Marine Bivalve Molluscs

Total Page:16

File Type:pdf, Size:1020Kb

Marine Bivalve Molluscs Marine Bivalve Molluscs Marine Bivalve Molluscs Second Edition Elizabeth Gosling This edition first published 2015 © 2015 by John Wiley & Sons, Ltd First edition published 2003 © Fishing News Books, a division of Blackwell Publishing Registered Office John Wiley & Sons, Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK Editorial Offices 9600 Garsington Road, Oxford, OX4 2DQ, UK The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK 111 River Street, Hoboken, NJ 07030‐5774, USA For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com/wiley‐blackwell. The right of the author to be identified as the author of this work has been asserted in accordance with the UK Copyright, Designs and Patents Act 1988. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher. Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book. Limit of Liability/Disclaimer of Warranty: While the publisher and author(s) have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. It is sold on the understanding that the publisher is not engaged in rendering professional services and neither the publisher nor the author shall be liable for damages arising herefrom. If professional advice or other expert assistance is required, the services of a competent professional should be sought. Library of Congress Cataloging‐in‐Publication data applied for ISBN: 9780470674949 A catalogue record for this book is available from the British Library. Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books. Cover image: (Scallop background) iStockphoto © DHuss (Oyster opening) iStockphoto © Riorita (Rough cockle sea shell out of its armor) iStockphoto © xbrchx (Other images) Courtesy of the author Set in 10/12pt Times by SPi Global, Pondicherry, India 1 2015 Contents Preface viii Acknowledgements x 1 Phylogeny and evolution of bivalve molluscs 1 Phylogeny of the Mollusca 1 Phylogeny and evolution of Bivalvia 3 Evolution and adaptive radiation in Bivalvia 7 Notes 10 References 10 2 Morphology of bivalves 12 Introduction 12 Shell 12 Mantle 21 Gills 24 The foot 27 Labial palps and alimentary canal 31 Gonads 34 Heart and haemolymph vessels 34 Excretory organs 35 Nerves and sensory receptors 36 References 38 3 Ecology of bivalves 44 Introduction 44 Global and local distribution patterns 44 Factors affecting geographic distribution 52 Factors affecting local distribution 55 Climate change 78 Note 84 References 84 4 How bivalves feed 99 Introduction 99 Filtration rate 100 Particle processing on the gills, labial palps and in the stomach 110 The alimentary canal and digestive process 128 Absorption efficiency 139 Effects of bivalve suspension‐feeders on the ecosystem 141 Notes 144 References 144 vi Contents 5 Reproduction, settlement and recruitment 157 Introduction 157 Sexuality 157 Gametogenesis 159 Reproductive cycles 159 Factors controlling reproduction 165 Annual storage cycle 170 Reproductive effort and fecundity 171 Deleterious effects on the reproductive cycle 175 Fertilization 175 Larval development 177 Factors affecting larval growth 178 Larval dispersal and population connectivity 181 Larval identification and abundance estimation 184 Settlement, metamorphosis and post‐larval dispersal 185 References 189 6 Growth 203 Introduction 203 Methods of measuring absolute growth 203 Allometric growth 213 Scope for growth and dynamic energy budget models 216 Factors affecting growth 219 Note 232 References 232 7 Circulation, respiration, excretion and osmoregulation 243 Circulation 243 Respiration 246 Excretion and osmoregulation 260 Note 264 References 264 8 Fisheries and management of natural populations 270 Introduction 270 Population dynamics 271 Fisheries assessment and management 282 Scallop fisheries 287 Oyster fisheries 301 Mussel fisheries 309 Clam fisheries 314 References 319 9 Bivalve culture 325 Introduction 325 Fundamentals of bivalve culture 326 Mussel culture 340 Oyster culture 348 Scallop culture 355 Clam culture 362 Contents vii Bivalve culture and the environment 369 Ecosystem approach to bivalve culture 371 Note 374 References 375 10 Genetics in aquaculture 383 Introduction 383 Quantitative genetics 384 Selective breeding 386 Protein and DNA markers 394 Bivalve genomics 403 Chromosomal genetics and ploidy manipulation 408 Transgenics 417 Notes 419 References 419 11 Diseases and parasites 429 Introduction 429 Viruses 429 Bacteria 431 Fungi 434 Protistans 434 Porifera 447 Helminths 448 Annelids 451 Crustaceans 452 Neoplasia 454 Defence mechanisms 455 Perspectives 463 References 464 12 Public health 478 Introduction 478 Bacterial infections 478 Viral infections 480 Biotoxins 481 Industrial pollutants 488 Controls on the production and processing of bivalves 490 Elimination of pathogens and other hazards 495 Monitoring and quality control 499 HAACP system 502 Notes 508 References 508 Subject index 514 Species index 520 Preface The phylum Mollusca is one of the largest, most diverse and important groups in the animal kingdom. There are at least 50 000 described species, and about 30 000 of these are found in the sea. The class Bivalvia is one of the eight classes of molluscs and comprises animals enclosed in two shell valves. Examples are mussels, oysters, scallops and clams. Although this class contains a relatively small number of species, about 10 000, it elicits substantial interest chiefly because these species are widely consumed by people. In 2011, production of marine bivalves from fisheries and aquaculture was almost 14 million metric tonnes worldwide with more than 90% of this figure coming from aquaculture. Some years ago while teaching a course on bivalve biology to aquaculture students, I realized that although the students could access much relevant information from several texts, a single book covering all aspects of the biology, ecology and culture of bivalve molluscs did not exist. Thus the idea to write such a book was conceived. What started off as a small undertaking very quickly snowballed into a substantial task, which took several years to complete, primarily due to my having to read and digest the wealth of published information. The first edition of Bivalve Molluscs, published in 2003, was very well received by reviewers, did well in terms of sales, and in 2011 Wiley‐Blackwell invited me to prepare a second edition. In the intervening years, there have been many significant advances, along with the emergence of new areas of research, one reason being the range of new techniques being applied in bivalve biology and ecology. For example, DNA genetic markers play an increas- ingly important role in disease diagnosis (Chapter 11), identification and tagging of larvae (Chapters 5 and 10), in detecting different strains of pathogenic bacteria (Chapter 12), and in the completely new area of bivalve genomics (Chapter 10). Also, isotope ratios and fatty acid signatures are being used to identify dietary food sources in bivalves (Chapter 4), while measurements of stable oxygen isotopes in fossil and contemporary bivalve shells are allowing reconstruction of past sea surface temperatures. Trace elemental fingerprinting, based on naturally occurring elements in bivalve shells, is being used to assess larval origins and trajectories, while fluorescence in situ hybridization (FISH) combined with cell sorting can identify and rapidly count and sort larvae of several bivalve species in diverse plankton samples (Chapter 5). Immunosensors – devices that use specific biochemical reactions mediated by antibodies to detect chemical compounds – may soon replace liquid chromatography, which has long been the official method for detection and quantification of algal toxins in shellfish (Chapter 12). Another significant development has been the increasing use of sophisticated mathematical models to describe and predict growth and bioenergetics of individual animals (Chapters 4 and 6), to track larval movement and recruitment (Chapter 5) and to predict geographic range of species in global warming scenarios (Chapter 3). Models are also being employed to simulate disease and forecast outbreaks (Chapters 11 and 12), to describe carrying capac- ity and environmental effects in aquaculture areas (Chapter 9). Also, several model‐based approaches are in use to assess fisheries stocks (Chapter 8). Preface ix Another area that has changed is the management of bivalve fisheries and aquaculture systems, where the emphasis is now more on the use of legislation and control measures, particularly in Europe, North America, Australia and New Zealand (Chapters 8 and 9). This also pertains
Recommended publications
  • Benthic Invertebrate Community Monitoring and Indicator Development for Barnegat Bay-Little Egg Harbor Estuary
    July 15, 2013 Final Report Project SR12-002: Benthic Invertebrate Community Monitoring and Indicator Development for Barnegat Bay-Little Egg Harbor Estuary Gary L. Taghon, Rutgers University, Project Manager [email protected] Judith P. Grassle, Rutgers University, Co-Manager [email protected] Charlotte M. Fuller, Rutgers University, Co-Manager [email protected] Rosemarie F. Petrecca, Rutgers University, Co-Manager and Quality Assurance Officer [email protected] Patricia Ramey, Senckenberg Research Institute and Natural History Museum, Frankfurt Germany, Co-Manager [email protected] Thomas Belton, NJDEP Project Manager and NJDEP Research Coordinator [email protected] Marc Ferko, NJDEP Quality Assurance Officer [email protected] Bob Schuster, NJDEP Bureau of Marine Water Monitoring [email protected] Introduction The Barnegat Bay ecosystem is potentially under stress from human impacts, which have increased over the past several decades. Benthic macroinvertebrates are commonly included in studies to monitor the effects of human and natural stresses on marine and estuarine ecosystems. There are several reasons for this. Macroinvertebrates (here defined as animals retained on a 0.5-mm mesh sieve) are abundant in most coastal and estuarine sediments, typically on the order of 103 to 104 per meter squared. Benthic communities are typically composed of many taxa from different phyla, and quantitative measures of community diversity (e.g., Rosenberg et al. 2004) and the relative abundance of animals with different feeding behaviors (e.g., Weisberg et al. 1997, Pelletier et al. 2010), can be used to evaluate ecosystem health. Because most benthic invertebrates are sedentary as adults, they function as integrators, over periods of months to years, of the properties of their environment.
    [Show full text]
  • Journal of Threatened Taxa
    PLATINUM The Journal of Threatened Taxa (JoTT) is dedicated to building evidence for conservaton globally by publishing peer-reviewed artcles online OPEN ACCESS every month at a reasonably rapid rate at www.threatenedtaxa.org. All artcles published in JoTT are registered under Creatve Commons Atributon 4.0 Internatonal License unless otherwise mentoned. JoTT allows allows unrestricted use, reproducton, and distributon of artcles in any medium by providing adequate credit to the author(s) and the source of publicaton. Journal of Threatened Taxa Building evidence for conservaton globally www.threatenedtaxa.org ISSN 0974-7907 (Online) | ISSN 0974-7893 (Print) Short Communication The windowpane oyster family Placunidae Rafinesque, 1815 with additional description of Placuna quadrangula (Philipsson, 1788) from India Rocktm Ramen Das, Vijay Kumar Deepak Samuel, Goutham Sambath, Pandian Krishnan, Purvaja Ramachandran & Ramesh Ramachandran 26 December 2019 | Vol. 11 | No. 15 | Pages: 15061–15067 DOI: 10.11609/jot.5049.11.15.15061-15067 For Focus, Scope, Aims, Policies, and Guidelines visit htps://threatenedtaxa.org/index.php/JoTT/about/editorialPolicies#custom-0 For Artcle Submission Guidelines, visit htps://threatenedtaxa.org/index.php/JoTT/about/submissions#onlineSubmissions For Policies against Scientfc Misconduct, visit htps://threatenedtaxa.org/index.php/JoTT/about/editorialPolicies#custom-2 For reprints, contact <[email protected]> The opinions expressed by the authors do not refect the views of the Journal of Threatened Taxa, Wildlife Informaton Liaison Development Society, Zoo Outreach Organizaton, or any of the partners. The journal, the publisher, the host, and the part- Publisher & Host ners are not responsible for the accuracy of the politcal boundaries shown in the maps by the authors.
    [Show full text]
  • Diversity of Malacofauna from the Paleru and Moosy Backwaters Of
    Journal of Entomology and Zoology Studies 2017; 5(4): 881-887 E-ISSN: 2320-7078 P-ISSN: 2349-6800 JEZS 2017; 5(4): 881-887 Diversity of Malacofauna from the Paleru and © 2017 JEZS Moosy backwaters of Prakasam district, Received: 22-05-2017 Accepted: 23-06-2017 Andhra Pradesh, India Darwin Ch. Department of Zoology and Aquaculture, Acharya Darwin Ch. and P Padmavathi Nagarjuna University Nagarjuna Nagar, Abstract Andhra Pradesh, India Among the various groups represented in the macrobenthic fauna of the Bay of Bengal at Prakasam P Padmavathi district, Andhra Pradesh, India, molluscs were the dominant group. Molluscs were exploited for Department of Zoology and industrial, edible and ornamental purposes and their extensive use has been reported way back from time Aquaculture, Acharya immemorial. Hence the present study was focused to investigate the diversity of Molluscan fauna along Nagarjuna University the Paleru and Moosy backwaters of Prakasam district during 2016-17 as these backwaters are not so far Nagarjuna Nagar, explored for malacofauna. A total of 23 species of molluscs (16 species of gastropods belonging to 12 Andhra Pradesh, India families and 7 species of bivalves representing 5 families) have been reported in the present study. Among these, gastropods such as Umbonium vestiarium, Telescopium telescopium and Pirenella cingulata, and bivalves like Crassostrea madrasensis and Meretrix meretrix are found to be the most dominant species in these backwaters. Keywords: Malacofauna, diversity, gastropods, bivalves, backwaters 1. Introduction Molluscans are the second largest phylum next to Arthropoda with estimates of 80,000- 100,000 described species [1]. These animals are soft bodied and are extremely diversified in shape and colour.
    [Show full text]
  • Erminlo Caprotti F) L Avole Propriamente Nei Vasti Ammassi Di
    \ \ Erminlo Caprotti MOLLUSCHI DEL TABIANIANO (PLIOCENE INFERIORE) DELLA VAL D'ARDA. LORO CONNESSIONI TEMPORALI E SPAZIALI. Gebun und GÈb, Èir cwias Mc.r. - F'n we.-hselnd W€hén Èin slUhcnd t2ben: So schatf ich .m sausendeù WcE sruhl de. z.n Und{i.ke dér Gonhéir lebendig.s (W. C@thé, Faust, I, Nacht) A) Introduzione B) Composizione della fauna e comparazioni - Le associazioni , dominanti C) Origine e divenire D) Descrizioni paleontologiche E) Nota bibliografica F) l avole A) INTRODUZIONE Questo lavoro studia i molluschi reperiti dall'Autore con sue per- sonali ricerche nel Tabianiano (Pliocene inferiore) della Val d'Arda, in provincia di Piacenza. La ricerca e la raccolta del materiale è stata ef- fettuata sulla riva destra dell'Arda nei pressi di Lugagnano, e Piir propriamente nei vasti ammassi di argille azzure che si stendono dall'Arda verso il paese di Vernasca (Foglio I.G.M. n. 72 II N.E.). In particolare le due zone di raccolta, oggetto di questo studio, sono topograficamente racchiuse tm quota 208 (Case Micelli presso la riva destra dell'Arda) e quota 300 circa. Si tratta di un grande ammasso di argille azzurre, situato ad Est ed a Sud-Est della fornace per late- rizi di Lugagnano. Topograficamente sovrapposte a queste argille si trovano sabbie basali del Pliocene inferiore variate con intercalazioni marmose, sab- bie medie e grossolane, marne grigio chiare, sabbie argillo§e, argille marmoso-sabbiose. Da esse non sono stati prelevati che scarsi fram_ menti di molluschi e pertanto queste non fanno oggetto di questo Iavoro. Queste sabbie sooo stratigraficamente sottoposte alle argille prese qui in esame, mentre dal punto di vista topografico esse si e' stcndono fin quasi al paese di Veanasca.
    [Show full text]
  • Bankia Setacea Class: Bivalvia, Heterodonta, Euheterodonta
    Phylum: Mollusca Bankia setacea Class: Bivalvia, Heterodonta, Euheterodonta Order: Imparidentia, Myida The northwest or feathery shipworm Family: Pholadoidea, Teredinidae, Bankiinae Taxonomy: The original binomen for Bankia the presence of long siphons. Members of setacea was Xylotrya setacea, described by the family Teredinidae are modified for and Tryon in 1863 (Turner 1966). William Leach distiguished by a wood-boring mode of life described several molluscan genera, includ- (Sipe et al. 2000), pallets at the siphon tips ing Xylotrya, but how his descriptions were (see Plate 394C, Coan and Valentich-Scott interpreted varied. Although Menke be- 2007) and distinct anterior shell indentation. lieved Xylotrya to be a member of the Phola- They are commonly called shipworms (though didae, Gray understood it as a member of they are not worms at all!) and bore into many the Terdinidae and synonyimized it with the wooden structures. The common name ship- genus Bankia, a genus designated by the worm is based on their vermiform morphology latter author in 1842. Most authors refer to and a shell that only covers the anterior body Bankia setacea (e.g. Kozloff 1993; Sipe et (Ricketts and Calvin 1952; see images in al. 2000; Coan and Valentich-Scott 2007; Turner 1966). Betcher et al. 2012; Borges et al. 2012; Da- Body: Bizarrely modified bivalve with re- vidson and de Rivera 2012), although one duced, sub-globular body. For internal anato- recent paper sites Xylotrya setacea (Siddall my, see Fig. 1, Canadian…; Fig. 1 Betcher et et al. 2009). Two additional known syno- al. 2012. nyms exist currently, including Bankia Color: osumiensis, B.
    [Show full text]
  • Preliminary Checklist of Extant Endemic Species and Subspecies of the Windward Dutch Caribbean (St
    Preliminary checklist of extant endemic species and subspecies of the windward Dutch Caribbean (St. Martin, St. Eustatius, Saba and the Saba Bank) Authors: O.G. Bos, P.A.J. Bakker, R.J.H.G. Henkens, J. A. de Freitas, A.O. Debrot Wageningen University & Research rapport C067/18 Preliminary checklist of extant endemic species and subspecies of the windward Dutch Caribbean (St. Martin, St. Eustatius, Saba and the Saba Bank) Authors: O.G. Bos1, P.A.J. Bakker2, R.J.H.G. Henkens3, J. A. de Freitas4, A.O. Debrot1 1. Wageningen Marine Research 2. Naturalis Biodiversity Center 3. Wageningen Environmental Research 4. Carmabi Publication date: 18 October 2018 This research project was carried out by Wageningen Marine Research at the request of and with funding from the Ministry of Agriculture, Nature and Food Quality for the purposes of Policy Support Research Theme ‘Caribbean Netherlands' (project no. BO-43-021.04-012). Wageningen Marine Research Den Helder, October 2018 CONFIDENTIAL no Wageningen Marine Research report C067/18 Bos OG, Bakker PAJ, Henkens RJHG, De Freitas JA, Debrot AO (2018). Preliminary checklist of extant endemic species of St. Martin, St. Eustatius, Saba and Saba Bank. Wageningen, Wageningen Marine Research (University & Research centre), Wageningen Marine Research report C067/18 Keywords: endemic species, Caribbean, Saba, Saint Eustatius, Saint Marten, Saba Bank Cover photo: endemic Anolis schwartzi in de Quill crater, St Eustatius (photo: A.O. Debrot) Date: 18 th of October 2018 Client: Ministry of LNV Attn.: H. Haanstra PO Box 20401 2500 EK The Hague The Netherlands BAS code BO-43-021.04-012 (KD-2018-055) This report can be downloaded for free from https://doi.org/10.18174/460388 Wageningen Marine Research provides no printed copies of reports Wageningen Marine Research is ISO 9001:2008 certified.
    [Show full text]
  • Dreisseina Spp
    Dreissena spp. Diagnostic features Shells equivalve, mytiliform, inflated, sunken elongate internal ligament. There is a distinct septum behind umbos. Periostracum present. Edentate hinge without teeth. Pallial line not sinuate. Anatomy: eulamellibranch gills, closed mantle with two well developed short siphons. Very small foot with a byssal apparatus (Huber 2010). Dreissena polymorpha (length up to about 50 mm) Classification Class Bivalvia I nfraclass Heteroconchia Cohort Heterodonta Megaorder Neoheterodontei Order Myida Superfamily Dreissenoidea Family Dreissenidae Genus Dreissena van Beneden, 1835 (Type species: Mytilus polymorphus Pallas, 1771) (Synonyms - see http://www.marinespecies.org/aphia.php?p=taxdetails&id=181565). Original reference: Van Beneden, P. J. (1835). Histoire naturelle et anatomique du Driessena [sic] polymorpha, genre nouveau dans la famille de mylilacées [sic]. Bulletins de L’ Academie Royale des Sciences et Belles-lettres de Bruxelles 2: 25-26 Type locality: Tributary of the Ural River in the Caspian Sea Basin, Russia. Biology and ecology Epifaunal. Very adaptable and can tolerate a wide range of salinity and water conditions, ranging from fresh to brackish water. Dioecious with external fertilisation and planktotrophic larvae. Extremely fertile and fast growing and can reach huge population densities. Distribution Native to the lakes of southeast Russia, the Dnieper River drainage of Ukraine and the Black and Caspian Seas. has also been introduced throughout Europe and North America, China and ndia. Notes Dresseina spp.do not occur in Australia but because it could be accidentally introduced, it is mentioned here as a potential threat. Two members of this genus have become major pests in freshwater environments in North America and Europe by clogging water intake structures (e.g., pipes and screens).
    [Show full text]
  • Occurrence of the Hairy Ark Cockle (Anadara Gubernaculum, Reeve 1844) in Mayangan Coastal Waters, Subang – Province West Java: New Distribution Record of Indonesia
    Asian Journal of Conservation Biology, December 2016. Vol. 5 No. 2, pp. 70-74 AJCB: FP0075 ISSN 2278-7666 ©TCRP 2016 Occurrence of the hairy ark cockle (Anadara gubernaculum, Reeve 1844) in Mayangan coastal waters, Subang – Province West Java: new distribution record of Indonesia Dewi Fitriawati1*, Nurlisa Alias Butet2 and Yusli Wardiatno2 1Master Program in Aquatic Resources Management, Graduate School of Bogor Agricultural University, Kampus IPB Dramaga – Bogor 16680, Indonesia 2Department of Aquatic Resources Management, Faculty of Fisheries and Marine Science, Bogor Agricultural University, Kampus IPB Dramaga – Bogor 16680, Indonesia (Accepted November 25, 2016) ABSTRACT Thirty six specimens of the hairy ark cockle (Anadara gubernaculum Reeve, 1844) were collected from Mayangan waters, Subang of Province West Java, during marine biodiversity survey along northern coast of Java Island, Indonesia. Previous records of the cockle showed its occurrence in Cilincing, northern coast of Jakarta, Semarang coastal waters of Province Central Java, and Sidoarjo coastal waters located in northern part of Province East Java. The identification of the species was performed by morphological characters and is supported by molecular analysis. This finding represents a new distribution record of the species in Indonesia. Keywords: Arcidae, bivalves, first record, mollusc, north Java. INTRODUCTION A.gubernaculum from Mayangan waters, Subang – Province West Java, Indonesia. At the same time it is a As an aquatic biodiversity hotspot, Indonesia has rich and diverse marine organisms, one of them is the cock- new distribution record of the species in Indonesian les group of Arcidae. The family Arcidae is a large and waters. diverse family of marine bivalve distributed worldwide in warm seas of tropical areas.
    [Show full text]
  • Early Ontogeny of Jurassic Bakevelliids and Their Bearing on Bivalve Evolution
    Early ontogeny of Jurassic bakevelliids and their bearing on bivalve evolution NIKOLAUS MALCHUS Malchus, N. 2004. Early ontogeny of Jurassic bakevelliids and their bearing on bivalve evolution. Acta Palaeontologica Polonica 49 (1): 85–110. Larval and earliest postlarval shells of Jurassic Bakevelliidae are described for the first time and some complementary data are given concerning larval shells of oysters and pinnids. Two new larval shell characters, a posterodorsal outlet and shell septum are described. The outlet is homologous to the posterodorsal notch of oysters and posterodorsal ridge of arcoids. It probably reflects the presence of the soft anatomical character post−anal tuft, which, among Pteriomorphia, was only known from oysters. A shell septum was so far only known from Cassianellidae, Lithiotidae, and the bakevelliid Kobayashites. A review of early ontogenetic shell characters strongly suggests a basal dichotomy within the Pterio− morphia separating taxa with opisthogyrate larval shells, such as most (or all?) Praecardioida, Pinnoida, Pterioida (Bakevelliidae, Cassianellidae, all living Pterioidea), and Ostreoida from all other groups. The Pinnidae appear to be closely related to the Pterioida, and the Bakevelliidae belong to the stem line of the Cassianellidae, Lithiotidae, Pterioidea, and Ostreoidea. The latter two superfamilies comprise a well constrained clade. These interpretations are con− sistent with recent phylogenetic hypotheses based on palaeontological and genetic (18S and 28S mtDNA) data. A more detailed phylogeny is hampered by the fact that many larval shell characters are rather ancient plesiomorphies. Key words: Bivalvia, Pteriomorphia, Bakevelliidae, larval shell, ontogeny, phylogeny. Nikolaus Malchus [[email protected]], Departamento de Geologia/Unitat Paleontologia, Universitat Autòno− ma Barcelona, 08193 Bellaterra (Cerdanyola del Vallès), Spain.
    [Show full text]
  • New Records of Three Deep-Sea Bathymodiolus Mussels (Bivalvia: Mytilida: Mytilidae) from Hydrothermal Vent and Cold Seeps in Taiwan
    352 Journal of Marine Science and Technology, Vol. 27, No. 4, pp. 352-358 (2019) DOI: 10.6119/JMST.201908_27(4).0006 NEW RECORDS OF THREE DEEP-SEA BATHYMODIOLUS MUSSELS (BIVALVIA: MYTILIDA: MYTILIDAE) FROM HYDROTHERMAL VENT AND COLD SEEPS IN TAIWAN Meng-Ying Kuo1, Dun- Ru Kang1, Chih-Hsien Chang2, Chia-Hsien Chao1, Chau-Chang Wang3, Hsin-Hung Chen3, Chih-Chieh Su4, Hsuan-Wien Chen5, Mei-Chin Lai6, Saulwood Lin4, and Li-Lian Liu1 Key words: new record, Bathymodiolus, deep-sea, hydrothermal vent, taiwanesis (von Cosel, 2008) is the only reported species of cold seep, Taiwan. this genus from Taiwan. It was collected from hydrothermal vents near Kueishan Islet off the northeast coast of Taiwan at depths of 200-355 m. ABSTRACT Along with traditional morphological classification, mo- The deep sea mussel genus, Bathymodiolus Kenk & Wilson, lecular techniques are commonly used to study the taxonomy 1985, contains 31 species, worldwide. Of which, one endemic and phylogenetic relationships of deep sea mussels. Recently, species (Bathymodiolus taiwanesis) was reported from Taiwan the complete mitochondrial genomes have been sequenced (MolluscaBase, 2018). Herein, based on the mitochondrial COI from mussels of Bathymodiolus japonicus, B. platifrons and results, we present 3 new records of the Bathymodiolus species B. septemdierum (Ozawa et al., 2017). Even more, the whole from Taiwan, namely Bathymodiolus platifrons, Bathymodiolus genome of B. platifrons was reported with sequence length of securiformis, and Sissano Bathymodiolus sp.1 which were collected 1.64 Gb nucleotides (Sun et al., 2017). from vent or seep environments at depth ranges of 1080-1380 Since 2013, under the Phase II National energy program of m.
    [Show full text]
  • Spatial Variability in Recruitment of an Infaunal Bivalve
    Spatial Variability in Recruitment of an Infaunal Bivalve: Experimental Effects of Predator Exclusion on the Softshell Clam (Mya arenaria L.) along Three Tidal Estuaries in Southern Maine, USA Author(s): Brian F. Beal, Chad R. Coffin, Sara F. Randall, Clint A. Goodenow Jr., Kyle E. Pepperman, Bennett W. Ellis, Cody B. Jourdet and George C. Protopopescu Source: Journal of Shellfish Research, 37(1):1-27. Published By: National Shellfisheries Association https://doi.org/10.2983/035.037.0101 URL: http://www.bioone.org/doi/full/10.2983/035.037.0101 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Journal of Shellfish Research, Vol. 37, No. 1, 1–27, 2018. SPATIAL VARIABILITY IN RECRUITMENT OF AN INFAUNAL BIVALVE: EXPERIMENTAL EFFECTS OF PREDATOR EXCLUSION ON THE SOFTSHELL CLAM (MYA ARENARIA L.) ALONG THREE TIDAL ESTUARIES IN SOUTHERN MAINE, USA 1,2 3 2 3 BRIAN F.
    [Show full text]
  • Risk Assessment for Three Dreissenid Mussels (Dreissena Polymorpha, Dreissena Rostriformis Bugensis, and Mytilopsis Leucophaeata) in Canadian Freshwater Ecosystems
    C S A S S C C S Canadian Science Advisory Secretariat Secrétariat canadien de consultation scientifique Research Document 2012/174 Document de recherche 2012/174 National Capital Region Région de la capitale nationale Risk Assessment for Three Dreissenid Évaluation des risques posés par trois Mussels (Dreissena polymorpha, espèces de moules dreissénidées Dreissena rostriformis bugensis, and (Dreissena polymorpha, Dreissena Mytilopsis leucophaeata) in Canadian rostriformis bugensis et Mytilopsis Freshwater Ecosystems leucophaeata) dans les écosystèmes d'eau douce au Canada Thomas W. Therriault1, Andrea M. Weise2, Scott N. Higgins3, Yinuo Guo1*, and Johannie Duhaime4 Fisheries & Oceans Canada 1Pacific Biological Station 3190 Hammond Bay Road, Nanaimo, BC V9T 6N7 2Institut Maurice-Lamontagne 850 route de la Mer, Mont-Joli, QC G5H 3Z48 3Freshwater Institute 501 University Drive, Winnipeg, MB R3T 2N6 4Great Lakes Laboratory for Fisheries and Aquatic Sciences 867 Lakeshore Road, PO Box 5050, Burlington, Ontario L7R 4A6 * YMCA Youth Intern This series documents the scientific basis for the La présente série documente les fondements evaluation of aquatic resources and ecosystems in scientifiques des évaluations des ressources et des Canada. As such, it addresses the issues of the écosystèmes aquatiques du Canada. Elle traite des day in the time frames required and the problèmes courants selon les échéanciers dictés. documents it contains are not intended as Les documents qu‟elle contient ne doivent pas être definitive statements on the subjects addressed considérés comme des énoncés définitifs sur les but rather as progress reports on ongoing sujets traités, mais plutôt comme des rapports investigations. d‟étape sur les études en cours. Research documents are produced in the official Les documents de recherche sont publiés dans la language in which they are provided to the langue officielle utilisée dans le manuscrit envoyé au Secretariat.
    [Show full text]