Whole-Genome Sequencing and Bioinformatics As Pertinent Tools To

Total Page:16

File Type:pdf, Size:1020Kb

Whole-Genome Sequencing and Bioinformatics As Pertinent Tools To Whole-Genome Sequencing and Bioinformatics as Pertinent Tools to Support Helicobacteracae Taxonomy, Based on Three Strains Suspected to Belong to Novel Helicobacter Species Elvire Berthenet, Lucie Bénéjat, Armelle Ménard, Christine Varon, Sabrina Lacomme, Etienne Gontier, Josette Raymond, Ouahiba Boussaba, Olivier Toulza, Astrid Ducournau, et al. To cite this version: Elvire Berthenet, Lucie Bénéjat, Armelle Ménard, Christine Varon, Sabrina Lacomme, et al.. Whole- Genome Sequencing and Bioinformatics as Pertinent Tools to Support Helicobacteracae Taxonomy, Based on Three Strains Suspected to Belong to Novel Helicobacter Species. Frontiers in Microbiology, Frontiers Media, 2019, 10, pp.2820. 10.3389/fmicb.2019.02820. inserm-03004847 HAL Id: inserm-03004847 https://www.hal.inserm.fr/inserm-03004847 Submitted on 13 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. fmicb-10-02820 December 5, 2019 Time: 16:13 # 1 ORIGINAL RESEARCH published: 06 December 2019 doi: 10.3389/fmicb.2019.02820 Whole-Genome Sequencing and Bioinformatics as Pertinent Tools to Support Helicobacteracae Taxonomy, Based on Three Strains Suspected to Belong to Novel Helicobacter Species Elvire Berthenet1,2†, Lucie Bénéjat1†, Armelle Ménard2, Christine Varon2, Sabrina Lacomme3, Etienne Gontier3, Josette Raymond4, Ouahiba Boussaba1, Edited by: Olivier Toulza5, Astrid Ducournau1, Alice Buissonnière1, Alban Giese2, Iain Sutcliffe, Francis Megraud1,2, Emilie Bessède1,2, Quentin Jehanne1,2 and Philippe Lehours1,2* Northumbria University, United Kingdom 1 French National Reference Center for Campylobacters and Helicobacters, Bordeaux, France, 2 Univ. Bordeaux, INSERM, 3 Reviewed by: Bordeaux Research in Translational Oncology, BaRITOn, U1053, Bordeaux, France, CNRS, INSERM, Bordeaux Imaging 4 Tomoo Sawabe, Center UMS 3420 – US4, Pôle d’Imagerie Électronique, Bordeaux, France, Bacteriology, Cochin Hospital, Institut Pasteur, 5 Hokkaido University, Japan University of Paris-Descartes, Paris, France, Clinique Vétérinaire AQUIVET, Eysines, France Bin-Bin Xie, Shandong University, China The present study describes three putative novel species received at the French *Correspondence: National Reference Center for Campylobacters & Helicobacters (CNRCH). The Philippe Lehours [email protected] CNRCH 2005/566H strain was isolated in 2005 from the feces of a patient †These authors have contributed with a hepatocellular carcinoma and gastroenteritis. Strain 48519 was isolated in equally to this work 2017 from the blood of a male patient suffering from a bacteremia. Strain Cn23e was isolated from a gastric biopsy from a dog suffering from chronic gastritis. Specialty section: This article was submitted to Biochemical and growth characteristics and electron microscopy for these three strains Evolutionary and Genomic were studied. Their genomes were also sequenced. gyrA based phylogeny built Microbiology, a section of the journal with 72 nucleotide sequences placed CNRCH 2005/566H among the unsheathed Frontiers in Microbiology enterohepatic helicobacters, close to Helicobacter valdiviensis; strain 48519 among the Received: 02 August 2019 sheathed enterohepatic helicobacters, close to Helicobacter cinaedi; and strain Cn23e Accepted: 20 November 2019 among gastric helicobacters, close to Helicobacter felis. 16S rRNA gene phylogeny Published: 06 December 2019 showed similar results, but with weak discriminant strength. Average nucleotide identity Citation: Berthenet E, Bénéjat L, Ménard A, and in silico DNA–DNA hybridization analyses revealed that CNRCH 2005/566H and Varon C, Lacomme S, Gontier E, 48519 strains belong to new putative species, but confirmed that Cn23e corresponds Raymond J, Boussaba O, Toulza O, Ducournau A, Buissonnière A, to H. felis. Cn23e was able to infect C57BL6 mice and to induce gastric inflammation. Giese A, Megraud F, Bessède E, The genomics data, together with their different morphological and biochemical Jehanne Q and Lehours P (2019) characteristics, revealed that these two strains represent novel Helicobacter species. Whole-Genome Sequencing and Bioinformatics as Pertinent Tools We propose the following names: ‘Helicobacter burdigaliensis,’ with the type strain to Support Helicobacteracae CNRCH 2005/566H ( =CECT 8850 =CIP 111660), and ‘Helicobacter labetoulli,’ with Taxonomy, Based on Three Strains Suspected to Belong to Novel the type strain 48519 ( =CCUG 73475 =CIP 1111659). This study highlights that the Helicobacter Species. diversity of the Helicobacteraceae family remains to be fully explored. Front. Microbiol. 10:2820. doi: 10.3389/fmicb.2019.02820 Keywords: whole-genome sequencing, novel species, Helicobacter genus, taxonomy, gyrA Frontiers in Microbiology| www.frontiersin.org 1 December 2019| Volume 10| Article 2820 fmicb-10-02820 December 5, 2019 Time: 16:13 # 2 Berthenet et al. Putative New Helicobacter Species INTRODUCTION each of the three strains were conserved at −80◦C in an in-house brucella broth with 25% glycerol. To date, the Helicobacter genus is comprised of 41 validated The strain CNRCH 2005/566H has been assigned to the species1. The type species for the Helicobacter genus is Collection de l’Institut Pasteur (CIP) and the Spanish Type Helicobacter pylori, well-known for its link with gastritis, peptic Culture Collection (CECT) under the identification numbers ulcer disease and gastric cancer in humans (Malfertheiner et al., 11160 and 8850, respectively. The strain 48519 has been 2017). This species was the first to be described for this assigned to the CIP and Culture Collection of Gothenburg genus, by Marshall and Warren(1984). It was originally named University (CCUG) under the identification numbers 111659 and Campylobacter pyloridis. Species belonging to the Helicobacter 73475, respectively. genus are curved, spiral or fusiform rods with size ranging from 1.5 to 10 mm long and 0.2 to 1.2 mm wide. When cultured for too Biochemical Characterization long, they often become coccoidal. They are non-spore-forming Enzymatic activities were assessed by using the API R Campy and Gram negative and show flagellar activity (On et al., 2015). strip (bioMérieux, Marcy-l’Étoile, France). The presence The Helicobacter genus encompasses a large variety of of catalase and oxidase was investigated. A disk diffusion species (De Witte et al., 2016; Smet et al., 2018). Two method was used to assess the susceptibility to nalidixic species categories are based on the niche occupied: gastric and acid (30 mg) and cephalothin (30 mg) Antimicrobial enterohepatic. All known gastric helicobacters possess sheathed susceptibility testing was performed according to the flagella, but enterohepatic species can be divided into sheathed European Committee for Antimicrobial Susceptibility Testing and unsheathed subtypes (Solnick and Vandamme, 2001). Some (EUCAST) recommendations on in-house Mueller-Hinton agar species are host-specific while others can colonize different hosts. supplemented with 5% defibrinated sheep blood (Thermo-Fisher Helicobacter species are able to colonize alternative sites of Scientific) (MH-F) and 20 mg/L of b-nicotinamide adenine the digestive tract in various hosts (mammals, birds, reptiles) dinucleotide (Sigma Aldrich, Merck, Darmstadt, Germany), (Dewhirst et al., 1994; Collado et al., 2014). under the same atmosphere and temperature conditions, as 16S rRNA sequencing, a powerful tool for taxonomy, was previously described (Sifré et al., 2015). MICs were determined shown to be unreliable for the identification of Helicobacter for each isolate with E-test R strips (bioMérieux). For levofloxacin, species as well as for other bacteria (Fox et al., 1992; Vandamme clarithromycin, rifampicin, amoxicillin, tetracycline, and et al., 1996; Jalava et al., 1997; Dewhirst et al., 2005), in part due metronidazole the cut-offs of the “Comité de l’antibiogramme to horizontal gene transfers. Therefore, gyrA based phylogeny de la Société Française de Microbiologie” (CA-SFM) (V.2.0. May is currently the preferred method, to take into account the 2019) were employed2. The reference strain H. pylori CCUG variability in the Helicobacter genus (Ménard et al., 2016). 17874 was used as a quality control strain. Strains were stored at The French National Reference Center for Campylobacters & −80◦C in brucella broth supplemented with 25% glycerol. Helicobacters (CNRCH) collects strains of Campylobacter and Helicobacter related species sent by private clinical laboratories Imaging and public hospitals. In addition to this routine activity, The morphology, cell size, and presence of flagella were the CNRCH sometimes receives strains that collaborators determined by transmission electron microscopy. Bacteria failed to identify. In recent years, three helicobacter isolates were scraped and introduced into a fixative solution of were suspected to belong to novel species. These strains 2.5% glutaraldehyde in 0.1M cacodylate buffer (pH 7.4) and were characterized in the laboratory and their genomes were incubated for 1 h at room temperature. After centrifugation sequenced.
Recommended publications
  • Food Or Beverage Product, Or Probiotic Composition, Comprising Lactobacillus Johnsonii 456
    (19) TZZ¥¥¥ _T (11) EP 3 536 328 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 11.09.2019 Bulletin 2019/37 A61K 35/74 (2015.01) A61K 35/66 (2015.01) A61P 35/00 (2006.01) (21) Application number: 19165418.5 (22) Date of filing: 19.02.2014 (84) Designated Contracting States: • SCHIESTL, Robert, H. AL AT BE BG CH CY CZ DE DK EE ES FI FR GB Encino, CA California 91436 (US) GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO • RELIENE, Ramune PL PT RO RS SE SI SK SM TR Los Angeles, CA California 90024 (US) • BORNEMAN, James (30) Priority: 22.02.2013 US 201361956186 P Riverside, CA California 92506 (US) 26.11.2013 US 201361909242 P • PRESLEY, Laura, L. Santa Maria, CA California 93458 (US) (62) Document number(s) of the earlier application(s) in • BRAUN, Jonathan accordance with Art. 76 EPC: Tarzana, CA California 91356 (US) 14753847.4 / 2 958 575 (74) Representative: Müller-Boré & Partner (71) Applicant: The Regents of the University of Patentanwälte PartG mbB California Friedenheimer Brücke 21 Oakland, CA 94607 (US) 80639 München (DE) (72) Inventors: Remarks: • YAMAMOTO, Mitsuko, L. This application was filed on 27-03-2019 as a Alameda, CA California 94502 (US) divisional application to the application mentioned under INID code 62. (54) FOOD OR BEVERAGE PRODUCT, OR PROBIOTIC COMPOSITION, COMPRISING LACTOBACILLUS JOHNSONII 456 (57) The present invention relates to food products, beverage products and probiotic compositions comprising Lacto- bacillus johnsonii 456. EP 3 536 328 A1 Printed by Jouve, 75001 PARIS (FR) EP 3 536 328 A1 Description CROSS-REFERENCE TO RELATED APPLICATIONS 5 [0001] This application claims the benefit of U.S.
    [Show full text]
  • Review: Other Helicobacter Species
    DOI: 10.1111/hel.12645 SUPPLEMENT ARTICLE Review: Other Helicobacter species Armelle Ménard1 | Annemieke Smet2 1INSERM, UMR1053, Bordeaux Research in Translational Oncology, BaRITOn, Université Abstract de Bordeaux, Bordeaux, France This article is a review of the most important, accessible, and relevant literature pub‐ 2 Laboratorium of Experimental lished between April 2018 and April 2019 in the field of Helicobacter species other than Medicine and Pediatrics, Department of Translational Research in Immunology and Helicobacter pylori. The initial part of the review covers new insights regarding the pres‐ Inflammation, Faculty of Medicine and ence of gastric and enterohepatic non‐H. pylori Helicobacter species (NHPH) in humans Health Sciences, University of Antwerp, Wilrijk (Antwerp), Belgium and animals, while the subsequent section focuses on the progress in our understand‐ ing of the pathogenicity and evolution of these species. Over the last year, relatively Correspondence Armelle Ménard, Laboratoire de few cases of gastric NHPH infections in humans were published, with most NHPH in‐ Bactériologie, INSERM U1053, Campus de fections being attributed to enterohepatic Helicobacters. A novel species, designated Carreire, Université de Bordeaux, Bâtiment 2B RDC ‐ Case 76, 146 rue Léo Saignat, “Helicobacter caesarodunensis,” was isolated from the blood of a febrile patient and F33076 Bordeaux, France. numerous cases of human Helicobacter cinaedi infections underlined this species as a Email: Armelle.Menard@u‐bordeaux.fr true emerging pathogen. With regard to NHPH in animals, canine/feline gastric NHPH cause little or no harm in their natural host; however they can become opportunistic when translocated to the hepatobiliary tract. The role of enterohepatic Helicobacter species in colorectal tumors in pets has also been highlighted.
    [Show full text]
  • A Focus on Protein Glycosylation in Lactobacillus
    International Journal of Molecular Sciences Review How Sweet Are Our Gut Beneficial Bacteria? A Focus on Protein Glycosylation in Lactobacillus Dimitrios Latousakis and Nathalie Juge * Quadram Institute Bioscience, The Gut Health and Food Safety Institute Strategic Programme, Norwich Research Park, Norwich NR4 7UA, UK; [email protected] * Correspondence: [email protected]; Tel.: +44-(0)-160-325-5068; Fax: +44-(0)-160-350-7723 Received: 22 November 2017; Accepted: 27 December 2017; Published: 3 January 2018 Abstract: Protein glycosylation is emerging as an important feature in bacteria. Protein glycosylation systems have been reported and studied in many pathogenic bacteria, revealing an important diversity of glycan structures and pathways within and between bacterial species. These systems play key roles in virulence and pathogenicity. More recently, a large number of bacterial proteins have been found to be glycosylated in gut commensal bacteria. We present an overview of bacterial protein glycosylation systems (O- and N-glycosylation) in bacteria, with a focus on glycoproteins from gut commensal bacteria, particularly Lactobacilli. These emerging studies underscore the importance of bacterial protein glycosylation in the interaction of the gut microbiota with the host. Keywords: protein glycosylation; gut commensal bacteria; Lactobacillus; glycoproteins; adhesins; lectins; O-glycosylation; N-glycosylation; probiotics 1. Introduction Protein glycosylation, i.e., the covalent attachment of a carbohydrate moiety onto a protein, is a highly ubiquitous protein modification in nature, and considered to be one of the post-translational modifications (PTM) targeting the most diverse group of proteins [1]. Although it was originally believed to be restricted to eukaryotic systems and later to archaea, it has become apparent nowadays that protein glycosylation is a common feature in all three domains of life.
    [Show full text]
  • WO 2018/064165 A2 (.Pdf)
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2018/064165 A2 05 April 2018 (05.04.2018) W !P O PCT (51) International Patent Classification: Published: A61K 35/74 (20 15.0 1) C12N 1/21 (2006 .01) — without international search report and to be republished (21) International Application Number: upon receipt of that report (Rule 48.2(g)) PCT/US2017/053717 — with sequence listing part of description (Rule 5.2(a)) (22) International Filing Date: 27 September 2017 (27.09.2017) (25) Filing Language: English (26) Publication Langi English (30) Priority Data: 62/400,372 27 September 2016 (27.09.2016) US 62/508,885 19 May 2017 (19.05.2017) US 62/557,566 12 September 2017 (12.09.2017) US (71) Applicant: BOARD OF REGENTS, THE UNIVERSI¬ TY OF TEXAS SYSTEM [US/US]; 210 West 7th St., Austin, TX 78701 (US). (72) Inventors: WARGO, Jennifer; 1814 Bissonnet St., Hous ton, TX 77005 (US). GOPALAKRISHNAN, Vanch- eswaran; 7900 Cambridge, Apt. 10-lb, Houston, TX 77054 (US). (74) Agent: BYRD, Marshall, P.; Parker Highlander PLLC, 1120 S. Capital Of Texas Highway, Bldg. One, Suite 200, Austin, TX 78746 (US). (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
    [Show full text]
  • Assessment of Host Genetics and Environmental Factors in Shaping the Gut Microbiota
    Assessment of host genetics and environmental factors in shaping the gut microbiota Von der Fakultät für Lebenswissenschaften der Technischen Universität Carolo-Wilhelmina zu Braunschweig zur Erlangung des Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigte D i s s e r t a t i o n von Eric Juan Carlos Gálvez Bobadilla aus Fusagasugá / Kolumbien 1. Referentin: Professorin Dr. Petra Dersch 2. Referent: Professor Dr. Karsten Hiller eingereicht am: 01.10.2018 mündliche Prüfung (Disputation) am: 12.12.2018 Druckjahr 2019 Vorveröffentlichungen der Dissertation Teilergebnisse aus dieser Arbeit wurden mit Genehmigung der Fakultät für Lebenswissenschaften, vertreten durch die Mentorin der Arbeit, in folgenden Beiträgen vorab veröffentlicht: Publikationen Gálvez EJC*, Iljazovic A, Gronow A, Flavell RA, Strowig T**. Shaping of intestinal microbiota in Nlrp6 and Rag2 deficient mice depends on community structure. Cell Rep. (2017). * First author, **Corresponding author Tagungsbeiträge Eric J.C Gálvez and Till Strowig: Low Complexity Microbiota mice (LCM) A stable and defined gut microbiota to study host-microbial interactions (Oral Presentation). 7th Seeon Conference on „Microbiota, Probiota and Host“, 04-06 July 2014. Kloster Seeon, Germany. Eric J.C Gálvez and Till Strowig: Composition and functional dynamics of novel gut commensal species of Prevotella (Oral Presentation). EMBO|FEBS Lecture course: The new microbiology, 24 August – 1 September 2016. Spetses, Greece. Acknowledgments I would like to express my deep gratitude to my mentor, Dr. Till Strowig, for his constant support during the past years. Thank you for your patient guidance, enthusiastic encouragement and all the great advice without which this thesis would have not been possible.
    [Show full text]
  • Genomics of Helicobacter Species 91
    Genomics of Helicobacter Species 91 6 Genomics of Helicobacter Species Zhongming Ge and David B. Schauer Summary Helicobacter pylori was the first bacterial species to have the genome of two independent strains completely sequenced. Infection with this pathogen, which may be the most frequent bacterial infec- tion of humanity, causes peptic ulcer disease and gastric cancer. Other Helicobacter species are emerging as causes of infection, inflammation, and cancer in the intestine, liver, and biliary tract, although the true prevalence of these enterohepatic Helicobacter species in humans is not yet known. The murine pathogen Helicobacter hepaticus was the first enterohepatic Helicobacter species to have its genome completely sequenced. Here, we consider functional genomics of the genus Helico- bacter, the comparative genomics of the genus Helicobacter, and the related genera Campylobacter and Wolinella. Key Words: Cytotoxin-associated gene; H-Proteobacteria; gastric cancer; genomic evolution; genomic island; hepatobiliary; peptic ulcer disease; type IV secretion system. 1. Introduction The genus Helicobacter belongs to the family Helicobacteriaceae, order Campylo- bacterales, and class H-Proteobacteria, which is also known as the H subdivision of the phylum Proteobacteria. The H-Proteobacteria comprise of a relatively small and recently recognized line of descent within this extremely large and phenotypically diverse phy- lum. Other genera that colonize and/or infect humans and animals include Campylobac- ter, Arcobacter, and Wolinella. These organisms are all microaerophilic, chemoorgano- trophic, nonsaccharolytic, spiral shaped or curved, and motile with a corkscrew-like motion by means of polar flagella. Increasingly, free living H-Proteobacteria are being recognized in a wide range of environmental niches, including seawater, marine sedi- ments, deep-sea hydrothermal vents, and even as symbionts of shrimp and tubeworms in these environments.
    [Show full text]
  • The Year in Helicobacter 2020
    EDITOR: David Y. Graham, M.D. The Year in Helicobacter 2020 Guest Editors: Francis Mégraud & Peter Malfertheiner Online only from 2011 The Year in Helicobacter XXXIIIrd Internaঞ onal Workshop on Helicobacter & Microbiota in Infl ammaঞ on & Cancer Virtual Conference September 12, 2020 Guest editors: Francis Mégraud & Peter Malfertheiner This publicaঞ on has been supported by European Helicobacter and Microbiota Study Group Helicobacter VOLUME 25 SUPPLEMENT 1 SEPTEMBER 2020 CONTENTS REVIEW ARTICLES e12734 Review: Epidemiology of Helicobacter pylori Linda Mezmale, Luiz Gonzaga Coelho, Dmitry Bordin and Marcis Leja e12735 Review: Diagnosis of Helicobacter pylori infecঞ on Gauri Godbole, Francis Mégraud and Emilie Bessède e12736 Review: Pathogenesis of Helicobacter pylori infecঞ on Milica Denic, Elie e Touaࢼ and Hilde De Reuse e12737 Review - Helicobacter, infl ammaঞ on, immunology and vaccines Karen Robinson and Philippe Lehours e12738 Review - Helicobacter pylori and non-malignant upper gastro-intesঞ nal diseases Chrisࢼ an Schulz and Juozas Kupcˇinskas e12739 Review: Gastric cancer: Basic aspects Carlos Resende, Carla Pereira Gomes and Jose Carlos Machado e12740 Review: Prevenঞ on and management of gastric cancer Marino Venerito, Alexander C. Ford, Theodoros Rokkas and Peter Malfertheiner e12741 Review: Extragastric diseases and Helicobacter pylori Rinaldo Pellicano, Gianluca Ianiro, Sharmila Fagoonee, Carlo R. Se anni and Antonio Gasbarrini e12742 Review: Helicobacter pylori infecঞ on in children Ji-Hyun Seo, Kristen Bortolin and Nicola L.
    [Show full text]
  • Evolutionary Dynamics of the Vapd Gene in Helicobacter Pylori and Its
    ISSN Online: 2372-0956 Symbiosis www.symbiosisonlinepublishing.com Research Article SOJ Microbiology & Infectious Diseases Open Access Evolutionary dynamics of the vapD gene in Helicobacter pylori and its wide distribution among bacterial phyla Gabriela Delgado-Sapién1, Rene Cerritos-Flores2, Alejandro Flores-Alanis1, José L Méndez1, Alejandro Cravioto1, Rosario Morales-Espinosa1* *1Laboratorio de Genómica Bacteriana, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, México 04510. 2Centro de Investigación en Políticas, Población y Salud, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, México 04510. Received: 12th August , 2020; Accepted: 15th November 2020 ; Published: 03rd December, 2020 *Corresponding author: RosarioMorales-Espinosa, PhD, MD, Laboratorio de Genómica Bacteriana, Departamento de Microbiología y Parasi- tología. Universidad Nacional Autónoma de México. Avenida Universidad 3000, Colonia Ciudad Universitaria, Delegación Coyoacán, C.P. 04510, México City, México.Tel.: +525 5523 2135; Fax: +525 5623 2114 E-mail: [email protected] factors [1,2,3]. Genetic diversity is seen among H. pylori strains Abstract from different origins and ethnic populations, as well as within The vapD gene is present in microorganisms from different phyla H. pylori populations within a single stomach. It is well known and encodes for the virulence-associated protein D (VapD). In some that H. pylori is a highly recombinant microorganism [4-8] and microorganisms, it has been suggested that vapD participates in either a natural transformant, which explains its genomic variability protecting the bacteria from respiratory burst within the macrophage and diversity that favour a better adaptive capacity and its or in facilitating the persistence of the microorganism within the permanence on the gastric mucosa for decades.
    [Show full text]
  • R Graphics Output
    883 | Desulfovibrio vulgaris | DvMF_2825 298701 | Desulfovibrio | DA2_3337 1121434 | Halodesulfovibrio aestuarii | AULY01000007_gene1045 207559 | Desulfovibrio alaskensis | Dde_0991 935942 | Desulfonatronum lacustre | KI912608_gene2193 159290 | Desulfonatronum | JPIK01000018_gene1259 1121448 | Desulfovibrio gigas | DGI_0655 1121445 | Desulfovibrio desulfuricans | ATUZ01000018_gene2316 525146 | Desulfovibrio desulfuricans | Ddes_0159 665942 | Desulfovibrio | HMPREF1022_02168 457398 | Desulfovibrio | HMPREF0326_00453 363253 | Lawsonia intracellularis | LI0397 882 | Desulfovibrio vulgaris | DVU_0784 1121413 | Desulfonatronovibrio hydrogenovorans | JMKT01000008_gene1463 555779 | Desulfonatronospira thiodismutans | Dthio_PD0935 690850 | Desulfovibrio africanus | Desaf_1578 643562 | Pseudodesulfovibrio aespoeensis | Daes_3115 1322246 | Pseudodesulfovibrio piezophilus | BN4_12523 641491 | Desulfovibrio desulfuricans | DND132_2573 1121440 | Desulfovibrio aminophilus | AUMA01000002_gene2198 1121456 | Desulfovibrio longus | ATVA01000018_gene290 526222 | Desulfovibrio salexigens | Desal_3460 1121451 | Desulfovibrio hydrothermalis | DESAM_21057 1121447 | Desulfovibrio frigidus | JONL01000008_gene3531 1121441 | Desulfovibrio bastinii | AUCX01000006_gene918 1121439 | Desulfovibrio alkalitolerans | dsat_0220 941449 | Desulfovibrio | dsx2_0067 1307759 | Desulfovibrio | JOMJ01000003_gene2163 1121406 | Desulfocurvus vexinensis | JAEX01000012_gene687 1304872 | Desulfovibrio magneticus | JAGC01000003_gene2904 573370 | Desulfovibrio magneticus | DMR_04750
    [Show full text]
  • The Role of Helicobacter Spp. Infection in Domestic Animals
    Chapter 2 The Role of Helicobacter spp. Infection in Domestic Animals Achariya Sailasuta and Worapat Prachasilchai Additional information is available at the end of the chapter http://dx.doi.org/10.5772/53054 1. Introduction 1.1. Overview and pathogenesis The discovery of the association of Helicobacter pylori with chronic gastritis, peptic ulcers and gastric neoplasia, mucosa-associated lymphoid tissue-type lymphoma and carcinoma, has led to fundamental changes in the understanding of gastric disease in humans. Some hu‐ mans with H. pylori infection develop only mild, asymptomatic gastritis. Whether more se‐ vere disease develops thought to be influenced by individual host factors and pathogenicity of the bacteria involved. The odd of developing symptomatic H. pylori infection varies by geographic location and age. Different strains of H. pylori have recently been identified. Therefore, H. pylori should be considered a population of closely related but genetically het‐ erogenous bacteria of different genotypes and virulence. A gastric spiral bacteria of superkingdom bacteria, phylum proteobacteria, subphylum delta/epsilon subdivisions, class epsilonproteobacteria, order campylobacter, family helico‐ bacteraceae, genus Helicobacter spp. is gram-negative, spiral-shaped bacteria. At least 13 species have been reported, and most are suspected or proven gastric or hepatic patho‐ gens. Helicobacter spp. have been reported in humans: mainly H. pylori, nonhuman pri‐ mates: H. nemestrinae, cats and dogs various species, including H. pylori, H. felis, H. salomonis, H. rappini, H. heilmannii, and H. bizzozeronii, pigs: H. heilmannii, ferrets: H. muste‐ lae, and cheetahs: H. acinonys. More recently we have learned that nearly all mammmals harbor their own species of Helicobacter infection.
    [Show full text]
  • Mouse Models for Human Intestinal Microbiota Research: a Critical Evaluation
    Cell. Mol. Life Sci. (2018) 75:149–160 https://doi.org/10.1007/s00018-017-2693-8 Cellular and Molecular LifeSciences MULTI-AUTHOR REVIEW Mouse models for human intestinal microbiota research: a critical evaluation Floor Hugenholtz1,3 · Willem M. de Vos1,2 Received: 25 September 2017 / Accepted: 29 September 2017 / Published online: 9 November 2017 © The Author(s) 2017. This article is an open access publication Abstract Since the early days of the intestinal microbi- data. This may afect the reproducibility of mouse micro- ota research, mouse models have been used frequently to biota studies and their conclusions. Hence, future studies study the interaction of microbes with their host. However, should take these into account to truly show the efect of to translate the knowledge gained from mouse studies to diet, genotype or environmental factors on the microbial a human situation, the major spatio-temporal similarities composition. and diferences between intestinal microbiota in mice and humans need to be considered. This is done here with spe- Keywords Microbiome · Metagenome · Phylogeny · cifc attention for the comparative physiology of the intes- Murine models · Reproducibility · Diet tinal tract, the efect of dietary patterns and diferences in genetics. Detailed phylogenetic and metagenomic analysis showed that while many common genera are found in the Introduction human and murine intestine, these difer strongly in abun- dance and in total only 4% of the bacterial genes are found In adult life, a healthy human may harbor several hundreds to share considerable identity. Moreover, a large variety of diferent microbial species in their intestine, which col- of murine strains is available yet most of the microbiota lectively encode more than 100-fold more non-redundant research is performed in wild-type, inbred strains and their genes than there are in the human genome [1–3].
    [Show full text]
  • The Following Pages Constitute the Final, Accepted and Revised Manuscript of the Article
    The following pages constitute the final, accepted and revised manuscript of the article: Nilsson, Hans-Olof and Pietroiusti, Antonio and Gabrielli, Maurizio and Zocco, Maria Assunta and Gasbarrini, Giovanni and Gasbarrini, Antonio “Helicobacter pylori and Extragastric Diseases - Other Helicobacters” Helicobacter. 2005;10 Suppl 1:54-65. Publisher: Blackwell Use of alternative location to go to the published version of the article requires journal subscription. Alternative location: http://dx.doi.org/10.1111/j.1523-5378.2005.00334.x HELICOBACTER PYLORI AND EXTRAGASTRIC DISEASES - OTHER HELICOBACTERS Hans-Olof Nilsson, Antonio Pietroiusti*, Maurizio Gabrielli#, Maria Assunta Zocco#, Giovanni Gasbarrini#, Antonio Gasbarrini# Department of Laboratory Medicine, Lund University, Lund, Sweden *Medical Semiology and Methodology, Department of Internal Medicine, Tor Vergata University, Rome, Italy #Department of Internal Medicine, Catholic University the Sacred Heart, Gemelli Hospital Rome, Italy Correspondence and reprints request to: Antonio Gasbarrini, MD Istituto di Patologia Speciale Medica Universita’ Cattolica del Sacro Cuore Policlinico Gemelli, Largo Gemelli 8, 00168 Rome, ITALY Telephone: 39-335-6873562 39-6-30154294 FAX: 39-6-35502775 E-mail: [email protected] 2 ABSTRACT The involvement of Helicobacter pylori in the pathogenesis of extragastric diseases continues to be an interesting topic in the field of Helicobacter-related pathology. Although conflicting findings have been reported for most of the disorders, a role of H. pylori seems to be important especially for the development of cardiovascular and hematologic disorders. Previously isolated human and animal Helicobacter sp. flexispira and ′Helicobacter heilmannii′ strains have been validated using polyphasic taxonomy. A novel enterohepatic helicobacter has been isolated from mastomys and mice, adding to the list of helicobacters that colonize the liver.
    [Show full text]