Solid-State Chemistry with Nonmetal Nitrides

Total Page:16

File Type:pdf, Size:1020Kb

Solid-State Chemistry with Nonmetal Nitrides Solid-State Chemistry with Nonmetal Nitrides By Wolfgang Schnick* Among the nonmetal nitrides, the polymeric binary compounds BN and Si3N4 are of partic­ ular interest for the development of materials for high-performance applications. The out­ standing features of both substances are their thermal, mechanical, and chemical stability, coupled with their low density. Because of their extremely low reactivity, boron and silicon nitride are hardly ever used as starting materials for the preparation of ternary nitrides, but are used primarily in the manufacture of crucibles or other vessels or as insulation materials. The chemistry of ternary and higher nonmetal nitrides that contain electropositive elements and are thus analogous with the oxo compounds such as borates, silicates, phosphates, or sulfates was neglected for many years. Starting from the recent successful preparation of pure P3N5, a further binary nonmetal nitride which shows similarities with Si3N4 with regard to both its structure and properties, this review deals systematically with the solid-state chemistry of ternary and higher phosphorus(v) nitrides and the relationship between the various types of structure found in this class of substance and the resulting properties and possible applications. From the point of view of preparative solid-state chemistry the syntheses, structures, and properties of the binary nonmetal nitrides BN, Si3N4, and P3N5 will be compared and con­ trasted. The chemistry of the phosphorus(v) nitrides leads us to expect that other nonmetals such as boron, silicon, sulfur, and carbon will also participate in a rich nitride chemistry, as initial reports indeed indicate. 1. Introduction tors: extremely strong bonds between the elements and the presence of highly crosslinked covalent structures. Nitrogen, the main component of the atmosphere, is om­ Besides these two criteria, the extremely high bond energy nipresent. The lightest element in the fifth main group plays of N2 (941 kJ mol"*) as a possible decomposition product of an important role in chemical compounds, in particular in the nitrogen compounds is also of importance when dis• the oxidation states ν and πι (N03 and NO J, respectively) cussing the thermal stability of nitridic materials. Compared as well as — HI (NH3, —NH2, -NH-, and "N-). The with the corresponding oxides, the thermal dissociation of oxidation state of nitrogen in the nitrides is also — in; only many nitrides with evolution of N2 (for the oxides 02, bond a few hundred nitrides have so far been characterized, al­ energy: 499 kJmol"1) occurs at much lower temperatures. though for example the neighboring element oxygen has Thus, the elimination of N2 from Si3N4 occurs at atmospher• been shown to form more than ten thousand oxides. In spite ic pressure at about 1900 °C, while Si02 can be heated to of this relatively small number, the nitrides include some over 2000 °C without any noticeable decomposition. Alu• extremely useful compounds: silicon nitride, Si3N4, has be­ minum nitride decomposes above about 1800°C, while the come an important nonoxidic material, whose applications extrapolated boiling point of A1203 is about 3000 °C. range from ceramic turbochargers to integrated semiconduc­ The affinity of most elements for oxygen is larger than that 11,21 tor modules. Because of its unusually high thermal con­ for nitrogen, thus the bond energies for element-oxygen _1 ll3] ductivity (285 Wm K" ), aluminum nitride is predes­ bonds are generally higher than those of the corresponding tined for use as a substrate material in semiconductor element-nitrogen bonds (single bond energies: Si-O = 444, manufacture. Boron nitride is used as a high-temperature Si-N = 335; P-O = 407, P-N = 290 kJmol"1[41). Similarly crucible material, as a lubricant (hexagonal (Λ)-ΒΝ), and in the bond enthalpies of the oxides are significantly higher the abrasives sector (cubic (c)-BN). In recent years Λ-ΒΝ has than those of the corresponding nitrides (AH?(S\02) = also become increasingly important in the manufacture of -911, V3[A/fJ>(Si3N4)] = - 248; V2[A//?(B203)] = - 637, composite materials. Δ//?(ΒΝ) = - 254; ι/2[Δ//?(Α1203)] = - 838, Δ//?(ΑΙΝ) = The extreme stability of the substances, which are used as — 318 kJ mol"1151), although a quantitative comparison is high-performance ceramics, is due in part to the strengths of difficult because of their differing compositions. the bonds joining the constituent elements; a second impor­ The formation of oxides is thus an important side reaction tant factor is the presence of highly crosslinked structures in in the syntheses of nitrides. Thus, the preparation of nitrides the solid state. When the electronegativity difference is only in a pure state requires the complete exclusion of oxygen and small, heteronuclear bonds with a high degree of covalent water. This precondition has certainly previously played an character are formed. The high chemical, thermal, and me­ important role in hindering a detailed investigation of ni­ chanical stability of nitridic materials such as silicon nitride trides. or boron nitride results from the interplay of these two fac- Among the theoretically possible binary main group ele­ ment nitrides with nitrogen in the oxidation state — πι and [*] Prof. Dr. W. Schnick the electropositive elements in the maximum oxidation state Laboratorium für Anorganische Chemie der Universität Postfach 101251, D-W-8580 Bayreuth (FRG) corresponding to their group number, many are either Telefax: Int. code (921)55-2535 nonexistent or have until now not been obtained in a pure 806 (φ VCH Verlagsgesellschaft mbH, W-6940 Weinheim, 1993 0570-0833/93/0606-0806 $ 10.00 + .25/0 Angew. Chem. Int. Ed. Engl. 1993, 52, 806-818 and well-defined form because of their low stability (Fig. 1). gen atoms is decreased by electron-withdrawing groups or 173 Li3N exhibits an unusually high tendency for formation; the by mesomeric effects, a requirement which is hardly realiz­ reaction between lithium metal and molecular nitrogen able in the speculative compound Sb3N5. In the case of other starts at room temperature and atmospheric pressure with­ main group elements (e.g. carbon and sulfur) the reasons for out any additional activation. In contrast, there is no reliable the hitherto nonexistence of corresponding binary nitrides evidence for the existence and stability of analogous com­ (C3N4 and SN2) appear to be more complex or to be due to pounds of the heavier alkali metals. Apparently in the ni­ preparative problems. trides M3N (M = Na, K, Rb, Cs) the high formal charge of The binary nonmetal nitrides BN, Si3N4, and P3N5 will be the nitride ion (N3~) and the unfavorable molar ratio of main subjects of the following discussion. These are the only cations to anions (3:1) make it impossible to form a stable nonmetal nitrides so far studied in detail in which the elec­ ionic structure in which the electrostatic, coordinative, and tropositive elements have the maximum possible oxidation lattice-energetic requirements of a stable solid material are state corresponding to their group number. The syntheses, fulfilled. For the alkaline earth metals, binary nitrides with structure, and properties of BN and Si3N4 were described the composition M3N2 are, however, known for all the ele­ many years ago. However, both compounds had been stud­ ments. ied because of their application in the area of high-perfor­ mance materials. Because of preparative difficulties, pure phosphorus(v) nitride has only recently been obtained. Al­ though P3N5 is thermodynamically appreciably less stable Li Be Β than BN or Si3N4, it has still been possible to develop a Mg AI Si Ρ multifaceted solid-state chemistry of the phosphorus(v) ni­ Ca Ga Ge trides. This success has provided the impetus for a further systematic search for new ternary and higher nonmetal ni­ Sr In trides. Ba Fig. 1. Binary nitrides are only known for a fraction of the main group elements in the maximum oxidation state corresponding to their group numbers. 2. The Binary Nonmetal Nitrides BN, Si3N4, and P3N5 In contrast to the ionic structures of the nitrides of lithium Binary nitrides form the basis for the syntheses of ternary and the alkaline earth metals, the decreasing electronegativ­ or higher nonmetal nitrides containing electropositive ele­ ities from the third group onwards lead to the formation of ments. Innumerable methods for the preparation of these compounds with more covalent character (e.g. BN, A1N, compounds are known; however, only a limited number of Si3N4). As the group number increases, the heavier homo- these procedures which afford pure, well-defined products logues in their highest oxidation state show a clearly decreas­ can be readily carried out under laboratory conditions. Such ing tendency to form stable binary nitrides: In the third main methods must be applied when the binary nitrides are to be group TIN is "missing", while in the neighboring group tin used in the syntheses of new compounds. and lead form no stable nitrogen compounds with the ex­ [61 pected stoichiometry M3N4. This trend continues up to the sixth main group; here no compounds with the composi­ 2.1. Boron Nitride BN VI tion M N2 (M = S, Se, Te) are known. In some cases the instability of the element-nitrogen bond appears to be re­ Within the family of known ceramic materials boron ni­ sponsible for the nonexistence of the corresponding binary tride has the lowest density (ρ — 2.27 gem"3). It is colorless nitrides. Thus stable molecular compounds of antimony(v) in the pure state and sublimes at about 2330 °C under a and nitrogen are only formed when the basicity of the nitro- nitrogen pressure of one atmosphere.181 Its decomposition Wolfgang Schnick, born in 1957 in Hannover, studied chemistry at the Universität Hannover and received his doctorate there in 1986, having worked with Martin Jansen on alkali metal ozonides. After a postdoctoral year with Albrecht Rabenau at the Μ ax-Planck-Institut für Festkörperfor• schung in Stuttgart he moved to the Universität Bonn.
Recommended publications
  • Triazene (H2NNNH) Or Triimide (HNHNNH) Markofçrstel,[A, D] Yetsedaw A
    DOI:10.1002/cphc.201600414 Articles On the Formation of N3H3 Isomers in Irradiated Ammonia Bearing Ices:Triazene (H2NNNH) or Triimide (HNHNNH) MarkoFçrstel,[a, d] Yetsedaw A. Tsegaw,[b] Pavlo Maksyutenko,[a, d] Alexander M. Mebel,[c] Wolfram Sander,[b] and Ralf I. Kaiser*[a, d] The remarkable versatility of triazenesinsynthesis, polymer theoretical studies with our novel detection scheme of photo- chemistry and pharmacology has led to numerousexperimen- ionization-driven reflectron time-of-flight mass spectroscopy tal and theoretical studies.Surprisingly,only very little is we can obtain information on the isomersoftriazene formed known aboutthe most fundamental triazene:the parentmole- in the films. Using isotopically labeled starting material, we can cule with the chemical formula N3H3.Here we observe molecu- additionally gain insightinthe formation pathways of the iso- lar,isolated N3H3 in the gas phase after it sublimes from ener- mers of N3H3 under investigation and identify the isomers getically processed ammonia and nitrogen films. Combining formedastriazene (H2NNNH) andpossibly triimide(HNHNNH). 1. Introduction During the last decades, triazenes—a class of organic mole- life time of at least 1mswas also inferred as an intermediate cules carrying the =N N=N moiety—have received substan- in the radiolysis of an aqueous solution of hydrazine based on À À tial attention both from the theoretical and organic chemistry asingle absorption feature at 230 nm.[6] The cyclic isomer of [1] communities. Derived from cis-and trans-triazene (HN=NNH2 ; triazene, cyclotriazane, was first reported crystallographically in Scheme1), the substituted counterparts have significant appli- zeolite A, where it was stabilized by asilver cation as [1a,c] [1d] + [7] + cations in synthetic chemistry, polymer science, and phar- Ag(N3H3) .
    [Show full text]
  • Reactions of Lithium Nitride with Some Unsaturated Organic Compounds. Perry S
    Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1963 Reactions of Lithium Nitride With Some Unsaturated Organic Compounds. Perry S. Mason Jr Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Mason, Perry S. Jr, "Reactions of Lithium Nitride With Some Unsaturated Organic Compounds." (1963). LSU Historical Dissertations and Theses. 898. https://digitalcommons.lsu.edu/gradschool_disstheses/898 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. This dissertation has been 64—5058 microfilmed exactly as received MASON, Jr., Perry S., 1938- REACTIONS OF LITHIUM NITRIDE WITH SOME UNSATURATED ORGANIC COMPOUNDS. Louisiana State University, Ph.D., 1963 Chemistry, organic University Microfilms, Inc., Ann Arbor, Michigan Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. REACTIONS OF LITHIUM NITRIDE WITH SOME UNSATURATED ORGANIC COMPOUNDS A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requireiaents for the degree of Doctor of Philosophy in The Department of Chemistry by Perry S. Mason, Jr. B. S., Harding College, 1959 August, 1963 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
    [Show full text]
  • High-Quality, Low-Cost Bulk Gallium Nitride Substrates
    ADVANCED MANUFACTURING OFFICE High-Quality, Low- Cost Bulk Gallium Nitride Substrates Electrochemical Solution Growth: A Scalable Semiconductor Manufacturing Process The ever-growing demand in the past decade for more energy efficient solid-state lighting and electrical power conversion is leading to a higher demand for wide bandgap semiconductor-based devices, such as gallium nitride (GaN), over traditional silicon (Si)-based devices. High cost and limited availability, how- ever, have hindered the adoption of GaN substrates to date. When utilizing GaN, current LED and power electronic device applications employ GaN epitaxially grown on top of non-GaN substrates. The lattice mismatch between the epitaxial GaN layer and the non-native substrate surface leads to con- siderable stress and high defect densities, ultimately compromising device yield and Conceptual diagram of the ESG reactor. Photo courtesy of Sandia National Laboratories performance. While bulk growth of GaN can combat these issues, current growth methods for bulk GaN have not fostered widespread adoption to date due to lim- This project will help develop ESG into a viable GaN bulk growth process that is well ited scalability, low material quality, high suited for scalability to large-area wafer manufacturing. Bulk GaN is important to bol- operating temperatures and pressures, stering U.S. competitiveness in high-efficiency power electronics and solid-state lighting. and slow growth rates. A fundamentally different manufacturing route for bulk Benefits for Our Industry and Our Nation growth of GaN not driven by thermal pro- Scaling the ESG growth method to large area GaN crystals could reduce the production cesses is needed to provide an adequate cost of bulk GaN wafers by up to a factor of 10.
    [Show full text]
  • Ammonia a Very Important Molecule for Biological Organisms to Make Proteins Or Nucleic Acids
    Ammonia A very important molecule for biological organisms to make proteins or nucleic acids by QH, and Niloy Kumar Das Shahjalal Science & Technology University, Bangladesh Molecule of the Month - June 2013 Introduction Ammonia or azane is a compound of nitrogen and hydrogen with the formula NH3. It is a colorless gas with a characteristic pungent smell, which is very common in toilets sometime. It is used in industry and commerce, and also exists naturally in humans and in the environment. Ammonia is essential for many biological processes and serves as a precursor for amino acid and nucleotide synthesis. In the environment, ammonia is part of the nitrogen cycle and is produced in soil from bacterial processes. Ammonia is also produced naturally from decomposition of organic matter, including plants and animals. Sal Ammoniacus Sal ammoniac is a mineral composed of ammonium chloride. The Romans called the ammonium chloride deposits they collected from near the Temple of Jupiter Amun in ancient Libya 'sal ammoniacus' (salt of Amun) because of proximity to the nearby temple. It is the earliest known mineral source of ammonia. Fig: Sal ammoniac is a mineral Guano & saltpeter Later alternative sources of ammonia mineral were discovered. Guano and saltpeter played valuable roleas strategic commodity. Guano consists of ammonium oxalate and urate, phosphates, as well as some earth salts and impurities. Guano also has a high concentration of nitrates. Saltpeter is the mineral form of potassium nitrate (KNO3). Potassium and other nitrates are of great importance for use in fertilizers, and, historically, gunpowder. Fig: Guano is simply deposits of bird droppings Independence from mineral dependency Even though our atmosphere consists 78% nitrogen, atmospheric nitrogen is nutritionally unavailable to plants or animals because nitrogen molecules are held together by strong triple bonds.
    [Show full text]
  • Naming Compounds Practice Problems KEY Naming Simple Ionic Compounds
    Chemistry HS/Science Unit: 05 Lesson: 01 Naming Compounds Practice Problems KEY Naming Simple Ionic Compounds Name the following compounds: 1) KCl potassium chloride 2) MgI2 magnesium iodide 3) FeO iron (II) oxide 4) Fe2O3 iron (III) oxide 5) Cu3P copper (I) phosphide 6) SnSe2 tin (IV) selenide 7) TiBr3 titanium (III) bromide 8) GaAs gallium arsenide 9) BeF2 beryllium fluoride 10) Cs3N cesium nitride Write the formulas for the following compounds: 1) lithium iodide LiI 2) cobalt (III) oxide Co2O3 3) calcium fluoride CaF2 4) silver bromide AgBr 5) sodium hydride NaH 6) vanadium (V) sulfide V2S5 7) lead (II) nitride Pb3N2 8) titanium (II) selenide TiSe 9) manganese (VII) arsenide Mn3As7 10) gallium chloride GaCl3 ©2013, TESCCC 06/17/13 page 1 of 4 Chemistry HS/Science Unit: 05 Lesson: 01 Naming Compounds Practice Problems Naming Complex (polyatomic) Ionic Compounds Name the following compounds: 1) NH4Cl ammonium chloride 2) Fe(NO3)3 iron (III) nitrate 3) Pb(SO4)2 lead (IV) sulfate 4) Ag3PO4 silver phosphate 5) Be(HCO3)2 beryllium hydrogen carbonate 6) Al(CN)3 aluminum cyanide 7) Mn2(SO3)3 manganese (III) sulfite 8) Sr(C2H3O2)2 strontium acetate 9) Ti(CN)4 titanium (IV) cyanide 10) YClO3 yttrium chlorate Write the formulas for the following compounds: 1) lead (IV) sulfate Pb(SO4)2 2) silver cyanide AgCN 3) copper (II) chlorate Cu(ClO3)2 4) chromium (IV) phosphate Cr3(PO4)4 5) vanadium (IV) carbonate V(CO3)2 6) ammonium oxide (NH4)2O 7) tin (II) nitrite Sn(NO2)2 8) chromium (III) hydroxide Cr(OH)3 9) titanium (II) acetate Ti(C2H3O2)2 10)
    [Show full text]
  • Boron-Nitride-Datasheet-V1
    A Unique Proposition for Industry The introduction of boron nitride into our stable of 2D materials widens the focus of delivering innovative solutions for industry Neill Ricketts, CEO Our latest 2D success story Hexotene is a few-layer hexagonal boron nitride (h-BN) nanoplatelet powder with large lateral dimensions. With high chemical purity and mono-layer particles confirmed, Hexotene is the latest addition to our high performance 2D product range. It’s unique characteristics, specifically with regards to electrical conductivity, show some markedly different properties when compared to graphene. This is particularly promising for combined projects using both graphene and boron nitride. Example BN Nano platelets Information Property Measurement Method Boron 42 è 2.0At.% Predominantly few-layer with some Raman Nitrogen 45 è 2.0At.% Layers mono-layer and bi-layer spectroscopy Oxygen 3.0 è 1.0At.% Lateral Carbon 8.0 è 2.0At.% up to 5.0 µm SEM dimensions Method XPS IR UV Wavelenght (nm) 4096 1024 256 Band Gap ~6eV Energy BORON NITRIDE GRAPHENE Graphene Metals Semi- Plastics Boron Conductor Nitride 0.125 0.25 0.50 1.00 2.00 4.00 8.00 Conductors Semi-Conductors Insulators Energy (eV) Diagram showing extremes of electrical conductivity, with Hexagonal boron nitride is white in colour and is unusual as boron nitride having an ultra-wide bandgap. it absorbs high energy UV light, whereas graphene absorbs all light frequencies. What is h-BN? Boron and nitrogen are neighbours of carbon in boron nitride (h-BN). It also happens to be the the Periodic Table. Just as carbon can exist as softest of the BN polymorphs.
    [Show full text]
  • Adapting Neural Machine Translation to Predict IUPAC Names from a Chemical Identifier
    Translating the molecules: adapting neural machine translation to predict IUPAC names from a chemical identifier Jennifer Handsel*,a, Brian Matthews‡,a, Nicola J. Knight‡,b, Simon J. Coles‡,b aScientific Computing Department, Science and Technology Facilities Council, Didcot, OX11 0FA, UK. bSchool of Chemistry, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, SO17 1BJ, UK. KEYWORDS seq2seq, InChI, IUPAC, transformer, attention, GPU ABSTRACT We present a sequence-to-sequence machine learning model for predicting the IUPAC name of a chemical from its standard International Chemical Identifier (InChI). The model uses two stacks of transformers in an encoder-decoder architecture, a setup similar to the neural networks used in state-of-the-art machine translation. Unlike neural machine translation, which usually tokenizes input and output into words or sub-words, our model processes the InChI and predicts the 1 IUPAC name character by character. The model was trained on a dataset of 10 million InChI/IUPAC name pairs freely downloaded from the National Library of Medicine’s online PubChem service. Training took five days on a Tesla K80 GPU, and the model achieved test-set accuracies of 95% (character-level) and 91% (whole name). The model performed particularly well on organics, with the exception of macrocycles. The predictions were less accurate for inorganic compounds, with a character-level accuracy of 71%. This can be explained by inherent limitations in InChI for representing inorganics, as well as low coverage (1.4 %) of the training data. INTRODUCTION The International Union of Pure and Applied Chemistry (IUPAC) define nomenclature for both organic chemistry2 and inorganic chemistry.3 Their rules are comprehensive, but are difficult to apply to complicated molecules.
    [Show full text]
  • Techniques of Preparation and Crystal Chemistry of Transuranic Chalcogenides and Pnictides D
    Techniques of preparation and crystal chemistry of transuranic chalcogenides and pnictides D. Damien, R. Haire, J. Peterson To cite this version: D. Damien, R. Haire, J. Peterson. Techniques of preparation and crystal chemistry of transuranic chalcogenides and pnictides. Journal de Physique Colloques, 1979, 40 (C4), pp.C4-95-C4-100. 10.1051/jphyscol:1979430. jpa-00218826 HAL Id: jpa-00218826 https://hal.archives-ouvertes.fr/jpa-00218826 Submitted on 1 Jan 1979 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. JOURNAL DE PHYSIQUE Colloque C4, supplément au n° 4, Tome 40, avril 1979, page C4-95 Techniques of preparation and crystal chemistry of transuranic chalcogenides and pnictides (*) D. A. Damien (**), R. G. Haire and J. R. Peterson (t) Transuranium Research Laboratory, Oak Ridge National Laboratory, Oak Ridge, TN 37830, U.S.A. Résumé. — La cristallochimie d'un certain nombre de chalcogénures et pnictures d'éléments transuraniens a été étudiée en utilisant les isotopes Am, Cm, Bk et Cf. Les composés ont été préparés par réaction directe du métal avec l'élément chalcogène ou pnictogène à température élevée. Les chalcogénures supérieurs ont été dissociés thermiquement pour donner des composés à stœchiométrie plus basse dont les sesquichalco- génures constituent la limite.
    [Show full text]
  • Carbides and Nitrides of Zirconium and Hafnium
    materials Review Carbides and Nitrides of Zirconium and Hafnium Sergey V. Ushakov 1,* , Alexandra Navrotsky 1,* , Qi-Jun Hong 2,* and Axel van de Walle 2,* 1 Peter A. Rock Thermochemistry Laboratory and NEAT ORU, University of California at Davis, Davis, CA 95616, USA 2 School of Engineering, Brown University, Providence, RI 02912, USA * Correspondence: [email protected] (S.V.U.); [email protected] (A.N.); [email protected] (Q.-J.H.); [email protected] (A.v.d.W.) Received: 6 August 2019; Accepted: 22 August 2019; Published: 26 August 2019 Abstract: Among transition metal carbides and nitrides, zirconium, and hafnium compounds are the most stable and have the highest melting temperatures. Here we review published data on phases and phase equilibria in Hf-Zr-C-N-O system, from experiment and ab initio computations with focus on rocksalt Zr and Hf carbides and nitrides, their solid solutions and oxygen solubility limits. The systematic experimental studies on phase equilibria and thermodynamics were performed mainly 40–60 years ago, mostly for binary systems of Zr and Hf with C and N. Since then, synthesis of several oxynitrides was reported in the fluorite-derivative type of structures, of orthorhombic and cubic higher nitrides Zr3N4 and Hf3N4. An ever-increasing stream of data is provided by ab initio computations, and one of the testable predictions is that the rocksalt HfC0.75N0.22 phase would have the highest known melting temperature. Experimental data on melting temperatures of hafnium carbonitrides are absent, but minimum in heat capacity and maximum in hardness were reported for Hf(C,N) solid solutions.
    [Show full text]
  • Silicon Nitride, a Close to Ideal Ceramic Material for Medical Application
    ceramics Review Silicon Nitride, a Close to Ideal Ceramic Material for Medical Application Robert B. Heimann Am Stadtpark 2A, D-02826 Görlitz, Germany; [email protected]; Tel.: +49-3581-667851 Abstract: This topical review describes the salient results of recent research on silicon nitride, a ceramic material with unique properties. The outcome of this ongoing research strongly encourages the use of monolithic silicon nitride and coatings as contemporary and future biomaterial for a variety of medical applications. Crystallographic structure, the synthesis and processing of monolithic structures and coatings, as well as examples of their medical applications that relate to spinal, orthopedic and dental implants, bone grafts and scaffolds, platforms for intelligent synthetic neural circuits, antibacterial and antiviral particles and coatings, optical biosensors, and nano-photonic waveguides for sophisticated medical diagnostic devices are all covered in the research reviewed herein. The examples provided convincingly show that silicon nitride is destined to become a leader to replace titanium and other entrenched biomaterials in many fields of medicine. Keywords: silicon nitride; structure; properties; processing; coatings; spinal implants; arthroplastic implants; bone scaffolds; dental implants; neural circuits; biosensors; medical diagnostics Citation: Heimann, R.B. Silicon 1. Introduction Nitride, a Close to Ideal Ceramic Material for Medical Application. Today, the research and development of metallic, ceramic, polymeric and composite Ceramics 2021, 4, 208–223. biomaterials have progressed to a high level of involvement and sophistication. This is https://doi.org/10.3390/ related to the fact that an ever-increasing part of the world population is in need of the repair ceramics4020016 or replacement of dysfunctional or damaged parts of the body, such as dental roots and teeth, alveolar ridge augmentation, intraocular lenses, heart pacemakers, cochlear implants, Academic Editors: Stuart Hampshire and hip and knee endoprostheses [1].
    [Show full text]
  • Chapter 9 Hydrogen
    Chapter 9 Hydrogen Diborane, B2 H6• is the simplest member of a large class of compounds, the electron-deficient boron hydrid Like all boron hydrides, it has a positive standard free energy of formation, and so cannot be prepared direct from boron and hydrogen. The bridge B-H bonds are longer and weaker than the tenninal B-H bonds (13: vs. 1.19 A). 89.1 Reactions of hydrogen compounds? (a) Ca(s) + H2Cg) ~ CaH2Cs). This is the reaction of an active s-me: with hydrogen, which is the way that saline metal hydrides are prepared. (b) NH3(g) + BF)(g) ~ H)N-BF)(g). This is the reaction of a Lewis base and a Lewis acid. The product I Lewis acid-base complex. (c) LiOH(s) + H2(g) ~ NR. Although dihydrogen can behave as an oxidant (e.g., with Li to form LiH) or reductant (e.g., with O2 to form H20), it does not behave as a Br0nsted or Lewis acid or base. It does not r with strong bases, like LiOH, or with strong acids. 89.2 A procedure for making Et3MeSn? A possible procedure is as follows: ~ 2Et)SnH + 2Na 2Na+Et3Sn- + H2 Ja'Et3Sn- + CH3Br ~ Et3MeSn + NaBr 9.1 Where does Hydrogen fit in the periodic chart? (a) Hydrogen in group 1? Hydrogen has one vale electron like the group 1 metals and is stable as W, especially in aqueous media. The other group 1 m have one valence electron and are quite stable as ~ cations in solution and in the solid state as simple 1 salts.
    [Show full text]
  • United States Patent (19) 11 Patent Number: 4,834,817 Zeuner Et Al
    United States Patent (19) 11 Patent Number: 4,834,817 Zeuner et al. (45) Date of Patent: May 30, 1989 (54). GAS-GENERATING COMPOSITION 56 References Cited (75 Inventors: Siegfried Zeuner, Munich; Walter U.S. PATENT DOCUMENTS Holzinger, Deisenhofen, both of Fed. 3,931,040 l/1976 Breazeale .............................. 149/35 Rep. of Germany 4,376,002 3/1983 Utracki ... ... 149/35 4,386,979 6/1983 Jackson ................................. 149/35 73) Assignee: Bayern-Chemie Gesellschaft Fir Primary Examiner-Stephen J. Lechert Jr. flugchemische Antriebe mit Attorney, Agent, or Firm-Toren, McGeady & Beschrinkter Haftung Associates (21) Appl. No.: 252,519 (57) ABSTRACT Sep. 30, 1988 A nitrogen-generating composition useful for inflating 22 Filed: air bags as protection for occupants of motor vehicles is (30) Foreign Application Priority Data disclosed which is composed of an alkali and alkaline earth metal azide, an oxidizing agent which is an alkali Oct. 1, 1987 DE Fed. Rep. of Germany ....... 3733176 or alkaline earth metal salt and an nitride, and optionally 51 Int. Cl." .............................................. C06B 35/00 silicon dioxide. The nitride or combination of nitride (52) U.S. Cl. ........................................ 149/35; 149/61; and silicon dioxide are present in an amount effective to 149/76; 280/741 bind all of the alkali and alkaline earth metal as slag. 58) Field of Search ............................. 149/35, 61, 76; 280/741 7 Claims, No Drawings 4,834,817 1. 2 years, the chemical stability of this composition leaves GAS-GENERATING COMPOSITION much to be desired. According to German Offenlegungsschrift No. FIELD OF INVENTION 2,407,659, a composition containing silicon nitride, so This invention concerns a gas-generating composi 5 dium azide and ammonium perchlorate generates gas by tion useful for inflating air bags for protection of occu reacting according to the following equation: pants of motor vehicles.
    [Show full text]