community Enterprise for Restoration Retrieving the ORS 19 Science (BOP-CCERS) aims to improve STEM education in public schools by linking teaching and learning to ecosystem Protocols 1–5: 25 restoration and engaging students in hands-on environmental field science Site Conditions during their regular school day. BOP-CCERS Oyster Measurement is a research-based partnership initiative between New York Harbor Foundation, Mobile Trap Pace University, New York City Depart- Settlement Tiles ment of Education, Columbia University Lamont-Doherty Earth Observatory, New Water Quality York Academy of Sciences, University of Maryland Center for Environmental Science, New York Aquarium, The River Returning the ORS to the Water 69 Project, and Good Shepherd Services. and Cleaning Up Our work is supported by the National Science Foundation through grant #DRL1440869. Appendix Mobile Species ID 77 Any opinions, findings, and conclusions or recommendations expressed in this Sessile Species ID 103 material are those of the author(s) and Data Sheets 135 do not necessarily reflect the views of the National Science Foundation. This material is based upon work supported by the National Science Foundation under Grant Number NSF EHR DRL 1440869/PI Lauren Birney. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflectthe views of the National Science Foundation. 2 3 Sessile Species ID 102 103 Oyster Drill A small pale-colored shell with sharply Blue Mussel Blue-black with two hinged shells that open Urosalpinx Cinerea pointed cone and parallel ridges around Mytilus Edulis to feed, found in clumps attached to hard shell. Predator of oysters and mussels. intertidal and shallow substrata. Category: Mollusks Category: Mollusks Subcategory: Gastropods Habitat: Found in shallow subtidal marine Subcategory Bivalves Habitat: Found in the intertidal and shallow Status: Native, and estuarine regions in association with Status: Native, subtidal in clusters to rocky substrates non-endemic bivalve and barnacle beds. non-endemic or pier pilings. Individuals attach to the Phylum: Mollusca Phylum: Mollusca substrate using sticky byssal threads. Class: Gastropoda Diet: Filter feeders, ingesting microscopic Class: Bivalvia Family: Muricidae algae, zooplankton and detritus particles Order: Mytilida Diet: Mussels are filter feeders, ingesting rock snails from the water. Family: Mytiliidae bacteria, plankton and small detritus mussels particles suspended in the water. Morphology: Has a knobbly, sharply pointed spiraled shell, usually with 5 spiral Morphology: A bivalve (two-shelled) turns or whorls. Thick, rounded ribs or mollusk with smooth outer shells with a costae (numbering 9-12) run from the glossy blue-black coloration. Size up to 3 shell opening to the pointed end of the cm in shell length. spiral. Shell coloration is usually off-white to yellowish, sometimes with brown 3cm–3.5cm streaks, whilst the interior is colored purple, red-brown or yellow. The aperture is oval 3cm shaped with an open canal at the base. Size is up to 30-35 mm in length. 104 105 Ribbed Mussel Green-brown bivalves found in muddy Slipper Snails Whitish single-shelled molluscs found in Geukensia Demissa intertidal areas with ribs running the length Crepidula Spp (Eastern Slipper Snail C. Pla- shallow nearshore habitats, with smooth, of each shell. na and Atlantic Slipper Snail C. Fornicata) curved upper shells. Category: Mollusks Status: Native, Habitat: Found in the intertidal zone of Category: Molluscs Habitat: Two species of small gastropod non-endemic marine and brackish waters attached Status: Native, mollusk found in the low intertidal to Class: Bivalvia to marsh plants or rocky substrates or non-endemic subtidal associated with rocks, pier pilings Family: Mytiliidae, embedded in sediment. Class: Gastropoda and oyster beds. Mussels Order: Litterinimorpha Diet: A filter feeder that ingests plankton Family: Calyptraeidae, Diet: Graze on algae and detritus found on and detritus from the water column. slipper or boatsnails hard substrates. Morphology: The ribbed mussel has two Morphology: Both species have a curved, long, oval-shaped shells colored green to smooth upper shell, rounder in C. fornicata, brown, with distinct ribs running the length and a platform extending half way across of each shell. The inner shell is often tinted the shell opening on the underside. The purple. Size up to 10 cm in shell length. shell of C. plana is typically white to off-white, with the shell of C. fornicata 10cm showing darker color variations up to beige with brown markings. Size up to 30 mm in C. plana, up to 25 mm in C. fornicata. 3cm 106 107 Eastern Mudsnail Brown to black cone-shaped spiraled shell Northern Rock Barnacle Barnacles with six broad and low whitish Ilyanassa Obsoleta found in large numbers in muddy habitats. Semibalanus Balanoides plates arranged in a ring around a central diamond-shaped plate. Cemented to hard Category: Mollusks Habitat: Abundant in intertidal estuarine Category: Crustaceans substrata and usually found in clumps. Subcategory: Gastropods areas with muddy substrates. Subcategory: Barnacles Status: Native, Status: Non-endemic Habitat: Inhabits shallow intertidal and non-endemic Diet: Feeds on algae, worms and detritus Phylum: Arthropoda subtidal marine areas, cemented to hard Phylum: Mollusca within the muddy sediment. Class: Crustacea substrata such as rocks and pier pilings. Class: Gastropoda Order: Sessilia Order: Neogastropoda Morphology: The shell is whorled and cone- Family: Archaeobalanidae Diet: Barnacles are filter feeders, feeding Family: Nassariidae, shaped with a brown to black coloration. on algae, zooplankton and detritus dog whelks Shell surface is covered with beaded line particles in the water column. patterns and deep sutures between each whorl. Size up to 25 mm in shell length. Morphology: Six broad calcium carbonate plates with a low overall profile and diamond-shaped opening covered by a calcium carbonate operculum. Soft parts between plates are white or pinkish. Like all barnacles, individuals are usually found in clusters as they prefer to settle near other 2.5cm barnacles out of the plankton. Up to 25 mm 0.5cm in width. 108 109 Ivory Barnacle Barnacle with whitish plates forming a Mud Tube Worm Tube-dwelling reddish colored segmented Amphibalanus Eburneus steep cone, with soft parts often colored Streblospio Benedicti worm up to 6 mm in length. or striped. Found in clumps on hard Category: Crustaceans substrata. Category: Worms Habitat: In the Order Polychaeta (marine Subcategory: Barnacles Status: Native, segmented worms). Lives in fine sandy Status: Native, Habitat: Found cemented to hard substrata non-endemic and silty sediments, building tubes of non-endemic such as rocks and pier pilings in the Class: Polychaet sediment and mucus. Phylum: Arthropoda intertidal and shallow subtidal, preferring Subclass: Sedentaria Class: Crustacea brackish waters. Order: Spionida Diet: Feeds on detritus on the sediment Order: Sessilia Family: Spionidae surface. Family: Balanidae Diet: Barnacles are filter feeders, feeding on algae, zooplankton and detritus Morphology: Head segment is cone- particles in the water column. shaped with four eyes, one pair of tenta- cles and two pairs of gills. The remaining Morphology: The calcium carbonate plates body segments each have one pair of forming the outer armor are form a steep parapodia - paddle-like appendages. Body cone. The soft parts in between plates may coloration is a reddish brown, with dark be striped in purple, yellow or off-white. green coloration around the gills. Size up to Size is up to 25 mm in height and width. 6 mm in length. 0.6cm 2.5cm 110 111 Hard Tube Worms Worms living inside small whitish hard Tube-Building Polychaete Bristled worm with two long frontal Serpulid and Spirorbid Worms tubes that are either coiled (spirorbid Polydora Cornuta (formerly Polydora Ligni) appendages living inside muddy tubes on worms) or straight (serpulid worms). sediment-covered surfaces. Category: Worms Category: Worms Status: Native, Habitat: Found attached to hard substrata Status: Native, Habitat: Builds mud-covered detrital tubes non-endemic such as rocks, pier pilings and oyster origin uncertain in the intertidal and shallow subtidal Phylum: Annelida shells. Class: Polychaeta waters of estuaries. Naturally prefers Class: Polychaeta Subclass: Sedentaria muddy clay substrates and can be found Order: Sabellida Diet: Filter feeders, ingesting microscopic Order: Spionida on settlement tiles where sediment has Family: Serpulidae, algae, zooplankton and detritus particles Family: Spionidae accumulated. serpulid worms from the water. Subfamily: Spirorbidae, Diet: Feeds on small food particles on the spirorbid worms Morphology: Construct hard, off-white sediment surface using their pair of long tubes of calcium carbonate that frontal palps. are coiled (F. Spirorbidae) or largely straight or serpentine (SF. Serpulidae). Morphology: Segmented body around 1-2 Tube length up to 30 mm in serpulids, up to cm long with chetae (bristles) on each 25 mm across in spirorbids . segment. P. cornuta may be difficult
Recommended publications
  • Bryozoan Studies 2019
    BRYOZOAN STUDIES 2019 Edited by Patrick Wyse Jackson & Kamil Zágoršek Czech Geological Survey 1 BRYOZOAN STUDIES 2019 2 Dedication This volume is dedicated with deep gratitude to Paul Taylor. Throughout his career Paul has worked at the Natural History Museum, London which he joined soon after completing post-doctoral studies in Swansea which in turn followed his completion of a PhD in Durham. Paul’s research interests are polymatic within the sphere of bryozoology – he has studied fossil bryozoans from all of the geological periods, and modern bryozoans from all oceanic basins. His interests include taxonomy, biodiversity, skeletal structure, ecology, evolution, history to name a few subject areas; in fact there are probably none in bryozoology that have not been the subject of his many publications. His office in the Natural History Museum quickly became a magnet for visiting bryozoological colleagues whom he always welcomed: he has always been highly encouraging of the research efforts of others, quick to collaborate, and generous with advice and information. A long-standing member of the International Bryozoology Association, Paul presided over the conference held in Boone in 2007. 3 BRYOZOAN STUDIES 2019 Contents Kamil Zágoršek and Patrick N. Wyse Jackson Foreword ...................................................................................................................................................... 6 Caroline J. Buttler and Paul D. Taylor Review of symbioses between bryozoans and primary and secondary occupants of gastropod
    [Show full text]
  • Crepidula Fornicata
    NOBANIS - Marine invasive species in Nordic waters - Fact Sheet Crepidula fornicata Author of this species fact sheet: Kathe R. Jensen, Zoological Museum, Natural History Museum of Denmark, Universiteteparken 15, 2100 København Ø, Denmark. Phone: +45 353-21083, E-mail: [email protected] Bibliographical reference – how to cite this fact sheet: Jensen, Kathe R. (2010): NOBANIS – Invasive Alien Species Fact Sheet – Crepidula fornicata – From: Identification key to marine invasive species in Nordic waters – NOBANIS www.nobanis.org, Date of access x/x/201x. Species description Species name Crepidula fornicata, Linnaeus, 1758 – Slipper limpet Synonyms Patella fornicata Linnaeus, 1758; Crepidula densata Conrad, 1871; Crepidula virginica Conrad, 1871; Crepidula maculata Rigacci, 1866; Crepidula mexicana Rigacci, 1866; Crepidula violacea Rigacci, 1866; Crepidula roseae Petuch, 1991; Crypta nautarum Mörch, 1877; Crepidula nautiloides auct. NON Lesson, 1834 (ISSG Database; Minchin, 2008). Common names Tøffelsnegl (DK, NO), Slipper limpet, American slipper limpet, Common slipper snail (UK, USA), Østerspest (NO), Ostronpest (SE), Amerikanische Pantoffelschnecke (DE), La crépidule (FR), Muiltje (NL), Seba (E). Identification Crepidula fornicata usually sit in stacks on a hard substrate, e.g., a shell of other molluscs, boulders or rocky outcroppings. Up to 13 animals have been reported in one stack, but usually 4-6 animals are seen in a stack. Individual shells are up to about 60 mm in length, cap-shaped, distinctly longer than wide. The “spire” is almost invisible, slightly skewed to the right posterior end of the shell. Shell height is highly variable. Inside the body whorl is a characteristic calcareous shell-plate (septum) behind which the visceral mass is protected.
    [Show full text]
  • Energetics of Larval Swimming and Metamorphosis in Four Species of Bugula (Bryozoa)
    Energetics of Larval Swimming and Metamorphosis in Four Species of Bugula (Bryozoa) DEAN E. WENDT* Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138 Abstract. The amount of energy available to larvae dur­ Introduction ing swimming, location of a suitable recruitment site, and metamorphosis influences the length of time they can spend The larval life of many marine invertebrates is character­ in the plankton. Energetic parameters such as swimming ized by three distinct phases. The first, a swimming phase, speed, oxygen consumption during swimming and meta­ is both a means of dispersal and, in planktotrophic larvae, a morphosis, and elemental carbon and nitrogen content were time to sequester the energy needed for larval development measured for larvae of four species of bryozoans, Bugula and metamorphosis. The two subsequent phases—settle­ neritina, B. simplex, B. stolonifera, and B. turrita. The ment and metamorphosis—can be temporally distinct, as in larvae of these species are aplanktotrophic with a short some echinoderm larvae (e.g., Strathmann, 1974), or tightly free-swimming phase ranging from less than one hour to a coupled, as in bryozoan larvae (e.g., Ryland, 1974). That the maximum of about 36 hours. There is about a fivefold duration of the larval swimming phase can have detrimental difference in larval volume among the four species, which effects on the latter two phases of the life cycle has been scales linearly with elemental carbon content and, presum­ demonstrated for several species in at least three phyla, ably, with the amount of endogenous reserves available for including bryozoans (Nielson, 1981; Woollacott et al., 1989; Orellana and Cancino, 1991; Hunter and Fusetani, swimming and metamorphosis.
    [Show full text]
  • Phlebobranchia of CTAW
    PHLEBOBRANCHIA PHLEBOBRANCHIA The suborder Phlebobranchia (order Enterogona) is characterised by having unpaired gonads present only on the same side of the body as the gut. As in Stolidobranchia, the body is not divided into different sections (such as thorax, abdomen and posterior abdomen) as the gut is folded up in the parietal body wall outside the pharynx and the large branchial sac occupies the whole length of the body. Usually the branchial sac (which is flat, without folds) has internal longitudinal vessels (although only vestiges remain in Agneziidae). Epicardial sacs do not persist in adults as they do in Aplousobranchia, although excretory vesicles (nephrocytes) embedded in the body wall over the gut are known to originate from the embryonic epicardium in Ascidiidae and Corellidae. Most phlebobranchs are solitary. However, Plurellidae Kott, 1973 includes both solitary and colonial forms, and Perophoridae Giard, 1872 are all colonial. Replication in Perophoridae is from ectodermal epithelium (rather than endodermal or mesodermal tissue the mesodermal tissue of the vascular stolon (rather than the endodermal tissue as in most as in Aplousobranchia). The process of replication has not been investigated in Plurellidae. Phlebobranch taxa occurring in Australia are documented in Kott (1985). Family level taxa are characterised principally by the size and form of the branchial sac including the number of branchial vessels and form of the stigmata; the form, size and position of the gonads; and the habit (colonial or solitary) of the taxon. Berrill (1950) has discussed problems in assessing the phylogeny of Perophoridae. References Berrill, N.J. (1950). The Tunicata. Ray Soc. Publs 133: 1–354 Giard, A.M.
    [Show full text]
  • BIOLOGICAL FEATURES on EPIBIOSIS of Amphibalanus Improvisus (CIRRIPEDIA) on Macrobrachium Acanthurus (DECAPODA)*
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Cadernos Espinosanos (E-Journal) BRAZILIAN JOURNAL OF OCEANOGRAPHY, 58(special issue IV SBO):15-22, 2010 BIOLOGICAL FEATURES ON EPIBIOSIS OF Amphibalanus improvisus (CIRRIPEDIA) ON Macrobrachium acanthurus (DECAPODA)* Cristiane Maria Rocha Farrapeira¹** and Tereza Cristina dos Santos Calado² 1Universidade Federal Rural de Pernambuco – UFRPE Departamento de Biologia (Rua Dom Manoel de Medeiros, s/nº, 52-171-900 Recife, PE, Brasil) 2Universidade Federal de Alagoas – UFAL Laboratório Integrado de Ciências do Mar e Naturais (Rua Aristeu de Andrade, 452, 57051-090 Maceió, AL, Brasil) **[email protected] A B S T R A C T This study aimed to describe the epibiosis of barnacles Amphibalanus improvisus on eight adult Macrobrachium acanthurus males from the Mundaú Lagoon, state of Alagoas, Brazil. The number of epibiont barnacles varied from 247 to 1,544 specimens per prawn; these were distributed predominantly on the cephalothorax and pereiopods, but also on the abdomen and other appendices. Although some were already reproducing, most barnacles had been recruited recently or were still sexually immature; this suggests recent host arrival in that estuarine environment. Despite the fact that other barnacles occur in this region, A. improvisus is the only species reported as an epibiont on Macrobrachium acanthurus; this was also the first record of epibiosis on this host . The occurrence of innumerable specimens in the pereiopods' articulations and the almost complete covering of the carapace of some prawns (which also increased their weight) suggest that A. improvisus is adapted to fixate this kind of biogenic substrate and that the relationship between the two species biologically damages the basibiont.
    [Show full text]
  • Balanus Glandula Class: Multicrustacea, Hexanauplia, Thecostraca, Cirripedia
    Phylum: Arthropoda, Crustacea Balanus glandula Class: Multicrustacea, Hexanauplia, Thecostraca, Cirripedia Order: Thoracica, Sessilia, Balanomorpha Acorn barnacle Family: Balanoidea, Balanidae, Balaninae Description (the plate overlapping plate edges) and radii Size: Up to 3 cm in diameter, but usually (the plate edge marked off from the parietes less than 1.5 cm (Ricketts and Calvin 1971; by a definite change in direction of growth Kozloff 1993). lines) (Fig. 3b) (Newman 2007). The plates Color: Shell usually white, often irregular themselves include the carina, the carinola- and color varies with state of erosion. Cirri teral plates and the compound rostrum (Fig. are black and white (see Plate 11, Kozloff 3). 1993). Opercular Valves: Valves consist of General Morphology: Members of the Cirri- two pairs of movable plates inside the wall, pedia, or barnacles, can be recognized by which close the aperture: the tergum and the their feathery thoracic limbs (called cirri) that scutum (Figs. 3a, 4, 5). are used for feeding. There are six pairs of Scuta: The scuta have pits on cirri in B. glandula (Fig. 1). Sessile barna- either side of a short adductor ridge (Fig. 5), cles are surrounded by a shell that is com- fine growth ridges, and a prominent articular posed of a flat basis attached to the sub- ridge. stratum, a wall formed by several articulated Terga: The terga are the upper, plates (six in Balanus species, Fig. 3) and smaller plate pair and each tergum has a movable opercular valves including terga short spur at its base (Fig. 4), deep crests for and scuta (Newman 2007) (Figs.
    [Show full text]
  • 110-Ji Eun Seo.Fm
    Animal Cells and Systems 13: 79-82, 2009 A New Species, Bicellariella fragilis (Flustrina: Cheilostomata: Bryozoa) from Jejudo Island, Korea Ji Eun Seo* Department of Rehabilitation Welfare, College of Health Welfare, Woosuk University, Wanju 565-701, Korea Abstract: A new species of bryozoan, Bicellariella fragilis n. also provided by reviewing the related species to new sp. is reported from Jejudo Island, Korea. It was collected at species. New species is illustrated with SEM photomicrographs, Munseom I. and Supseom I. off Seogwipo city by the fishing the photograph by underwater camera and colony photograph net and SCUBA diving from 1978 to 2009. The new species taken in the laboratory. has characteristics of four to five dorso-distal spines and two proximal spines, whereas ten to twelve spines of B. sinica The materials for this study were collected from Munseom o o are not separated into two groups of the distal and proximal I. (33 13'25''N, 126 33'58''E) and Supseom I. about 1km ones. And this species shows the difference from B. away off the southern coast of Seogwipo, the southern city levinseni in having no avicularium. of Jejudo Island located in the southern end of South Korea, Key words: new species, Flustrina, Bryozoa, Jejudo Island, which shows somewhat subtropical climate. The specimen Korea at first was collected from 30 m in depth in vicinity of Munseom I. by the fishing net dredged on 3 Dec. 1978. It was not until a few years ago that the second and third INTRODUCTION collections in August, 2006 and 2009 were done from 5- 30 m in depth of same area by SCUBA diving.
    [Show full text]
  • De Novo Draft Assembly of the Botrylloides Leachii Genome
    bioRxiv preprint doi: https://doi.org/10.1101/152983; this version posted June 21, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 De novo draft assembly of the Botrylloides leachii genome 2 provides further insight into tunicate evolution. 3 4 Simon Blanchoud1#, Kim Rutherford2, Lisa Zondag1, Neil Gemmell2 and Megan J Wilson1* 5 6 1 Developmental Biology and Genomics Laboratory 7 2 8 Department of Anatomy, School of Biomedical Sciences, University of Otago, P.O. Box 56, 9 Dunedin 9054, New Zealand 10 # Current address: Department of Zoology, University of Fribourg, Switzerland 11 12 * Corresponding author: 13 Email: [email protected] 14 Ph. +64 3 4704695 15 Fax: +64 479 7254 16 17 Keywords: chordate, regeneration, Botrylloides leachii, ascidian, tunicate, genome, evolution 1 bioRxiv preprint doi: https://doi.org/10.1101/152983; this version posted June 21, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 18 Abstract (250 words) 19 Tunicates are marine invertebrates that compose the closest phylogenetic group to the 20 vertebrates. This chordate subphylum contains a particularly diverse range of reproductive 21 methods, regenerative abilities and life-history strategies. Consequently, tunicates provide an 22 extraordinary perspective into the emergence and diversity of chordate traits. Currently 23 published tunicate genomes include three Phlebobranchiae, one Thaliacean, one Larvacean 24 and one Stolidobranchian. To gain further insights into the evolution of the tunicate phylum, 25 we have sequenced the genome of the colonial Stolidobranchian Botrylloides leachii.
    [Show full text]
  • Marine Biology
    Marine Biology Spatial and temporal dynamics of ascidian invasions in the continental United States and Alaska. --Manuscript Draft-- Manuscript Number: MABI-D-16-00297 Full Title: Spatial and temporal dynamics of ascidian invasions in the continental United States and Alaska. Article Type: S.I. : Invasive Species Keywords: ascidians, biofouling, biogeography, marine invasions, nonindigenous, non-native species, North America Corresponding Author: Christina Simkanin, Phd Smithsonian Environmental Research Center Edgewater, MD UNITED STATES Corresponding Author Secondary Information: Corresponding Author's Institution: Smithsonian Environmental Research Center Corresponding Author's Secondary Institution: First Author: Christina Simkanin, Phd First Author Secondary Information: Order of Authors: Christina Simkanin, Phd Paul W. Fofonoff Kristen Larson Gretchen Lambert Jennifer Dijkstra Gregory M. Ruiz Order of Authors Secondary Information: Funding Information: California Department of Fish and Wildlife Dr. Gregory M. Ruiz National Sea Grant Program Dr. Gregory M. Ruiz Prince William Sound Regional Citizens' Dr. Gregory M. Ruiz Advisory Council Smithsonian Institution Dr. Gregory M. Ruiz United States Coast Guard Dr. Gregory M. Ruiz United States Department of Defense Dr. Gregory M. Ruiz Legacy Program Abstract: SSpecies introductions have increased dramatically in number, rate, and magnitude of impact in recent decades. In marine systems, invertebrates are the largest and most diverse component of coastal invasions throughout the world. Ascidians are conspicuous and well-studied members of this group, however, much of what is known about their invasion history is limited to particular species or locations. Here, we provide a large-scale assessment of invasions, using an extensive literature review and standardized field surveys, to characterize the invasion dynamics of non-native ascidians in the continental United States and Alaska.
    [Show full text]
  • Identifying Monophyletic Groups Within Bugula Sensu Lato (Bryozoa, Buguloidea)
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) Universidade de São Paulo Biblioteca Digital da Produção Intelectual - BDPI Centro de Biologia Marinha - CEBIMar Artigos e Materiais de Revistas Científicas - CEBIMar 2015-05 Identifying monophyletic groups within Bugula sensu lato (Bryozoa, Buguloidea) http://www.producao.usp.br/handle/BDPI/49614 Downloaded from: Biblioteca Digital da Produção Intelectual - BDPI, Universidade de São Paulo Zoologica Scripta Identifying monophyletic groups within Bugula sensu lato (Bryozoa, Buguloidea) KARIN H. FEHLAUER-ALE,JUDITH E. WINSTON,KEVIN J. TILBROOK,KARINE B. NASCIMENTO & LEANDRO M. VIEIRA Submitted: 5 December 2014 Fehlauer-Ale, K.H., Winston, J.E., Tilbrook, K.J., Nascimento, K.B. & Vieira, L.M. (2015). Accepted: 8 January 2015 Identifying monophyletic groups within Bugula sensu lato (Bryozoa, Buguloidea). —Zoologica doi:10.1111/zsc.12103 Scripta, 44, 334–347. Species in the genus Bugula are globally distributed. They are most abundant in tropical and temperate shallow waters, but representatives are found in polar regions. Seven species occur in the Arctic and one in the Antarctic and species are represented in continental shelf or greater depths as well. The main characters used to define the genus include bird’s head pedunculate avicularia, erect colonies, embryos brooded in globular ooecia and branches comprising two or more series of zooids. Skeletal morphology has been the primary source of taxonomic information for many calcified bryozoan groups, including the Buguloidea. Several morphological characters, however, have been suggested to be homoplastic at dis- tinct taxonomic levels, in the light of molecular phylogenies.
    [Show full text]
  • The Barnacle Amphibalanus Improvisus (Darwin, 1854), and the Mitten Crab Eriocheir: One Invasive Species Getting Off on Another!
    BioInvasions Records (2015) Volume 4, Issue 3: 205–209 Open Access doi: http://dx.doi.org/10.3391/bir.2015.4.3.09 © 2015 The Author(s). Journal compilation © 2015 REABIC Rapid Communication The barnacle Amphibalanus improvisus (Darwin, 1854), and the mitten crab Eriocheir: one invasive species getting off on another! Murtada D. Naser1,4, Philip S. Rainbow2, Paul F. Clark2*, Amaal Gh. Yasser1,4 and Diana S. Jones3 1Marine Biology Department, Marine Science Centre, University of Basrah, Basrah, Iraq 2Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, England 3Western Australian Museum, 49 Kew Street, Welshpool, Western Australia, 6106 Australia 4Australian Rivers Institute, Griffith University, 170 Kessels Road, Nathan, Queensland, 4111 Australia E-mail: [email protected] (MDN), [email protected] (PSR), [email protected] (PFC), [email protected] (AGY), [email protected] (DSJ) *Corresponding author Received: 9 March 2015 / Accepted: 20 May 2015 / Published online: 16 June 2015 Handling editor: Vadim Panov Abstract The balanoid barnacle, Amphibalanus improvisus (Darwin, 1854), was found on the carapaces of two invasive species of mitten crabs: Eriocheir sinensis H. Milne Edwards, 1853 and E. hepuensis Dai, 1991. The first instance was from a female mitten crab captured from the River Thames estuary, Kent, England, where A. improvisus is common. However, the second record, on a Hepu mitten crab from Iraq is the first record of A. improvisus from the Persian Gulf. Key words: Eriocheir sinensis H. Milne Edwards, 1853, E. hepuensis Dai, 1991, invasive species, England, Iraq, barnacles, mitten crabs Introduction the eastern and western North Atlantic; Baltic Sea; west coast of Africa (to the Cape of Good “Hairy” (Southeast and East Asia) or “mitten” Hope); Mediterranean Sea; Black Sea; Caspian (Europe) crabs are currently assigned to Eriocheir Sea; Red Sea; Straits of Malacca; Singapore; De Haan, 1835 (Brachyura: Grapsoidea: Varunidae).
    [Show full text]
  • 1 Invasive Species in the Northeastern and Southwestern Atlantic
    This is the author's accepted manuscript. The final published version of this work (the version of record) is published by Elsevier in Marine Pollution Bulletin. Corrected proofs were made available online on the 24 January 2017 at: http://dx.doi.org/10.1016/j.marpolbul.2016.12.048. This work is made available online in accordance with the publisher's policies. Please refer to any applicable terms of use of the publisher. Invasive species in the Northeastern and Southwestern Atlantic Ocean: a review Maria Cecilia T. de Castroa,b, Timothy W. Filemanc and Jason M Hall-Spencerd,e a School of Marine Science and Engineering, University of Plymouth & Plymouth Marine Laboratory, Prospect Place, Plymouth, PL1 3DH, UK. [email protected]. +44(0)1752 633 100. b Directorate of Ports and Coasts, Navy of Brazil. Rua Te filo Otoni, 4 - Centro, 20090-070. Rio de Janeiro / RJ, Brazil. c PML Applications Ltd, Prospect Place, Plymouth, PL1 3DH, UK. d Marine Biology and Ecology Research Centre, Plymouth University, PL4 8AA, UK. e Shimoda Marine Research Centre, University of Tsukuba, Japan. Abstract The spread of non-native species has been a subject of increasing concern since the 1980s when human- as a major vector for species transportation and spread, although records of non-native species go back as far as 16th Century. Ever increasing world trade and the resulting rise in shipping have highlighted the issue, demanding a response from the international community to the threat of non-native marine species. In the present study, we searched for available literature and databases on shipping and invasive species in the North-eastern (NE) and South-western (SW) Atlantic Ocean and assess the risk represented by the shipping trade between these two regions.
    [Show full text]