Phylogeny of the Broadly Sampled Buxaceae
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cylindrocladium Buxicola Nom. Cons. Prop.(Syn. Calonectria
I Promotors: Prof. dr. ir. Monica Höfte Laboratory of Phytopathology, Department of Crop Protection Faculty of Bioscience Engineering Ghent University Dr. ir. Kurt Heungens Institute for Agricultural and Fisheries Research (ILVO) Plant Sciences Unit - Crop Protection Dean: Prof. dr. ir. Guido Van Huylenbroeck Rector: Prof. dr. Anne De Paepe II Bjorn Gehesquière Cylindrocladium buxicola nom. cons. prop. (syn. Calonectria pseudonaviculata) on Buxus: molecular characterization, epidemiology, host resistance and fungicide control Thesis submitted in fulfillment of the requirements for the degree of Doctor (PhD) in Applied Biological Sciences III Dutch translation of the title: Cylindrocladium buxicola nom. cons. prop. (syn. Calonectria pseudonaviculata) in Buxus: moleculaire karakterisering, epidemiologie, waardplantresistentie en chemische bestrijding. Please refer to this work as follows: Gehesquière B. (2014). Cylindrocladium buxicola nom. cons. prop. (syn. Calonectria pseudonaviculata) on Buxus: molecular characterization, epidemiology, host resistance and fungicide control. Phd Thesis. Ghent University, Belgium The author and the promotors give authorisation to consult and to copy parts of this work for personal use only. Any other use is limited by Laws of Copyright. Permission to reproduce any material contained in this work should be obtained from the author. The promotors, The author, Prof. dr. ir. M. Höfte Dr. ir. K. Heungens ir. B. Gehesquière IV Een woordje van dank…. Dit dankwoord schrijven is ongetwijfeld het leukste onderdeel van deze thesis, en een mooie afsluiting van een interessante periode. Terugblikkend op de voorbije vier jaren kan ik enkel maar beamen dat een doctoraat zoveel meer is dan een wetenschappelijke uitdaging. Het is een levensreis in al zijn facetten, waarbij ik mezelf heb leren kennen in al mijn goede en slechte kantjes. -
Boxwood Blight
PLANT AND PEST BP-203-W DIAGNOSTIC LABORATORY ppdl.purdue.edu Boxwood Blight Gail Ruhl Purdue Botany and Plant Pathology - ag.purdue.edu/BTNY Tom Creswell Janna Beckerman Introduction Boxwood blight is a fungal disease caused by Calonectria pseudonaviculata (previously called Cylindrocladium pseudonaviculatum or Cylindrocladium buxicola). This fungus is easily transported in the nursery industry and can be moved on infected plants that do not show any symptoms at the time of shipment as well as on shoots of infected boxwood greenery tucked into evergreen Christmas wreaths. Boxwood blight has become a serious threat to nursery production and to boxwoods in the landscape, which has prompted several states to take regulatory action. This publication provides information about boxwood blight and management options. Disease Distribution Boxwood blight was first reported in the United Kingdom in the mid 1990s. It is now widespread throughout most of Europe and was also discovered in New Zealand in 1998. Boxwood blight was confirmed for the first time in North America in October 2011 on samples collected in North Carolina and Connecticut. Since this first U.S. detection, boxwood blight has been reported in more than 20 states and three Canadian provinces. Symptoms and Signs The fungus that causes boxwood blight can infect all aboveground portions of the shrub. Symptoms begin as dark leaf spots that coalesce to form brown blotches (Figure 1). The undersides of infected leaves will show white sporulation of the boxwood blight Boxwood Blight BP-203-W fungus following periods of high humidity (Figure 2). Boxwood blight causes rapid defoliation, which usually starts on the lower branches and moves upward in the canopy (Figure 3). -
Landscaping Without Harmful Invasive Plants
Landscaping without harmful invasive plants A guide to plants you can use in place of invasive non-natives Supported by: This guide, produced by the wild plant conservation Landscaping charity Plantlife and the Royal Horticultural Society, can help you choose plants that are without less likely to cause problems to the environment harmful should they escape from your planting area. Even the most careful land managers cannot invasive ensure that their plants do not escape and plants establish in nearby habitats (as berries and seeds may be carried away by birds or the wind), so we hope you will fi nd this helpful. A few popular landscaping plants can cause problems for you / your clients and the environment. These are known as invasive non-native plants. Although they comprise a small Under the Wildlife and Countryside minority of the 70,000 or so plant varieties available, the Act, it is an offence to plant, or cause to damage they can do is extensive and may be irreversible. grow in the wild, a number of invasive ©Trevor Renals ©Trevor non-native plants. Government also has powers to ban the sale of invasive Some invasive non-native plants might be plants. At the time of producing this straightforward for you (or your clients) to keep in booklet there were no sales bans, but check if you can tend to the planted area often, but it is worth checking on the websites An unsuspecting sheep fl ounders in a in the wider countryside, where such management river. Invasive Floating Pennywort can below to fi nd the latest legislation is not feasible, these plants can establish and cause cause water to appear as solid ground. -
Reconstructing the Basal Angiosperm Phylogeny: Evaluating Information Content of Mitochondrial Genes
55 (4) • November 2006: 837–856 Qiu & al. • Basal angiosperm phylogeny Reconstructing the basal angiosperm phylogeny: evaluating information content of mitochondrial genes Yin-Long Qiu1, Libo Li, Tory A. Hendry, Ruiqi Li, David W. Taylor, Michael J. Issa, Alexander J. Ronen, Mona L. Vekaria & Adam M. White 1Department of Ecology & Evolutionary Biology, The University Herbarium, University of Michigan, Ann Arbor, Michigan 48109-1048, U.S.A. [email protected] (author for correspondence). Three mitochondrial (atp1, matR, nad5), four chloroplast (atpB, matK, rbcL, rpoC2), and one nuclear (18S) genes from 162 seed plants, representing all major lineages of gymnosperms and angiosperms, were analyzed together in a supermatrix or in various partitions using likelihood and parsimony methods. The results show that Amborella + Nymphaeales together constitute the first diverging lineage of angiosperms, and that the topology of Amborella alone being sister to all other angiosperms likely represents a local long branch attrac- tion artifact. The monophyly of magnoliids, as well as sister relationships between Magnoliales and Laurales, and between Canellales and Piperales, are all strongly supported. The sister relationship to eudicots of Ceratophyllum is not strongly supported by this study; instead a placement of the genus with Chloranthaceae receives moderate support in the mitochondrial gene analyses. Relationships among magnoliids, monocots, and eudicots remain unresolved. Direct comparisons of analytic results from several data partitions with or without RNA editing sites show that in multigene analyses, RNA editing has no effect on well supported rela- tionships, but minor effect on weakly supported ones. Finally, comparisons of results from separate analyses of mitochondrial and chloroplast genes demonstrate that mitochondrial genes, with overall slower rates of sub- stitution than chloroplast genes, are informative phylogenetic markers, and are particularly suitable for resolv- ing deep relationships. -
Alexey Shipunov 2,4 and Ekaterina Shipunova 3
American Journal of Botany 98(4): 761–763. 2011. BRIEF COMMUNICATION H APTANTHUS STORY: REDISCOVERY OF ENIGMATIC FLOWERING PLANT FROM HONDURAS 1 Alexey Shipunov 2,4 and Ekaterina Shipunova 3 2 Minot State University, Minot, North Dakota 58707 USA; and 3 Cape Cod Community College, West Barnstable, Massachusetts 02668 USA • Premise of the study : Finding a plant or animal that was previously considered extinct is a fortunate (but rare) event in biology. Haptanthus hazlettii was collected from Honduras (Central America) in 1980, but numerous attempts to re-collect it have failed. Reproductive organs of Haptanthus are unique among angiosperms and make the search for phylogenetic relations dif- fi cult. Unfortunately, all attempts to extract DNA from the existing sample were unsuccessful. • Methods : In 2010, we organized a small expedition to Honduras and were able to re-collect this plant, extract DNA from dried samples, and sequence the barcoding region of rbcL. • Key results and conclusions : We obtained phylogenetic trees with reliable support for the placement of Haptanthus as a new member of Buxaceae (boxwood family). Key words: angiosperms; Buxaceae; Haptanthaceae; Haptanthus ; Honduras; phylogeny. To date, representatives of almost all families of fl owering 2005 ). Staminate and carpellate organs are practically naked, plants have been studied with molecular phylogenetic tools. with minute basal bracts. Several taxa have been proposed as Haptanthus hazlettii , an enigmatic Central American tree, was candidate related groups ( Goldberg and Alden, 2005 ), but mor- one of the remaining exceptions. It was discovered, nearly ac- phological support for these relations has been problematic. cidentally, in 1980 ( Doust and Stevens, 2005 ) and described as a new species and genus in 1989 ( Goldberg and Nelson, 1989 ). -
Additions to the New Flora of Vermont
Gilman, A.V. Additions to the New Flora of Vermont. Phytoneuron 2016-19: 1–16. Published 3 March 2016. ISSN 2153 733X ADDITIONS TO THE NEW FLORA OF VERMONT ARTHUR V. GILMAN Gilman & Briggs Environmental 1 Conti Circle, Suite 5, Barre, Vermont 05641 [email protected] ABSTRACT Twenty-two species of vascular plants are reported for the state of Vermont, additional to those reported in the recently published New Flora of Vermont. These are Agrimonia parviflora, Althaea officinalis , Aralia elata , Beckmannia syzigachne , Bidens polylepis , Botrychium spathulatum, Carex panicea , Carex rostrata, Eutrochium fistulosum , Ficaria verna, Hypopitys lanuginosa, Juncus conglomeratus, Juncus diffusissimus, Linum striatum, Lipandra polysperma , Matricaria chamomilla, Nabalus racemosus, Pachysandra terminalis, Parthenocissus tricuspidata , Ranunculus auricomus , Rosa arkansana , and Rudbeckia sullivantii. Also new are three varieties: Crataegus irrasa var. irrasa , Crataegus pruinosa var. parvula , and Viola sagittata var. sagittata . Three species that have been reported elsewhere in 2013–2015, Isoetes viridimontana, Naias canadensis , and Solidago brendiae , are also recapitulated. This report and the recently published New Flora of Vermont (Gilman 2015) together summarize knowledge of the vascular flora of Vermont as of this date. The New Flora of Vermont was recently published by The New York Botanical Garden Press (Gilman 2015). It is the first complete accounting of the vascular flora of Vermont since 1969 (Seymour 1969) and adds more than 200 taxa to the then-known flora of the state. However, the manuscript for the New Flora was finalized in spring 2013 and additional species are now known: those that have been observed more recently, that have been recently encountered (or re-discovered) in herbaria, or that were not included because they were under study at the time of finalization. -
Common Name Scientific Name Type Plant Family Native
Common name Scientific name Type Plant family Native region Location: Africa Rainforest Dragon Root Smilacina racemosa Herbaceous Liliaceae Oregon Native Fairy Wings Epimedium sp. Herbaceous Berberidaceae Garden Origin Golden Hakone Grass Hakonechloa macra 'Aureola' Herbaceous Poaceae Japan Heartleaf Bergenia Bergenia cordifolia Herbaceous Saxifragaceae N. Central Asia Inside Out Flower Vancouveria hexandra Herbaceous Berberidaceae Oregon Native Japanese Butterbur Petasites japonicus Herbaceous Asteraceae Japan Japanese Pachysandra Pachysandra terminalis Herbaceous Buxaceae Japan Lenten Rose Helleborus orientalis Herbaceous Ranunculaceae Greece, Asia Minor Sweet Woodruff Galium odoratum Herbaceous Rubiaceae Europe, N. Africa, W. Asia Sword Fern Polystichum munitum Herbaceous Dryopteridaceae Oregon Native David's Viburnum Viburnum davidii Shrub Caprifoliaceae Western China Evergreen Huckleberry Vaccinium ovatum Shrub Ericaceae Oregon Native Fragrant Honeysuckle Lonicera fragrantissima Shrub Caprifoliaceae Eastern China Glossy Abelia Abelia x grandiflora Shrub Caprifoliaceae Garden Origin Heavenly Bamboo Nandina domestica Shrub Berberidaceae Eastern Asia Himalayan Honeysuckle Leycesteria formosa Shrub Caprifoliaceae Himalaya, S.W. China Japanese Aralia Fatsia japonica Shrub Araliaceae Japan, Taiwan Japanese Aucuba Aucuba japonica Shrub Cornaceae Japan Kiwi Vine Actinidia chinensis Shrub Actinidiaceae China Laurustinus Viburnum tinus Shrub Caprifoliaceae Mediterranean Mexican Orange Choisya ternata Shrub Rutaceae Mexico Palmate Bamboo Sasa -
Open As a Single Document
The Magazine of the Arnold Arboretum VOLUME 69 • NUMBER 3 The Magazine of the Arnold Arboretum VOLUME 69 • NUMBER 3 • 2012 CONTENTS Arnoldia (ISSN 0004–2633; USPS 866–100) 2 Picking Up the Pawpaws: The Rare Woody is published quarterly by the Arnold Arboretum Plants of Ontario Program at the University of Harvard University. Periodicals postage paid of Guelph Arboretum at Boston, Massachusetts. Sean Fox Subscriptions are $20.00 per calendar year domestic, $25.00 foreign, payable in advance. 14 Land Bridge Travelers of the Tertiary: Remittances may be made in U.S. dollars, by The Eastern Asian–Eastern North American check drawn on a U.S. bank; by international Floristic Disjunction money order; or by Visa, Mastercard, or American David Yih Express. Send orders, remittances, requests to purchase back issues, change-of-address notices, 24 A Rare Find: Yellow-Fruited Spicebush and all other subscription-related communica- (Lindera benzoin forma xanthocarpum) tions to Circulation Manager, Arnoldia, Arnold Richard Lynch Arboretum, 125 Arborway, Boston, MA 02130- 3500. Telephone 617.524.1718; fax 617.524.1418; 29 Book Review: A Landscape History of e-mail [email protected] New England Arnold Arboretum members receive a subscrip- Phyllis Andersen tion to Arnoldia as a membership benefit. To become a member or receive more information, 36 Plainly Unique: Schisandra chinensis please call Wendy Krauss at 617.384.5766 or Sam Schmerler email [email protected] Postmaster: Send address changes to Front cover: Japanese cornel (Cornus officinalis) blooms Arnoldia Circulation Manager in early spring, typically March at the Arnold Arbore- The Arnold Arboretum tum. -
Native Plants for Wildlife Habitat and Conservation Landscaping Chesapeake Bay Watershed Acknowledgments
U.S. Fish & Wildlife Service Native Plants for Wildlife Habitat and Conservation Landscaping Chesapeake Bay Watershed Acknowledgments Contributors: Printing was made possible through the generous funding from Adkins Arboretum; Baltimore County Department of Environmental Protection and Resource Management; Chesapeake Bay Trust; Irvine Natural Science Center; Maryland Native Plant Society; National Fish and Wildlife Foundation; The Nature Conservancy, Maryland-DC Chapter; U.S. Department of Agriculture, Natural Resource Conservation Service, Cape May Plant Materials Center; and U.S. Fish and Wildlife Service, Chesapeake Bay Field Office. Reviewers: species included in this guide were reviewed by the following authorities regarding native range, appropriateness for use in individual states, and availability in the nursery trade: Rodney Bartgis, The Nature Conservancy, West Virginia. Ashton Berdine, The Nature Conservancy, West Virginia. Chris Firestone, Bureau of Forestry, Pennsylvania Department of Conservation and Natural Resources. Chris Frye, State Botanist, Wildlife and Heritage Service, Maryland Department of Natural Resources. Mike Hollins, Sylva Native Nursery & Seed Co. William A. McAvoy, Delaware Natural Heritage Program, Delaware Department of Natural Resources and Environmental Control. Mary Pat Rowan, Landscape Architect, Maryland Native Plant Society. Rod Simmons, Maryland Native Plant Society. Alison Sterling, Wildlife Resources Section, West Virginia Department of Natural Resources. Troy Weldy, Associate Botanist, New York Natural Heritage Program, New York State Department of Environmental Conservation. Graphic Design and Layout: Laurie Hewitt, U.S. Fish and Wildlife Service, Chesapeake Bay Field Office. Special thanks to: Volunteer Carole Jelich; Christopher F. Miller, Regional Plant Materials Specialist, Natural Resource Conservation Service; and R. Harrison Weigand, Maryland Department of Natural Resources, Maryland Wildlife and Heritage Division for assistance throughout this project. -
Universidad Estatal De Bolívar Facultad De Ciencias Agropecuarias, Recursos Naturales Y Del Ambiente Escuela De Ingeniería Agronómica
UNIVERSIDAD ESTATAL DE BOLÍVAR FACULTAD DE CIENCIAS AGROPECUARIAS, RECURSOS NATURALES Y DEL AMBIENTE ESCUELA DE INGENIERÍA AGRONÓMICA TEMA: “INVENTARIO DE ESPECIES ARBÓREAS DEL BOSQUE NATIVO SAN JOSÉ DE LAS PALMAS, PARROQUIA SAN PABLO, CANTÓN SAN MIGUEL, PROVINCIA DE BOLÍVAR”. TESIS DE GRADO PREVIO A LA OBTENCIÓN DEL TÍTULO DE INGENIERO AGRONOMO OTORGADO POR LA UNIVERSIDAD ESTATAL DE BOLÍVAR A TRAVÉS DE LA FACULTAD DE CIENCIAS AGROPECUARIAS RECURSOS NATURALES Y DEL AMBIENTE, ESCUELA DE INGENIERÍA AGRONOMICA. AUTOR: ORLANDO JAVIER CASTILLO GUIZADO DIRECTOR DE TESIS: ING. NELSON MONAR GAVILANEZ. M.Sc. GUARANDA – ECUADOR 2013 INVENTARIO DE ESPECIES ARBOREAS DEL BOSQUE NATIVO SAN JOSE DE LAS PALMAS, PARROQUIA SAN PABLO, CANTON SAN MIGUEL, PROVINCIA DE BOLÍVAR.” REVISADO POR: ............................................................................ ING. AGR. NELSON MONAR GAVILANEZ. M.Sc. DIRECTOR DE TESIS ............................................................................. ING. AGR. KLEBER ESPINOZA MORA. Mg. BIOMETRISTA APROBADO POR LOS MIEMBROS DEL TRIBUNAL DE CALIFICACIÓN DE TESIS. .......................................................................... ING. AGR. SONIA FIERRO BORJA. Mg. ÁREA TÉCNICA ............................................................................ ING. AGR. CÉSAR BARBERÁN BARBERÁN. Mg. ÁREA REDACCIÓN TÉCNICA DEDICATORIA A mis amados padres, Delida Argentina Guizado y Raúl Castillo Lagos por darme la vida, quienes con su esfuerzo y sabiduría me han enseñado los buenos valores de la vida y guiarme por el buen camino de la sencillez y la humildad a ellos a quienes les debo todo lo que soy ahora ni toda la riqueza del mundo podrá pagar lo que mis padres han hecho por mí, mil gracias. A mis hermanas Johana y Valeria Castillo Guizado que me han brindado su apoyo gracias. A mi futura esposa Gwendolyn Peyre por su apoyo incondicional, que ha estado en los momentos más difíciles de mi vida y me ha brindado su amor y conocimiento sinceros. -
Duplication and Diversification in the APETALA1/FRUITFULL Floral
Copyright 2003 by the Genetics Society of America Duplication and Diversification in the APETALA1/FRUITFULL Floral Homeotic Gene Lineage: Implications for the Evolution of Floral Development Amy Litt1 and Vivian F. Irish Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520-4108 Manuscript received March 21, 2003 Accepted for publication June 11, 2003 ABSTRACT Phylogenetic analyses of angiosperm MADS-box genes suggest that this gene family has undergone multiple duplication events followed by sequence divergence. To determine when such events have taken place and to understand the relationships of particular MADS-box gene lineages, we have identified APETALA1/FRUITFULL-like MADS-box genes from a variety of angiosperm species. Our phylogenetic analyses show two gene clades within the core eudicots, euAP1 (including Arabidopsis APETALA1 and Antirrhinum SQUAMOSA) and euFUL (including Arabidopsis FRUITFULL). Non-core eudicot species have only sequences similar to euFUL genes (FUL-like). The predicted protein products of euFUL and FUL- like genes share a conserved C-terminal motif. In contrast, predicted products of members of the euAP1 gene clade contain a different C terminus that includes an acidic transcription activation domain and a farnesylation signal. Sequence analyses indicate that the euAP1 amino acid motifs may have arisen via a translational frameshift from the euFUL/FUL-like motif. The euAP1 gene clade includes key regulators of floral development that have been implicated in the specification of perianth identity. However, the presence of euAP1 genes only in core eudicots suggests that there may have been changes in mechanisms of floral development that are correlated with the fixation of floral structure seen in this clade. -
International Registration List of Cultivated Buxus L
DRAFT DOCUMENT: This is a DRAFT enumeration of all cultivated Buxus. The author invites corrections or additions with citations. Please respond by September 1, 2021 at [email protected] International Checklist List of Cultivated Buxus L. by Lynn R. Batdorf1 This enumeration follows the provisions of the 9th edition International Code of Nomenclature for Cultivated Plants (Code), published in June 2016 by the International Society of Horticultural Science (ISHS), Leuven, Belgium. Registered and accepted cultivar epithets, which have been properly established, appear in ‘boldface type’. Cultivar epithets lacking nomenclatural status or recognized as synonyms appear in ‘lightface type’. Indeterminate names and epithets contrary to the Code are rejected as not established and appear in (parenthesis). Botanical taxa appear in bold italic type. For each entry, the earliest known correct citation is provided. The Registrar invites corrections or additions with citation or registration information. Please forward to: American Boxwood Society, P.O. Box 85, Boyce, Virginia, US 22620-0085; [email protected]. Buxus Carl Linnaeus Species Plantarum 983.1753. Buxus balearica Jean-Baptiste Lamarck in Encyclopédie Méthodique, Botanique. Paris, Liège: Panckoucke, Plomyeux. 1:511.1785. ‘Marginata’ P. Corbelli in Dizionario di Floricultura 1:231.1873. Buxus bodinieri Léveillé in Feddes Repertorium 11:549.1913. ‘David’s Gold’ Stone House Cottage Nurseries, Catalog, Worcestershire, England.1991. = B. sempervirens ‘David’s Gold’ ‘Golden Frimley’ Hopleys Plants Limited, Catalog, High Street, Much Hadham, Herfordshire, England.1995. = B. sempervirens ‘Golden Frimley’ ‘Recurva’ A descriptive term written as a cultivar epithet. = B. bodinieri ‘Shaggy Box’ Nishiki Nursery, Catalog, Monbulk, Victoria, Australia.2019. A common name erroneously written as a cultivar epithet.