Intel® Itanium® Processor 9300/9500/9700 Series: Datasheet

Total Page:16

File Type:pdf, Size:1020Kb

Intel® Itanium® Processor 9300/9500/9700 Series: Datasheet Intel® Itanium® Processor 9300 Series, 9500 Series and 9700 Series Intel® Itanium® Processor Quad-Core 1.86-1.73 GHz with 24 MB L3 Cache 9350 Intel® Itanium® Processor Quad-Core 1.73-1.60 GHz with 20 MB L3 Cache 9340 Intel® Itanium® Processor Quad-Core 1.60-1.46 GHz with 20 MB L3 Cache 9330 Intel® Itanium® Processor Quad-Core 1.46-1.33 GHz with 16 MB L3 Cache 9320 Intel® Itanium® Processor Dual-Core 1.60 GHz Fixed Frequency with 10 MB L3 Cache 9310 Intel® Itanium® Processor Eight-Core 2.53 GHz with 32 MB LLC Cache 9560 Intel® Itanium® Processor Four-Core 2.40 GHz with 32 MB LLC Cache 9550 Intel® Itanium® Processor Eight-Core 2.13 GHz with 24 MB LLC Cache 9540 Intel® Itanium® Processor Four-Core 1.73 GHz with 20 MB LLC Cache 9520 Intel® Itanium® Processor Eight-Core 2.66 GHz with 32 MB LLC Cache 9760 Intel® Itanium® Processor Four-Core 2.53 GHz with 32 MB LLC Cache 9750 Intel® Itanium® Processor Eight-Core 2.13 GHz with 24 MB LLC Cache 9740 Intel® Itanium® Processor Four-Core 1.73 GHz with 20 MB LLC Cache 9720 Datasheet May 2017 Reference Number: 322821-003 ® ® 2 Intel Itanium Processor 9300, 9500, and 9700 Series Datasheet INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. A “Mission Critical Application” is any application in which failure of the Intel Product could result, directly or indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS. Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined”. Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The information here is subject to change without notice. Do not finalize a design with this information. The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request. Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order. Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling 1-800-548-4725, or go to: http://www.intel.com/design/literature.htm%20 I2C is a two-wire communication bus /protocol developed by Phillips. SMBus is a subset of the I2C bus/protocol developed by Intel. Implementation of the I2C bus/protocol or the SMBus bus/protocol may require licenses from various entities, including Phillips Electronics, N.V. and North American Phillips Corporation. Intel® Virtualization Technology requires a computer system with an enabled Intel® processor, BIOS, virtual machine monitor (VMM) and, for some uses, certain computer system software enabled for it. Functionality, performance or other benefits will vary depending on hardware and software configurations and may require a BIOS update. Software applications may not be compatible with all operating systems. Please check with your application vendor. Intel, Itanium, and the Intel logo are trademarks of Intel Corporation in the U. S. and\or other countries. *Other names and brands may be claimed as the property of others. Copyright © 2017, Intel Corporation. All Rights Reserved. ® ® Intel Itanium Processor 9300, 9500, and 9700 Series Datasheet 3 Contents 1 Introduction ........................................................................................................... 11 1.1 Overview ......................................................................................................... 11 1.2 Architectural Overview ...................................................................................... 19 1.2.1 Intel® Itanium® Processor 9300 Series Overview....................................... 19 1.2.2 Intel® Itanium® Processor 9500 Series Overview....................................... 20 1.2.3 Intel® Itanium® Processor 9700 Series Overview....................................... 23 1.3 Processor Feature Comparison............................................................................ 23 1.4 Processor Abstraction Layer ............................................................................... 24 1.5 Mixing Processors of Different Frequencies and Cache Sizes.................................... 24 1.6 Terminology..................................................................................................... 24 1.7 State of Data ................................................................................................... 25 1.8 Reference Documents........................................................................................ 25 2 Electrical Specifications .......................................................................................... 27 2.1 Intel® QuickPath Interconnect and Intel® Scalable Memory Interconnect Differential Signaling..........................................................................................27 2.2 Signal Groups................................................................................................... 28 2.3 Reference Clocking Specifications........................................................................ 30 2.4 Intel® QuickPath Interconnect and Intel® SMI Signaling Specifications..................... 32 2.4.1 Intel® Itanium® Processor 9300 Series Intel® QuickPath Interconnect and Intel® SMI Specifications for 4.8 GT/s32 2.4.2 Intel® Itanium® Processor 9500 and 9700 Series Requirements for Intel® QuickPath Interconnect for 4.8 and 6.4 GT/s36 2.4.3 Intel® Itanium® Processor 9500 Series Processor Requirements for Intel® SMI Specifications for 6.4 GT/s41 2.5 Processor Absolute Maximum Ratings .................................................................. 42 2.5.1 Intel® Itanium® Processor 9300 Series Absolute Maximum Ratings .............. 43 2.5.2 Intel® Itanium® Processor 9500 and 9700 Series Absolute Maximum Ratings 43 2.6 Processor DC Specifications................................................................................ 43 2.6.1 Flexible Motherboard Guidelines for the Intel® Itanium® Processor 9300 Series . 44 2.6.2 Flexible Motherboard Guidelines for the Intel® Itanium® Processor 9500 and 9700 Series 47 2.6.3 Intel® Itanium® Processor 9300 Series Uncore, Core, and Cache Tolerances . 49 2.6.4 Intel® Itanium® Processor 9500 and 9700 Series Uncore and Core Tolerances.. 53 2.6.5 Overshoot and Undershoot Guidelines....................................................... 57 2.6.6 Signal DC Specifications.......................................................................... 58 2.6.7 Motherboard-Socket Specification for VR Sense Point.................................. 62 2.7 Core and Uncore Voltage Identification ................................................................ 62 2.7.1 Core and Uncore Voltage Identification for the Intel® Itanium® Processor 9300 Series63 2.7.2 Core and Uncore Voltage Identification for the Intel® Itanium® Processor 9500 and 9700 Series 64 2.8 Cache Voltage Identification (Intel® Itanium® Processor 9300 Series only)............... 67 2.9 RSVD, Unused, and DEBUG Pins ......................................................................... 68 2.10 Mixing Processors ............................................................................................. 69 2.11 Supported Power-up Voltage Sequence................................................................ 69 2.11.1 Supported Power-up Voltage Sequence for the Intel® Itanium® Processor 9300 Series71 2.11.2 Supported Power-up Voltage Sequence for the Intel® Itanium® Processor 9500 and 9700 Series 72 2.11.3 Power-up Voltage Sequence Timing Requirements...................................... 73 2.12 Supported Power-down Voltage Sequence............................................................ 73 ® ® 4 Intel Itanium Processor 9300, 9500, and 9700 Series Datasheet 2.13 Timing Relationship Between RESET_N and SKTID ................................................. 74 2.14 Test Access Port (TAP) Connection....................................................................... 76 3 Pin Listing ............................................................................................................... 77 3.1 Processor Package Bottom Pin Assignments .........................................................
Recommended publications
  • Itanium-Based Solutions by Hp
    Itanium-based solutions by hp an overview of the Itanium™-based hp rx4610 server a white paper from hewlett-packard june 2001 table of contents table of contents 2 executive summary 3 why Itanium is the future of computing 3 rx4610 at a glance 3 rx4610 product specifications 4 rx4610 physical and environmental specifications 4 the rx4610 and the hp server lineup 5 rx4610 architecture 6 64-bit address space and memory capacity 6 I/O subsystem design 7 special features of the rx4610 server 8 multiple upgrade and migration paths for investment protection 8 high availability and manageability 8 advanced error detection, correction, and containment 8 baseboard management controller (BMC) 8 redundant, hot-swap power supplies 9 redundant, hot-swap cooling 9 hot-plug disk drives 9 hot-plug PCI I/O slots 9 internal removable media 10 system control panel 10 ASCII console for hp-ux 10 space-saving rack density 10 complementary design and packaging 10 how hp makes the Itanium transition easy 11 binary compatibility 11 hp-ux operating system 11 seamless transition—even for home-grown applications 12 transition help from hp 12 Itanium quick start service 12 partner technology access centers 12 upgrades and financial incentives 12 conclusion 13 for more information 13 appendix: Itanium advantages in your computing future 14 hp’s CPU roadmap 14 Itanium processor architecture 15 predication enhances parallelism 15 speculation minimizes the effect of memory latency 15 inherent scalability delivers easy expansion 16 what this means in a server 16 2 executive The Itanium™ Processor Family is the next great stride in computing--and it’s here today.
    [Show full text]
  • Arduino and AVR
    Arduino and AVR Ke vin J Dola n a nd Eric Te ve lson Agenda • History of Arduino • Comparison to Other Platforms • Arduino Uno - Hardware • ATmega328P Peripherals • Instruction Set • Processor Components • Pipe lining • Programming • Applica tions • Future of Arduino History of Arduino • Fa mily of Microcontrolle rs cre a te d a s a ma ste rs the sis proje ct • intended for use by a non-technical audience of artists, designers, etc. • Made for accessibility and ease of use. • Programming made easy for the audience • Ability to program board via USB • Inexpensive price point • Expanded for other types and configurations • Example: Arduino Lilypad for wearable technologies • Popularity has expanded functionality including “shields” and Bluetooth. Comparison to Other Platforms • Raspberry Pi • Raspberry Pi is a full computer that can run and support an OS, and has built in graphics. • Porta bility is a n issue , since a n e xte rna l supply is ne e de d. • Network needs more setup on an Arduino • Raspberry Pi does not support analog sensors as well • Teensy • Less expensive • Compatible with Arduino “sketches” and “shields” • Be tte r ADC sa mpling, sa me functiona lity, be tte r re solution • Sma lle r physica l boa rd size Arduino Uno - Hardware • ATmega328P Microcontroller • 3 2 KB Fla s h Me m o ry (2 KB S RAM, 1 KB EEP RO M) • 16 MH z C lo c k • 14 Digita l I/O Pins • 6 PWM Digita l I/O Pins • 6 Analog Input Pins • Up to 20mA DC Current per I/O Pin up to 300mA total across all pins • 50mA DC Current on 3.3V Pin Arduino Uno - Hardware ATmega328P Peripherals • Total of 6 accessible A/D Pins on Port C • 14 GPIO (7 Pins each from PORT B & D) • UART (Se ria l) • SPI Support • Watchdog timer to reset CPU Instruction Set • Harvard Architecture, which is non-von Neumann memory, but still a von Neumann architecture.
    [Show full text]
  • Chapter 1: Microprocessor Architecture
    Chapter 1: Microprocessor architecture ECE 3120 – Fall 2013 Dr. Mohamed Mahmoud http://iweb.tntech.edu/mmahmoud/ [email protected] Outline 1.1 Computer hardware organization 1.1.1 Number System 1.1.2 Computer hardware organization 1.2 The processor 1.3 Memory system operation 1.4 Program Execution 1.5 HCS12 Microcontroller 1.1.1 Number System - Computer hardware uses binary numbers to perform all operations. - Human beings are used to decimal number system. Conversion is often needed to convert numbers between the internal (binary) and external (decimal) representations. - Octal and hexadecimal numbers have shorter representations than the binary system. - The binary number system has two digits 0 and 1 - The octal number system uses eight digits 0 and 7 - The hexadecimal number system uses 16 digits: 0, 1, .., 9, A, B, C,.., F 1 - 1 - A prefix is used to indicate the base of a number. - Convert %01000101 to Hexadecimal = $45 because 0100 = 4 and 0101 = 5 - Computer needs to deal with signed and unsigned numbers - Two’s complement method is used to represent negative numbers - A number with its most significant bit set to 1 is negative, otherwise it is positive. 1 - 2 1- Unsigned number %1111 = 1 + 2 + 4 + 8 = 15 %0111 = 1 + 2 + 4 = 7 Unsigned N-bit number can have numbers from 0 to 2N-1 2- Signed number %1111 is a negative number. To convert to decimal, calculate the two’s complement The two’s complement = one’s complement +1 = %0000 + 1 =%0001 = 1 then %1111 = -1 %0111 is a positive number = 1 + 2 + 4 = 7.
    [Show full text]
  • Introduction to Cpu
    microprocessors and microcontrollers - sadri 1 INTRODUCTION TO CPU Mohammad Sadegh Sadri Session 2 Microprocessor Course Isfahan University of Technology Sep., Oct., 2010 microprocessors and microcontrollers - sadri 2 Agenda • Review of the first session • A tour of silicon world! • Basic definition of CPU • Von Neumann Architecture • Example: Basic ARM7 Architecture • A brief detailed explanation of ARM7 Architecture • Hardvard Architecture • Example: TMS320C25 DSP microprocessors and microcontrollers - sadri 3 Agenda (2) • History of CPUs • 4004 • TMS1000 • 8080 • Z80 • Am2901 • 8051 • PIC16 microprocessors and microcontrollers - sadri 4 Von Neumann Architecture • Same Memory • Program • Data • Single Bus microprocessors and microcontrollers - sadri 5 Sample : ARM7T CPU microprocessors and microcontrollers - sadri 6 Harvard Architecture • Separate memories for program and data microprocessors and microcontrollers - sadri 7 TMS320C25 DSP microprocessors and microcontrollers - sadri 8 Silicon Market Revenue Rank Rank Country of 2009/2008 Company (million Market share 2009 2008 origin changes $ USD) Intel 11 USA 32 410 -4.0% 14.1% Corporation Samsung 22 South Korea 17 496 +3.5% 7.6% Electronics Toshiba 33Semiconduc Japan 10 319 -6.9% 4.5% tors Texas 44 USA 9 617 -12.6% 4.2% Instruments STMicroelec 55 FranceItaly 8 510 -17.6% 3.7% tronics 68Qualcomm USA 6 409 -1.1% 2.8% 79Hynix South Korea 6 246 +3.7% 2.7% 812AMD USA 5 207 -4.6% 2.3% Renesas 96 Japan 5 153 -26.6% 2.2% Technology 10 7 Sony Japan 4 468 -35.7% 1.9% microprocessors and microcontrollers
    [Show full text]
  • Embos PPC CW
    embOS Real-Time Operating System CPU & Compiler specifics for PowerPC using CodeWarrior for MCU Document: UM01054 Software version 4.04a Revision: 0 Date: December 3, 2014 A product of SEGGER Microcontroller GmbH & Co. KG www.segger.com 2 Disclaimer Specifications written in this document are believed to be accurate, but are not guar- anteed to be entirely free of error. The information in this manual is subject to change for functional or performance improvements without notice. Please make sure your manual is the latest edition. While the information herein is assumed to be accurate, SEGGER Microcontroller GmbH & Co. KG (SEGGER) assumes no responsibil- ity for any errors or omissions. SEGGER makes and you receive no warranties or con- ditions, express, implied, statutory or in any communication with you. SEGGER specifically disclaims any implied warranty of merchantability or fitness for a particu- lar purpose. Copyright notice You may not extract portions of this manual or modify the PDF file in any way without the prior written permission of SEGGER. The software described in this document is furnished under a license and may only be used or copied in accordance with the terms of such a license. © 2014 SEGGER Microcontroller GmbH & Co. KG, Hilden / Germany Trademarks Names mentioned in this manual may be trademarks of their respective companies. Brand and product names are trademarks or registered trademarks of their respec- tive holders. Contact address SEGGER Microcontroller GmbH & Co. KG In den Weiden 11 D-40721 Hilden Germany Tel.+49 2103-2878-0 Fax.+49 2103-2878-28 E-mail: [email protected] Internet: http://www.segger.com UM01054 embOS for PPC and CodeWarrior © 2014 SEGGER Microcontroller GmbH & Co.
    [Show full text]
  • I.T.S.O. Powerpc an Inside View
    SG24-4299-00 PowerPC An Inside View IBM SG24-4299-00 PowerPC An Inside View Take Note! Before using this information and the product it supports, be sure to read the general information under “Special Notices” on page xiii. First Edition (September 1995) This edition applies to the IBM PC PowerPC hardware and software products currently announced at the date of publication. Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not stocked at the address given below. An ITSO Technical Bulletin Evaluation Form for reader′s feedback appears facing Chapter 1. If the form has been removed, comments may be addressed to: IBM Corporation, International Technical Support Organization Dept. JLPC Building 014 Internal Zip 5220 1000 NW 51st Street Boca Raton, Florida 33431-1328 When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any way it believes appropriate without incurring any obligation to you. Copyright International Business Machines Corporation 1995. All rights reserved. Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp. Abstract This document provides technical details on the PowerPC technology. It focuses on the features and advantages of the PowerPC Architecture and includes an historical overview of the development of the reduced instruction set computer (RISC) technology. It also describes in detail the IBM Power Series product family based on PowerPC technology, including IBM Personal Computer Power Series 830 and 850 and IBM ThinkPad Power Series 820 and 850.
    [Show full text]
  • C505L 8-Bit CMOS Microcontroller
    User’s Manual, Nov. 1999 C505L 8-Bit CMOS Microcontroller Microcontrollers Never stop thinking. Edition 10.99 Published by Infineon Technologies AG, St.-Martin-Strasse 53, D-81541 München, Germany © Infineon Technologies AG 1999. All Rights Reserved. Attention please! The information herein is given to describe certain components and shall not be considered as warranted characteristics. Terms of delivery and rights to technical change reserved. We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein. Infineon Technologies is an approved CECC manufacturer. Information For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide. Warnings Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office. Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. User’s Manual, Nov. 1999 C505L 8-Bit CMOS Microcontroller Microcontrollers Never stop thinking.
    [Show full text]
  • Digital and System Design
    Digital System Design — Use of Microcontroller RIVER PUBLISHERS SERIES IN SIGNAL, IMAGE & SPEECH PROCESSING Volume 2 Consulting Series Editors Prof. Shinsuke Hara Osaka City University Japan The Field of Interest are the theory and application of filtering, coding, trans- mitting, estimating, detecting, analyzing, recognizing, synthesizing, record- ing, and reproducing signals by digital or analog devices or techniques. The term “signal” includes audio, video, speech, image, communication, geophys- ical, sonar, radar, medical, musical, and other signals. • Signal Processing • Image Processing • Speech Processing For a list of other books in this series, see final page. Digital System Design — Use of Microcontroller Dawoud Shenouda Dawoud R. Peplow University of Kwa-Zulu Natal Aalborg Published, sold and distributed by: River Publishers PO box 1657 Algade 42 9000 Aalborg Denmark Tel.: +4536953197 EISBN: 978-87-93102-29-3 ISBN:978-87-92329-40-0 © 2010 River Publishers All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, mechanical, photocopying, recording or otherwise, without prior written permission of the publishers. Dedication To Nadia, Dalia, Dina and Peter D.S.D To Eleanor and Caitlin R.P. v This page intentionally left blank Preface Electronic circuit design is not a new activity; there have always been good designers who create good electronic circuits. For a long time, designers used discrete components to build first analogue and then digital systems. The main components for many years were: resistors, capacitors, inductors, transistors and so on. The primary concern of the designer was functionality however, once functionality has been met, the designer’s goal is then to enhance per- formance.
    [Show full text]
  • 5 Microprocessors
    Color profile: Disabled Composite Default screen BaseTech / Mike Meyers’ CompTIA A+ Guide to Managing and Troubleshooting PCs / Mike Meyers / 380-8 / Chapter 5 5 Microprocessors “MEGAHERTZ: This is a really, really big hertz.” —DAVE BARRY In this chapter, you will learn or all practical purposes, the terms microprocessor and central processing how to Funit (CPU) mean the same thing: it’s that big chip inside your computer ■ Identify the core components of a that many people often describe as the brain of the system. You know that CPU CPU makers name their microprocessors in a fashion similar to the automobile ■ Describe the relationship of CPUs and memory industry: CPU names get a make and a model, such as Intel Core i7 or AMD ■ Explain the varieties of modern Phenom II X4. But what’s happening inside the CPU to make it able to do the CPUs amazing things asked of it every time you step up to the keyboard? ■ Install and upgrade CPUs 124 P:\010Comp\BaseTech\380-8\ch05.vp Friday, December 18, 2009 4:59:24 PM Color profile: Disabled Composite Default screen BaseTech / Mike Meyers’ CompTIA A+ Guide to Managing and Troubleshooting PCs / Mike Meyers / 380-8 / Chapter 5 Historical/Conceptual ■ CPU Core Components Although the computer might seem to act quite intelligently, comparing the CPU to a human brain hugely overstates its capabilities. A CPU functions more like a very powerful calculator than like a brain—but, oh, what a cal- culator! Today’s CPUs add, subtract, multiply, divide, and move billions of numbers per second.
    [Show full text]
  • Opinion Ten Reasons Why HP’S Itanium-Based Servers Have Reached the Point-Of-No-Return
    Opinion Ten Reasons Why HP’s Itanium-based Servers Have Reached the Point-of-No-Return Executive Summary Hewlett-Packard (HP) refers to its HP Integrity and Integrity NonStop Itanium-based servers as “business critical systems”. In Q4, 2007, HP sold over $1 billion of these business critical systems. But, since then, due to a number of factors, Itanium-based server sales have declined significantly. Over the past year, business critical systems sales have hovered in the $400 million range per quarter, an almost 60% decline as compared with the 2007 high-mark. From our perspective, HP’s Itanium-based servers have now achieved a form of stasis (a medical term that refers to an inactive state). We expect a rise in Itanium business this quarter (due to pent-up demand for the new Itanium 9500), but we also expect that – within in a few quarters – underlying, dogging problems will again drive Itanium business downward. These problems include HP’s financial woes; increased competition (particularly from Intel x86-based servers); market factors (such as the market move toward Linux and a market preference for x86 architecture); a broken ecosystem (where HP has actually had to take legal action to get a business partner to keep supporting its independent software on Itanium-based platforms); an ill-founded Itanium recovery plan known as “converged infrastructure”; and more (in fact, we list a total of ten reasons why we believe HP’s Itanium-based servers have reached the point-of-no- return on page 2 of this Opinion)… In this Opinion , Clabby Analytics describes why we believe that HP’s business critical Integrity servers have now reached the point-of-no-return.
    [Show full text]
  • The IA-32 Processor Architecture
    The IA-32 processor architecture Nicholas FitzRoy-Dale Document Revision: 1 Date: 2006/05/30 22:31:24 [email protected] http://www.cse.unsw.edu.au/∼disy/ Operating Systems and Distributed Systems Group School of Computer Science and Engineering The University of New South Wales UNSW Sydney 2052, Australia 1 Introduction This report discusses the most common instruction set architecture for desktop microprocessors: IA- 32. From a programmer’s perspective, IA-32 has not changed changed significantly since its introduc- tion with the Intel 80386 processor in 1985. IA-32 implementations, however, have undergone dra- matic changes in order to stay competitive with more modern architectures, particularly in the area of instruction-level parallelism. This report discusses the history of IA-32, and then the architectural features of recent IA-32 im- plementations, with particular regard to caching, multiprocessing, and instruction-level parallelism. An archtectural description is not particularly useful in isolation. Therefore, to provide context, each as- pect is compared with analogous features of other architectures, with particular attention paid to the RISC-style ARM processor and the VLIW-inspired Itanium. 2 A brief history of IA-32 IA-32 first appeared with the 80386 processor, but the architecture was by no means completely new. IA-32’s 8-bit predecessor first appeared in the Datapoint 2200 programmable terminal, released in 1971. Under contract to produce a single-chip version of the terminal’s multiple-chip TTL design, Intel’s im- plementation, the 8008, was not included in the terminal. Intel released the chip in 1972.
    [Show full text]
  • Intel Itanium 2 Processors Get Faster Bus Architecture 18 July 2005
    Intel Itanium 2 Processors Get Faster Bus Architecture 18 July 2005 Intel Corporation today introduced two Intel Itanium based servers. 2 processors which deliver better performance over the current generation for database, business The improved front side bus bandwidth allows for intelligence, enterprise resource planning and 10.6 gigabits of data per second to pass from the technical computing applications. processor to other system components. In contrast, the current generation 400 MHz FSB transfers 6.4 For the first time, Itanium 2 processors have a 667 gigabits of data per second. The ability to move megahertz (MHz) front side bus (FSB), which more data in a very short period of time is critical to connects and transfers data between the compute intensive applications in the scientific, oil microprocessor, chipset and system's main and gas and government industries. memory. Servers designed to utilize the new bus are expected to deliver more than 65 percent Hitachi, which will adopt the new Itanium 2 greater system bandwidth over servers designed processors with the 667 FSB into new Hitachi with current Itanium 2 processors with a 400 MHz BladeSymphony* servers coming in the next 30 FSB. This new capability will help set the stage for days, has also designed a chipset (the the forthcoming dual core Itanium processor, communications controller between the processor codenamed "Montecito," which will feature the and the rest of the computer system) to take same bus architecture. advantage of the new bus architecture. "Intel continues to bring new capabilities to the Platforms using Montecito are expected to deliver Itanium architecture, evolving the platform to up to twice the performance, up to three times the further improve performance for data intensive system bandwidth, and more than 2 1/2 times as tasks," said Kirk Skaugen, general manager of much on-die cache as the current generation of Intel's Server Platforms Group.
    [Show full text]