Land Use and Land Cover Change: the Effects of Woody Plant Encroachment and Prescribed Fire on Biodiversity and Ecosystem Carbon

Total Page:16

File Type:pdf, Size:1020Kb

Land Use and Land Cover Change: the Effects of Woody Plant Encroachment and Prescribed Fire on Biodiversity and Ecosystem Carbon LAND USE AND LAND COVER CHANGE: THE EFFECTS OF WOODY PLANT ENCROACHMENT AND PRESCRIBED FIRE ON BIODIVERSITY AND ECOSYSTEM CARBON DYNAMICS IN A SOUTHERN GREAT PLAINS MIXED GRASS SAVANNA A Dissertation by EMILY BROOKE HOLLISTER Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY May 2008 Major Subject: Molecular and Environmental Plant Sciences LAND USE AND LAND COVER CHANGE: THE EFFECTS OF WOODY PLANT ENCROACHMENT AND PRESCRIBED FIRE ON BIODIVERSITY AND ECOSYSTEM CARBON DYNAMICS IN A SOUTHERN GREAT PLAINS MIXED GRASS SAVANNA A Dissertation by EMILY BROOKE HOLLISTER Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Approved by: Chair of Committee, Thomas W. Boutton Committee Members, R. James Ansley David D. Briske Christopher W. Schadt David A. Zuberer Chair of the Molecular and Environmental Plant Sciences Faculty, Jean H. Gould May 2008 Major Subject: Molecular and Environmental Plant Sciences iii ABSTRACT Land Use and Land Cover Change: The Effects of Woody Plant Encroachment and Prescribed Fire on Biodiversity and Ecosystem Carbon Dynamics in a Southern Great Plains Mixed Grass Savanna. (May 2008) Emily Brooke Hollister, B.A., Wells College Chair of Advisory Committee: Dr. Thomas W. Boutton In the southern Great Plains, the encroachment of grassland ecosystems by mesquite (Prosopis glandulosa), is widespread, and prescribed fire is commonly used in its control. Despite this, substantial quantitative information concerning their influences on the community composition, functional dynamics, and soil organic carbon (SOC) storage potential of grassland ecosystems is lacking. The objectives of this study were to: a) quantify the effects of seasonal prescribed fire treatments and mesquite encroachment on aboveground net primary productivity (ANPP) and herbaceous community composition; b) characterize SOC pool sizes, turnover, and storage potential relative to vegetation type and fire treatment; c) evaluate the structure and diversity of soil microbial communities relative to vegetation type; and d) characterize the functional diversity of these same microbes using the GeoChip functional gene microarray. Repeated winter and summer fires led to increased ANPP rates (average, 434 and 313 g m-2 y-1, respectively), relative to unburned controls (average, 238 g m-2 y-1), altered herbaceous community composition, and increased the storage of resistant forms of SOC, but did not affect overall SOC storage. Herbaceous ANPP rates did not differ significantly as a result of mesquite encroachment, but herbaceous community composition and SOC storage did. Mesquite soils contained significantly more total, slow-turnover, and resistant forms of SOC than those that occurred beneath C3 or C4 grasses. Similarity among the soil bacterial and fungal communities associated with the major vegetation types in this system was low to moderate. Significant differences were detected among soil fungi, with the mesquite-associated fungi harboring significant iv differences in community structure relative to the fungal communities associated with each of the other vegetation types examined. Despite this result, few significant differences were detected with respect to the functional diversity of these communities, suggesting either a high degree of functional redundancy, or that the functional differences harbored by these communities are beyond the scope of the GeoChip. The results of this study demonstrate that both fire and mesquite encroachment have the potential to alter ecosystem components and processes significantly, providing new insight regarding the effects of these widespread land use and land cover changes on ecosystem structure and function. v ACKNOWLEDGEMENTS I would like to acknowledge the members of my graduate committee, Drs. Tom Boutton, Jim Ansley, Dave Briske, David Zuberer, and Chris Schadt, for their patience, guidance, and support through this process, as well as Wylie Harris, Julia Liao, E Bai, Feng Liu, Lori Biederman, Ilsa Kantola, and the other members of the Boutton lab for their friendship, humor, encouragement, and thorough editing skills. This work would not have been possible without the help of Lisa Alexander, Kirk Jessup, and Darrin Moore, whose patience for repetitive tasks and long days in the field were greater than I ever could have imagined. I would like to thank Frank Hons, Michael Thon, Terry Gentry, and the members of their research groups for allowing me to use their lab space and equipment, as well as the Environmental Sciences Division and Microbial Ecology and Physiology Research Group of Oak Ridge National Laboratory for allowing me to spend time in their laboratories learning new techniques and utilizing their functional gene array. Additional thanks are extended to the faculty and staff at the Texas AgriLife Research Station at Vernon who helped to ensure smooth field campaigns under difficult conditions and provided assistance when things didn’t go quite as smoothly as anticipated. Words are not adequate to express my gratitude for the love and support provided by my family and friends throughout this process, but I acknowledge this large and varied, crazy, loving, group fully, knowing that I wouldn’t have made it through without them. This research was supported in part by the USDA/CASMGS Program, the U.S. DOE Global Change Education Program’s Graduate Research Environmental Fellowship, NASA’s Earth Systems Science Fellowship (EFFS-03-0000-0022), and an NSF Doctoral Dissertation Improvement grant (DEB/DDIG-0608465). vi TABLE OF CONTENTS Page ABSTRACT.............................................................................................................. iii ACKNOWLEDGEMENTS ...................................................................................... v TABLE OF CONTENTS.......................................................................................... vi LIST OF FIGURES................................................................................................... viii LIST OF TABLES .................................................................................................... ix CHAPTER I INTRODUCTION................................................................................ 1 II PRESCRIBED FIRE AND WOODY ENCROACHMENT ALTER ABOVEGROUND NET PRIMARY PRODUCTIVITY IN A SOUTHERN GREAT PLAINS MIXED GRASS SAVANNA........... 6 Introduction .................................................................................... 6 Materials and Methods................................................................... 8 Results ............................................................................................ 12 Discussion ...................................................................................... 27 Conclusions .................................................................................... 37 III EFFECTS OF PRESCRIBED FIRE AND WOODY ENCROACHMENT ON SOIL ORGANIC CARBON POOL SIZES AND TURNOVER RATES................................................................. 38 Introduction .................................................................................... 38 Materials and Methods................................................................... 41 Results ............................................................................................ 45 Discussion ...................................................................................... 50 Conclusions .................................................................................... 57 vii CHAPTER Page IV SOIL MICROBIAL COMMUNITY COMPOSITION IN A SOUTHERN GREAT PLAINS MIXED GRASS SAVANNA: INFLUENCE OF PLANT FUNCTIONAL TYPES............................ 58 Introduction .................................................................................... 58 Materials and Methods................................................................... 60 Results ............................................................................................ 69 Discussion ...................................................................................... 73 V EVALUATION OF THE FUNCTIONAL GENE DIVERSITY OF SOIL COMMUNITIES IN A SOUTHERN GREAT PLAINS MIXED GRASS SAVANNA USING THE GEOCHIP, A FUNCTIONAL GENE MICROARRAY............................................. 79 Introduction .................................................................................... 79 Materials and Methods................................................................... 81 Results ............................................................................................ 89 Discussion ...................................................................................... 94 Conclusions .................................................................................... 96 VI SUMMARY AND CONCLUSIONS................................................... 97 LITERATURE CITED ............................................................................................. 102 APPENDIX A ........................................................................................................... 123 VITA ......................................................................................................................... 147 viii LIST OF FIGURES FIGURE Page 1 Monthly precipitation and temperature patterns for Vernon, TX. ............. 13
Recommended publications
  • Food Or Beverage Product, Or Probiotic Composition, Comprising Lactobacillus Johnsonii 456
    (19) TZZ¥¥¥ _T (11) EP 3 536 328 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 11.09.2019 Bulletin 2019/37 A61K 35/74 (2015.01) A61K 35/66 (2015.01) A61P 35/00 (2006.01) (21) Application number: 19165418.5 (22) Date of filing: 19.02.2014 (84) Designated Contracting States: • SCHIESTL, Robert, H. AL AT BE BG CH CY CZ DE DK EE ES FI FR GB Encino, CA California 91436 (US) GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO • RELIENE, Ramune PL PT RO RS SE SI SK SM TR Los Angeles, CA California 90024 (US) • BORNEMAN, James (30) Priority: 22.02.2013 US 201361956186 P Riverside, CA California 92506 (US) 26.11.2013 US 201361909242 P • PRESLEY, Laura, L. Santa Maria, CA California 93458 (US) (62) Document number(s) of the earlier application(s) in • BRAUN, Jonathan accordance with Art. 76 EPC: Tarzana, CA California 91356 (US) 14753847.4 / 2 958 575 (74) Representative: Müller-Boré & Partner (71) Applicant: The Regents of the University of Patentanwälte PartG mbB California Friedenheimer Brücke 21 Oakland, CA 94607 (US) 80639 München (DE) (72) Inventors: Remarks: • YAMAMOTO, Mitsuko, L. This application was filed on 27-03-2019 as a Alameda, CA California 94502 (US) divisional application to the application mentioned under INID code 62. (54) FOOD OR BEVERAGE PRODUCT, OR PROBIOTIC COMPOSITION, COMPRISING LACTOBACILLUS JOHNSONII 456 (57) The present invention relates to food products, beverage products and probiotic compositions comprising Lacto- bacillus johnsonii 456. EP 3 536 328 A1 Printed by Jouve, 75001 PARIS (FR) EP 3 536 328 A1 Description CROSS-REFERENCE TO RELATED APPLICATIONS 5 [0001] This application claims the benefit of U.S.
    [Show full text]
  • Supplementary Information
    doi: 10.1038/nature06269 SUPPLEMENTARY INFORMATION METAGENOMIC AND FUNCTIONAL ANALYSIS OF HINDGUT MICROBIOTA OF A WOOD FEEDING HIGHER TERMITE TABLE OF CONTENTS MATERIALS AND METHODS 2 • Glycoside hydrolase catalytic domains and carbohydrate binding modules used in searches that are not represented by Pfam HMMs 5 SUPPLEMENTARY TABLES • Table S1. Non-parametric diversity estimators 8 • Table S2. Estimates of gross community structure based on sequence composition binning, and conserved single copy gene phylogenies 8 • Table S3. Summary of numbers glycosyl hydrolases (GHs) and carbon-binding modules (CBMs) discovered in the P3 luminal microbiota 9 • Table S4. Summary of glycosyl hydrolases, their binning information, and activity screening results 13 • Table S5. Comparison of abundance of glycosyl hydrolases in different single organism genomes and metagenome datasets 17 • Table S6. Comparison of abundance of glycosyl hydrolases in different single organism genomes (continued) 20 • Table S7. Phylogenetic characterization of the termite gut metagenome sequence dataset, based on compositional phylogenetic analysis 23 • Table S8. Counts of genes classified to COGs corresponding to different hydrogenase families 24 • Table S9. Fe-only hydrogenases (COG4624, large subunit, C-terminal domain) identified in the P3 luminal microbiota. 25 • Table S10. Gene clusters overrepresented in termite P3 luminal microbiota versus soil, ocean and human gut metagenome datasets. 29 • Table S11. Operational taxonomic unit (OTU) representatives of 16S rRNA sequences obtained from the P3 luminal fluid of Nasutitermes spp. 30 SUPPLEMENTARY FIGURES • Fig. S1. Phylogenetic identification of termite host species 38 • Fig. S2. Accumulation curves of 16S rRNA genes obtained from the P3 luminal microbiota 39 • Fig. S3. Phylogenetic diversity of P3 luminal microbiota within the phylum Spirocheates 40 • Fig.
    [Show full text]
  • Genomics of Helicobacter Species 91
    Genomics of Helicobacter Species 91 6 Genomics of Helicobacter Species Zhongming Ge and David B. Schauer Summary Helicobacter pylori was the first bacterial species to have the genome of two independent strains completely sequenced. Infection with this pathogen, which may be the most frequent bacterial infec- tion of humanity, causes peptic ulcer disease and gastric cancer. Other Helicobacter species are emerging as causes of infection, inflammation, and cancer in the intestine, liver, and biliary tract, although the true prevalence of these enterohepatic Helicobacter species in humans is not yet known. The murine pathogen Helicobacter hepaticus was the first enterohepatic Helicobacter species to have its genome completely sequenced. Here, we consider functional genomics of the genus Helico- bacter, the comparative genomics of the genus Helicobacter, and the related genera Campylobacter and Wolinella. Key Words: Cytotoxin-associated gene; H-Proteobacteria; gastric cancer; genomic evolution; genomic island; hepatobiliary; peptic ulcer disease; type IV secretion system. 1. Introduction The genus Helicobacter belongs to the family Helicobacteriaceae, order Campylo- bacterales, and class H-Proteobacteria, which is also known as the H subdivision of the phylum Proteobacteria. The H-Proteobacteria comprise of a relatively small and recently recognized line of descent within this extremely large and phenotypically diverse phy- lum. Other genera that colonize and/or infect humans and animals include Campylobac- ter, Arcobacter, and Wolinella. These organisms are all microaerophilic, chemoorgano- trophic, nonsaccharolytic, spiral shaped or curved, and motile with a corkscrew-like motion by means of polar flagella. Increasingly, free living H-Proteobacteria are being recognized in a wide range of environmental niches, including seawater, marine sedi- ments, deep-sea hydrothermal vents, and even as symbionts of shrimp and tubeworms in these environments.
    [Show full text]
  • Evolutionary Dynamics of the Vapd Gene in Helicobacter Pylori and Its
    ISSN Online: 2372-0956 Symbiosis www.symbiosisonlinepublishing.com Research Article SOJ Microbiology & Infectious Diseases Open Access Evolutionary dynamics of the vapD gene in Helicobacter pylori and its wide distribution among bacterial phyla Gabriela Delgado-Sapién1, Rene Cerritos-Flores2, Alejandro Flores-Alanis1, José L Méndez1, Alejandro Cravioto1, Rosario Morales-Espinosa1* *1Laboratorio de Genómica Bacteriana, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, México 04510. 2Centro de Investigación en Políticas, Población y Salud, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, México 04510. Received: 12th August , 2020; Accepted: 15th November 2020 ; Published: 03rd December, 2020 *Corresponding author: RosarioMorales-Espinosa, PhD, MD, Laboratorio de Genómica Bacteriana, Departamento de Microbiología y Parasi- tología. Universidad Nacional Autónoma de México. Avenida Universidad 3000, Colonia Ciudad Universitaria, Delegación Coyoacán, C.P. 04510, México City, México.Tel.: +525 5523 2135; Fax: +525 5623 2114 E-mail: [email protected] factors [1,2,3]. Genetic diversity is seen among H. pylori strains Abstract from different origins and ethnic populations, as well as within The vapD gene is present in microorganisms from different phyla H. pylori populations within a single stomach. It is well known and encodes for the virulence-associated protein D (VapD). In some that H. pylori is a highly recombinant microorganism [4-8] and microorganisms, it has been suggested that vapD participates in either a natural transformant, which explains its genomic variability protecting the bacteria from respiratory burst within the macrophage and diversity that favour a better adaptive capacity and its or in facilitating the persistence of the microorganism within the permanence on the gastric mucosa for decades.
    [Show full text]
  • Mapping the Diversity of Microbial Lignin Catabolism: Experiences from the Elignin Database
    Applied Microbiology and Biotechnology (2019) 103:3979–4002 https://doi.org/10.1007/s00253-019-09692-4 MINI-REVIEW Mapping the diversity of microbial lignin catabolism: experiences from the eLignin database Daniel P. Brink1 & Krithika Ravi2 & Gunnar Lidén2 & Marie F Gorwa-Grauslund1 Received: 22 December 2018 /Revised: 6 February 2019 /Accepted: 9 February 2019 /Published online: 8 April 2019 # The Author(s) 2019 Abstract Lignin is a heterogeneous aromatic biopolymer and a major constituent of lignocellulosic biomass, such as wood and agricultural residues. Despite the high amount of aromatic carbon present, the severe recalcitrance of the lignin macromolecule makes it difficult to convert into value-added products. In nature, lignin and lignin-derived aromatic compounds are catabolized by a consortia of microbes specialized at breaking down the natural lignin and its constituents. In an attempt to bridge the gap between the fundamental knowledge on microbial lignin catabolism, and the recently emerging field of applied biotechnology for lignin biovalorization, we have developed the eLignin Microbial Database (www.elignindatabase.com), an openly available database that indexes data from the lignin bibliome, such as microorganisms, aromatic substrates, and metabolic pathways. In the present contribution, we introduce the eLignin database, use its dataset to map the reported ecological and biochemical diversity of the lignin microbial niches, and discuss the findings. Keywords Lignin . Database . Aromatic metabolism . Catabolic pathways
    [Show full text]
  • The Following Pages Constitute the Final, Accepted and Revised Manuscript of the Article
    The following pages constitute the final, accepted and revised manuscript of the article: Nilsson, Hans-Olof and Pietroiusti, Antonio and Gabrielli, Maurizio and Zocco, Maria Assunta and Gasbarrini, Giovanni and Gasbarrini, Antonio “Helicobacter pylori and Extragastric Diseases - Other Helicobacters” Helicobacter. 2005;10 Suppl 1:54-65. Publisher: Blackwell Use of alternative location to go to the published version of the article requires journal subscription. Alternative location: http://dx.doi.org/10.1111/j.1523-5378.2005.00334.x HELICOBACTER PYLORI AND EXTRAGASTRIC DISEASES - OTHER HELICOBACTERS Hans-Olof Nilsson, Antonio Pietroiusti*, Maurizio Gabrielli#, Maria Assunta Zocco#, Giovanni Gasbarrini#, Antonio Gasbarrini# Department of Laboratory Medicine, Lund University, Lund, Sweden *Medical Semiology and Methodology, Department of Internal Medicine, Tor Vergata University, Rome, Italy #Department of Internal Medicine, Catholic University the Sacred Heart, Gemelli Hospital Rome, Italy Correspondence and reprints request to: Antonio Gasbarrini, MD Istituto di Patologia Speciale Medica Universita’ Cattolica del Sacro Cuore Policlinico Gemelli, Largo Gemelli 8, 00168 Rome, ITALY Telephone: 39-335-6873562 39-6-30154294 FAX: 39-6-35502775 E-mail: [email protected] 2 ABSTRACT The involvement of Helicobacter pylori in the pathogenesis of extragastric diseases continues to be an interesting topic in the field of Helicobacter-related pathology. Although conflicting findings have been reported for most of the disorders, a role of H. pylori seems to be important especially for the development of cardiovascular and hematologic disorders. Previously isolated human and animal Helicobacter sp. flexispira and ′Helicobacter heilmannii′ strains have been validated using polyphasic taxonomy. A novel enterohepatic helicobacter has been isolated from mastomys and mice, adding to the list of helicobacters that colonize the liver.
    [Show full text]
  • (Pelobacter) and Methanococcoides Are Responsible for Choline-Dependent Methanogenesis in a Coastal Saltmarsh Sediment
    The ISME Journal https://doi.org/10.1038/s41396-018-0269-8 ARTICLE Deltaproteobacteria (Pelobacter) and Methanococcoides are responsible for choline-dependent methanogenesis in a coastal saltmarsh sediment 1 1 1 2 3 1 Eleanor Jameson ● Jason Stephenson ● Helen Jones ● Andrew Millard ● Anne-Kristin Kaster ● Kevin J. Purdy ● 4 5 1 Ruth Airs ● J. Colin Murrell ● Yin Chen Received: 22 January 2018 / Revised: 11 June 2018 / Accepted: 26 July 2018 © The Author(s) 2018. This article is published with open access Abstract Coastal saltmarsh sediments represent an important source of natural methane emissions, much of which originates from quaternary and methylated amines, such as choline and trimethylamine. In this study, we combine DNA stable isotope 13 probing with high throughput sequencing of 16S rRNA genes and C2-choline enriched metagenomes, followed by metagenome data assembly, to identify the key microbes responsible for methanogenesis from choline. Microcosm 13 incubation with C2-choline leads to the formation of trimethylamine and subsequent methane production, suggesting that 1234567890();,: 1234567890();,: choline-dependent methanogenesis is a two-step process involving trimethylamine as the key intermediate. Amplicon sequencing analysis identifies Deltaproteobacteria of the genera Pelobacter as the major choline utilizers. Methanogenic Archaea of the genera Methanococcoides become enriched in choline-amended microcosms, indicating their role in methane formation from trimethylamine. The binning of metagenomic DNA results in the identification of bins classified as Pelobacter and Methanococcoides. Analyses of these bins reveal that Pelobacter have the genetic potential to degrade choline to trimethylamine using the choline-trimethylamine lyase pathway, whereas Methanococcoides are capable of methanogenesis using the pyrrolysine-containing trimethylamine methyltransferase pathway.
    [Show full text]
  • Polyamine Distribution Profiles Among Some Members Within Delta-And Epsilon-Subclasses of Proteobacteria
    Microbiol. Cult. Coll. June. 2004. p. 3 ― 8 Vol. 20, No. 1 Polyamine Distribution Profiles among Some Members within Delta-and Epsilon-Subclasses of Proteobacteria Koei Hamana1)*, Tomoko Saito1), Mami Okada1), and Masaru Niitsu2) 1)Department of Laboratory Sciences, School of Health Sciences, Faculty of Medicine, Gunma University, 39- 15 Showa-machi 3-chome, Maebashi, Gunma 371-8514, Japan 2)Faculty of Pharmaceutical Sciences, Josai University, Keyakidai 1-chome-1, Sakado, Saitama 350-0295, Japan Cellular polyamines of 18 species(13 genera)belonging to the delta and epsilon subclasses of the class Proteobacteria were analyzed by HPLC and GC. In the delta subclass, the four marine myxobacteria(the order Myxococcales), Enhygromyxa salina, Haliangium ochroceum, Haliangium tepidum and Plesiocystis pacifica contained spermidine. Fe(III)-reducing two Geobacter species and two Pelobacter species belonging to the order Desulfuromonadales con- tained spermidine. Bdellovibrio bacteriovorus was absent in cellular polyamines. Bacteriovorax starrii contained putrescine and spermidine. Bacteriovorax stolpii contained spermidine and homo- spermidine. Spermidine was the major polyamine in the sulfate-reducing delta proteobacteria belonging to the genera Desulfovibrio, Desulfacinum, Desulfobulbus, Desulfococcus and Desulfurella, and some species of them contained cadaverine. Within the epsilon subclass, three Sulfurospirillum species ubiquitously contained spermidine and one of the three contained sper- midine and cadaverine. Thiomicrospora denitrificans contained cadaverine and spermidine as the major polyamine. These data show that cellular polyamine profiles can be used as a chemotaxonomic marker within delta and epsilon subclasses. Key words: polyamine, spermidine, homospermidine, Proteobacteria The class Proteobacteria is a major taxon of the 18, 26). Fe(Ⅲ)-reducing members belonging to the gen- domain Bacteria and is phylogenetically divided into the era Pelobacter, Geobacter, Desulfuromonas and alpha, beta, gamma, delta and epsilon subclasses.
    [Show full text]
  • Appendix a Bacteria
    Appendix A Complete list of 594 pathogens identified in canines categorized by the following taxonomical groups: bacteria, ectoparasites, fungi, helminths, protozoa, rickettsia and viruses. Pathogens categorized as zoonotic/sapronotic/anthroponotic have been bolded; sapronoses are specifically denoted by a ❖. If the dog is involved in transmission, maintenance or detection of the pathogen it has been further underlined. Of these, if the pathogen is reported in dogs in Canada (Tier 1) it has been denoted by an *. If the pathogen is reported in Canada but canine-specific reports are lacking (Tier 2) it is marked with a C (see also Appendix C). Finally, if the pathogen has the potential to occur in Canada (Tier 3) it is marked by a D (see also Appendix D). Bacteria Brachyspira canis Enterococcus casseliflavus Acholeplasma laidlawii Brachyspira intermedia Enterococcus faecalis C Acinetobacter baumannii Brachyspira pilosicoli C Enterococcus faecium* Actinobacillus Brachyspira pulli Enterococcus gallinarum C C Brevibacterium spp. Enterococcus hirae actinomycetemcomitans D Actinobacillus lignieresii Brucella abortus Enterococcus malodoratus Actinomyces bovis Brucella canis* Enterococcus spp.* Actinomyces bowdenii Brucella suis Erysipelothrix rhusiopathiae C Actinomyces canis Burkholderia mallei Erysipelothrix tonsillarum Actinomyces catuli Burkholderia pseudomallei❖ serovar 7 Actinomyces coleocanis Campylobacter coli* Escherichia coli (EHEC, EPEC, Actinomyces hordeovulneris Campylobacter gracilis AIEC, UPEC, NTEC, Actinomyces hyovaginalis Campylobacter
    [Show full text]
  • The Genome of Pelobacter Carbinolicus Reveals
    Aklujkar et al. BMC Genomics 2012, 13:690 http://www.biomedcentral.com/1471-2164/13/690 RESEARCH ARTICLE Open Access The genome of Pelobacter carbinolicus reveals surprising metabolic capabilities and physiological features Muktak Aklujkar1*, Shelley A Haveman1, Raymond DiDonato Jr1, Olga Chertkov2, Cliff S Han2, Miriam L Land3, Peter Brown1 and Derek R Lovley1 Abstract Background: The bacterium Pelobacter carbinolicus is able to grow by fermentation, syntrophic hydrogen/formate transfer, or electron transfer to sulfur from short-chain alcohols, hydrogen or formate; it does not oxidize acetate and is not known to ferment any sugars or grow autotrophically. The genome of P. carbinolicus was sequenced in order to understand its metabolic capabilities and physiological features in comparison with its relatives, acetate-oxidizing Geobacter species. Results: Pathways were predicted for catabolism of known substrates: 2,3-butanediol, acetoin, glycerol, 1,2-ethanediol, ethanolamine, choline and ethanol. Multiple isozymes of 2,3-butanediol dehydrogenase, ATP synthase and [FeFe]-hydrogenase were differentiated and assigned roles according to their structural properties and genomic contexts. The absence of asparagine synthetase and the presence of a mutant tRNA for asparagine encoded among RNA-active enzymes suggest that P. carbinolicus may make asparaginyl-tRNA in a novel way. Catabolic glutamate dehydrogenases were discovered, implying that the tricarboxylic acid (TCA) cycle can function catabolically. A phosphotransferase system for uptake of sugars was discovered, along with enzymes that function in 2,3-butanediol production. Pyruvate:ferredoxin/flavodoxin oxidoreductase was identified as a potential bottleneck in both the supply of oxaloacetate for oxidation of acetate by the TCA cycle and the connection of glycolysis to production of ethanol.
    [Show full text]
  • The Genome of Pelobacter Carbinolicus Reveals Surprising Metabolic Capabilities and Physiological Features
    Aklujkar et al. BMC Genomics 2012, 13:690 http://www.biomedcentral.com/1471-2164/13/690 RESEARCH ARTICLE Open Access The genome of Pelobacter carbinolicus reveals surprising metabolic capabilities and physiological features Muktak Aklujkar1*, Shelley A Haveman1, Raymond DiDonato Jr1, Olga Chertkov2, Cliff S Han2, Miriam L Land3, Peter Brown1 and Derek R Lovley1 Abstract Background: The bacterium Pelobacter carbinolicus is able to grow by fermentation, syntrophic hydrogen/formate transfer, or electron transfer to sulfur from short-chain alcohols, hydrogen or formate; it does not oxidize acetate and is not known to ferment any sugars or grow autotrophically. The genome of P. carbinolicus was sequenced in order to understand its metabolic capabilities and physiological features in comparison with its relatives, acetate-oxidizing Geobacter species. Results: Pathways were predicted for catabolism of known substrates: 2,3-butanediol, acetoin, glycerol, 1,2-ethanediol, ethanolamine, choline and ethanol. Multiple isozymes of 2,3-butanediol dehydrogenase, ATP synthase and [FeFe]-hydrogenase were differentiated and assigned roles according to their structural properties and genomic contexts. The absence of asparagine synthetase and the presence of a mutant tRNA for asparagine encoded among RNA-active enzymes suggest that P. carbinolicus may make asparaginyl-tRNA in a novel way. Catabolic glutamate dehydrogenases were discovered, implying that the tricarboxylic acid (TCA) cycle can function catabolically. A phosphotransferase system for uptake of sugars was discovered, along with enzymes that function in 2,3-butanediol production. Pyruvate:ferredoxin/flavodoxin oxidoreductase was identified as a potential bottleneck in both the supply of oxaloacetate for oxidation of acetate by the TCA cycle and the connection of glycolysis to production of ethanol.
    [Show full text]
  • Tese Adelina Margarida Parente
    Defences of Helicobacter species against host antimicrobials Adelina Margarida Lima Pereira Rodrigues Parente Dissertation presented to obtain the Ph.D degree in Biochemistry Instituto de Tecnologia Química e Biológica António Xavier | Universidade Nova de Lisboa Oeiras, June, 2016 Defences of Helicobacter species against host antimicrobials Adelina Margarida Lima Pereira Rodrigues Parente Dissertation presented to obtain the Ph.D degree in Biochemistry Instituto de Tecnologia Química e Biológica António Xavier | Universidade Nova de Lisboa Oeiras, June 2016 From left to right: Mónica Oleastro (4th oponente), Gabriel Martins (3 rd opponent), Marta Justino (Co-supervisor) , Miguel Viveiros (2 nd opponent), Adelina Margarida Parente , Lígia Saraiva (supervisor) , Cecília Arraiano (president of the jury), and Maria do Céu Figueiredo (1 st opponent). nd 22 June 2016 Second edition, June 2016 Molecular Mechanisms of Pathogen Resistance Laboratory Instituto de Tecnologia Química e Biológica António Xavier Universidade Nova de Lisboa 2780-157 Portugal ii “Science knows no country, because knowledge belongs to humanity, and is the torch which illuminates the world” Louis Pasteur iii iv Acknowledgments Firstly, I would like to express my gratitude to the person that allowed me the opportunity to perform a PhD and who also contributed the most for my accomplishment of this thesis by constantly supporting me during these last years. I thus thank my supervisor, Dr. Lígia Saraiva , for her permanent availability whenever I needed guidance, for all the excellent ideas and advices related to my practical work and lastly for all the patience and enthusiasm! I also thank Dr. Lígia for her rigour and enormous help in the writing of this thesis.
    [Show full text]