Silicon Nitride, a Close to Ideal Ceramic Material for Medical Application
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
THE EFFECTS of DEPOSITION CONDITIONS on the MECHANICAL PROPERTIES of TITANIUM SILICON NITRIDE NANOCOMPOSITE COATINGS by SUO
THE EFFECTS OF DEPOSITION CONDITIONS ON THE MECHANICAL PROPERTIES OF TITANIUM SILICON NITRIDE NANOCOMPOSITE COATINGS by SUO LIU Presented to the Faculty of the Graduate School of The University of Texas at Arlington in Partial Fulfillment of the Requirement for the Degree of MASTER OF SCIENCE IN MATERIALS SCIENCE AND ENGINEERING THE UNIVERSITY OF TEXAS AT ARLINGTON MAY 2015 Copyright © by Suo Liu 2015 All Rights Reserve ii Acknowledgements Foremost, I would like to express my sincere gratitude to my advisor Dr. Efstathios I. Meletis for the continuous support of my graduate study and research, for his patience, motivation, enthusiasm, and immense knowledge. His guidance helped me in all the time of research and writing of this thesis. Besides my advisor, I would like to thank the rest of my thesis committee, Dr. Fuqiang Liu and Dr. Harry F. Tibbals, for their generous help. My sincere thanks also go to Dr. Jessica Mooney for preparation of the samples used in this study, as well as for training me on the optical profilometer. I thank each and every one of my group members for their advice, their help and their friendship. I thank Yishu Wang for his help with XPS. Last but not least, I would like to thank my family: my parents Dao Feng Xiang and Aiping Liu, for supporting me spiritually throughout my life. April 28, 2015 iii Abstract THE EFFECTS OF DEPOSITION CONDITIONS ON THE MECHANICAL PROPERTIES OF TITANIUM SILICON NITRIDE NANOCOMPOSITE COATINGS Suo Liu, M.S. The University of Texas at Arlington, 2015 Supervising Professor: Efstathios I. -
Highly Selective Modification of Silicon Oxide Structures Fabricated by an AFM Anodic Oxidation
Korean J. Chem. Eng., 25(2), 386-389 (2008) SHORT COMMUNICATION Highly selective modification of silicon oxide structures fabricated by an AFM anodic oxidation Inhee Choi and Jongheop Yi† School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 151-742, Korea (Received 25 June 2007 • accepted 24 July 2007) Abstract−Anodic oxidation via atomic force microscopy is a promising method for creating submicron-sized silicon dioxide patterns on a local surface. The area patterned by AFM anodic oxidation (AAO) has different chemical prop- erties from the non-patterned area, and thus site-selective modification of patterned surfaces is quite possible. In this study, we combined the AAO with self-assembly method and/or wet chemical etching method for the fabrication of positive and/or negative structures. These locally modified surfaces could be used to the site-selective arrangement and integration of various materials based on a pre-described pattern. Key words: AFM, Anodic Oxidation, Etching, Pattern, Self-assembly INTRODUCTION ification of pre-fabricated silicon oxide structures were successfully achieved by the treatments of organosilanes and etchants. The fabrication of submicron-sized structures, especially those that are silicon-based, has attracted considerable attention due to EXPERIMENTAL the potential applications of such structures, including micro/nano- 1. Materials electromechanical systems (MEMS and NEMS) [1] and miniaturized The following materials and chemicals were used: p-type and devices [2]. For this purpose, a wide variety of fabrication methods <100>-oriented silicon wafers with LPCVD (low pressure chemical have been developed to generate patterns on the nano- and micros- vapor deposition) silicon nitride as a resist, and KOH, IPA (isopropyl cales. -
Si Passivation and Chemical Vapor Deposition of Silicon Nitride: Final Technical Report, March 18, 2007
A national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy National Renewable Energy Laboratory Innovation for Our Energy Future Si Passivation and Chemical Subcontract Report NREL/SR-520-42325 Vapor Deposition of Silicon Nitride November 2007 Final Technical Report March 18, 2007 H.A. Atwater California Institute of Technology Pasadena, California NREL is operated by Midwest Research Institute ● Battelle Contract No. DE-AC36-99-GO10337 Si Passivation and Chemical Subcontract Report NREL/SR-520-42325 Vapor Deposition of Silicon Nitride November 2007 Final Technical Report March 18, 2007 H.A. Atwater California Institute of Technology Pasadena, California NREL Technical Monitor: R. Matson/F. Posey-Eddy Prepared under Subcontract No. AAT-2-31605-01 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 • www.nrel.gov Operated for the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy by Midwest Research Institute • Battelle Contract No. DE-AC36-99-GO10337 This publication was reproduced from the best available copy Submitted by the subcontractor and received no editorial review at NREL NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. -
Metal Oxide Nanostructures and Their Applications (ISBN 1-58883-170-1)
Metal Oxide Nanostructures and their Applications (ISBN 1-58883-170-1) Edited by Ahmad Umar, Najran University, Saudi Arabia Yoon-Bong Hahn, Chonbuk National University, South Korea. Published by American Scientific Publishers, CA, USA, (http://www.aspbs.com/mona/) October 2009 5-Volume Set, 4,000 pages, Hardcover Volume 4 Applications (Part-2) Chapter 13 Bioactive Bioceramic Coatings. Part II: Coatings on Metallic Biomaterials (Vol.4, pp 479-509) Proof-reading Corrections: No. Original Correction 1. Reference [39] 39. A. K. Lynn and D. L. DuQuesnay, Biomaterials 23, 1947 (2002). 2. Reference [97] 97. M. Wei, A. J. Ruys, B. K. Milthorpe, C. C. Sorrell, and J. H. Evans, J. Sol–Gel Sci. Techn. 21, 39 (2001). 3. Figure 6b ⊕ PO ∇ CO Titania 4 3 48 h ⊕ ∇ ⊕ ⊕ ∇∇ ⊕ ⊕ ⊕ ⊕ ⊕ ∇ 24 h ∇ ⊕⊕ Reflectance /arb. units /arb. Reflectance 0 h 2000 1600 1200 800 400 Wavelength /cm-1 CHAPTER 13 Bioactive Bioceramic Coatings: Part II. Coatings on Metallic Biomaterials Jin-Ming Wu1,Min Wang 2 1Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China 2Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong CONTENTS 1. Introduction ..................................... 2 2. Bioactive Bioceramic Coatings ....................... 2 2.1. Physical Deposition ........................... 2 2.2. Sol–Gel Process .............................. 5 2.3. Electrocrystallization, Electrophoretic Deposition, and Electrostatic Spray Deposition ................ 6 2.4. Biomimetic Process ........................... 7 2.5. Other Coating Techniques ..................... 10 3. Nanostructured Titania for In Vitro Apatite Deposition .... 10 3.1. Coating Approaches ......................... 11 3.2. Chemical Modification Approaches .............. 14 4. Composite Coatings .............................. 20 4.1. Ceramic/Metal Composite Coatings ............. 20 4.2. -
In Vitro Comparison of Bioactive Silicon Nitride Laser Claddings on Different Substrates
applied sciences Article In Vitro Comparison of Bioactive Silicon Nitride Laser Claddings on Different Substrates Elia Marin 1,2 , Matteo Zanocco 1,3 , Francesco Boschetto 1,2, Toshiro Yamamoto 2, Narisato Kanamura 2, Wenliang Zhu 1, Bryan J. McEntire 4 , Bhajanjit Sonny Bal 4, Ryutaro Ashida 5, Osam Mazda 3 and Giuseppe Pezzotti 1,3,6,7,* 1 Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan; [email protected] (E.M.); [email protected] (M.Z.); [email protected] (F.B.); [email protected] (W.Z.) 2 Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan; [email protected] (T.Y.); [email protected] (N.K.) 3 Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, 465 Kajii-cho, Kawaramachi dori, Kyoto 602-0841, Japan; [email protected] 4 SINTX Technologies Corporation, 1885 West 2100 South, Salt Lake City, UT 84119, USA; [email protected] (B.J.M.); [email protected] (B.S.B.) 5 Shinsei, Co., Shijohei Kawanishi Rikobo, Kyoto 610-0101, Japan; [email protected] 6 Department of Orthopedic Surgery, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku-ku, Tokyo 160-0023, Japan 7 The Center for Advanced Medical Engineering and Informatics, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan * Correspondence: [email protected] Received: 9 November 2020; Accepted: 14 December 2020; Published: 17 December 2020 Abstract: The performance, durability, and bio-integration of functional biomedical coatings can be enhanced by changing or improving their substrate properties. -
Reactions of Lithium Nitride with Some Unsaturated Organic Compounds. Perry S
Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1963 Reactions of Lithium Nitride With Some Unsaturated Organic Compounds. Perry S. Mason Jr Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Mason, Perry S. Jr, "Reactions of Lithium Nitride With Some Unsaturated Organic Compounds." (1963). LSU Historical Dissertations and Theses. 898. https://digitalcommons.lsu.edu/gradschool_disstheses/898 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. This dissertation has been 64—5058 microfilmed exactly as received MASON, Jr., Perry S., 1938- REACTIONS OF LITHIUM NITRIDE WITH SOME UNSATURATED ORGANIC COMPOUNDS. Louisiana State University, Ph.D., 1963 Chemistry, organic University Microfilms, Inc., Ann Arbor, Michigan Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. REACTIONS OF LITHIUM NITRIDE WITH SOME UNSATURATED ORGANIC COMPOUNDS A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requireiaents for the degree of Doctor of Philosophy in The Department of Chemistry by Perry S. Mason, Jr. B. S., Harding College, 1959 August, 1963 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. -
High-Quality, Low-Cost Bulk Gallium Nitride Substrates
ADVANCED MANUFACTURING OFFICE High-Quality, Low- Cost Bulk Gallium Nitride Substrates Electrochemical Solution Growth: A Scalable Semiconductor Manufacturing Process The ever-growing demand in the past decade for more energy efficient solid-state lighting and electrical power conversion is leading to a higher demand for wide bandgap semiconductor-based devices, such as gallium nitride (GaN), over traditional silicon (Si)-based devices. High cost and limited availability, how- ever, have hindered the adoption of GaN substrates to date. When utilizing GaN, current LED and power electronic device applications employ GaN epitaxially grown on top of non-GaN substrates. The lattice mismatch between the epitaxial GaN layer and the non-native substrate surface leads to con- siderable stress and high defect densities, ultimately compromising device yield and Conceptual diagram of the ESG reactor. Photo courtesy of Sandia National Laboratories performance. While bulk growth of GaN can combat these issues, current growth methods for bulk GaN have not fostered widespread adoption to date due to lim- This project will help develop ESG into a viable GaN bulk growth process that is well ited scalability, low material quality, high suited for scalability to large-area wafer manufacturing. Bulk GaN is important to bol- operating temperatures and pressures, stering U.S. competitiveness in high-efficiency power electronics and solid-state lighting. and slow growth rates. A fundamentally different manufacturing route for bulk Benefits for Our Industry and Our Nation growth of GaN not driven by thermal pro- Scaling the ESG growth method to large area GaN crystals could reduce the production cesses is needed to provide an adequate cost of bulk GaN wafers by up to a factor of 10. -
Optimization of Wear Loss in Silicon Nitride (Si3n4)–Hexagonal Boron Nitride (Hbn) Composite Using Doe–Taguchi Method
Ghalme et al. SpringerPlus (2016) 5:1671 DOI 10.1186/s40064-016-3379-7 CASE STUDY Open Access Optimization of wear loss in silicon nitride (Si3N4)–hexagonal boron nitride (hBN) composite using DoE–Taguchi method Sachin Ghalme1,2*, Ankush Mankar3 and Y. J. Bhalerao4 *Correspondence: [email protected] Abstract 2 Mechanical Engineering Introduction: The contacting surfaces subjected to progressive loss of material Department, Manoharbhai Patel Institute of Engineering known as ‘wear,’ which is unavoidable between contacting surfaces. Similar kind of and Technology, Gondia, phenomenon observed in the human body in various joints where sliding/rolling Maharashtra, India contact takes place in contacting parts, leading to loss of material. This is a serious issue Full list of author information is available at the end of the related to replaced joint or artificial joint. article Case description: Out of the various material combinations proposed for artificial joint or joint replacement Si3N4 against Al2O3 is one of in ceramic on ceramic category. Minimizing the wear loss of Si3N4 is a prime requirement to avoid aseptic loosening of artificial joint and extending life of joint. Discussion and evaluation: In this paper, an attempt has been made to investigate the wear loss behavior of Si3N4–hBN composite and evaluate the effect of hBN addition in Si3N4 to minimize the wear loss. DoE–Taguchi technique is used to plan and analyze experiments. Conclusion: Analysis of experimental results proposes 15 N load and 8 % of hBN addi- tion in Si3N4 is optimum to minimize wear loss against alumina. Keywords: Silicon nitride (Si3N4), Hexagonal boron nitride (hBN), Alumina (Al2O3), Design of experiment (DoE), Taguchi technique Background Mechanical behavior of various machine elements, such as gears, cams, wheels, rails and sealing parts are influenced by the interaction between contact elements and surfaces. -
Simultaneous PAN Carbonization and Ceramic Sintering for Fabricating Carbon Fiber-Ceramic Composite Heaters
applied sciences Article Simultaneous PAN Carbonization and Ceramic Sintering for Fabricating Carbon Fiber-Ceramic Composite Heaters Daiqi Li 1,2, Bin Tang 1,2 , Xi Lu 1, Quanxiang Li 1, Wu Chen 2, Xiongwei Dong 2, Jinfeng Wang 1,2,* and Xungai Wang 1,2,* 1 Deakin University, Institute for Frontier Materials, Geelong/Melbourne, Victoria 3216, Australia; [email protected] (D.L.); [email protected] (B.T.); [email protected] (X.L.); [email protected] (Q.L.) 2 Wuhan Textile University, Joint Laboratory for Advanced Textile Processing and Clean Production, Wuhan 430073, China; [email protected] (W.C.); [email protected] (X.D.) * Correspondence: [email protected] (X.W.); [email protected] (J.W.); Tel.: +61-3-5227-2012 (J.W.) Received: 15 October 2019; Accepted: 14 November 2019; Published: 17 November 2019 Abstract: In this study, a single firing was used to convert stabilized polyacrylonitrile (PAN) fibers and ceramic forming materials (kaolin, feldspar, and quartz) into carbon fiber/ceramic composites. For the first time, PAN carbonization and ceramic sintering were achieved simultaneously in one thermal cycle and the microscopic morphologies and physical features of the obtained carbon fiber/ceramic composites were characterized in detail. The obtained carbon fiber/ceramic composite showed comparable flexural strength as commercial ceramic tiles. Meanwhile, the composite showed exceptional electro-thermal performance based on the electro-thermal performance of the carbonized PAN fibers, which could reach 108 °C after 15 s, 204 °C after 90 s, and 292 °C after 450 s at 5 V (2.6 A), thereby making the ceramic composite a good candidate as an indoor climate control heater, defogger device, kettle, and other heating element. -
Bioactive Glasses: from Parent 45S5 Composition to Scaffold-Assisted Tissue-Healing Therapies
Journal of Functional Biomaterials Review Bioactive Glasses: From Parent 45S5 Composition to Scaffold-Assisted Tissue-Healing Therapies Elisa Fiume, Jacopo Barberi, Enrica Verné * and Francesco Baino * ID Institute of Materials Physics and Engineering, Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; elisa.fi[email protected] (E.F.); [email protected] (J.B.) * Correspondence: [email protected] (E.V.); [email protected] (F.B.); Tel.: +39-011-090-4717 (E.V.); +39-011-090-4668 (F.B.) Received: 19 February 2018; Accepted: 13 March 2018; Published: 16 March 2018 Abstract: Nowadays, bioactive glasses (BGs) are mainly used to improve and support the healing process of osseous defects deriving from traumatic events, tumor removal, congenital pathologies, implant revisions, or infections. In the past, several approaches have been proposed in the replacement of extensive bone defects, each one with its own advantages and drawbacks. As a result, the need for synthetic bone grafts is still a remarkable clinical challenge since more than 1 million bone-graft surgical operations are annually performed worldwide. Moreover, recent studies show the effectiveness of BGs in the regeneration of soft tissues, too. Often, surgical criteria do not match the engineering ones and, thus, a compromise is required for getting closer to an ideal outcome in terms of good regeneration, mechanical support, and biocompatibility in contact with living tissues. The aim of the present review is providing a general overview of BGs, with particular reference to their use in clinics over the last decades and the latest synthesis/processing methods. -
Ceramic Carbides: the Tough Guys of the Materials World
Ceramic Carbides: The Tough Guys of the Materials World by Paul Everitt and Ian Doggett, Technical Specialists, Goodfellow Ceramic and Glass Division c/o Goodfellow Corporation, Coraopolis, Pa. Silicon carbide (SiC) and boron carbide (B4C) are among the world’s hardest known materials and are used in a variety of demanding industrial applications, from blasting-equipment nozzles to space-based mirrors. But there is more to these “tough guys” of the materials world than hardness alone—these two ceramic carbides have a profile of properties that are valued in a wide range of applications and are worthy of consideration for new research and product design projects. Silicon Carbide Use of this high-density, high-strength material has evolved from mainly high-temperature applications to a host of engineering applications. Silicon carbide is characterized by: • High thermal conductivity • Low thermal expansion coefficient • Outstanding thermal shock resistance • Extreme hardness FIGURE 1: • Semiconductor properties Typical properties of silicon carbide • A refractive index greater than diamond (hot-pressed sheet) Chemical Resistance Although many people are familiar with the Acids, concentrated Good Acids, dilute Good general attributes of this advanced ceramic Alkalis Good-Poor (see Figure 1), an important and frequently Halogens Good-Poor overlooked consideration is that the properties Metals Fair of silicon carbide can be altered by varying the Electrical Properties final compaction method. These alterations can Dielectric constant 40 provide knowledgeable engineers with small Volume resistivity at 25°C (Ohm-cm) 103-105 adjustments in performance that can potentially make a significant difference in the functionality Mechanical Properties of a finished component. -
Introduction to Metal-Ceramic Technology Third Edition
Introduction to Metal-Ceramic Technology Third Edition Naylor_FM.indd 1 10/20/17 8:57 AM IntroductionMetal-Ceramic to Technology Third Edition W. Patrick Naylor, DDS, MPH, MS Adjunct Professor of Restorative Dentistry Loma Linda University School of Dentistry Loma Linda, California With contributions by Charles J. Goodacre, DDS, MSD Distinguished Professor of Restorative Dentistry Loma Linda University School of Dentistry Loma Linda, California Satoshi Sakamoto, MDT Master Dental Technician Loma Linda University School of Dentistry Loma Linda, California Berlin, Barcelona, Chicago, Istanbul, London, Milan, Moscow, New Delhi, Paris, Prague, Sao Paulo, Seoul, Singapore, Tokyo, Warsaw Naylor_FM.indd 3 10/20/17 8:58 AM Dedications To my dear wife, Penelope, for her skillful reviewing and patience over the many months devoted to the production of this third edition. And to the memory of my mentor, teacher, and friend, Dr Ralph W. Phillips. As an expert of international renown, his contributions to dental materials science and dentistry in general are immeasurable. This is a small tribute to a man who left an indelible mark on the dental profession. Library of Congress Cataloging-in-Publication Data Names: Naylor, W. Patrick, author. Title: Introduction to metal-ceramic technology / W. Patrick Naylor. Description: Third edition. | Hanover Park, IL : Quintessence Publishing Co, Inc, [2017] | Includes bibliographical references and index. Identifiers: LCCN 2017031693 (print) | LCCN 2017034109 (ebook) | ISBN 9780867157536 (ebook) | ISBN 9780867157529 (hardcover) Subjects: | MESH: Metal Ceramic Alloys | Dental Porcelain | Technology, Dental--methods Classification: LCC RK653.5 (ebook) | LCC RK653.5 (print) | NLM WU 180 |DDC 617.6/95--dc23 LC record available at https://lccn.loc.gov/2017031693 97% © 2018 Quintessence Publishing Co, Inc Quintessence Publishing Co, Inc 4350 Chandler Drive Hanover Park, IL 60133 www.quintpub.com 5 4 3 2 1 All rights reserved.