I.T.S.O. Powerpc an Inside View
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Wind Rose Data Comes in the Form >200,000 Wind Rose Images
Making Wind Speed and Direction Maps Rich Stromberg Alaska Energy Authority [email protected]/907-771-3053 6/30/2011 Wind Direction Maps 1 Wind rose data comes in the form of >200,000 wind rose images across Alaska 6/30/2011 Wind Direction Maps 2 Wind rose data is quantified in very large Excel™ spreadsheets for each region of the state • Fields: X Y X_1 Y_1 FILE FREQ1 FREQ2 FREQ3 FREQ4 FREQ5 FREQ6 FREQ7 FREQ8 FREQ9 FREQ10 FREQ11 FREQ12 FREQ13 FREQ14 FREQ15 FREQ16 SPEED1 SPEED2 SPEED3 SPEED4 SPEED5 SPEED6 SPEED7 SPEED8 SPEED9 SPEED10 SPEED11 SPEED12 SPEED13 SPEED14 SPEED15 SPEED16 POWER1 POWER2 POWER3 POWER4 POWER5 POWER6 POWER7 POWER8 POWER9 POWER10 POWER11 POWER12 POWER13 POWER14 POWER15 POWER16 WEIBC1 WEIBC2 WEIBC3 WEIBC4 WEIBC5 WEIBC6 WEIBC7 WEIBC8 WEIBC9 WEIBC10 WEIBC11 WEIBC12 WEIBC13 WEIBC14 WEIBC15 WEIBC16 WEIBK1 WEIBK2 WEIBK3 WEIBK4 WEIBK5 WEIBK6 WEIBK7 WEIBK8 WEIBK9 WEIBK10 WEIBK11 WEIBK12 WEIBK13 WEIBK14 WEIBK15 WEIBK16 6/30/2011 Wind Direction Maps 3 Data set is thinned down to wind power density • Fields: X Y • POWER1 POWER2 POWER3 POWER4 POWER5 POWER6 POWER7 POWER8 POWER9 POWER10 POWER11 POWER12 POWER13 POWER14 POWER15 POWER16 • Power1 is the wind power density coming from the north (0 degrees). Power 2 is wind power from 22.5 deg.,…Power 9 is south (180 deg.), etc… 6/30/2011 Wind Direction Maps 4 Spreadsheet calculations X Y POWER1 POWER2 POWER3 POWER4 POWER5 POWER6 POWER7 POWER8 POWER9 POWER10 POWER11 POWER12 POWER13 POWER14 POWER15 POWER16 Max Wind Dir Prim 2nd Wind Dir Sec -132.7365 54.4833 0.643 0.767 1.911 4.083 -
Openvms Record Management Services Reference Manual
OpenVMS Record Management Services Reference Manual Order Number: AA-PV6RD-TK April 2001 This reference manual contains general information intended for use in any OpenVMS programming language, as well as specific information on writing programs that use OpenVMS Record Management Services (OpenVMS RMS). Revision/Update Information: This manual supersedes the OpenVMS Record Management Services Reference Manual, OpenVMS Alpha Version 7.2 and OpenVMS VAX Version 7.2 Software Version: OpenVMS Alpha Version 7.3 OpenVMS VAX Version 7.3 Compaq Computer Corporation Houston, Texas © 2001 Compaq Computer Corporation Compaq, AlphaServer, VAX, VMS, the Compaq logo Registered in U.S. Patent and Trademark Office. Alpha, PATHWORKS, DECnet, DEC, and OpenVMS are trademarks of Compaq Information Technologies Group, L.P. in the United States and other countries. UNIX and X/Open are trademarks of The Open Group in the United States and other countries. All other product names mentioned herein may be the trademarks of their respective companies. Confidential computer software. Valid license from Compaq required for possession, use, or copying. Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government under vendor’s standard commercial license. Compaq shall not be liable for technical or editorial errors or omissions contained herein. The information in this document is provided "as is" without warranty of any kind and is subject to change without notice. The warranties for Compaq products are set forth in the express limited warranty statements accompanying such products. Nothing herein should be construed as constituting an additional warranty. -
Memory Protection at Option
Memory Protection at Option Application-Tailored Memory Safety in Safety-Critical Embedded Systems – Speicherschutz nach Wahl Auf die Anwendung zugeschnittene Speichersicherheit in sicherheitskritischen eingebetteten Systemen Der Technischen Fakultät der Universität Erlangen-Nürnberg zur Erlangung des Grades Doktor-Ingenieur vorgelegt von Michael Stilkerich Erlangen — 2012 Als Dissertation genehmigt von der Technischen Fakultät Universität Erlangen-Nürnberg Tag der Einreichung: 09.07.2012 Tag der Promotion: 30.11.2012 Dekan: Prof. Dr.-Ing. Marion Merklein Berichterstatter: Prof. Dr.-Ing. Wolfgang Schröder-Preikschat Prof. Dr. Michael Philippsen Abstract With the increasing capabilities and resources available on microcontrollers, there is a trend in the embedded industry to integrate multiple software functions on a single system to save cost, size, weight, and power. The integration raises new requirements, thereunder the need for spatial isolation, which is commonly established by using a memory protection unit (MPU) that can constrain access to the physical address space to a fixed set of address regions. MPU-based protection is limited in terms of available hardware, flexibility, granularity and ease of use. Software-based memory protection can provide an alternative or complement MPU-based protection, but has found little attention in the embedded domain. In this thesis, I evaluate qualitative and quantitative advantages and limitations of MPU-based memory protection and software-based protection based on a multi-JVM. I developed a framework composed of the AUTOSAR OS-like operating system CiAO and KESO, a Java implementation for deeply embedded systems. The framework allows choosing from no memory protection, MPU-based protection, software-based protection, and a combination of the two. -
Programming Model, Address Mode, HC12 Hardware Introduction
EEL 4744C: Microprocessor Applications Lecture 2 Programming Model, Address Mode, HC12 Hardware Introduction Dr. Tao Li 1 Reading Assignment • Microcontrollers and Microcomputers: Chapter 3, Chapter 4 • Software and Hardware Engineering: Chapter 2 Or • Software and Hardware Engineering: Chapter 4 Plus • CPU12 Reference Manual: Chapter 3 • M68HC12B Family Data Sheet: Chapter 1, 2, 3, 4 Dr. Tao Li 2 EEL 4744C: Microprocessor Applications Lecture 2 Part 1 CPU Registers and Control Codes Dr. Tao Li 3 CPU Registers • Accumulators – Registers that accumulate answers, e.g. the A Register – Can work simultaneously as the source register for one operand and the destination register for ALU operations • General-purpose registers – Registers that hold data, work as source and destination register for data transfers and source for ALU operations • Doubled registers – An N-bit CPU in general uses N-bit data registers – Sometimes 2 of the N-bit registers are used together to double the number of bits, thus “doubled” registers Dr. Tao Li 4 CPU Registers (2) • Pointer registers – Registers that address memory by pointing to specific memory locations that hold the needed data – Contain memory addresses (without offset) • Stack pointer registers – Pointer registers dedicated to variable data and return address storage in subroutine calls • Index registers – Also used to address memory – An effective memory address is found by adding an offset to the content of the involved index register Dr. Tao Li 5 CPU Registers (3) • Segment registers – In some architectures, memory addressing requires that the physical address be specified in 2 parts • Segment part: specifies a memory page • Offset part: specifies a particular place in the page • Condition code registers – Also called flag or status registers – Hold condition code bits generated when instructions are executed, e.g. -
Computing Graphics
A joint newsletter of the Statistical Computing & Statistical Graphics Sections of the American Statistical Association. April 1993 Vol.4 No.1 COMPUTING GRAPHICS A WORD FROM OUR CHAIRS FEATURE ARTICLE Statistical Computing Saxpy, gaxpy, LAPACK, OneoftheperksoftheChairoftheStatisticalCom- puting Section is writing a column for this newsletter. and BLAS Imagine: I can write for several thousand members of Colin Goodall The Pennsylvania State University my profession, without the bene®t of refereeing. I get to tell you what I think, rather than what I know. Measuring Performance Maybe I'm a bit odd, but what I've been thinking about One of the best understood computational tasks is lin- is copyrighting and patenting of statistical software and ear algebra. Considerable effort has gone into fast and of computer material in general. My interest was piqued accurate code for these manipulations, e.g. LINPACK by an advertisement I received for a computer pack- (Dongarra et al. 1979), EISPACK, and most recently age that would display a high dimensional plot using a LAPACK (Anderson et al. 1992). The speed of these patented algorithm. The name of the method was jar- computations is measured in mega ¯ops (MFLOPS), or gon, so I could tell nothing from the advertisement about millions of ¯oating point instructions per second. Each the program and what it did. Mainly, what the adver- ¯oating point instruction is a single arithmetic opera- tisement did was make me wonder just what it meant for tion, e.g. a multiplication, a divide, an addition or sub- an algorithm to be patented. Was I supposed to believe traction, performed in full ¯oating point precision arith- that patenting was a substitute for peer review? Did it metic, usually 64 bits double precision. -
Historical Perspective and Further Reading 162.E1
2.21 Historical Perspective and Further Reading 162.e1 2.21 Historical Perspective and Further Reading Th is section surveys the history of in struction set architectures over time, and we give a short history of programming languages and compilers. ISAs include accumulator architectures, general-purpose register architectures, stack architectures, and a brief history of ARMv7 and the x86. We also review the controversial subjects of high-level-language computer architectures and reduced instruction set computer architectures. Th e history of programming languages includes Fortran, Lisp, Algol, C, Cobol, Pascal, Simula, Smalltalk, C+ + , and Java, and the history of compilers includes the key milestones and the pioneers who achieved them. Accumulator Architectures Hardware was precious in the earliest stored-program computers. Consequently, computer pioneers could not aff ord the number of registers found in today’s architectures. In fact, these architectures had a single register for arithmetic instructions. Since all operations would accumulate in one register, it was called the accumulator , and this style of instruction set is given the same name. For example, accumulator Archaic EDSAC in 1949 had a single accumulator. term for register. On-line Th e three-operand format of RISC-V suggests that a single register is at least two use of it as a synonym for registers shy of our needs. Having the accumulator as both a source operand and “register” is a fairly reliable indication that the user the destination of the operation fi lls part of the shortfall, but it still leaves us one has been around quite a operand short. Th at fi nal operand is found in memory. -
The Birth, Evolution and Future of Microprocessor
The Birth, Evolution and Future of Microprocessor Swetha Kogatam Computer Science Department San Jose State University San Jose, CA 95192 408-924-1000 [email protected] ABSTRACT timed sequence through the bus system to output devices such as The world's first microprocessor, the 4004, was co-developed by CRT Screens, networks, or printers. In some cases, the terms Busicom, a Japanese manufacturer of calculators, and Intel, a U.S. 'CPU' and 'microprocessor' are used interchangeably to denote the manufacturer of semiconductors. The basic architecture of 4004 same device. was developed in August 1969; a concrete plan for the 4004 The different ways in which microprocessors are categorized are: system was finalized in December 1969; and the first microprocessor was successfully developed in March 1971. a) CISC (Complex Instruction Set Computers) Microprocessors, which became the "technology to open up a new b) RISC (Reduced Instruction Set Computers) era," brought two outstanding impacts, "power of intelligence" and "power of computing". First, microprocessors opened up a new a) VLIW(Very Long Instruction Word Computers) "era of programming" through replacing with software, the b) Super scalar processors hardwired logic based on IC's of the former "era of logic". At the same time, microprocessors allowed young engineers access to "power of computing" for the creative development of personal 2. BIRTH OF THE MICROPROCESSOR computers and computer games, which in turn led to growth in the In 1970, Intel introduced the first dynamic RAM, which increased software industry, and paved the way to the development of high- IC memory by a factor of four. -
Motorola 68000 Opcodes
Motorola 68000 CPU Opcodes Mnemonic Size Single Effective Address Operation Word Data Mnemonic Size Single Effective Address Operation Word Data Addressing Mode Format M Xn ORI to CCR B 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 B I RTE 0 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 Data register Dn 0 0 0 reg ORI to SR W 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 W I RTS 0 1 0 0 1 1 1 0 0 1 1 1 0 1 0 1 Address register An 0 0 1 reg ORI B W L 0 0 0 0 0 0 0 0 S M Xn I TRAPV 0 1 0 0 1 1 1 0 0 1 1 1 0 1 1 0 Address (An) 0 1 0 reg ANDI to CCR B 0 0 0 0 0 0 1 0 0 0 1 1 1 1 0 0 B I RTR 0 1 0 0 1 1 1 0 0 1 1 1 0 1 1 1 Address with Postincrement (An)+ 0 1 1 reg ANDI to SR W 0 0 0 0 0 0 1 0 0 1 1 1 1 1 0 0 W I JSR 0 1 0 0 1 1 1 0 1 0 M Xn Address with Predecrement -(An) 1 0 0 reg ANDI B W L 0 0 0 0 0 0 1 0 S M Xn I JMP 0 1 0 0 1 1 1 0 1 1 M Xn Address with Displacement (d16, An) 1 0 1 reg SUBI B W L 0 0 0 0 0 1 0 0 S M Xn I MOVEM W L 0 1 0 0 1 D 0 0 1 S M Xn W M Address with Index (d8, An, Xn) 1 1 0 reg ADDI B W L 0 0 0 0 0 1 1 0 S M Xn I LEA L 0 1 0 0 An 1 1 1 M Xn Program Counter with Displacement (d16, PC) 1 1 1 0 1 0 EORI to CCR B 0 0 0 0 1 0 1 0 0 0 1 1 1 1 0 0 B I CHK W 0 1 0 0 Dn 1 1 0 M Xn Program Counter with Index (d8, PC, Xn) 1 1 1 0 1 1 EORI to SR W 0 0 0 0 1 0 1 0 0 1 1 1 1 1 0 0 W I ADDQ B W L 0 1 0 1 Data 0 S M Xn Absolute Short (xxx).W 1 1 1 0 0 0 EORI B W L 0 0 0 0 1 0 1 0 S M Xn I SUBQ B W L 0 1 0 1 Data 1 S M Xn Absolute Long (xxx).L 1 1 1 0 0 1 CMPI B W L 0 0 0 0 1 1 0 0 S M Xn I Scc B 0 1 0 1 Condition 1 1 M Xn Immediate #imm 1 1 1 1 0 0 BTST B L 0 0 0 0 1 0 0 -
What Is an Operating System III 2.1 Compnents II an Operating System
Page 1 of 6 What is an Operating System III 2.1 Compnents II An operating system (OS) is software that manages computer hardware and software resources and provides common services for computer programs. The operating system is an essential component of the system software in a computer system. Application programs usually require an operating system to function. Memory management Among other things, a multiprogramming operating system kernel must be responsible for managing all system memory which is currently in use by programs. This ensures that a program does not interfere with memory already in use by another program. Since programs time share, each program must have independent access to memory. Cooperative memory management, used by many early operating systems, assumes that all programs make voluntary use of the kernel's memory manager, and do not exceed their allocated memory. This system of memory management is almost never seen any more, since programs often contain bugs which can cause them to exceed their allocated memory. If a program fails, it may cause memory used by one or more other programs to be affected or overwritten. Malicious programs or viruses may purposefully alter another program's memory, or may affect the operation of the operating system itself. With cooperative memory management, it takes only one misbehaved program to crash the system. Memory protection enables the kernel to limit a process' access to the computer's memory. Various methods of memory protection exist, including memory segmentation and paging. All methods require some level of hardware support (such as the 80286 MMU), which doesn't exist in all computers. -
A Minimal Powerpc™ Boot Sequence for Executing Compiled C Programs
Order Number: AN1809/D Rev. 0, 3/2000 Semiconductor Products Sector Application Note A Minimal PowerPCª Boot Sequence for Executing Compiled C Programs PowerPC Systems Architecture & Performance [email protected] This document describes the procedures necessary to successfully initialize a PowerPC processor and begin executing programs compiled using the PowerPC embedded application interface (EABI). The items discussed in this document have been tested for MPC603eª, MPC750, and MPC7400 microprocessors. The methods and source code presented in this document may work unmodiÞed on similar PowerPC platforms as well. This document contains the following topics: ¥ Part I, ÒOverview,Ó provides an overview of the conditions and exceptions for the procedures described in this document. ¥ Part II, ÒPowerPC Processor Initialization,Ó provides information on the general setup of the processor registers, caches, and MMU. ¥ Part III, ÒPowerPC EABI Compliance,Ó discusses aspects of the EABI that apply directly to preparing to jump into a compiled C program. ¥ Part IV, ÒSample Boot Sequence,Ó describes the basic operation of the boot sequence and the many options of conÞguration, explains in detail a sample conÞgurable boot and how the code may be modiÞed for use in different environments, and discusses the compilation procedure using the supporting GNU build environment. ¥ Part V, ÒSource Files,Ó contains the complete source code for the Þles ppcinit.S, ppcinit.h, reg_defs.h, ld.script, and MakeÞle. This document contains information on a new product under development by Motorola. Motorola reserves the right to change or discontinue this product without notice. © Motorola, Inc., 2000. All rights reserved. Overview Part I Overview The procedures discussed in this document perform only the minimum amount of work necessary to execute a user program. -
Chapter 1. Origins of Mac OS X
1 Chapter 1. Origins of Mac OS X "Most ideas come from previous ideas." Alan Curtis Kay The Mac OS X operating system represents a rather successful coming together of paradigms, ideologies, and technologies that have often resisted each other in the past. A good example is the cordial relationship that exists between the command-line and graphical interfaces in Mac OS X. The system is a result of the trials and tribulations of Apple and NeXT, as well as their user and developer communities. Mac OS X exemplifies how a capable system can result from the direct or indirect efforts of corporations, academic and research communities, the Open Source and Free Software movements, and, of course, individuals. Apple has been around since 1976, and many accounts of its history have been told. If the story of Apple as a company is fascinating, so is the technical history of Apple's operating systems. In this chapter,[1] we will trace the history of Mac OS X, discussing several technologies whose confluence eventually led to the modern-day Apple operating system. [1] This book's accompanying web site (www.osxbook.com) provides a more detailed technical history of all of Apple's operating systems. 1 2 2 1 1.1. Apple's Quest for the[2] Operating System [2] Whereas the word "the" is used here to designate prominence and desirability, it is an interesting coincidence that "THE" was the name of a multiprogramming system described by Edsger W. Dijkstra in a 1968 paper. It was March 1988. The Macintosh had been around for four years. -
Mac OS X: an Introduction for Support Providers
Mac OS X: An Introduction for Support Providers Course Information Purpose of Course Mac OS X is the next-generation Macintosh operating system, utilizing a highly robust UNIX core with a brand new simplified user experience. It is the first successful attempt to provide a fully-functional graphical user experience in such an implementation without requiring the user to know or understand UNIX. This course is designed to provide a theoretical foundation for support providers seeking to provide user support for Mac OS X. It assumes the student has performed this role for Mac OS 9, and seeks to ground the student in Mac OS X using Mac OS 9 terms and concepts. Author: Robert Dorsett, manager, AppleCare Product Training & Readiness. Module Length: 2 hours Audience: Phone support, Apple Solutions Experts, Service Providers. Prerequisites: Experience supporting Mac OS 9 Course map: Operating Systems 101 Mac OS 9 and Cooperative Multitasking Mac OS X: Pre-emptive Multitasking and Protected Memory. Mac OS X: Symmetric Multiprocessing Components of Mac OS X The Layered Approach Darwin Core Services Graphics Services Application Environments Aqua Useful Mac OS X Jargon Bundles Frameworks Umbrella Frameworks Mac OS X Installation Initialization Options Installation Options Version 1.0 Copyright © 2001 by Apple Computer, Inc. All Rights Reserved. 1 Startup Keys Mac OS X Setup Assistant Mac OS 9 and Classic Standard Directory Names Quick Answers: Where do my __________ go? More Directory Names A Word on Paths Security UNIX and security Multiple user implementation Root Old Stuff in New Terms INITs in Mac OS X Fonts FKEYs Printing from Mac OS X Disk First Aid and Drive Setup Startup Items Mac OS 9 Control Panels and Functionality mapped to Mac OS X New Stuff to Check Out Review Questions Review Answers Further Reading Change history: 3/19/01: Removed comment about UFS volumes not being selectable by Startup Disk.