XA9952878

Title: Experience Database of Romanian Facilities Subjected to the Last Three Vrancea Earthquakes

Contributor: Stevenson & Associates

Date: March 1995 STEVENSON & ASSOCIATES Faurei # 1, Bloc P11, Ap.80, Sector 1 , Phone/Fax: (401) 211-3783 Registration no. J 40/27689/1993, Fiscal cod: 5042040 Account (lei): 4104085154538. Account ($): 4154085154538. Dacia Felix-Sa Bank, Sue. Bucuresti

Research Report for the International Atomic Energy Agency Vienna, Austria Contract No. 8223/EN

EXPERIENCE DATABASE OF ROMANIAN FACILITIES SUBJECTED TO THE LAST THREE VRANCEA EARTHQUAKES

Parti

Probabilisitic hazard analysis to the Vrancea earthquakes in Romania.

by

Dan Lungu1} and Ovidiu Coman2)

with cooperation of:

Alexandru Aldea !) Tiberiu Cornea ^ lolanda Craifaleanu 5) Traian Moldoveanu4) Mihaela Rizescu3)

1) Technical University of Civil Engineering, Bucharest 2) Stevenson & Associates, Bucharest Office 3) National Institute for Earth Physics, INFP 4) Institute for Geotechnical and Geophysical Studies, GEOTEC 5) lPCT-SA This page is intentionally left blank. Contents:

1. Introduction

2. The Vrancea source

References

3. Probabilistic seismic hazard evaluation

3.1 Magnitude-recurrence relationship

3.2 Ground motion attenuation

References

4. Site-dependent response spectra for design

4.1 Site dependent frequency content of the accelerograms

4.2 Bucharest narrow frequency band motions of long predominant period and design spectra for soft soil condition

4.3 and Republic of Moldavia response spectra

4.4 Response spectra for motions recorded in Dobrogea

References

5. Appendix 1: Characteristics of free-field accelerograms recorded in the last three Vrancea earthquakes by the seismic networks of INFP and GEOTEC

6. Acknowledgment This page is intentionally left blank. 1. INTRODUCTION

The scope of this research project is to use the past seismic experience of similar components from power and industrial facilities to establish the generic seismic resistance of nuclear power plant safe shutdown equipment. The first part of the project provide information about the Vrancea earthquakes which affect the Romanian territory and also the Kosloduy NPP site as a background of the investigations of the seismic performance of mechanical and electrical equipment in the industrial facilities.

This project has the following objectives:

a) first part :

- Collect and process all available seismic information about Vrancea earthquakes;

- Perform probabilistic hazard analysis of the Vrancea earthquakes;

- Determine attenuation low, correlation between the focal depth, earthquake power, soil conditions and frequency characteristics of the seismic ground motion

b) second part:

- Investigate and collect information regarding seismic behavior during the 1977, 1986 and 1990 earthquakes of mechanical and electrical components from industrial facilities.

The seismic database used for the analysis of the Vrancea earthquakes includes digitized triaxial records as follows: March 4, 1977 - 1 station, Aug. 30 1986 - 42 stations, May 1990 - 54 stations. Also a catalogue of the Vrancea earthquakes occurred during the period 1901-1994, is presented.

The present report represent the first part of the research project. This page is intentionally left blank. 2. THE VRANCEA SOURCE

The Vrancea region, situated where the Carpathian Arc bends, is the source of an intermediate depth (60-170 km) seismic activity. It affects more than 2/3 of the territory of Romania, important parts of the Republic of and a small area in .

The Vrancea intermediate depth foci produce a high seismic risk in the densely built zones of the South-East of Romania. In Bucharest, on March 4, 1977, during the strongest Vrancea earthquake in the last 50 years, more than 1500 people died and 35 reinforced concrete multi-storey buildings completely collapsed.

However the Vrancea region is a source of smaller seismic risk when compared with the seismic risk in Turkey (57,757 dead people in destructive earthquakes that occurred from 1925 to 1988) or in .

From EUROPROBE's LEVISP and DECAP Reports, the Vrancea region in Romania can be characterised as follows:

The Carpathian Arc is bounded on the North and North-East by the East European Platform and on the East and South by the Moesian Platform; inside the Arc and Westward are the Transylvanian and Pannonian basins, Fig. 2.1.

0 50 100km i ' ' ' i

Fig. 2.1 Tectonic units in the Vrancea region - Romania Focus Moment Gutenberg- The three tectonic units in contact depth magnitude Richter along the Eastern Carpathians have different km magnitude crustal and lithospheric thickness, heat flow Mw M and other physical properties as well as o - different relative motions. Crustal seismic The thickness of the lithosphere varies 20 -- 5.5 activity between about 150 km in the platform areas and less than 100 km inside the Carpathians. 40 . No seismic In the Vrancea zone the lithosphere activity descends to more than 200 km and is located 60 - at about 30-40 km in the platform areas, 40- 6.8 6.5 1945 Sept 07 55 km in the Carpathians area and 25-30 km 6.3 6.1 1990 May 31 80 - in the basin areas. 7.0 6.7 1990 May 30 The intermediate depth foci are 100 - clustered in a narrow volume: about 20 km in 7.5 7.2 1977 Mar 04 the SE-NW direction, 60 km in the NE-SW 6.8 6.5 1940 Oct 22 120 - direction and 100 km in depth. 7.2 7.0 1986 Aug30 140 - 7.7 7.4 1940 Novll 7.0 6.8 1908 Oct 06 The mechanism of the Vrancea source 160 - was explained by Fuchs et al. (1979): 180 - Deepest event First a subduction zone was 4.0 recorded 200 - recognised in the Eastern Carpathians in the 1982 May 16 SE-NW direction, later a paleosubduction zone in the NE-SW direction with its Southern end decoupled.

Fig. 2.2 Vrancea intermediate depth events (Mw> 6.8) Adapted from EUROPROBE's DECA Project

Nevertheless, from several tectonic models proposed none of them can explain all the particularities of the Vrancea observed seismic activity : spatial distribution of seismic activity, the two types of orientation of the fault plane, etc. (EUROPROBE).

The C. Radu Catalogue of the earthquakes (M > 5.0) which occurred in the Vrancea zone from 1901 to 1994 is listed in Table 2.1. The magnitude in Catalogue is the Gutenberg- Richter magnitude (1954). This magnitude could be approximated as equal to the surface magnitude (Bonjer, 1991): M = Ms.

Conversion of the Gutenberg-Richter magnitude M > 5.0 into the moment magnitude Mw can be done using the relation proposed, for the Vrancea source, by Oncescu (1987):

Mw= 0.92 M +0.81. (2.1) Table 2.1 Catalogue of the Vrancea earthquakes (M £ 5.0) occurred on the territory of Romania during the period 1901 - 1994 (C. Radu, 1994)

Nr. Date Time Lat. Long. Focus depth lo Gutenberg- GMT h Epicentral Richter h.m.s N° E° km intensity magnitude 1 1901 Sep 23 18:11 45.7 26.6 i V 5.0 2 1902 Mar 11 20:14 45.7 26.6 i VI 5.5 3 1903 Jun08 15:07 45.7 26.6 i VI 5.0 4 Sep 13 08:02:7 45.7 26.6 i VII 6.3 5 1904 Feb 06 02:49 45.7 26.6 i VI 5.7 6 1908 Oct 06 21:39:8 45.5 26.5 150 VIII 6.8 7 1912 May 25 18:01:7 45.7 27.2 80 VII 6.0 8 May 25 20:15 45.7 27.2 80 VI 5.5 9 May 25 21:15 45.7 27.2 80 V-VI 5.3 10 Jun 07 01:58 45.7 27.2 80 V 5.0 11 1913 Mar 14 03:40 45.7 26.6 i V-VI 5-3 12 M23 22:03 45.7 26.6 i V-VI 5.3 13 1914 Jul 01 01:00 45.7 26.6 i V 5.0 14 Jul31 18:23:12 45.9 26.3 100 V-VI 5.3 15 Oct 26 02:59 45.7 26.6 i V 5.0 16 1917 Mar 15 20:42:46 46.0 26.5 i V 5.0 17 May 19 21:00 45.7 26.6 i VI 5.5 18 Mil 03:23:55 45.7 26.6 i VI 5.5 19 1918 Feb 25 02:07 45.7 26.6 i VI 5.5 20 1919 Apr 18 06:20:05 45.7 26.6 100 VI 5.3 21 Aug09 14:38 45.7 26.6 i VI 5.5 22 1925 Dec 25 02:37 45.7 26.6 i V 5.0 23 1927 Jul 24 20:17:05 45.7 26.6 i VI 5.5 24 1928 Mar 30 09:38:57 45.9 26.5 i VI 5.4 25 Nov23 04:23:12 45.7 26.6 150 V-VI 5.3 26 1929 May 20 12:17:56 45.8 26.5 100 VI 5.3 27 NovOl 06:57:25 45.9 26.5 160 VI-VII 5.8 28 1932 Mar 13 02:53 45.7 26.6 i V-VI 5.3 29 May 27 10:42:15 45.7 26.6 i VI 5.5 30 Sep 07 18:36 45.7 26.6 i VI 5.4 31 1934 Feb 02 10:59:13 45.2 26.2 150 VI 5.3 32 Mar 29 20:06:51 45.8 26.5 90 VII 6.3 33 1935 Jul 13 00:03:46 45.3 26.6 140 VI 5.3 34 Sep 05 06:00 45.8 26.7 150 VI 5.5 35 1936 May 17 17:38:02 45.3 26.3 150 V 5.1 36 1937 Jan 26 14:34 45.7 26.6 i V 5.0 37 1938 Jul 13 20:15:17 45.9 26.7 120 VI 5.3 38 1939 Sep 05 06:02:00 45.9 26.7 115 VI 5.3 39 1940 Jun 24 09:57:27 45.9 26.6 115 V-VI 5.5 40 Oct 22 06:37:00 45.8 26.4 122 VII - VIII 6.5 41 Nov08 12:00:44 45.5 26.2 145 VI 5.5 42 Nov 10 01:39:07 45.8 26.7 150 IX 7.4 43 Novll 06:34:16 46.0 26.8 150 VI 5.5 44 Nov 14 14:37 45.7 26.6 i V 5.0 45 Nov 19 20:27:12 46.0 26.5 150 VI 5.3 46 Nov 23 14:49:53 45.8 26.8 150 V-VI 5.3 47 Dec 01 17:19 45.7 26.6 i V 5.1 48 1941 Jan 29 07:04 45.7 26.6 i V 5.1 49 1942 Apr 13 03:07:22 45.7 26.5 100 V-VI 5.2 50 Jul 29 19:19 45.7 26.5 125 V 5.0 51 1943 Apr 28 19:46:40 45.8 27.1 66 VI 5.0 10

Nr. Date Time Lat. Long. Focus depth lo Gutenberg- GMT h Epicentral Richter h:m:s N° E° km intensity magnitude 52 1944 Feb 25 16:59 45.7 26.6 155 V-VI 5.2 53 1945 Mar 12 20:51:46 45.6 26.4 125 VI 5.5 54 SepO7 15:48:26 45.9 26.5 75 VII - VIII 6.5 55 Sep 14 17:21 45.7 26.6 i V 5.1 56 Dec 09 06:08:45 45.7 26.8 80 VII 6.0 57 1946 Nov 03 18:46:59 45.6 26.3 140 VI 5.5 58 1947 Mar 13 14:03 45.7 26.6 i V 5.0 59 Oct 17 13:25:20 45.7 26.6 i VI 5.4 60 1948 Mar 13 21:05:56 45.9 26.7 150 V 5.3 61 Apr 29 00:33:40 45.9 26.7 150 V 5.0 62 May 29 04:48:58 45.8 26.5 140 VI-VII 5.8 63 1949 Dec 26 03:36:10 45.7 26.7 135 V-VI 5.3 64 1950 Jan 16 04:25:01 45.6 26.3 120 V-VI 5.3 65 Jun20 01:18:54 45.9 26.5 160 VI 5.5 66 Jull4 06:29:57 45.7 27.1 100 V 5.1 67 1952 Aug 03 16:36:14 45.6 26.5 150 V 5.1 68 1953 May 17 02:33:54 45.4 26.3 150 V 5.0 69 1954 Oct01 13:31:00 45.5 27.1 50 VI 5.2 70 1955 May 01 21:22:52 45.5 26.3 135 V 5.4 71 1959 May 31 12:51:48 45.7 27.2 35 VI 5.2 72 Aug 19 15:32:03 45.9 26.8 150 V 5.1 73 1960 Jan 26 20:27:04 45.8 26.2 140 V-VI 5.3 74 Oct 13 02:21:25 45.4 26.4 160 VI 5.5 75 1963 Jan 14 18:33:25 45.7 26.6 133 VI 5.4 76 1965 Jan 10 02:52:24 45.8 26.6 128 VI 5.4 77 1966 Oct 02 11:21:45 45.7 26.5 140 VI 5.5 78 Oct 15 06:59:19 45.6 26.4 140 V 5.1 79 Dec 14 14:50:00 45.7 26.4 158 V 5.0 80 1973 Aug 20 15:18:28 45.73 26.52 70 VI 5.5 81 Oct 23 10:50:59 45.72 26.48 171 V 5.1 82 1974 Jul 17 05:09:23 45.76 26.61 135 V-VI 5.4 83 1975 Mar 07 04:13:05 45.86 26.63 21 VI 5.1 84 1976 Oct01 17:50:43 45.72 26.54 142 V-VI 5.5 85 1977 Mar 04 19:21:56 45.78 26.78 93 VII-IX 5.5 86 Mar 04 19:22:00 45.72 26.94 79 VII - IX 6.5 87 Mar 04 19:22:08 45.48 26.78 93 VII-IX 6.5 88 Mar 04 19:22:15 45.34 26.30 109 VII-IX 7.2 89 1978 Oct 02 20:28:52 45.78 26.48 164 V-VI 5.3 90 1979 May 31 07:20:07 45.57 26.38 120 V-VI 5.3 91 Sep 11 15:36:55 45.59 26.31 154 VI 5.4 92 1980 Jan 14 15:07:54 45.78 26.60 141 V-VI 5.3 93 1981 Jun 18 00:02:59 45.68 26.38 144 V-VI 5.4 94 1983 Jan 25 07:34:49 45.67 26.75 160 V-VI 5.2 95 1984 Jan 20 07:24:23 45.51 26.34 135 V 5.0 96 1985 Aug 01 14:35:03 45.78 26.52 105 VI 5.5 97 1986 Aug 16 06:41:25 45.58 26.34 154 V 5.0 98 Aug 30 21:28:37 45.53 26.47 133 VI11 7.0 99 1988 Jan 08 16:50:39 45.54 26.26 137 V 5.0 100 1990 May 30 10:40:06 45.82 26.90 91 VIII 6.7 101 May 31 00:17:49 45.83 26.89 79 VII 6.1 102 1991 Jan 31 13:29:14.8 45.73 26.52 137 V 5.0 103 1993 Aug 26 21:32:33.5 45.70 26.62 138 V 5.1 11

The moment magnitude is defined as function of the seismic moment Mo which is directely related to the energy releasd by the earthquake (Kanamori, 1977) :

M Mw=Iogr-r-10.7. (2.2) —' 1.5

The Vrancea events with a magnitude Mw ^ 6.8 in this century are presented in Fig.2.2.

The main parameters of the Vrancea earthquakes recorded in 1990, 1986 and 1977 are given in Table 2.2. The moment magnitude for the 1990, 1986 and 1977 earthquakes was estimated from Equation (2.2).

Table 2.2. Fault plan characteristics of the Vrancea earthquakes

Date Origin Lat. Focus Seismic Mw Fault plan solution Time of Surface time Longit. depth moment Strike Dip Slip Author fracture of km Mo F 5° X° s fracture km2 1940 01:39:07 45.8° 150 - 224° 62.3° 75.5° Radu Nov 26.7° 7.70 Oncescu 10 Source 1 1977 19:21:56 45.78° 93 238° 77° 104° Miiller Mar 26.78° 87 9.1X1026 220° 76° 116° Tavera 20 4 Source 2 19:22:15 45.48° 109 205° 48° -81.2° Rakers 26.30° Miiller 36 114 7.1X10 194° 41° 87° Tavera 10 2400

Sources 2.0X1027 7.50 Enescu 15 63x37 1+2 2.5X1027 7.56 Rakers 7 Miiller 1986 21:28:37 45.53° 133 242° 70° 93.8° Bonjer Aug 26.47° Apopei 30 Trifu 4-6 725 Oncescu

140 8.1X1026 7.23 225° 68° 105° Monfret 4-6 Deschamps

141 6.0x1026 7.15 227° 65° 104° Tavera 1990 10:40:06 45.82° 90 3.9X1026 7.02 235° 66° 98° Deschamps 4 May 26.90° 89 3.2x10* 6.97 232° 57° 89° Tavera 5 30 1990 00:17:49 45.83° 87 3.2X1025 6.30 309° 69° 106° Harvard 5 May 26.89° 94 3.5X1025 6.33 308° 71° 97° Tavera 3 31 12

The data base used for the analysis of the Vrancea earthquakes effects comprises digitised triaxial records from:

Romania:

(i) 1 station for the Mar 4, 1977 earthquake (this event was recorded in Romania by only one SMAC-B accelerograph located in the soft soil condition of Bucharest) (ii) 42 stations for the Aug 30, 1986 event (iii) 54 stations for the May 30, 1990 event (iv) 40 stations for the May 31, 1990 event,

Republic of Moldova:

(v) 1 station for the Aug 30, 1986 event (vi) 2 stations for the May 30, 1990 event

and Bulgaria:

(vii) 6 stations for the May 30, 1990 event (viii) 2 stations for the May 31, 1990 event.

The Romanian accelerograms come from three national networks:

D National Institute of Earth Physics, INFP: 10 SMA-1 KINEMETRICS accelerographs A Institute for Geotechnical and Geophysical Studies, GEOTEC: 4 SMA-1 KINEMETRICS accelerographs and 0 Building Research Institute, INCERC: more than 40 SMA-1 KINEMETRICS accelerographs.

In the City of Bucharest (2.35 Mill, inhabitants) there are 12 recording stations: 10 INCERC, 1 INFP and 1 GEOTEC.

The stations that recorded the Aug 30, 1986 and May 30, 1990 Vrancea earthquakes, as well as their maximum peak horizontal acceleration, used for the evaluation of attenuation characteristics are located in the maps appended to this chapter. ROMANIA 48- PEAK GROUND ACCELERATION cm/s2 Aug 30, 1986, VRANCEA Earthquake

h=133 km

94 Bolintin 13 Buo.Magurel

liadu, Lungu, 1994

£3* ROMANIA

PEAK GROUND ACCELERATION cm/s May 30, 1990, VRANCEA Earthquake Mw=6.9 h=91 km

$) EPICENTER

133 137 Slobozia Bucurosti 107 rnAvoda A 45 Constohta

Radu, Lungu, 1994 hnbla Kdvorno ROMANIA PEAK GROUND ACCELERATION em/s May 31, 1990, VRANCEA Earthquake

km

50 tOOkn

EPICENTER

Radu, Lungu, 1994 I 187 BUCHAREST OTOPENI Aug. 30,1986, VRANCEA earthquake Mw= 7.2 h«133km

PEAK GROUND ACXELERATION m/s*

DATA

/\ GEOTEC OTHERS*. INCERC

Pnntelimon Q.95

4 0.73 METROU IMGB1 1.5 3 km METALURGIE1 / 1.35 OTOPENI BUCHAREST May 30,1990,VRANCEA earthquake Mw*6.9 h«91 km PEAK GROUND ACCELERATION m/s*

DATA 1 INFP A 6E0TEC ••INCERC

L. Funden/i

Pantelimon 0.99 V-^^- 1.39

METROU , IMGB1 1.5 3 km METALURGIEI / 0.9O BUC. MAGURELE 18

REFERENCES

2.1 Achauer U., Granet M., Deschamps A., Enescu D., Oncescu L., Zugravescu D., Demetrescu C, Fuchs K., Bonjer K.-P., Wenzel F., 1993. Lithoscope Contribution to EUROPROBE's Vrancea Integrated Seismic Project (LEVISP), Geophysicalisches Institut, Universitat Karlsruhe

2.2 Achauer U., Oncescu L., Spakman W., Wortel R., 1993. EUROPROBE's Dynamics of the East Carpathian Arc Project (DECAP), Geophysicalisches Institut, Universitat Karlsruhe

2.3 Bolt B.A., 1989. The nature of earthquake ground motion. Ch.l in The Seismic Design Handbook, edited by Farzad Naeim. Van Nostrand Reinhold, New York

2.4 Bonjer K.-P., Apopei I., 1991. Ermittlung und Vergleich von Skalierungsmodellen fur seismologische und ingenieurseismiche Kenndaten im Nahbereich von Erdbeben aus der Vrancea-Region und dem Oberrhengraben. Bundesministerium fur Forschung und Technologie, Geophysikalisches Instirut, Universitat Karlsruhe

2.5 Deschamps A., Patau G. Lyon-Caen H., 1990. Study of an intermediate depth earthquake in Vrancea (Romania), May 30, 1990. Preliminary report, Institut de Physique du Globe de Paris, Universite de Paris 7

2.6 Deschamps A., Monfret T., Romanowicz B., 1986. Preliminary source parameters of the Romanian earthquake of Aug 30, 1986 from Geoscope Network Data VLP and BRB channels,_EOS Trans., AGU.67, 44

2.7 Constantinescu L., Enescu D., 1985. The Vrancea earthquakes. Editura Academiei, Bucuresti (in Romanian)

2.8 Fuchs K., Bonjer K.-P., Bock G., Cornea I., Radu C, Enescu D., Jianu D., Nourescu A., Merkler G., Moldoveanu T., Tudorache G., 1979. The Romanian earthquake of March 4, 1977. II Aftershocks and migration of seismic activity. Tectonophysics, 53, p.225-247

2.9 Kanamori H., 1977. The energy release in great earthquakes. J. Geol. Res., 82, 20

2.10 Katayama T., Seismic Risk as expressed by acceleration response of single degree of freedom system. Bulletin of Earthquake Resistant Structure Research Center. No 12, March 1979, University of Tokyo, p. 15-20

2.11 Miiller G., Bonjer K.-P., Stokl H., Enescu D., 1978. The Romanian earthquake of March 4, 1977.1. Rupture process inferred from fault-plane solution and multiple-event analysis. J. Geophys, 44, p.203-218

2.12 Oncescu M.C., 1987. On recurrence and magnitude of Vrancea earthquakes (in Romanian). Report CFPS-34-1987

2.13 Radu C, 1974. Contribution a l'etude de la seismicite de la Roumanie et comparaison avec la seismicite du bassin Mediterraneen et en particulier avec la seismicite du Sud-est de la France. These de Dr. Sci. Universite de Strasbourg 19

2.14 Radu C, Oncescu M. C, 1980. Focal mechanism of Romanian earthquakes and their correlation with tectonics. I Catalogue of fault plane solution (in Romanian). Report CFPS/CSEN/30.78.1 2.15 R&kers E., Muller G., 1982. The Romanian earthquake of March 4, 1977. Ill Improved focal model and moment determination. J. Geophys., 50, p. 143-150.

2.16 Tavera J., 1991. Etude des mecanismes focaux de gros seismes et sismicite dans la region de Vrancea-Roumanie. Institut de Physique de Globe de Paris, Universite Paris 7

2.17 The March 4, 1977 Romanian earthquake, Editura Academiei, Bucuresti 1982, (in Romanian). Ch.3 The source of the March 4, 1977 earthquake and its associated directivity effects, by Enescu, D. Ch.4 Seismicity of the territory of Romania with special emphasis on Vrancea region, by Radu, C. This page is intentionally left blank. 21

3. SEISMIC HAZARD EVALUATION

3.1 MAGNITUDE RECURRENCE RELATIONSHIP

The Gutenberg-Richter law for the recurrence intervals of earthquakes with magnitude greater than or equal to M was determined from the Catalogue of the Vrancea intermediate depth magnitudes during this century (1901-1994), Table 2.1.

The relation strongly depends on the magnitude intervals. For magnitude interval of interest for the civil engineer (M > 6), the logarithm of the cumulative number of earthquakes with magnitude > M during the period 1901-1994 was established as, Fig. 3.1:

log N (>M) = 5.462 - 0.720 M (3.1) or In N(>M) = 12.577-1.658 M. (3.1')

14 Inl jrmediate depth Vr mcea ean hquakes 12 \ 1901-1 )94 10 X I lo > N = 5.4<2-0.720 VI I 6 .2 / a 1 4 —. i *•• —— mi..

6.2 6.4 6.6 6.8 7 7.2 7.4 7.6 7.8 Magnitude M

Fig. 3.1 Cumulative number of events with magnitude M > 6.0 from 1901 to 1994

The average number of Vrancea earthquakes per year with magnitude greater than or equal to M results in (n = N/94), Fig. 3.2:

log n (>M) = 3.489 - 0.720 M (3.2) or In n (>M) = 8.034 - 1.658 M. (3.2')

The standard deviation of the In N approximately indicates the coefficient of variation of the N in Equation (3.1):

= 0.174 such that: Vn = 0.174. 22

Ln N and M are negatively correlated and the correlation coefficient is very high: p = -0.98.

nler medial 0) e depth Vr incea eartt quakes a. 1901-1' 194 0.1 b^^^L_ A u y 1 ~J s )gn = 3.489- 0.720 * ~----— 0.01 ;—-^ J3 3 0.001 6 6.2 6.4 6.6 6.8 7 7.2 7.4 7.6 7.8

Magnitude M

Fig. 3.2 Gutenberg-Richter magnitude recurrence relation for the Vrancea source (M > 6.0)

The mean return period (in years) of an earthquake of magnitude qreater than or equal to M is the reverse of the number n (>M):

1 T(> M) = (3.3) n(> M)

Substituting the magnitude of the most important Vrancea earthquakes in the last 60 years into Equation (3.1) one obtains the corresponding return periods from Equation (3.3):

Nov 10, 1940 M = 7.4 T = 70 yr Mar 4, 1977 7.2 50 Aug30, 1986 7.0 36 May 30, 1990 6.7 22 May 31, 1990 6.1 8

The magnitude fractiles corresponding to building code return periods are estimated in Table 3.1.

Table 3.1 Magnitude of Vrancea earthquakes having specified return period

Return period, yr 10 25 50 100 >200 Magnitude M 6.23 6.79 7.20 7.62 8.00

It is emphasised that an extrapolation of the fitted model(Equation 3.2) outside the region of data (100 yr) is uncertain while the interpolation among the data is always safe. 23

From historical data, the magnitude M = 8.00 (corresponding in Table 3.1 to 200 yr return period) is estimated as a maximum Vrancea magnitude by the earth physicians.

The extreme value models for the maximum annual magnitude M > 4 during the period 1934- 1994 lead to the following fractiles corresponding to 50 yr and 100 yr return periods, Fig. 3.3:

T = 50yr T = 100 yr Gumbel distribution, for maxima 7.03 7.40 Weibull distribution, for minima 7.11 7.48

The results are somewhat lower than that obtained from regression analysis for M > 6.0. The coefficient of variation of the magnitude time series is relatively small, 0.125 and the skewness 1.39 is close to that of the Gumbel distribution (1.139).

Magnitude M 5.5 6.5 7.5 -60 Intermediate iepth Vrancea. earthquakes -70 1901-1994 1c or'* ' -80 <| -90 -100

o \ & -120 C 1 -130 1 8 (V fi -140 e S /•\ -150 / x / -160 o -170 1nh =-0.771 + 2.864 In M -180

Fig. 3.3 Relationship between focal depth and magnitude M > 6.0

Investigating the possible relationship between the magnitude of an destructive earthquake (M > 6.0) and its focal depth, the following dependence was found from Table 2.1, Fig. 3.4 :

In h = - 0.771 +2.864 In M (3.4) or h = - 199.21 +46.18 M. (3-4')

The correlation coefficient p=0.78 implies a moderate joint linear tendency between h and M. The standard deviation of the In h indicates approximately the coefficient of variation of h:

Vh saw, = 0.176.

The standard deviation of h in Equation (3.41) is Ct, = 19.53 m. The earthquakes of magnitude smaller than 6.0 display non-correlation between h and M, Fig. 3.3. 24

3.2 GROUND MOTION ATTENUATION

The strong ground motions produced by the May 30, 1990 and Aug 30, 1986 earthquakes in Vrancea-Romania were recorded at over 60 stations.

The Bucharest accelerogram of the largest recorded seismic event from Vrancea source, on March 4, 1977, was joint to the 1986 and 1990 set.

The data set was recorded at sites with different soil conditions: medium stiff soil condition in Moldova, soft and very soft soil categories in Bucharest, etc.

The INFP (10) and GEOTEC (4) stations are mounted in free-field recording conditions. The INCERC stations are mounted either in free-field or in the underground of the buildings. A clear definition of the recording conditions for all those stations is not available.

The ground motion attenuation relations were studied by applying the regression procedure to the larger of the horizontal PGA components, to the vertical PGA as well as to the maximum horizontal PGV and PGD components.

One to three so-called anomalous observations on each azimuth were not included in the analysis.

Mean and mean plus one standard deviation attenuation relation appropriate for Vrancea intermediate foci were established by non-linear multi-regression of the available set of peak ground accelerations, as function of magnitude, focal depth, hypocentral distance and azimuth. The following Joyner - Boore model was applied :

(3.4)

where : PGA is the maximum peak ground acceleration at the site M - the magnitude R - the hypocentral distance h - the focal depth o" irf>GA - the standard deviation of In PGA variable P is a binary variable (0 for mean attenuation curve and 1 for mean plus one standard deviation attenuation) ci, C2, C3, C4 are the data dependent coefficients.

Taking into account: (a) The deep structure in Vrancea where three tectonic units come in contact; (b) The stability of the angles characterising the fault plane and the motion on this plane; (c) The ellipse-shape of the macroseismic field produced by the Vrancea source; the attenuation analysis was performed on two orthogonal directions, corresponding to an average direction of the strike of the fault plan, §° = 225°, and to the normal to this direction. 25

As a result 3 circular sectors (of 90° each) centred on these directions were established :

a) The first sector contains stations in Bucharest area and in central Walachia, on the « younger, thinner and warmer » (Oncescu, 1993) Moesian Platform; b) The second sector contains stations in Moldova, on « old, thick and cold » (Oncescu, 1993) East European Platform; c) The third sector contains stations in Eastern part of Walachia and in Dobrogea, including Cernavoda Nuclear Power Plant site as well as the contact line between the East European and Moesian platforms.

The distribution of the accelerogram data set on seismic events, sectors or azimuth and hypocentral distance is given in Table 3.2 and Table 3.3.

_ The May 31, 1990 event has a very small magnitude, return period and focal depth (M=6.1, T=8 yr, h=79 km) and was not included in the prediction of the_attenuation phenomenon in the range of large magnitudes, return periods and focal depths (M > 7.2, T > 50, h > 100 km).

Table 3.2 Distribution of data on events and Table 3.3 Distribution of data within azimuth hypocentral distances

Earthquake All Hypocentral Earthquake All Mar Aug May events distances Mar 4, Aug 30, May 30, events 4 30 30 R,km 1977 1986 1990 1977 1986 1990 90-110 4 ]) l Epicentral area :) 6 4 > 10'> 110-130 4 4 Bucharest azimuth 1 19 20 40 130-150 7 8 15 Moldova azimuth 10 9 19 150-170 1 3 2 6 Cernavoda azimuth 7 17 24 170-190 20° 7 27n All data set 1 42 50 93 190-210 2 15!) 17" 210-230 2 2 4 1} Included in the data set analysed for every 230-250 4 3 7 azimuth 250-270 2 2 270-290 3 3 290-310 4 4 > 310 3 3

!) Including City of Bucharest data

Attenuation characteristics of the observed maximum peak ground acceleration from 1990, 1986 and 1977 Vrancea events are given in Fig. 3.4 and in Table 3.4.

The results represent an improved version of the previous investigation (Lungu et al., 1993).

The effect, of the single data obtained in the largest recorded Vrancea event in Romania (March 4, 1977, T = 50yr) was extremely strong in the multi-regression procedure, Fig.3.5. 26

Table 3.4 Parameters of directional attenuation for 3 Vrancea intermediate depth earthquakes, Equation (3.4)

Complete set Bucharest Moldova Cernavoda of azimuth & NPP data Bucharest azimuth Cl 5.432 4.726 3.953 5.560

C2 1.035 0.976 1.020 1.154 C3 -1.358 -1.146 -1.069 -1.561 C4 -0.0072 -0.0066 -0.0060 -0.0070 OlnPGA 0.397 0.353 0.376 0.372

Using the data only from 1990 (T = 22 yr) and 1986 (T = 36yr) Vrancea events and the simplified model:

In PGA = bi+b2M + b3lnR + GWGA P (3-5) the resulting PGA are much lower than that predicted by the Equation (3.4).

For multi-regression procedure on NPP azimuth a fictitious data for the Mar 4, 1977 event, in Cernavoda, was included.

However, the model (3.5) proved to be very useful for the comparison of the azimuthal attenuation phenomena in greater and deeper 1986 event and in smaller and "shallower" 1990 event, Table 3.5.

Table 3.5 Parameters of attenuation relation for the 1986 and 1990 Vrancea events:

In PGA = a! + a2 In R + OHOA P

Complete Bucharest Moldova Bucharest Cernavoda Event set of azimuth azimuth & NPP data Moldova azimuth ai 1986 15.565 14.864 11.978 12.691 18.678 1990 10.562 9.084 6.887 8.499 11.280 a2 1986 -2.092 -1.954 -1.370 -1.526 -2.711 1990 -1.138 -0.844 -0.395 -0.798 -1.298 OfaPGA 1986 0.458 0.328 0.551 0.417 0.368 1990 0.315 0.341 0.215 0.296 0.296

The regression results in Table 3.4 and Table 3.5 reveal the following features of the Vrancea ground motions attenuation:

(i) The azimuthal dependence of the attenuation pattern i.e.: - A slower attenuation on the Bucharest azimuth compared with Cernavoda (NPP) azimuth 27

Complete set of data

400 lnPGA = 5.559+I.154M- 1.561 In R-O.C 07 h I forT=100yT 300 I g M = 7.2 ^_ 50 yr 8 h=109km BUCH. \ 1 ( in 200 Ivl — i .\j 11 o • h=133km • toPGA=15.5( 15-2.092 In R N o o •c 100 / d* • l\ £ M = 6.7 < 9 t h = 91 km is i/fY i5 In PGA 10.562 - 1.138 lnR BUCH. NPP B—0 .—_

50 100 150 200 250 300 350 Hypocentral distance, km

Bucharest azimuth + Moldova azimuth

400 h PGA = 3.953 +1.020 M-l.( 69lnR-0.006 h forT=100)T 1 300 50 \T 1 M = 7.2 ^ u h= 109 km u BUCH. In PGA =12.6 )\- 1.526 lnR 200 M = 7.0 c e QN * w o h=!33km I o \J— I 100 ~"~ o O M = 6.7 ' o h=91 km — ___ In PGA = 8.49:J-0.798 bR BUCH.

50 100 150 200 250 300 350 Hypocentral distance R, km

Fig. 3.4 Multi-regression model prediction of the mean attenuation and observations of maximum PGA 28

Bucharest azimuth

400

o 300 M = 7.2 h=109km BUCH. I

50 100 150 200 250 300 350 Hypocentral distance R, km

a.

Bucharest azimuth

400

_o 2 300 J2

rt lnPGA=14.8 54- 1.954 InR

O 1 OH

50 100 150 200 250 300 350 Hypocentral distance R, km

b.

Fig. 3.5 Comparison of the mean attenuation found from multi-regression and regression procedures for 3 Vrancea events 29

Bucharest azimuth

o 1 *8

50 100 150 200 250 300 350 Hypocentral distance R, km

Complete set of data

400 58 bR-0.007; h +0.397 P

50 100 150 200 250 300 350 Hypocentral distance R, km

Fig. 3.6 The 50 yr and 100 yr Vrancea earthquakes. Predicted mean and mean plus one standard deviation values of the peak horizontal acceleration 30

- A somewhat slower attenuation on the Moldova azimuth compared with Bucharest azimuth (ii) A slower attenuation on the direction of the fault plane (N45E) compared with the normal to this direction (N135E) (iii) A faster attenuation for deeper focus and/or greater magnitudes (iv) A greater standard deviation of the attenuation function for deeper focus and greater magnitudes (v) A vertical acceleration attenuation slower than the horizontal acceleration attenuation (vi) A velocity attenuation faster than the acceleration attenuation and slower than the displacement attenuation.

Predicted values of the peak horizontal acceleration for 50 and 84 percentile, as function of hypocentral distance, return period of magnitude and azimuth are given in Fig.3.6. 31

REFERENCES

3.1 Algermissen S.T., Leyendecker E. V., 1992. A technique for uniform hazard spectra estimation in US. 10th World Conference on Earthquake Engineering, Madrid, 19-24, July, 24. Proceedings. Vol.1, p.391-397. Balkema: Rotterdam

3.2 Cornell C.A., 1968. Engineering seismic risk analysis. Bulletin of the Seismological Society of America. Vol.58, No.5, p. 1583-1606

3.3 Drakopoulos J.C., 1984. Report for the Task Group on Calibration of attenuation laws. UNDP/UNESCO Project on earthquake risk reduction in the Balkan region. RER/79/014, Athens

3.4 Esteva L., Rosenblueth E., 1963. Espectros de temblores a distancias moderadas y grandes. Chilean Conference on Seismology and Earthquake Engineering. Proceedings, Vol.1, University of Chile

3.5 Joyner W.B., Boore D.M., 1981. Peak horizontal acceleration and velocity from strong-motions records including records from 1979 Imperial Valley, California earthquake. Bulletin of the Seismological Society of America, Vol.71, No.6, p.2011-2038

3.6 Kamiyama M., O'Rourke M.J., Flores-Berrones R., 1992. A semi-empirical analysis of strong-motion peaks in terms of seismic source, propagation path and local site conditions. Technical Report NCEER 92-0023,National Center for Earthquake Engineering Research, State University of New York at Buffalo

3.7 Lungu D., Aldea A., Demetriu S., 1995. Seismic zonation of Romanian based on uniform hazard response ordinates. 5th International Conference on Seismic Zonation, Nice, Oct. 17-19 (to be presented)

3.8 Lungu D., Demetriu S., Radu C, Coman O., 1995. Uniform hazard response spectra in soft soil condition and EUROCODE 8. 7* International Conference on Application of Statistics and Probability in Civil Engineering, ICASP-7, Paris, 10-13 July (to be presented)

3.9 Lungu D., Demetriu S., Radu C, Coman O., 1994. Uniform hazard response spectra for Vrancea earthquakes in Romania. 10 * European Conference on Earthquake Engineering. Vienna, Aug.28-Sept.2, Proceedings. Balkema:Rotterdam

3.10 Lungu D., Demetriu S., Coman O., 1994. Prediction of Vrancea strong motions for design. Second International Conference on Computational Stochastic Mechanics, Athens, Greece, June 13-15

3.11 Lungu D., Coman O., Moldoveanu T., 1995. Hazard analysis for Vrancea earthquakes. Application to Cernavoda NPP site in Romania. 13* International Conference on Structural Mechanics in Reactor Technology, Porto Alegre, RS, Brazil, Aug. 13-18, (to be presented) 32

3.12 Niazi M., Mortgat C.P., 1992. Attenuation of peak ground acceleration in Central California from observations of the 17 October, 1989 Loma Prieta earthquake. Earthquake Engineering and Structural Dynamics, Vol.21, p.493-507

3.13 Radu C, Lungu D., Demetriu S., Coman O., 1994. Recurrence, attenuation and dynamic amplification for intermediate depth Vrancea earthquakes. XXIV General Assembly . European Seismological Commission, Athens, 19-24 Sept.

3.14 Radu C, Vlad M.N., 1991. Progress report of Romania for Task Group 3: Correlation of macroseismic intensity with acceleration and other parameters of strong ground motion, Zagreb, May 20-24, p.A2.7-A2.9

3.15 Radu C, Apopei I, 1977. Application of the largest values theory to Vrancea earthquakes. Publ. Int. Geophys. Pol. Acad. Sc, A-5 (116), p.229-243

3.16 Radu C, Apopei I, 1977. Macroseismic field of Romanian earthquakes. Symposium on the Analysis of Seismicity and Seismic Risk,Liblice, Oct. 17-22, Proceedings, p. 193-208

3.17 Sigbjornsson R., Baldvinsson G.I., 1992. Seismic hazard and recordings of strong ground motion in Iceland. 10th World Conference on Earthquake Engineering, Ma June 19-24, Proceedings, Vol.1, p.419-424. Balkema:Rotterdam 33

4. SITE-DEPENDENT RESPONSE SPECTRA FOR DESIGN

4.1 SITE DEPENDENT FREQUENCY CONTENT OF THE ACCELEROGRAMS

The analysis of the frequency content of ground motions combines stochastic and deterministic measures.

The stochastic measures of frequency content are related to the power spectral density (PSD) of stationary segment of the ground motion. They are the e (Cartwright & Longuet - Higgins) dimensionless indicator and the fio, fx and f<» (Kennedy & Shinozuka) fractile frequencies below which 10%, 50% and 90% of the total cumulative power of PSD occurs.

Cumulative power of the PSD is defined by:

Cum G(coi) = J G(co)dco. (4.1) o

G(Q)) is the one-sided spectral density of the stationary process of ground acceleration.

The e bandwidth measure is defined as a function of the spectral moments of G(co):

^W2 (4.2)

{ = J(o'G(O))dco. (4.3) o

Narrow frequency band seismic processes are characterised by e values greater than 0.9.

Wide frequency band processes have e values greater than 2/3 and smaller than 0.85.

The duration of the stationary power of the ground acceleration process was selected as D = T0.9 - To.i , where T0.9 and T0.1 are the times at which 90% and 10% of the total cumulative energy of the accelerogram are reached.

Cumulative energy at the time ti is given by:

E(t,) = j[a(t)]2dt (4.4) 0 where a(t) is the ground acceleration time history.

Alternating duration definitions are: T0.95 - T0.05 (Trifunac and Brady, Jennings), T0.75 - Too? (Kennedy et al.) etc. 34

The deterministic measures of frequency bandwidth are related to structure maximum response to the ground motion. They are the fc and fo control (corner) frequencies as defined by Newmark in the tripartite log-plot of response spectra :

fc = 1/Tc = (l/2K)(max SA / max SV) (4.5)

fD = 1/TD = (l/2rc)(max SV / max SD) (4.6)

SD, SV and SA are respectively the relative displacement and velocity response spectra and the absolute acceleration response spectra of the SDOF structure.

The correlation between the stochastic median frequency fx and the deterministic control frequency fc was found very strong. From regression analysis, the correlation coefficients between fso and fc are very high 0.77 + 0.95, irrespective of the frequency bandwidth, the peak ground acceleration, the type of component (horizontal/vertical), or the earthquake magnitude.

Examples of the frequency content of site-dependent Vrancea accelerograms are given in Table 4.1 + Table 4.3. Normalised PSD (of unit area) for typical recording sites in Romania are presented in Fig.4.1-*-Fig. 4.4.

ACCURATE SEISMIC RESPONSE FROM TIME HISTORY

Response spectra from the time history must be computed at sufficient frequency (period) intervals to have a good resolution of spectral ordinates. The ASCE 4-86 Standard for Seismic Analysis of Safety - Related Nuclear Structures suggests the frequencies in Table 4.4.

Table4.4 Suggested frequencies for calculation of response spectra (ASCE 4-86)

Frequency range, Hz Increment, Hz 22-34 3.0 18-22 2.0 15-18 1.0 8.0-15 0.50 5.0-8.0 0.25 3.6-5.0 0.20 3.0-3.6 0.15 0.5-3.0 0.1

The last line of Table 4.4 can be recommended only for broad frequency band motions. For the narrow frequency band motions of long predominant period (Mexico, STC, 1985; Bucharest, INCERC, 1977 etc.) as well as for motions characterised by control periods Tc > 0.5 s, the following increment is suggested:

Frequency range Increment Period range Increment 1.0-3.0 Hz O.lOHz 1.0-2.5 s 0.05 s 2.5-6.0 s 0.50 s >6.0s 1 s A set of 100 frequencies (periods) is thus selected to produce accurate response spectra. In Fig. 4.6 •*- Fig. 4.13 the structural damping is £ = 0.05. 35

Table 4.1 Frequency content of the Vrancea ground motions recorded in the City of Bucharest

Station Earthquake Comp PGA e PSD frequencies Control frequencies fio fso fc fD cm/s2 Hz Hz Bucharest, Mar 04,1977 NS 194.9 0.97 0.4 0.69 2.0 0.75 0.53 INCERC EW 162.3 0.91 0.4 1.44 4.1 0.84 0.50 0 Vert 105.7 0.82 0.5 2.57 8.3 1.35 0.46

Aug 30,1986 NS 88.7 0.95 0.5 0.74 3.8 0.79 0.63 EW 95.2 0.92 0.6 1.85 4.8 1.09 0.57 Vert 28.0

May 30,1990 NS 76.6 0.78 1.1 2.57 5.2 2.13 0.26 EW 98.7 0.84 0.8 1.94 4.9 1.35 0.57 Vert

Bucharest, Aug 30,1986 NS 135.4 0.94 0.5 1.25 3.7 1.02 0.68 Magurele, EW 114.6 0.88 0.5 1.75 4.6 1.11 0.68 INFP Vert 50.3 0.76 1.2 4.01 9.9 1.85 0.20 D May 30,1990 NS 89.6 0.79 1.2 3.63 8.9 3.45 0.29 EW 87.0 0.89 0.6 1.88 5.0 1.32 0.45 Vert 59.5 0.72 1.5 4.63 11.4 5.00 0.26

Balta Alba May 30,1990 N101W 52.6 0.77 1.1 3.51 5.5 2.70 0.43 0 N169E 65.8 0.85 0.7 2.00 5.3 2.44 0.32 Vert 53.5 0.76 1.5 4.39 9.3 1.65 0.61

Carlton Aug 30,1986 N60E 78.2 0.91 0.6 1.50 4.1 1.11 0.65 0 N30W 68.6 0.90 0.5 1.37 4.9 1.05 0.62 Vert 31.0

May 30,1990 N60E 104.9 0.88 0.7 1.88 5.1 1.32 0.45 N30W 110.5 0.80 I.I 3.32 5.8 2.86 0.55 Vert 106.7 0.76 1.8 4.76 11.7 3.57 0.31

Drumul Aug 30,1986 - - - - Sarii 0 May 30,1990 N84W 117.3 0.80 1.0 3.63 5.7 2.50 0.68 N174W 116.8 0.76 1.7 3.19 5.3 3.03 0.34 Vert 81.6 0.70 2.3 5.13 8.8 4.76 0.22

EREN Aug 30,1986 NI0W 156.0 0.91 0.5 1.71 4.8 1.52 0.61 0 W10S 105.8 0.89 0.5 1.89 5.8 1.45 0.61 Vert 42.0

May 30, 1990 - - - - 36 Station Earthquake Comp PGA E PSD Frequencies Control frequencies

fio fso *90 fD ctn/s2 Hz Hz Bucharest, Aug 30,1986 N15E 86.7 0.92 0.5 1.25 4.0 0.82 0.60 ISPH E15S 76.7 0.84 0.6 2.51 5.1 1.82 0.38 A Vert 40.1 0.80 1.2 3.63 9.0 1.92 0.32

Bucharest, May 30,1990 NS 73.9 0.90 1.0 2.01 6.0 1.33 0.50 ARM EW 55.7 0.84 1.0 3.52 8.0 2.00 0.88 A Vert - -

May 31,1990 NS 22.2 0.83 1.2 2.76 4.8 2.56 0.65 EW 23.4 0.87 1.5 2.76 6.8 1.96 0.51 Vert 19.5 0.83 1.0 3.27 11.1 1.96 0.29

Metalurgiei Aug 30,1986 W32S 69.8 0.94 0.5 0.88 2.7 0.75 0.63 0 N32W 43.7 0.86 0.6 2.00 4.6 1.56 0.27 Vert 21.0 -

May 30,1990 N127W 59.0 0.86 0.8 2.31 4.4 1.85 0.56 N37W 76.3 0.84 0.9 2.69 5.1 1.23 0.37 Vert 43.2 0.72 1.9 5.01 10.9 3.45 0.22

Metrou Aug 30,1986 N120W 72.7 0.92 0.6 1.12 3.8 0.66 0.65 IMGB1 N30W 57.7 0.85 0.6 2.31 4.6 1.64 0.68 0 Vert 27.0 -

May 30,1990 N120W 60.1 0.86 0.9 2.06 4.1 1.49 0.55 N30W 90.8 0.88 1.0 1.99 4.8 1.49 0.60 Vert 50.1 0.77 1.4 3.94 7.7 3.85 0.43

Militaxi Aug 30,1986 NS 92.2 0.91 0.5 2.00 3.7 1.35 0.62 0 EW 79.6 0.88 0.6 2.13 4.1 1.82 0.65 Vert 33.8 0.77 1.6 4.82 12.1 1.62 0.28

May 30,1990 W92N 95.3 0.84 1.1 2.44 5.3 1.72 0.59 N178E 51.1 0.84 1.2 2.94 6.3 2.50 0.29 Vert 43.8 0.77 1.5 4.32 10.3 2.78 0.30

Panduri Aug 30,1986 N131E 90.6 0.85 1.0 2.37 4.8 1.33 0.54 0 N139W 101.2 0.88 0.6 1.97 4.3 1.25 0.69 Vert 68.1 0.75 1.2 4.62 9.6 1.67 0.55

May 30,1990 N131E 127.9 0.77 1.9 3.13 5.0 3.45 0.31 N139W 136.6 0.76 1.3 3.57 5.5 3.23 0.66 Vert 57.9 0.72 1.6 4.70 10.0 3.23 0.36

Titulescu Aug 30,1986 N145W 89.6 0.91 0.5 1.63 4.3 1.18 0.62 0 N55W 79.8 0.86 1.0 2.38 4.7 1.67 0.66 Vert 61.8 0.74 1.3 5.08 11.0 1.59 0.44

May 30,1990 N145W 56.4 0.79 1.2 3.19 5.8 2.38 0.48 N55W 71.5 0.83 1.0 2.63 5.7 1.89 0.38 Vert 37.6 0.74 1.4 5.11 11.0 3.13 0.25

Seismic network: D National Institute for Earth Physics, INFP O Building Research Institute, INCERC A Institute for Geophysical and Geotechnical Studies, GEOTEC 37

Table 4.2 Frequency content of the Vrancea ground motions recorded in Republic of Moldova

Station Earthquake Comp PGA e PSD Frequencies Control frequencies fio fso fso fc fD cm/s2 Hz Hz Chisinau Aug 30, 1986 Y309 191.8 0.65 1.3 6.31 7.9 4.16 1.38 Y310 212.7 0.86 0.7 2.02 7.4 1.49 0.94 Z311 120.4 0.68 2.5 5.35 9.4 5.00 0.41

May 30, 1990 Y659 77.5 0.55 5.1 7.96 12.8 3.12 0.51 Y660 83.8 0.79 1.8 4.65 10.4 3.70 0.47 Y658 63.9 0.56 5.1 7.96 12.8 7.14 0.27

Cahul May 30, 1990 Y671 129.1 0.65 1.3 6.49 10.1 3.57 0.48 Y673 90.5 0.68 2.5 5.35 9.4 3.84 0.39 Y672 136.7 0.69 3.2 5.54 11.6 5.88 0.27

Table 4.3 Frequency content of the Vrancea ground motions recorded in Bulgaria

Station Earthquake Comp PGA e PSD Frequencies fio f» cm/s2 Hz Russe May 30, 1990 N20E 87.3 0.80 2.1 3.00 8.3

May 31, 1990 N20E 11.9 0.70 2.4 5.15 10.1

Shabla May 30, 1990 N29W 32.9 0.78 0.5 3.73 5.9

May 31, 1990 N29W 8.6 0.79 2.0 3.39 5.15

Kavarno May 30, 1990 NS 30.5 0.90 0.5 1.85 3.8

Provadia, May 30, 1990 NS 47.7 0.60 3.0 3.98 5.14 Salt Plant Bozveli May 30, 1990 NS 60.2 0.87 1.0 1.94 3.9 Village EW 54.0 0.87 1.1 2.00 4.1 Vert 20.3 0.88 0.9 2.63 6.1

Varna May 30, 1990 N72E 28.1 0.78 1.0 3.07 5.9 38 0.35

0.30

0.25 1977;NS;M=7.2 7? 1986;NS;M=7 0.20 CO - - - 1990;NS;M=6.7

£ 0.15

15

0.00 - 0 10 20 30 40 50 Frequency (rad/sec)

Fig. 4.1 Modification of the narrow band frequency content in the soft soil condition of Bucharest as function of magnitude

0.40

ation : Muntele Rosu en 1986;NS;M=7 Q - - 1986;EW;M=7 ]990;NS;M=6.7 1990;EW;M=6.7 00 o a,

0.00 -I 0 10 20 30 40 50 Frequency (rad/sec)

Fig. 4.2 Narrow band frequency content in a Southern Sub-Carpathian location 0.10

0.09

1986;NS;M=7

1986 ; EW ; M=7

0.00 4 0 10 20 30 40 50 Frequency (rad/sec) Fig. 4.3 Frequency content of a strong ground motion recorded in epicentral Vrancea area on Aug., 30, 1986

0.12

0.10

s 1986;NS;M=7 S 0.08 2 8/30/1990 ;NS;M=6.7 o V 8/31/1990 ;NS cu 0.06

I 0.04 73

0.02

0.00 J 0 10 20 30 40 50 Frequency (rad/sec)

Fig. 4.4 Broad frequency band content of a ground motion in epicentral area This page is intentionally left blank. 41

4.2 BUCHAREST NARROW FREQUENCY BAND MOTIONS OF LONG PREDOMINANT PERIOD AND DESIGN SPECTRA FOR SOFT SOIL CONDITION

For narrow frequency band ground motion, the predominant frequency fp is the abscissa of the highest peak of the PSD. The reverse of the predominant frequency, i.e. the predominant period Tp = 1/fp, can be easily found in the periodicity of the autocorrelation function of the accelerogram.

The seismic records in Romania for 4 Vrancea earthquakes were analysed to identify narrow frequency band motions of long predominant period and their corresponding locations.

It was established that, in the South, in the East and in the center of the city of Bucharest the principal peak of narrow frequency band spectral density indicates soft soil conditions of 1.5-1.6 s long predominant period, Table 4.5 and Fig.4.5.

Table 4.5 Frequency content of 8 long predominant period components produced by the 1977 and 1986 Vrancea earthquakes in Bucharest

Station Event Comp PGA e PSD frequencies Control periods

fio fso fso Tc TD PGA cm/s2 Hz Hz Hz s s Bucharest, 0 Mar 04, 1977 NS 194.9 0.97 0.4 0.69 2.0 1.34 1.90 3.16 INCERC (East of Buch) EW 162.3 0.93 0.4 1.44 4.1 1.19 2.02 2.56

0 Aug 30, 1986 NS 88.7 0.95 0.5 0.74 3.8 1.26 1.58 2.81

Carlton 0 Aug 30, 1986 N30W 68.6 0.90 0.5 1.37 4.9 0.95 1.61 3.31 (City center) Bucharest, ISPH A Aug 30, 1986 N15E 86.7 0.92 0.5 1.25 4.0 1.22 1.66 2.43 (City center) Metalurgiei 0 Aug 30, 1986 W32S 69.8 0.94 0.5 0.88 2.7 1.33 1.60 2.96 (South of Buch) Metrou IMGB 1 0 Aug 30, 1986 N60E 72.7 0.92 0.6 1.12 3.8 1.49 1.52 2.94 (South of Buch) Bucharest Magurele, INFP Aug 30, 1986 NS 135.4 0.94 0.5 1.25 3.7 0.98 1.46 2.69 (South, outside Buch) D

In the soft soil condition of Bucharest, the long predominant period has the tendency to become larger as the energy released by the earthquake increases and the width of the frequency band has the tendency to become broader as the earthquake magnitude decreases.

The long predominant period of the ground vibration was experienced during the 1977 severe earthquake and 1986 moderate earthquake, but was not observed during the 1990 small earthquake.

This was the consequence of both non-linear behaviour of the soft soil profile at the site and of the source mechanism (magnitude and time of fracture, etc.)

In station Bucharest INCERC the soil profile contains 24 m of wet soft clay in the uppermost 40 m. 42

The median and 0.1 probability of exceedance normalised acceleration response spectra produced by the Aug 30, 1986 and the May 30, 1990 Vrancea earthquakes in the city of Bucharest were represented and compared in Fig. 4.6.a and b.

The dangerous (to the town) spectral peak located in the long period range (T > 1.0 s) is present in the 1986 earthquake (Mw = 7.2) - as well as in the 1977 earthquake (Mw = 7.4) - but is absent in the 1990 small event (Mw = 7.0).

It may be emphasised that the spectra in Fig.4.6 come from different soil categories in Bucharest, including both soft soils and other soils.

For soft soil conditions the maximum response in the long period range occurs when the structure period is close but slightly less than the predominant period of the ground shaking, Fig 4.7.

For the 8 narrow frequency band motions recorded in the city of Bucharest the normalised acceleration (f3) and velocity elastic response spectra are presented in Fig.4.8 (0.05 damping).

The maximum dynamic amplification, {3 having 50 and 10 percent probability to be exceeded was found close to 2.5 and over 3.0 in the period range 1.2 - 1.5 s.

The maximum dynamic amplification, P for the NS component of the Mar 4, 1977 Vrancea earthquake is 3.16 at a structure period of 1.2 s.

The long spectral acceleration branch (0.2 - 1.5 s), the very short constant velocity branch (1.5-2.0 s) and the higher dynamic amplification (fi > 3) are the consequences of the narrow frequency band content with long predominant period of the accelerograms.

The following formulae may be used to represent the normalised design spectra for the soil soil condition of Bucharest, Fig.4.8 :

Median (3 0.1 prob. of exceedance (3

0

The results obtained for Bucharest narrow frequency band motions indicates that normalised mean response spectrum ordinates recommended in EUROCODE 8 for extreme subsoil class C are unconservative at least for the Romanian case of soft soil deposits, Fig.4.9. 43 0.35

0.30

1986;N12()W; Bucharest •-IMGB § 0.25 Q 1986 ;W32S ; Bucharest -1Vietalurgiei

o a. 0.20

s 0.15 "8 13 0.10

0.05 A

0.00 =^ 0 10 20 30 40 50 Frequency (rad/sec) Fig. 4.5 a Narrow band frequency content of horizontal accelerations recorded in the South of Bucharest

0.25

• 1986 ; N15E ; Bucharest - ISPH 0.20 1986 ; N60E ; Bucharest - Carlton Q

0.15

o PL, T3 0.10 N

0.05

0.00 0 10 20 30 40 50 Frequency (rad/sec)

Fig. 4.5b Narrow frequency content of horizontal accelerations recorded in the center of Bucharest 44

0.5 3.5

>—i——i—i—i—i 1—i—i—i 1—i—i—i (—t—i 0 0.5

Fig. 4.6.a Mobility of response spectra in Bucharest as function of source mechanism and magnitude 45

-• 3.5 ;; BUCHA IEST 0, cceedance ;; Ap probof e < 2.5 C/5 4> N - ;; /if 13 2 Aug3 ), 1986: >0 Comp !§ 1.5 \\ /"^

1 ;;/ \ •• May 30 1990 :2 2Corhp^ \ 0.5 ' —-^ =—- -—. 1 —i—i—i—i— —i—i—i—»— —i—i—i—i— —i—i—i—i— —i—i—i—i— —i—i—i—i— —i—i—i—i— V—I 1 1 0 0.5 1 1.5 2 2.5 3 3.5 4 Period, s

0 0.5 3.5

Fig. 4.6.b Comparison of Bucharest response spectra of the 1986 and 1990 Vrancea earthquakes 46 Table 4.6 Response spectra characteristics for Bucharest recorded accelerograms

PGA cv SD^ ^Amax Station Earthquake Comp v Tc TD ^ nro PGA cm/s2 cm/s2 cm/s cm s s Bucharest, Mar 04, 1977 NS 194.93 615.88 130.87 39.49 3.16 1.34 1.90 INCERC EW 162.34 415.28 78.61 25.32 2.56 1.19 2.02 0 Vert 105.76 231.95 27.42 9.52 2.19 0.74 2.18

Aug 30, 1986 NS 88.69 249.06 49.77 12.50 2.81 1.26 1.58 EW 95.26 241.96 35.52 9.94 2.54 0.92 1.76 Vert 28.00

May 30, 1990 NS 76.64 219.74 16.57 10.01 2.87 0.47 3.80 EW 98.74 277.39 32.49 9.02 2.81 0.74 1.74 Vert

Bucharest, Aug 30, 1986 NS 135.40 364.67 56.78 13.17 2.69 0.98 1.46 Magurele, EW 114.65 321.82 46.03 10.86 2.81 0.90 1.48 INFP Vert 50.27 168.32 14.39 11.66 3.35 0.54 5.09 D May 30,1990 NS 89.59 314.69 14.53 8.05 3.51 0.29 3.48 EW 87.11 210.48 25.56 9.06 2.42 0.76 2.23 Vert 59.46 237.04 7.55 4.56 3.99 0.20 3.80

Balta Alba May 30, 1990 N101W 52.56 236.53 13.80 5.07 4.50 0.37 2.31 0 N169E 65.86 152.45 10.03 5.04 2.32 0.41 0.41 Vert 53.52 289.43 28.77 7.50 5.41 0.62 0.62

Carlton Aug 30, 1986 N60E 78.18 240.90 34.39 8.35 3.08 0.90 1.53 0 N30W 68.56 211.00 32.05 8.22 3.08 0.95 1.61 Vert 31.00

May 30, 1990 N60E 104.90 302.05 36.60 12.95 2.88 0.76 2.22 N30W 110.50 439.86 24.86 7.19 3.98 0.35 1.82 Vert 106.70 305.02 13.79 7.13 2.86 0.28 3.25

Drumul Sarii Aug 30, 1986 ------0 May 30, 1990 N84W 117.30 375.01 23.71 5.53 3.20 0.40 1.47 N174W 116.80 438.18 23.31 10.83 3.75 0.33 2.92 Vert 81.62 288.10 9.43 6.88 3.53 0.21 4.58

May 31, 1990 N84W 37.15 118.73 6.53 3.72 3.20 0.35 3.58 N174W 20.40 91.39 8.33 5.42 4.48 0.57 4.08 Vert 17.56 73.83 6.77 5.06 4.20 0.58 4.69

EREN Aug 30, 1986 N10W 156.00 408.22 43.17 11.28 2.62 0.66 1.64 0 W10S 105.80 322.29 35.58 9.31 3.05 0.69 1.64 Vert 42.00

May 30, 1990 - - - - Bucharest, Aug 30, 1986 N15E 86.75 210.60 40.91 10.83 2.43 1.22 1.66 ISPH E15S 76.75 269.65 23.46 9.83 3.51 0.55 2.63 A Vert 40.06 139.49 11.46 5.67 3.48 0.52 3.11

Bucharest, May 30, 1990 NS 73.88 202.08 24.07 7.76 2.74 0.75 2.02 ARM EW 55.71 189.53 15.21 2.73 3.40 0.50 1.13 A Vert

May 31. 1990 NS 22.17 95.60 5.99 1.48 4.31 0.39 1.55 EW 23.41 78.73 6.33 1.99 3.36 0.51 1.98 Vert 19.47 51.14 4.18 2.28 2.63 0.51 3.42 Station Earthquake Comp PGA "Afl^t sv,^ SArretn Tc TD PGA cm/s2 cm/s2 cm/s cm s s Metalurgiei Aug 30, 1986 W32S 69.78 206.34 43.69 11.12 2.96 1.33 1.60 0 N32W 43.68 190.54 19.43 11.33 4.36 0.64 3.66 Vert 21.00

May 30, 1990 N127W 59.02 216.74 18.77 5.34 3.67 0.54 1.79 N37W 76.32 179.10 23.21 10.08 2.35 0.81 2.73 Vert 43.25 171.22 7.81 5.65 3.96 0.29 4.55

Metrou Aug 30, 1986 N60E 72.71 213.44 50.80 12.29 2.94 1.50 1.52 EMGB1 N30W 57.75 222.35 21.43 4.98 3.85 0.61 1.47 0 Vert 27.00

May 30, 1990 N30W 90.80 276.28 29.65 7.87 3.04 0.67 1.67 N120W 60.15 214.31 22.82 6.63 3.56 0.67 1.82 Vert 50.09 220.63 9.11 3.40 4.41 0.26 2.35

Militari Aug 30, 1986 NS 92.19 312.91 36.66 9.45 3.39 0.74 1.62 0 EW 79.57 348.% 30.52 7.45 4.39 0.55 1.53 Vert 33.80

May 30, 1990 N92W 95.34 290.80 26.99 7.28 3.05 0.58 1.69 N178E 51.13 183.39 11.76 6.38 3.59 0.40 3.40 Vert 43.79 157.02 8.99 4.76 3.59 0.36 3.33

Panduri Aug 30,1986 N131E 90.61 296.53 35.22 10.41 3.27 0.75 1.86 0 N139W 101.20 342.60 43.66 10.00 3.39 0.80 1.44 Vert 68.11 165.05 15.86 4.61 2.42 0.60 1.83

May 30, 1990 N131E 127.90 540.87 24.78 12.72 4.23 0.29 3.23 N139W 136.60 565.38 27.87 6.69 4.14 0.31 1.51 Vert 57.95 201.91 10.11 4.41 3.48 0.31 2.74

Titulescu Aug 30, 1986 N145W 89.57 323.39 43.66 11.21 3.61 0.85 1.61 0 N55W 79.84 247.95 23.84 5.71 3.11 0.60 1.51 Vert 61.86 150.60 15.21 5.53 2.44 0.63 2.29

May 30, 1990 N145W 56.40 219.04 14.49 4.85 3.88 0.42 2.10 N55W 71.50 230.41 19.51 8.11 3.22 0.53 2.61 Vert 37.62 121.00 6.18 3.94 3.22 0.32 4.01

Seismic network: D National Institute for Earth Physics, INFP O Building Research Institute, INCERC A Institute for Geophysical and Geotechnical Studies, GEOTEC 48

3.5 BUCHAREST vletrouIMGBl Aug 3 3, 1986, N OE Comp

2.5 \ INCERC, ar4, 1977 NS Comp

15 1.5 O omp

0.5

0.5 1.5 2 2.5 3.5 Period, s

4.5 Vletrou IN GB1 4 :: / 0, 1986, N 60E Comp BUCF AREST 3.5 Metalurgi \ 3 Aug 30 , 1986, W32S Comp :: / "8 2.5 : w - i 2 o -• ^-\ Z 1.5 =^ INCERC 1 7 Mar 4 3977, NS Comp 0.5 ;: d

i i i i —i—i—i—i— —i—i—»—i— i i i i 1 1 H—1 \ 1 1 0.5 1.5 2 2.5 3.5 Period, s

Fig. 4.7 Normalized response spectra for the narrowest frequency band Bucharest records 49

< 8

4 / \ 0.1 pnbofexce :dance 3.5

0.5 > 2.5 00 •uo 1 2 Mar 4,1 go z 1.5 BUCH \REST 1 Sofi soil c indiiion in !entra], So th and Ea 0.5 ze les

0 ITTI I I I I I I i i i i i i i i i i i i i i i i •\- i i i H—I—I—t- 0 0.5 1 1.5 2 2.5 3 3.5 4 Period, s

Fig. 4.8 Median and 0.1 probability of exceedance design spectra for Bucharest soft soil 50

< CO

3.5

Fig. 4.9 Site-dependent design response spectra for the soft soil condition in Bucharest and EUROCODE 8 51

4.3 MOLDOVA AND REPUBLIC OF MOLDOVA RESPONSE SPECTRA

The characteristics of the accelerograms recorded in the last three Vrancea earthquakes on the territory of Moldova are described in Appendix 1, Table A1 •*- Table A. 6 (for INFP and GEOTEC records) and in Table 4.2, Table 4.3, Table 4.7 and Table 4.8 (for INCERC records and records from Republic of Moldova).

They are:

(i) Peak values of ground motion parameters: PGA, PGV and PGD

(ii) Maximum values of response spectra: SA, SV and SD

(iii) Maximum values of normalised response spectra: SAm* / PGA, SVmax / PGV and x / PGD i.e. the dynamic amplification factors for response

(iv) Cartwright & Longuet-Higgins frequency bandwidth measure of power spectral density : e

(v) Kennedy & Shinozuka fractile frequencies of power spectral density : fio, fso, fgo

(vi) Central or corner periods of deterministic response spectra : Tc and TD.

Opposite to the Bucharest narrow frequency band records, the Moldavian records have broad and / or intermediate band frequency content.

Such records were obtained in the seismic stations from Dochia, Bacau, Onesti, Vaslui, Barlad, Cahul, Iasi etc.

However, narrow frequency band horizontal and even vertical ground motions were recorded in two important stations in Sub-Carpathians: Muntele Rosu and Istrita. The maximum corner period for these stations was : 1.5 s - Muntele Rosu and 1.4 s - Istrita.

From Fig. 4.10, a negligible mobility of the response spectra to different earthquake magnitudes can be observed. This indicates soil categories which are completely different in Moldova than in Bucharest, on Romanian Plain.

It is also important to give emphasis to the local site effect in Chisinau, Y310 comp, Aug 30, 1986 event, Fig.4.11. MOLE OVA .Au 30, 198.3: 17 Cofrp

0.1 prob of exc« edance

Mw=7.2

0 0.5 1.5 2 2.5 3 3.5 4 Period, s

0.5

0 0.5 1 1.5 2 2.5 3 3.5 4 Period, s

Fig. 4.10.a. Influence of source mechanism and magnitude on spectral shapes in Moldova 53

4.5 --

4 MOLL OVA 0. 5 probofisxceedanc 3.5 1 Vlay 30,1990: )omp "§2.5 "3 -- //\A_ | 2 Av>g30, 1986: 17 CO!np 1.5 Mi l V

1 11/ ;; 0.5 s ^^ ; ^======" .- - 1 1 1 1 i i H—h- —n—i iii i i i i -H—1—I—I— —1—1—1—h- —f— i i i—i— 0 0.5 1 1.5 2 2.5 3 3.5 4 Period, s

Fig. 4.10.b. Comparison of response spectra in Moldova for the 1986 and 1990 Vrancea earthquakes 54

Table 4.7 Response spectra characteristics for accelerograms recorded in Moldova by the Building Research Institute seismic network

Station Earthquake Comp PGA sv^ SD™ jAmax Tc TD PGA cm/s2 cm/s2 cm/s cm s s Adjud May 30, 1990 N50E 75.63 287.27 27.05 8.67 3.80 0.59 2.01 0 N40W 86.60 448.84 27.59 14.67 5.18 0.39 3.34

Bacau Aug 30, 1986 NS 105.00 330.90 24.53 4.74 3.15 0.47 1.21 0 EW 68.48 300.67 13.72 4.43 4.39 0.29 2.03

Birlad May 30, 1990 NS 142.70 408.07 41.26 8.89 2.86 0.64 1.35 0 EW 132.90 468.97 40.11 15.17 3.53 0.54 2.38

Focsani Aug 30, 1986 W07S 224.20 664.84 78.39 23.00 2.97 0.74 1.84 UCA N07W 269.41 703.29 53.84 9.33 2.61 0.48 1.09 0 Vert 109.64 463.06 14.20 7.07 4.22 0.19 3.13

May 30, 1990 N97W 92.16 268.06 37.93 15.20 2.91 0.89 2.52 N07W 108.60 418.33 60.67 24.88 3.85 0.91 2.58

Iasi Aug 30, 1986 NS 57.53 187.77 25.36 12.80 3.26 0.85 3.17 0 EW 136.30 461.53 64.90 10.34 3.39 0.88 1.00

Onesti Aug 30, 1986 N200E 156.1 586.23 40.66 8.15 3.76 0.44 1.26 0 May 30, 1990 N200E 232.1 918.26 43.79 12.37 3.96 0.30 1.77 N290E 111.8 373.69 29.19 8.47 3.34 0.49 1.82

Vaslui Aug 30, 1986 NS 152.9 532.76 27.13 8.44 3.48 0.32 1.96 0 EW 179.5 574.31 46.64 7.64 3.20 0.51 1.03

Table 4.8 Response spectra characteristics of the Vrancea ground motions recorded in Republic of Moldova

Station Earthquake Comp PGA ^Ana; sv™ SDn^ Tc TD PGA cm/s2 cm/s2 cm/s cm s s Chisinau Aug 30, 1986 Y309 191.79 952.21 36.00 4.14 4.97 0.24 0.72 Y310 212.75 616.08 65.76 11.08 2.90 0.67 1.06 Z311 120.38 599.80 19.58 7.54 4.98 0.20 2.42

May 30, 1990 Y659 77.50 236.94 12.21 3.82 3.06 0.32 1.97 Y660 83.31 359.99 15.30 5.17 4.30 0.27 2.12 Z658 63.89 221.45 5.03 3.01 3.47 0.14 3.77

Cahul May 30, 1990 Y671 129.05 497.38 22.06 7.22 3.85 0.28 2.06 Y673 136.65 529.84 21.51 8.80 3.88 0.26 2.57 Z672 90.54 393.76 10.84 6.18 4.35 0.17 3.58 55

KISHINEV) 30, 1986

0.

0 0.5 2.5

4.5 CHISINAU KISHINEV) 4 viay 3U, iyyu 3.5 i : .} 3 v'U Y660 "8 : :t | 8 • JE * 1 I / I 2-5 Mw = 7.0 Mfc" 1 I A / 1 59 comp 1.5 Z658v ert f * . 1 / *

0.5 "" * * I * .— '- '

—• —i—i—i—i— 0 —i—i—i—i—1 —1—1—1—1— —i—i—i—i— —i—i—i—i— —i—i—i—t— 0 0.5 1 1.5 2 2.5 Period, s

Fig. 4.11 Mobility of response spectra in Chisinau as function of source mechanism and magnitude 56

--

c.\HUL IL May 30, 1990 1 X comp Y \ A

i Z

"-——. ^ 0 —i— 1111 i i i i —1—1—1—1— 1 1 1 1 —t—i—i—i— —HH—1—1— —1—1—1—1— 0 0.5 1 1.5 2 2.5 3 3.5 4

Period, s

Fig. 4.12. Response spectra for Vrancea motion recorded in Cahul, Republic of Moldova

0 0 12 3 4 Period, s

Fig. 4.13. Response spectra for three Vrancea motions, recorded in Bulgaria 57

4.4 RESPONSE SPECTRA FOR MOTIONS RECORDED IN DOBROGEA

The frequency content of the motions recorded in Dobrogea is quite different than the frequency content of the motions recorded on Romanian Plain.

A typical for Dobrogea broad frequency band content was recorded in station Carcaliu.

For Cernavoda area, all available accelerograms were obtained from the 1986 and 1990 Vrancea events in the soft soil condition of the City Hall. There are no records on the Cernavoda NPP site, on limestone.

The analysis of the City Hall records presented in Appendix 1, Fig.4.14 and Fig.4.15 shows:

(i)The uni-modal PSD has its peak near the predominant frequency of the site: ~2.25Uz

(ii) The width of the frequency band has the tendency to became narrower as the PGA level increases.

The City Hall records were transferred to NPP site using deconvoiution analysis, Fig.4.16 and Fig.4.17. The mean ratio of NPP-PGA to City Hall-PGA was found 0.75.

The acceleration response spectra for the six City Hall records, from three Vrancea events are characterised by a very small coefficient of variation. This indicates a very homogenous frequency content at this site.

NPP CITY HALL 100-16.30 N.M.B.

+9.67 3 r-1.95 him +10.20 3 -033 10 V -200/n/s *-2.3tf/m s 22. 10 m - 12.00 Vs'9I7 m/s

2T .2.1 tf/m3 9.01m 1Q Vs~917m/s -2033 ™ Vs-500m/s -2W0 17fr777777 7777777777" 2.6 km

Fig.4.16 Shear waves velocity of soil profiles in Cernavoda 58

CJiRNAVOI )A

-- City Hall / ug30, 19? 6

CO

4)

tit NSCom J o / EW ^Vert 1 \\ L^x^

; 5b^*5^fc 0 ^—i—•t—1— —1—1—1—1— —1—1—1—1— —1—1—1—1— —1—1—1—t— —\—i—i—i— —i—i—i—i— —i—i—i—i—1 0 0.5 1 1.5 2 2.5 3 3.5 4

Period, s

Fig. 4.14.a. Normalized acceleration response spectra in Cernavoda

-- a ;RNAVOLA City Hall

• IV ay 30, 1990 1

CO

I i 4S Comp If/I/ V EW '$ \vert

-•

__—• 4—1—|— 0 —(— —1—1—1—1— —i—i—i—i— —i—i—i—i— —1—1—h—I— —i—i—i—i— —i—i—i—i— •—i—i—i—i— 0 0.5 1.5 2 2.5 3 3.5 4

Period, s

Fig. 4.14.b. Normalized acceleration response spectra in Cernavoda 59 0.14

0.12 Station : Cernavoda - City Hall § 0.10 Q (I m 1986 ;NS 1990; NS 0.08 1 I ft S.O 0.06 N 'a 0.04 I v/ \ \' 0.02 V 0.00 J 10 20 30 40 50 Frequency (rad/sec)

0.14

0.12 Statior : Cernavoda - :ity Hall in | 0.10 • 1986 ;EW 1990 ;EW t> 0.08

°o 0.06 S f ¥\ 0.04 I v\ i 0.02 J ' \ 0.00 ^ • 0 10 20 30 40 50 Frequency (rad/sec)

Fig. 4.15 Mobility of frequency content of horizontal accelerations as function of PGA level DeconwolutIan (Vialyclc DeconvolutIon Cernavoda Cltyhall and HPP site CernaP site 19B6 Vrancea ei^ent, NS 1986 Vrancea euent, EW Q.9Q Q.HQ Cityhalli City halt

m c o.zo

C D.10 •

d5" Outcrop Outcrop -4 0.00 O.DO D 10. too. 100. o Frequency Hz o

Deconuolut Ian (Vialyctc DaconvolutIan (Vixlyclc o' Cerna<-

L (j ~i A H [Jo. 10 . I TT^" • ct cc Outcrop uutcrop

O.OO o. 00 . 0. 1. 1O. 1OO. 0. 1. 30. 100. Frequency Hz Frequency Hz 61 REFERENCES

4.1 Anderson J.C., 1989. Dynamic response of buildings. Ch.3 in The seismic design handbook, edited by Naeim F., Van Nostrand Reinhold, p. 81-119

4.2 ASCE 4-86. Standard for seismic analysis of safety-related nuclear structures and Commentary. American Society for Civil Engineers, NY, 1986

4.3 ASCE 7-93 and ASCE 7-88. Minimum design loads for buildings and other structures. American Society for Civil Engineers, NY, 1993 and 1988

4.4 CEN/TC 250/SC 8/N 83/ENV 1998-1-1, EUROCODE 8, 1993. Earthquake resistant design of structures. Part 1-1: General rules and rules for buildings. Seismic actions and general requirements for structures

4.5 Clough R.W., Penzien J., Dynamics of structures. Me Graw Hill Book Co., NY

4.6 Ghiocel D., Lungu D., 1975 Wind, Snow and Temperature Effects on Structures Based on Probability. Abacus Press, Kent,

4.7 Kanai K., 1985. Engineering seismology. University of Tokyo Press, p. 105-110

4.8 Kennedy R.P., Shinozuka M., 1989. Recommended minimum power spectral density functions compatible with NRC Regulatory Guide 1.60 Response spectrum. Prepared for Brookhaven National Laboratory

4.9 Kennedy R.P., 1989. Comments on proposed revisions to standard plan seismic provisions. Prepared for Brookhaven National Laboratory

4.10 Lungu D., Scherer R.J., Coman O., Zsohar M., 1994. On the Phenomenon of long predominant periods of ground vibration during 1990, 1986 and 1977 earthquakes from Vrancea source. Proceedings of the Second International Conference on Earthquake Resistant Construction and Design, ERCAD, Berlin, 15-17 June. Proceedings.Vol.1, p.51-59 .Balkema: Rotterdam

4.11 Lungu D., Coman O., Cornea T., Demetriu S., Muscalu L., 1993. Structural response spectra to different frequency bandwidth earthquakes. 6th International Conference on Structural Safety and Reliability ICOSSAR '93, Innsbruck, Aug.9-13. Proceedings, Vol.3, p.2163-2170. Balkema: Rotterdam

4.12 Lungu D., Cornea T., Demetriu S., 1992. Frequency bandwidth of Vrancea Earthquakes and the 1991 edition of Seismic code of Romania. 10th World Conference on Earthquake Engineering, 19-24 July, Madrid, Proceedings, Vol. 10 p.5633-5638. Balkema: Rotterdam

4.13 Lungu D., Popovici A., Cornea T., 1992. Studies concerning the structural behaviour of buildings in Bucharest to Vrancea earthquakes. First International Conference on Disaster Prevention in Urban Areas, ICDPUA-1, Teheran, May 11-13

4.14 Lungu D., Comea T., 1990. Grounding of design forces in Romania based on Vrancea seismic records of 1986 and 1977. 9th European Conference on Earthquake Engineering, , Sept., Proceedings, Additional Vol., p.63-72 62 4.15 Lungu D., Demetriu S., 1990. Duration effect on RMS acceleration. Application for Vrancea and Armenia earthquakes. 9th European Conference on Earthquake engineering, Moscow, Sept., Vol. 10A, p. 164-173

4.16 Lungu D., Cornea T., 1989. The 1986 and 1977 Vrancea earthquakes. Stochastic analysis of their spectral content and structural effects. Constructii Nr.3-4, p. 25-50. (in Romanian)

4.17 Lungu D., Cornea T., 1988. Power spectra in Bucharest for Vrancea earthquakes. Symposium on reliability-based design in civil engineering. Lausanne, July 7-9. Proceedings Vol.1, p. 17-24

4.18 Lungu D., Ghiocel D., 1983. Probabilistic methods in structural design. Editura Tehnica, Bucharest (in Romanian)

4.19 Martin R.G., Dobry R., 1994. Earthquake site response and seismic code provisions. NCEER Bulletin, Vol.8, No.4, National Center for Earthquake Engineering Research, State University of New York at Buffalo, p. 1-6

4.20 Mohraz B., Elghadamsi F.E., 1989. Earthquake ground motion and response spectra. Ch.2 in The seismic design handbook, edited by Naeim F., Van Nostrand Reinhold, p.32-80

4.21 Okamoto S., 1985. Introduction to earthquake engineering. University of Tokyo Press, Second edition, p. 102-105

4.22 Scherer R.J., Riera J.D., Schueller G.I., 1982. Estimation of the time-dependent frequency content of earthquake accelerations. Nuclear Engineering and Design 71, p.301-310. North-Holland Publishing Co.

4.23 Schueller G.I., editor, 1991. Structural dynamics. Recent advances. Springer-Verlag, Berlin Heidelberg

4.24 Schueller G.I., Shinozuka M., editors, 1987. Stochastic methods in structural dynamics. Martinus Nijhoff Publishers, Dordrecht, Boston, Lancaster

4.25 Simos N., Philippacopoulos A.J., 1993. Theoretical bases of DIGES. Brookhaven National Laboratory, Prepared for US Nuclear Regulatory Commission, 111 p

4.26 Takizawa H., Jennings P.C., 1980. Collapse of a model for ductile reinforced concrete frames under extreme earthquake motions. Earthquake Engineering and Structural Dynamics, Vol.8, p. 117-144

4.27 Trifunac M.D., Brady A.G., 1975. A study on the duration of strong earthquake ground motion. Bulletin of the Seismological Society of America, Vol.65, p.581-626

4.28 Vanmarcke E., 1984. Random fields: analysis and synthesis. The MIT Press, Cambridge, Massachusetts

4.29 Withman R.V., editor, 1992. Proceeding from site-effects workshop. Oct.24-25 1991. Technical Report NCEER-92-0006, National Center for Earthquake Engineering Research, State University of New York at Buffalo 63

APPENDIX 1:

CHARACTERISTICS OF THE FREE-FIELD ACCELEROGRAMS RECORDED IN THE LAST THREE VRANCEA EARTHQUAKES BY THE SEISMIC NETWORKS OF NATIONAL INSTITUTE OF EARTH PHYSICS (INFP) AND INSTITUTE FOR GEOPHYSICAL AND GEOTECHNICAL STUDIES (GEOTEC)

Table Al. Peak values of the ground motion parameters

Table A2. Maximum values of response spectra

Table A3. Amplification factors for response spectra

Table A4. e (Cartwright & Longuet-Higgins) frequency bandwidth measure of power spectral density

Table A3. fw, fso and f«) (Kennedy & Shinozuka) fractile frequencies of power spectral density

Table A6. Control (corner) periods of response spectra This page is intentionally left blank. 65

Table Al. Peak values of the ground motion parameters

Station Comp Aue30. 1986 Mav30. 1990 Mav31. 1990 PGA PGV PGD PGA PGV PGD PGA PGV PGD cm/s2 cm/s2 cm cm/s2 cm/s2 cm cm/s2 cm/s2 cm Bacau NS 88.8 9.2 2.2 132.0 8.5 2.8 84.5 6.4 1.4 D Z 24.9 1.8 0.9 31.8 3.4 1.4 18.6 1.6 0.9 EW 72.7 8.2 2.1 122.7 16.6 5.5 63.0 5.5 1.1 Barlad NS 112.1 11.1 2.5 85.8 6.8 1.6 D Z . 108.1 4.1 1.2 27.1 1.3 0.7 EW 148.5 17.1 8.5 80.0 7.0 0.7 Bucharest- NS 135.1 22.2 3.8 89.6 4.6 1.8 Magurele.INFP Z 50.3 4.2 2.1 59.5 2.4 1.3 - D EW 114.9 16.3 3.4 87.0 16.2 4.3 Carcaliu NS 70.0 3.8 1.1 164.0 11.6 4.8 59.0 3.0 0.5 a Z 25.3 1.9 0.3 41.9 3.7 1.6 19.6 2.5 1.1 EW 69.7 4.8 0.7 88.8 4.1 1.0 46.5 1.7 0.6 Cernavoda NS 49.2 7.7 4.6 107.0 9.9 3.3 66.5 5.8 2.3 D Z 63.0 4.7 4.3 5304 7.5 4.3 15.9 3.0 2.3 EW 62.0 6.3 3.9 100.3 9.9 2.8 37.0 3.7 1.9 Focsani NS 273.2 36.6 9.4 D Z 122.7 5.5 3.3 - - EW 297.0 31.9 4.9 Iasi NS 66.9 7.4 1.3 95.8 7.4 1.5 49.1 2.9 0.7 D Z . - - . EW 99.6 7.9 1.3 106.5 6.5 1.5 52.8 4.0 0.8 Istrita NS 109.2 16.6 7.6 92.8 23.4 8.6 D Z 43.2 6.2 1.7 43.1 9.6 3.2 EW 71.6 10.7 4.7 59.0 11.3 8.7 Muntele Rosu NS 79.1 17.0 5.3 65.5 12.9 3.8 (Cheia) Z 39.9 6.2 2.2 30.5 4.5 2.7 . D EW 33.9 5.5 3.8 47.3 12.8 3.6 Surduc N40W 89.0 19.4 9.5 44.4 3.5 2.9 A Z . 40.7 4.9 2.8 17.2 2.7 2.9 W40S 97.2 19.8 9.6 21.0 3.2 2.3 Vrancioaia NS 82.4 15.1 4.0 119.6 13.1 5.2 43.8 3.9 1.2 D Z 39.0 6.6 3.2 63.3 7.4 2.5 26.7 1.6 0.5 EW 140.8 13.2 3.5 157.3 13.6 5.7 102.4 7.7 1.8 Bucharest W3S 73.9 11.4 3.1 22.1 2.1 0.4 ARM Z - . 19.5 1.7 0.9 A S3E 55.7 4.8 1.3 23.74 2.5 0.7 Dochia NS 50.8 3.0 0.8 • Z 20.6 1.4 0.7 EW 37.8 2.6 1.0 66

Table A2. Maximum values of response spectra (damping 0.05)

Station Comp Aue 30. 1986 Mav 30. 1990 Mav 31. 199C) SA™ sv™ jjDnnx SA™ SVn» JSDrnax SAnax 5 SD™ cm/s2 cm/s2 cm cm/s2 cm/s2 cm cm/s2 cm/s2 cm Bacau NS 370.9 22.5 7.8 688.9 25.7 7.4 381.3 18.7 5.0 D Z 94.0 6.3 4.7 133.8 9.7 3.7 73.8 4.7 3.2 EW 313.7 21.3 9.2 527.8 41.4 10.2 371.5 15.7 3.6 Barlad NS 492.4 26.6 5.9 315.1 17.9 4.0 n Z - 413.0 10.6 4.4 111.3 5.0 3.4 EW 542.6 47.1 14.2 226.1 21.4 2.3 Bucharest- NS 364.9 56.8 13.2 314.9 14.5 8.0 Magurele,INFP Z 168.4 14.4 11.7 237.2 7.5 4.6 - D EW 322.0 46.0 10.9 210.6 25.6 9.1 Carcaliu NS 281.8 7.9 2.9 619.3 19.8 9.9 280.9 6.9 1.3 D Z 93.3 5.4 1.3 143.5 8.6 3.7 73.0 4.0 2.3 EW 277.0 14.6 2.0 310.5 13.1 3.7 236.3 4.7 2.5 Cernavoda NS 191.4 23.4 24.7 399.4 31.8 10.6 313.0 23.7 12.6 D Z 218.5 20.5 21.9 158.3 20.2 16.4 51.4 12.2 13.4 EW 284.3 22.0 22.3 481.0 39.7 11.3 190.1 12.9 11.5 Focsani NS 763.2 87.6 25.6 D Z 508.8 19.4 15.4 - - EW 871.4 68.2 22.8 Iasi NS 226.1 17.6 4.7 449.6 23.9 3.4 215.7 10.2 2.0 D Z ------EW 268.1 20.2 4.0 472.3 16.2 3.4 191.6 12.9 2.0 Istrita NS 269.5 48.9 17.9 285.5 59.1 28.4 D Z 140.8 23.0 5.2 150.9 27.5 8.8 EW 232.9 29.8 12.2 220.0 33.8 24.3 Muntele Rosu NS 214.3 51.1 15.5 189.3 33.0 9.6 (Cheia) Z 123.7 14.7 12.9 125.9 12.6 11.0 . D EW 128.3 21.1 16.6 164.8 31.4 12.0 Surduc N40W 331.0 40.9 28.6 229.8 13.6 14.6 A Z - 146.4 20.1 16.2 69.3 14.3 15.5 W40S 287.8 45.1 24.6 73.0 11.6 12.8 Vrancioaia NS 287.3 27.5 11.0 356.2 37.8 11.4 186.9 9.1 4.3 D Z 142.4 16.0 11.6 212.4 16.9 6.4 94.6 6.0 3.1 EW 437.7 31.8 14.8 695.4 35.4 12.4 371.4 16.7 3.2 Bucharest W3S 202.2 24.1 7.8 95.7 6.0 1.5 ARM Z . _ 51.2 4.2 2.3 A S3E 189.6 15.2 2.7 78.8 6.3 2.0 Dochia NS 183.2 8.7 4.1 D Z 83.3 4.3 2.9 - EW 146.6 6.7 3.3 67

Table A3. Amplification factors for response spectra

Station Comp Aup30. 1986 Mav 30. 1990 Mav 31. 1990 SA™» SV™ SDmsR SA^ sv™ SD™ SA^ SVn»< i3D™* PGA PGV PGD PGA PGV PGD PGA PGV PGD Bacau NS 4.17 2.44 3.54 5.21 3.02 2.64 4.51 2.92 3.57 D Z 3.77 3.50 5.22 4.21 2.85 2.64 3.96 2.94 3.55 EW 4.31 2.60 4.38 4.30 2.49 1.85 5.89 2.85 3.27 Barlad NS 4.39 2.39 2.36 3.67 2.63 2.50 D Z . 3.82 2.60 3.67 4.10 3.85 4.85 EW 3.65 2.75 1.67 2.82 3.05 3.28 Bucharest- NS 2.70 2.56 3.47 3.51 3.15 4.44 Magurele,INFP Z 3.35 3.42 5.57 3.98 3.12 3.54 - D EW 2.80 2.82 3.20 2.42 1.58 2.11 Carcaliu NS 4.02 2.08 2.63 3.77 1.72 2.06 4.76 2.30 2.60 D Z 3.69 2.84 4.33 3.42 2.32 2.31 3.72 1.60 2.09 EW 3.97 3.04 2.85 3.49 3.19 3.70 5.08 2.76 4.16 Cernavoda NS 3.89 3.04 5.37 3.73 3.21 3.21 4.70 4.08 5.48 D Z 3.46 4.36 5.09 2.96 2.69 3.81 3.23 4.07 5.82 EW 4.58 3.49 5.69 4.80 4.01 4.03 5.13 3.48 6.05 Focsani NS 2.79 2.39 2.72 D Z 4.15 3.52 4.67 . - EW 2.93 2.14 4.65 Iasi NS 3.38 2.38 3.61 4.69 3.23 2.26 4.39 3.51 2.85 D Z ------EW 2.69 2.56 3.15 4.43 2.49 2.26 3.62 3.22 2.50 Istrita NS 2.46 2.95 2.35 3.07 2.52 3.30 D Z 3.26 3.71 3.06 . 3.50 2.86 2.75 EW 3.25 2.78 2.59 3.73 2.99 2.79 Muntele Rosu NS 2.71 3.00 2.92 2.89 2.62 2.52 (Cheia) Z 3.10 2.37 5.86 4.13 2.80 4.07 D EW 3.78 3.84 4.37 3.48 2.45 3.33 Surduc N40W 3.72 2.11 3.01 5.17 3.88 5.03 A Z - 3.60 4.10 5.78 4.03 5.30 5.34 W40S 2.96 2.28 2.56 3.47 3.62 5.56 Vrancioaia NS 3.48 1.82 2.75 2.98 2.88 2.19 4.26 2.33 3.58 D Z 3.65 2.42 3.62 3.35 2.28 2.56 3.54 3.75 6.20 EW 3.11 2.41 4.22 4.42 2.60 2.17 3.62 2.16 1.77 Bucharest W3S 2.73 2.11 2.52 4.33 2.85 3.75 ARM Z . 2.62 2.47 2.55 A S3E 3.40 3.16 2.07 3.36 2.52 2.85 Dochia NS 3.60 2.90 5.12 D Z 4.04 3.07 4.14 _ EW 3.88 2.57 3.30 68

Table A4. e, frequency bandwidth measure of power spectral density (Cartwright & Longuet-Higgins indicator)

Station Comp Aug 30, 1986 May 30, 1990 May 31, 1990

Bacau NS 0.86 0.70 0.79 • Z 0.81 0.79 0.80 EW 0.83 0.84 0.79 Barlad NS 0.77 0.80 D Z 0.65 0.71 EW 0.81 0.85 Bucharest- NS 0.94 0.79 Magurele,INFP Z 0.76 0.72 - • EW 0.88 0.89 Carcaliu NS 0.61 0.64 0.58 • Z 0.73 0.71 0.72 EW 0.71 0.64 0.55 Cernavoda NS 0.84 0.89 0.89 • Z 0.72 0.78 0.82 EW 0.81 0.87 0.87 Focsani NS 0.88 • Z 0.58 EW 0.85 Iasi NS 0.86 0.72 0.79 D Z - EW 0.86 0.70 0.79 Istrita NS 0.92 0.93 • Z 0.93 - 0.94 EW 0.93 0.93 Muntele Rosu NS 0.97 0.95 (Cheia) Z 0.90 0.90 - a EW 0.94 0.95 Surduc N40W 0.80 0.64 A Z - 0.74 0.79 W40S 0.86 0.71 Vrancioaia NS 0.87 0.70 0.70 • Z 0.91 0.82 0.81 EW 0.85 0.70 0.70 Bucharest W3S 0.90 0.83 ARM Z - - 0.83 A S3E 0.84 0.87 Dochia NS 0.73 a z 0.55 EW 0.72 69

Table A5. fio, f» and f^ (Kennedy & Shinozuka) fractile frequencies of power spectral density

Station Comp Aug 30. 1986 Mav 30. 1990 Mav 31. 1990 Ao f*) f*> fio fso f*i fio fe> f* Bacau NS 1.2 2.26 6.4 1.0 4.39 5.9 1.6 2.38 6.4 D Z 1.2 3.76 9.0 0.9 4.51 9.1 1.2 4.01 8.8 EW 1.1 3.13 5.8 0.8 2.13 6.0 1.2 2.38 6.5 Barlad NS 1.2 3.63 6.4 1.4 3.00 4.8 D Z . 3.4 6.64 13.0 1.8 6.54 10.4 EW 0.7 3.26 5.6 1.2 2.48 4.8 Bucharest- NS 0.5 1.25 3.0 1.2 3.63 8.9 Magurele,INFP Z 1.2 4.01 9.9 1.5 4.64 11.4 - D EW 0.5 1.75 4.6 0.6 1.88 5.0 Carcaliu NS 3.0 7.02 11.3 2.9 6.27 11.8 3.4 7.27 11.5 D Z 2.1 4.76 10.7 1.6 5.64 11.9 0.9 5.51 11.6 EW 2.5 4.39 10.0 2.6 6.64 10.8 2.9 7.89 11.1 Cemavoda NS 1.2 2.51 4.5 1.1 2.13 4.5 1.5 2.13 3.0 D Z 2.6 5.01 9.1 1.9 4.51 9.3 1.6 3.01 8.4 EW 1.6 2.76 4.8 1.5 2.26 4.1 1.6 2.26 2.88 Focsani NS 0.6 2.13 4.5 D Z 2.9 7.27 9.9 - - EW 1.1 2.26 4.6 lasi NS 1.0 2.38 6.6 1.1 4.01 9.3 1.4 3.15 7.9 D Z . . . . EW 1.1 2.01 6.1 1.2 5.89 8.8 1.0 2.90 8.3 Istrita NS 0.6 1.63 3.4 0.5 1.25 3.5 D Z 0.7 1.38 3.9 - 0.1 1.00 3.9 EW 0.7 1.63 3.3 0.6 1.38 3.4 Muntele Rosu NS 0.5 0.63 1.6 0.5 1.25 2.1 (Cheia) Z 0.7 1.50 3.8 0.9 1.88 3.0 - D EW 0.6 1.25 3.3 0.5 1.25 2.4 Surduc N40W 0.8 2.61 5.1 2.0 4.01 5.8 A Z - 0.9 3.78 8.6 1.5 5.39 9.7 W40S 0.5 1.69 4.7 1.2 3.88 6.4 Vrancioaia NS 0.8 1.82 3.5 0.6 2.51 4.5 1.5 2.84 4.8 D z 0.6 1.36 3.8 0.6 3.26 9.0 1.3 3.18 8.2 EW 1.2 2.42 4.2 1.5 3.26 4.6 1.7 3.34 5.5 Bucharest W3S 1.0 2.01 6.0 1.2 2.76 4.8 ARM z - . _ . 1.0 3.27 11.1 A S3E 1.0 3.52 8.0 1.5 2.76 6.8 Docfaia NS 2.1 4.14 10.5 D Z 3.0 8.90 12.0 EW 2.0 4.39 9.3 70

Table A6. Control (corner) periods of response spectra

Station Comp Aug 30. 1986 Mav 30. 1990 Mav 31. 1990

Tc TD Tc TD Tc TD s s s s s s Bacau NS 0.38 2.19 0.23 1.80 0.31 1.67 D Z 0.42 4.65 0.46 2.36 0.40 4.25 EW 0.43 2.70 0.49 1.55 0.26 1.43 Barlad NS 0.34 1.39 0.36 1.41 D Z 0.16 2.65 0.28 4.19 EW 0.55 1.89 0.59 0.66 Bucharest- NS 0.98 1.46 0.29 3.48 Magurele.INFP Z 0.54 5.09 0.20 3.80 - • EW 0.90 1.48 0.76 2.23 Carcaliu NS 0.18 2.30 0.20 3.15 0.15 1.19 D Z 0.36 1.50 0.37 2.69 0.35 3.62 EW 0.33 0.85 0.26 1.76 0.13 3.28 Cernavoda NS 0.77 6.61 0.50 2.09 0.48 3.34 D Z 0.59 6.72 0.80 5.10 1.49 6.93 EW 0.49 6.38 0.52 1.78 0.43 5.60 Focsani NS 0.74 1.84 D Z 0.24 4.99 - EW 0.49 2.10 Iasi NS 0.49 1.67 0.33 0.90 0.30 1.26 D Z . . . . EW 0.47 1.24 0.22 1.30 0.42 0.98 Istrita NS 1.14 2.30 1.30 3.03 • Z 1.03 1.42 - 1.14 2.00 EW 0.80 2.57 0.97 4.52 Muntele Rosu NS 1.50 1.90 1.09 1.82 (Cheia) Z 0.75 5.53 0.63 5.48 - • EW 1.03 4.94 1.20 2.40 Surduc N40W 0.78 4.38 0.37 6.75 A Z - 0.86 5.07 1.30 6.80 W40S 0.99 3.42 0.99 6.97 Vrancioaia NS 0.60 2.51 0.67 1.89 0.31 2.99 n Z 0.71 4.54 0.50 2.39 0.40 3.22 EW 0.46 2.93 0.32 2.20 0.28 1.21 Bucharest W3S 0.75 2.02 0.39 1.55 ARM Z - - - 0.51 3.42 A S3E 0.50 1.13 0.50 1.98 Dochia NS 0.32 4.24 D Z EW 0.29 3.04 71

6, ACKNOWLEDGEMENTS

This work was supported by the INTERNATIONAL ATOMIC ENERGY AGENCY, VIENNA, under Contract No.8233/N.

The KINEMETRICS INC., Pasadena, California generously made their Strong motion analysis software available for the investigation of Vrancea accelerograms used in this report. We wish to thank very much to Jean Marie Fort and Dan Radulescu for this.

The report is the result of a co-operative effort made by the members of the group.

The data for the analysis were obtained from: (i) Dr. C. Radu and M. Rizescu, National Institute for Earth Physics, Bucharest-Magurele; (ii) Dr. H. Sandi and S. Borcia, Building Research Institute, Bucharest; (iii) Dr. T. Moldoveanu, Institute for Geophysical and Geotechnical Studies, Bucharest; (iv) Dr. Vasily Alkaz, Institute of Geophysics and Geology, Academy of Sciences of Moldova, Chisinau and (v) Dr. M.C. Oncescu, Geophysicalisches Institut, Universitat Karlsruhe. Title: Experience Database of Romanian Facilities Subjected to the Last Three Vrancea Earthquakes - Final Report

Contributor: Stevenson & Associates

Date: October 1995 Experience Database

EXPERIENCE DATABASE OF ROMANIAN FACILITIES SUBJECTED TO THE LAST THREE VRANCEA EARTHQUAKES

Final Report

Research Report prepared for the International Atomic Energy Agency Vienna, Austria Contract No. 8223/EN

Chief Scientific Investigator: \ Ovidiu Coman

Research team:

Dan Lungu - University of Civil Engineer Bucharest. Traian Moldoveanu - GEOTEC - Bucharest.

Senior Consultant:

J.D. Stevenson - S&A, USA

Stevenson & Associates Bucharest Office Faurei#1, P11,Apt.8O Bucharest -784091 P.O. Box 68-61 ROMANIA

Period Covered

November 1994 - October 1995 Experience Database

Contents:

Part I. Probabilistic hazard analysis for the Vrancea earthquakes in Romania

1. Introduction

2. The Vrancea source

3. Probabilistic seismic hazard evaluation

3.1 Magnitude recurrence relationship

3.2 Ground motion attenuation

4. Site dependent response spectra for design

4.1 Site dependent frequency content of the accelerograms

4.2 Accurate seismic response

4.3 Bucharest narrow frequency band motions of long predominant period and design spectra for soft soii condition

4.4 Moldavia and Republic of Moldavia response spectra

4.5 Response spectra for the ground motions recorded in Dobrogea

5. Characteristics of the free field accelerograms from the last three Vrancea earthquakes recorded by the seismic networks of INFP and GEOTEC. Experience Database

Part II. Experience Database.

6. Philosophy of an experience-based generic approach

6.1 Qualification by earthquake experience

6.2 Qualification by testing

6.3 Qualification by Analysis

6.4 Hybrid qualification by combined analysis and testing

7. Approach and scope

8. Database structure and description

8.1 Data availability

8.2 Data requirements

9. Collection procedure

10. Experience data

11. Conclusion

12. References

13. Acknowledgment

Appendix 1. - equipment test data

Appendix 2. - description of the test facility capability Experience Database Pag. 4

1. Introduction

Earthquake experience data was recognized in US as a potential basis for a simplified procedure for verifying the seismic adequacy of equipment by Seismic Qualification Utility Group SQUG in the early 1980's. During these early years, SQUG collected data from past earthquakes and reviewed it in detail. This review was used to establish inclusion ruies for definition of the generic equipment classes and screening criteria. Collection of earthquake experience data is still an important task because of the use of experience for new and replacement equipment and parts.

The nuclear industry has developed methods and procedures for using experience data to obtain equipment seismic qualification in a cost effective manner. The use of earthquake experience data for evaluation and design of equipment is expanding beyond the nuclear power industry. The lessons learned from this experience could be applied to develop an approach which would include equipment screening, equipment specific attributes to demonstrate seismic adequacy, implementation guidelines and Peer Review.

In US one result of this effort is a Generic Equipment Ruggedness (GERS) for each equipment class. The GERS is defined as the response to input motion at the base or support point for which equipment of a given class has been demonstrated, on the basis of test experience, to have sufficient ruggedness to perform as required.

This study was initiated by the IAEA Benchmark Study for Seismic Analysis and Testing of WWER Type Nuclear Power Plants.

The scope of this research project is to initiate a database setup in order to use the past seismic experience of similar components from power and industrial facilities to establish the generic seismic resistance of nuclear power plant safe shutdown equipment applicable to the Eastern European countries.

The project has the following objectives :

a) first part:

-to collect and process all available seismic information about Vrancea earthquakes; -to perform probabilistic hazard analysis of the Vrancea earthquakes; -to determine attenuation low, correlation between the focal depth, earthquake power, soil condition and frequency characteristics of the seismic ground motion; Experience Database Pag. 5

The first part of the project provide information about Vrancea earthquakes which affect the Romanian territory and aiso the Kosiodui NPP site as a background of the investigation of the seismic performance of mechanical and electrical equipment in the industrial facilities.

b) second part

-to investigate and collect information regarding seismic behavior during the 1977, 1936 and 1990 earthquakes of mechanical and electrical components from industrial and test facilities

The second part describe the experience database structure, collection procedure and aiso presents the seismic/test data collected.

To setup an operational experience database will require an important amount of effort. It must be understood that this goal may be achieved only based on a long term permanent activity and coordinated cooperation. Experience Database Pag. 6

2. The Vrancea Source

The Vrancea region, situated where the Carpathian Arc bends, is the source of an intermediate depth (60-170 km) seismic activity. It affects more than 2/3 of the territory of Romania, important parts of the Republic of Moldova and a small area in Bulgaria. The Vrancea intermediate depth earthquakes produce a high seismic risk in the densely built zones of the South-East of Romania. In Bucharest, on March 4, 1977, during the strongest Vrancea earthquake in the last 50 years, more than 1500 people died and 35 reinforced concrete multistory buildings completely collapsed.

However the Vrancea region is a source of smaller seismic risk when compared with the seismic risk in Turkey (57,757 dead people in destructive earthquakes that occurred from 1925 to 1988) or in Greece. From EUROPROBE's LEVISP and DECAP Reports, the Vrancea region in Romania can be characterized as follows:

The Carpathian Arc is bounded on the North and North-East by the East European Platform and on the East and South by the Moesian Platform; inside the Arc and Westward are the Transylvanian and Pannonian basins, Fig. 2.1.

M 0 t S/A N SUB-PLATE ]

Fig. 2.1 Tectonic units in the Vrancea region - Romania Experience Database Pag. 7

Focus Moment Gutenberg- The three tectonic units in contact along depth magnitude Richter the Eastern Carpathians have different km magnitude crustal and lithospheric thickness, heat Mw M flow and other physical properties as weii o - as different relative motions. The thickness of the lithosphere varies Crustaf seismic between about 150 km in the platform 2 - - 5.5 activity areas and less than 100 km inside the 40 i Carpathians. In the Vrancea zone the No seismic lithosphere descends to more than 200 activity km and is located at about 30-40 km in C D 60- C O 6.5 1945 Sept 07 the platform areas, 40-55 km in the 1990 May 31 80 - 6.1 Carpathians area and 25-30 km in the 7.0 6.7 1990 May 30 basin areas. The intermediate depth foci 10 - are clustered in a narrow volume: about 7.5 7.2 1977 Mar 04 20 km in the SE-NW direction, 60 km in 1940 Oct 22 120- 6.8 6.5 the NE-SW direction and 100 km in 7.2 7.0 1986 Aug30 depth. The mechanism of the Vrancea source was explained by Fuchs et ai. 14 - 7 7 74 1940 Nov11 (1979): 16 - 7.0 6.8 1908 Oct 06 First a subduction zone was recognised 180 - in the Eastern Carpathians in the SE-NW Deepest event direction, later a paleosubduction zone in the NE-SW direction with its Southern 200 4.0 recorded 1982 May 16 end decoupled.

Fig. 2.2 Vrancea intermediate depth events (Mw > 6.8) Adapted from EUROPROBE's DECA Project

Nevertheless, from several tectonic models proposed none of them can explain al! the particularities of the Vrancea observed seismic activity : spatial distribution of seismic activity, the two types of orientation of the fault plane, etc. (EUROPROBE).

The C. Radu Catalogue of the earthquakes (M > 5.0) which occurred in the Vrancea zone from 1901 to 1994 is listed in Table 2.1. The magnitude in Catalogue is the Gutenberg-Richter magnitude (1954). This magnitude could be approximated as equal to the surface magnitude (Bonjer, 1991): M = Ms.

Conversion of the Gutenberg-Richter magnitude M > 5.0 into the moment magnitude Mw can be done using the relation proposed, for the Vrancea source, by Oncescu (1987):

Mw = 0.92 M + 0.81. (2.1) Experience Database Pag. 8

Table 2.1 Catalogue of the Vrancea earthquakes (M > 5.0) occurred on the territory of Romania during the period 19Q1 -1994 (C. Radur 1994}

Nr. Date Time Lat. Long. Focus epth "o Gutenberg- GMT h Epicentre! Richter h:m:s N° E° km intensity magnitude 1 1901 Sep23 18:11 45.7 26.6 V 5.0 2 1902 Mar 11 20:14 45.7 26.6 Vi 5.5 3 1903 JunO8 15:07 45.7 26.6 VI 5.0 4 Sep13 08:02:7 45.7 26.6 VII 6.3 5 1904 FebO6 02:49 45.7 26.6 VI 5.7 6 1908 Oct 06 21:39:8 45.5 26.5 150 VIII 6.8 7 1912 May 25 18:01:7 45.7 27.2 80 VII 6.0 8 May 25 20:15 45.7 27.2 80 VI 5.5 9 May 25 21:15 45.7 27.2 80 V-VI 5.3 10 Jun 07 01:58 45.7 27.2 80 V 5.0 11 1913 Mar 14 03:40 45.7 26.6 i V-VI 5.3 12 Jul 23 22:03 45.7 26.6 i V-VI 5.3 13 1914 Jul 01 01:00 45.7 26.6 i V 5.0 14 Ju!31 18:23:12 45.9 26.3 100 V-VI 5.3 15 Oct 26 02:59 45.7 26.6 V 5.0 16 1917 Mar 15 20:42:46 46.0 26.5 V 5.0 17 May 19 21:00 45.7 26.6 VI 5.5 18 Jui 11 03:23:55 45.7 26.6 VI 5.5 19 1918 Feb25 02:07 45.7 26.6 VI 5.5 20 1919 Apr 18 06:20:05 45.7 26.6 1C)0 VI 5.3 21 AugO9 14:38 45.7 26.6 VI 5.5 22 1925 Dec 25 02:37 45.7 26.6 V 5.0 23 1927 Jul 24 20:17:05 45.7 26.6 VI 5.5 24 1928 Mar 30 09:38:57 45.9 26.5 VI 5.4 25 Nov23 04:23:12 45.7 26.6 150 V-VI 5.3 26 1929 May 20 12:17:56 45.8 26.5 100 VI 5.3 27 Nov01 06:57:25 45.9 26.5 160 VI - VII 5.8 28 1932 Mar 13 02:53 45.7 26.6 i V-VI 5.3 29 May 27 10:42:15 45.7 26.6 i V! 5.5 30 SepO7 18:36 45.7 26.6 i VI 5.4 31 1934 Feb 02 10:59:13 45.2 26.2 150 VI 5.3 32 Mar 29 20:06:51 45.8 26.5 90 VII 6.3 33 1935 Jul 13 00:03:46 45.3 26.6 140 VI 5.3 34 SepO5 06:00 45.8 26.7 150 VI 5.5 35 1936 May 17 17:38:02 45.3 26.3 150 V 5.1 36 1937 Jan 26 14:34 45.7 26.6 i V 5.0 37 1938 Jul 13 20:15:17 45.9 26.7 120 VI 5.3 38 1939 SepO5 06:02:00 45.9 26.7 115 VI 5.3 39 1940 Jun 24 09:57:27 45.9 26.6 115 V-VI 5.5 40 Oct 22 06:37:00 45.8 26.4 122 VII - VII! 6.5 41 Nov08 12:00:44 45.5 26.2 145 V! 5.5 42 Nov10 01:39:07 45.8 26.7 150 IX 7.4 43 Nov11 06:34:16 46.0 26.8 150 VI 5.5 44 Nov14 14:37 45.7 26.6 i V 5.0 45 Nov19 20:27:12 46.0 26.5 150 VI 5.3 46 Nov23 14:49:53 45.8 26.8 150 V-VI 5.3 47 Deed 17:19 45.7 26.6 i V 5.1 48 1941 Jan 29 07:04 45.7 26.6 i V 5.1 49 1942 Apr 13 03:07:22 45.7 26.5 100 V-VI 5.2 50 Ju!29 19:19 45.7 26.5 125 V 5.0 51 1943 Apr 28 19:46:40 45.8 27.1 66 VI 5.0 Experience Database

I Nr. Date Time Lat. Long. Focus depth 'o Gutenberg- GMT h Epicentrai Richter h:m:s N° ! E° km intensity magnitude

52 1944 Feb25 16:59 45.7 26.6 155 V-VI 5.2 53 1945 Mar 12 20:51:46 45.6 26.4 125 V! 5.5 54 Sep07 15:48:26 45.9 26.5 75 VII-VIII 6.5 55 Sep14 17:21 45.7 26.6 i V 5.1 56 Dec 09 06:08:45 45.7 26.8 80 VII 6.0 57 1946 Nov03 18:46:59 45.6 26.3 140 Vi 5.5 58 1947 Mar 13 14:03 45.7 j V c n 59 Oct17 13:25:20 45.7 26.6 i VI 5.4 60 1948 Mar 13 21:05:56 45.9 26.7 150 V 5.3 61 Apr 29 00:33:40 45.9 26.7 150 V 5.0 62 May 29 04:48:58 45.8 26.5 140 Vi - VI i 5.8 53 1949 Dec 26 03:36:10 45.7 26.7 135 V - Vi 64 1950 Jan 16 04:25:01 45.6 26.3 120 V-Vi 5.3 65 Jun 20 01:18:54 45.9 26.5 160 V! 5.5 66 Jul14 06:29:57 45.7 27.1 100 V 5.1 67 1952 Aug 03 16:36:14 45.6 26.5 150 V 5.1 68 1953 May 17 02:33:54 45.4 26.3 150 V 5.0 69 1954 Oct 01 13:31:00 45.5 27.1 50 VI 5.2 ! 70 1955 May 01 21:22:52 45.5 26.3 135 V 5.4 I 71 1959 May 31 12:51:48 45.7 27.2 35 VI 5.2 72 Aug 19 15:32:03 45.9 26.8 150 V 5.1 73 1960 Jan 25 20:27:04 45.8 26.2 140 V - Vi 5 3 74 Oct 13 02:21:25 45.4 26.4 160 Vi 5.5 75 1963 Jan 14 18:33:25 45.7 26.6 133 VI 5.4 76 1965 Jan 10 02:52:24 45.8 26.6 128 VI 5.4 77 1966 Oct 02 11:21:45 45.7 26.5 140 Vi 5.5 78 Oct 15 06:59:19 45 6 26.4 140 V 5 1 79 Dec 14 14:50:00 45.7 26.4 158 V 5.0 80 1973 Aug 20 15:18:28 45.73 26.52 70 VI 5.5 81 Oct 23 10:50:59 45.72 26.48 171 V 5.1 82 1974 Jul 17 05:09:23 45.76 26.61 135 V - Vi 5.4 83 1975 Mar 07 04:13:05 45.86 26.63 21 VI 5 1 84 1976 Oct 01 17:50:43 45.72 26.54 142 V-VI 5.5 85 1977 Mar 04 19:21:56 45.78 26.78 93 VII - IX 5.5 86 Mar 04 19:22:00 45.72 26.94 79 VII - IX 6.5 87 Mar 04 19:22:08 45.48 26.78 93 VII - IX 6.5 88 Mar 04 19:22:15 45.34 25.30 109 VII - iX 7.2 89 1978 Oct 02 20:28:52 45.78 26.48 164 V-VI 5.3 90 1979 May 31 07:20:07 45.57 26.38 120 V-V! 5.3 91 Sep11 15:36:55 45.59 26.31 154 VI 5.4 92 1930 Jan 14 15:07:54 45.78 26.50 141 V-Vi 5.3 j 93 1981 Jun18 00:02:59 45.68 26.38 144 V - V! 5.4 94 1983 Jan 25 07:34:49 45.67 26.75 160 V-V! 5.2 95 1984 Jan 20 07:24:23 45.51 26.34 135 V 5.0 96 1985 Aug 01 14:35:03 45.78 26.52 105 VI 5.5 97 1986 Aug 16 06:41:25 45.58 26.34 154 V 5.0 j 98 Aug 30 21:28:37 45.53 26.47 133 VIII 7.0 99 1988 Jan 08 16:50:39 45.54 26.26 137 V 5.0 100 1990 May 30 10:40:06 45.82 26.90 91 VIII 6.7 101 May 31 00:17:49 45.83 26.89 79 VII 6.1 102 1391 Jan 31 13:29:14.8 45.73 26.52 137 V 5.C 103 1993 Aug 26 21:32:33.5 45.70 26.62 138 V 5.1 ! Experience Database Pag. 10

The moment magnitude is defined as function of the seismic moment Mo which is directly related to the energy released by the earthquake (Kanamori, 1977):

Mw = log Ms -10.7. (2.2) 1.5

The Vrancea events with a magnitude Mw ^ 6.8 in this century are presented in Fig.2.2.

The main parameters of the Vrancea earthquakes recorded in 1990, 1986 and 1977 are given in Table 2.2. The moment magnitude for the 1990, 1986 and 1977 earthquakes was estimated from Equation (2.2).

Table 2.2. Fault plan characteristics of the Vrancea earthquakes

Date Origin Lat. Focus Seismic Mw Fault pian solution Time of Surface time Longit. depth moment Strike Dip Slip Author fracture of km Mo •° o 5i° s fracture km2 1940 Nov 01:39:07 45.8° 150 _ 7.70 224° 62.3° 75.5° Radu - - 10 26.7° Oncescu

1977 Source 1 93 238° 77° 104° Mulier 26 Mar 4 19:21:56 26.78° 9.1X10 220° 76° 116° Tavera 20 87 Source 2 205° 48° -81.2° Rakers 109 19:22:15 26.30° Mulier 7.1x1026 Tavera 10 2400 114 194° 41° 87° 2.0x1027 7.50 Enescu 15 63x37 Sources 1+2 2.5x1027 7.56 Rakers Mulier Bonjer 1986 21:28:37 45.53° 133 242° 70° 93.8° Apopei Aug 30 26.47° Trifu 4-6 725 Oncescu

26 140 8.1x10 7.23 225° 68° 105° Monfret 4-6 Descham ps 26 141 6.0x10 . 7.15 227° 65° 104° Tavera

26 1990 10:40:06 45.82° 90 3.9x10 7.02 235° 66° 98° Descham 4 26 May 26.90° 89 3.2x10 6.97 232° 57° 89° ps 5 30 Tavera

25 1990 00:17:49 87 3.2x10 6.30 309° 69° 106° Harvard 5 25 May 26.89° 94 3.5x10 6.33 308° 71° 97° Tavera 3 31 Experience Database Pag. 11

The data base used for the analysis of the Vrancea earthquakes effects comprises digitized triaxial records frorrrr-

Romania:

(i) 1 station for the Mar 4, 1977 earthquake (this event was recorded in Romania by only one SMAC-B accelerograph located in the soft soil condition of Bucharest) (ii) 42 stations for the Aug 30, 1986 event (iii) 54 stations for the May 30, 1990 event (tv) 40 stations for the May 31, 1990 event

Republic of Moidova:

(v) 1 station for the Aug 30, 1986 event (vi) 2 stations for the May 30, 1990 event

and Bulgaria:

(vii) 6 stations for the May 30, 1990 event (viii) 2 stations for the May 31, 199Q event

The Romanian accelerograms come from three national networks:

• National Institute of Earth Physics, INFP: 10 SMA-1 KtNEMETRICS accelerographs A Institute for Geotechnical and Geophysical Studies, GEOTEC: 4 SMA-1 KINEMETRICS accelerographs and O Building Research Institute, iNCERC: more than 4Q SMA-1 KINEMETRICS accelerographs. in the City of Bucharest (2.35 Mill, inhabitants) there are 12 recording stations: 10 INCERC, 1 INFP and 1 GEOTEC.

The stations that recorded the Aug 30, 1986 and May 30r 1990 Vrancea earthquakes, as well as their maximum peak horizontal acceleration, used for the evaluation of attenuation characteristics are located in the maps appended to this chapter. Experience Database Pag. 12

Ol Experience Database Pag. 13 Experience Database Pag. 14

dliidlililHil!:: .fen* , w BUCHAREST OTOPENI Aug. 30,1986, VRANCEA earthquake Mw»7.2 h«133Um

PEAK GROUND ACCELERATION m/s* 1. 56 , C L. Herastrau

DATA

Kt 101 tt I PANDURI DRUMUL SARII

Bd Ghenceo..—

0.73 METROU IMGB1 1.5 3km METALURGIEI / 1.35 BUC.MAGURELE OTOPENI BUCHAREST May 30,1990,VRANCEA earthquake Mw^6.9 h=91 km

PEAK GROUND ACCELERATION m/s« T3 DATA

METROU , IMGB1 1.5 3 km METALURGIEI

0.90 BUC. MAGURELE Experience Database Pag. 17

3. Seismic Hazard evaluation

3.1 Magnitude recurrence relationship

The Gutenberg-Richter law for the recurrence intervals of earthquakes with magnitude greater than or equal to M was determined from the Catalogue of the Vrancea intermediate depth magnitudes during this century (1901-1994), Table 2.1. The relation strongly depends on the magnitude intervals. For magnitude interval of interest for the civil engineer (M>6), the logarithm of the cumulative number of earthquakes with magnitude > M during the period 1901-1994 was established as, Fig. 3.1

log N (>M) = 5.462 - 0.720 M (3-1) or in N(>M) = 12.577-1.658 M (3.1')

14 j i i | Intermediate depth Vrancea earthquakes 12 •-\• ! i 1901-1 )94 A 10 ! i «J 1 5 8 taiN = 12.5 77 - 1.658 M •| 6 V O / j I 4

i i l

6.2 6.4 6.6 6.8 7 7.2 7.4 7.6 7.8 Magnitude M

Fig.3.1 Cumulative number of events with magnitude M > 6.0 from 1901 to 1994

The average number of Vrancea earthquakes per year with magnitude greater than or equal to M results in (n = N/94), Fig. 3.2:

log n (>M) = 3.489 - 0.720 M (3.2) or In n(>M) = 8.034-1.658 M. (3.21)

The standard deviation of the In N approximately indicates the coefficient of variation of the N in Equation (3.1): VNsainN = 0.174 such that: Vn = 0.174. Experience Database Pag. 18

Ln N and M are negatively correlated and the correlation coefficient is very high: p=-0.98.

; ! i j jntermediate depth Vrancea earthquakes I j 1901-1994 j i | ! i r • ' —

jz

i | log n = 3.4S9- 0.720 M } £ 0.01

1 1 ; 1 1 1 1 .—,

5 I 1 i i 1 1 : i ! i j i 0.001 f : ! . 1 6.2 6.4 6.6 6.8 7 7.2 7.4 7.6 7.8 Magnitude M

Fig. 3.2 Gutenberg-Richter magnitude recurrence relation for the Vrancea source (M > 6.0)

The mean return period (in years) of an earthquake of magnitude greater than or equal to M is the reverse of the number n (>M):

1 T(> M) = (3.3) n(> M)

Substituting the magnitude of the most important Vrancea earthquakes in the last 60 years into Equation (3.1) one obtains the corresponding return periods from Equation (3.3):

Nov 10, 1940 M = 7.4 T = 70 yr Mar 4, 1977 7.2 50 Aug30, 1986 7.0 36 May 30, 1990 6.7 22 May 31, 1990 6.1 8

The magnitude fractiles corresponding to building code return periods are estimated in Table 3.1.

Table 3.1 Magnitude of Vrancea earthquakes having specified return period

Return period, yr 10 25 50 100 >200 Magnitude M 6.23 6.79 7.20 7.62 8.00 Experience Database Pag. 19

It is emphasized that an extrapolation of the fitted model(Equation 3.2) outside the region of data (100 yr) is uncertain while the interpolation among the data is always safe. From historical data, the magnitude M = 8.00 corresponds (in Table 3.1) to 200 yr return period. The maximum magnitude for the Vrancea earthquakes is steel a questionable problem that should be solved by seismologists. The extreme value models for the maximum annual magnitude M > 4 during the period 1934-1994 lead to the following fractiles corresponding to 50 yr and 100 yr return periods, Fig. 3.3:

T = 50 yr T=100yr

Gumbel distribution, for maxim 7.03 7.40 Weibull distribution, for minim 7.11 7.48

The results are somewhat lower than that obtained from regression analysis for M > 6.0. The coefficient of variation of the magnitude time series is relatively small, 0.125 and the skewness 1.39 is close to that of the Gumbel distribution (1.139).

Magnitude M 5.5 6.5 7 7.5 -60 | Intermediate depth Vranceaj earthquakes -70 i 1901-1994 -80 •:- -90 - J -100

$ -120 1 -130 £ -140 -150 •:—> S -160 2— -170 —- lk h= -0.771 +12.864 In M -180 J

Fig. 3.3 Relationship between foca! depth and magnitude M > 6.0

Investigating the possible relationship between the magnitude of an destructive earthquake (M > 6.0) and its focal depth, the following dependence was found from Table 2.1, Fig. 3.4:

in h = - 0.771 + 2.864 In M (3.4) or h = -199.21 + 46.18 M. (3-4') Experience Database Pag. 20

The correlation coefficient p=0.78 implies a moderate joint linear tendency between h and M. The standard deviation of-the In h indicates approximately the coefficient of variation ofh: = 0.176.

The standard deviation of h in Equation (3.41) is Oh = 19.53 m. The earthquakes of magnitude smaller than 6.0 display non-correlation between h and M, Fig. 3.3.

3.2 Ground motion attenuation

The -strong ground motions produced by the May 30, 1990 and Aug 30, 1986 earthquakes in Vrancea-Romania were recorded at over 60 stations. The Bucharest accelerogram of the largest recorded seismic event from Vrancea source, on March 4, 1977, was? joint to the 1986^ and 1990 set The data set was recorded at sites with different soil conditions: medium stiff soil condition in Moldova, soft and very soft soil categories in Bucharest, etc. The INFP (10) and GEOTEC (4) stations are mounted in free-field recording conditions. The INCERC stations are mounted either in free-field or in the underground of the buildings. A clear definition of the recording conditions for all those stations is not available. The ground motion attenuation relations were studied by applying the regression procedure to the larger of the horizontal PGA components, to the vertical PGA as well as to the maximum horizontal PGV and; PGD components. One to three so-called anomalous observations on each azimuth were not included in the analysis. Mean and mean plus one standard deviation attenuation relation appropriate for Vrancea intermediate foci were established by non-linear multi-regression of the available set of peak ground accelerations, as function of magnitude, focal depth, hypocentral distance and azimuth. The following Joyner - Boore model was applied :

InPGA = ci + c2 M + c3 InR + C4- h + a !npGA P (3.5) where:

PGA is the maximum peak ground acceleration at the site M - the magnitude R - the hypocentral distance h - the focal depth

Taking into account: (a) The deep structure in Vrancea where three tectonic units come in contact; (b) The stability of the angles characterizing the fault plane and the motion on this plane; c) The ellipse-shape of the macroseismic field produced by the Vrancea source; the attenuation analysis was performed on two orthogonal directions, corresponding to an Experience Database Pag. 21 average direction of the strike of the fault plan, ° = 225°, and to the normal to this direction. As a result 3 circular sectors (of 90° each) centered on these directions were established :

a) The first sector contains stations in Bucharest area and in central Walachia, on the « younger, thinner and warmer» (Oncescu, 1993) Moesian Platform; b) The second sector contains stations in Moldova, an « old, thick and cold » (Oncescu, 1993) East European Platform; c) The third sector contains stations in Eastern part of Walachia and in Dobragea, including Cernavoda Nuclear Power Plant site as well as the contact line between the East European and Moesian platforms.

The distribution of the accelerogram data set on seismic events, sectors or azimuth and hypocentra! distance is given in Table 3.2 and Table 3^. The May 31, 1990 event has a very small magnitude, return period and focal depth (M=6.1, T=8 yr, h=79 km) and was not included in the prediction of the attenuation phenomenon in the range of large magnitudes, return periods and focal depths (M > 7.2, T> 50, h > 100 km).

Table 3.2 Distribution of data on events and Table 3.3 Distribution of data within azimuth hypocentral distances

Earthquake All Hypocentra I Earthquake All Mar Aug May event I 4 30 30 s distances Mar 4, Aug 30, May 197 1986 1990 R, km 1977 1986 30, event 7 1990 s Epicentral area " 4 1) 10 v 90-110 4 Bucharest 1 19 20 40 110-130 4 4 azimuth 10 9 19 130-150 7 8 15 Moldova azimuth 7 17 24 150-170 1 3 2 6 Cernavoda 170-190 20" 7 27" azimuth 190-210 2 151> 17*> All data set 1 42 50 93 210-230 2 2 4 230-250 4 3 7 1} Included in the data set analyzed for 250-270 2 2 270-290 3 3 every azimuth 290-310 4 4 >310 3 3

1) Including City of Bucharest data

Attenuation characteristics of the observed maximum peak ground acceleration from 1990, 1986 and 1977 Vrancea events are given in Fig. 3.4 and in Table 3.4. The results represent an improved version of the previous investigation (Lungu et a!., 1993).

The effect of the single data obtained in the largest recorded Vrancea event in Romania (March 4, 1977, T = 50yr) was extremely strong in the multi-regression procedure, Fig.3.5. Experience Database Pag. 22

Table 3.4 Parameters of directional attenuation for 3 Vrancea intermediate depth earthquakes, Equation (3.4)

Complete set Bucharest Moldova Cemavoda of azimuth & NPP 1 data Bucharest azimuth Ci 5.432 4.726 3.953 5.560 C2 1.035 0.976 1.020 1.154 c3 -1.358 -1.146 -1.069 -1.561 c4 -0.0072 -0.0066 -0.0060 -0.0070 ClnPGA 0.397 0.353 0.376 0.372

Using the data only from 1990 (T = 22 yr) and 1986 (T = 36yr) Vrancea events and the simplified model:

In PGA = bi + b2 M + b3 In R + cinPGA P (3.6) the resulting PGA are much lower than that predicted by the Equation (3.5).

For multi-regression procedure on NPP azimuth a fictitious data for the Mar 4, 1977 event, in Cernavoda, was included.

However, the mode! (3.6) proved to be very useful for the comparison of the azimuthal attenuation phenomena in greater and deeper 1986 event and in smaller and "shallower" 1990 event, Table 3.5.

Table 3.5 Parameters of attenuation relation for the 1986 and 1990 Vrancea events:

In PGA = ai + a2 In R + cinPGA P

Complete Bucharest Moldova Bucharest Cernavoda Event set of azimuth azimuth & NPP data Moldova azimuth ai 1986 15.565 14.864 11.978 12.691 18.678 1990 10.562 9.084 6.887 8.499 11.280 a2 1986 -2.092 -1.954 -1.370 -1.526 -2.711 1990 -1.138 -0.844 -0.395 -0.798 -1.298 1986 0.458 0.328 0.551 0.417 0.368 1990 0.315 0.341 0.215 0.296 0.296

The regression results in Table 3.4 and Table 3.5 reveal the following features of the Vrancea ground motions attenuation:

(i) The azimuthal dependence of the attenuation pattern i.e.: Experience Database Pag. 23

- A slower attenuation on the Bucharest azimuth compared with Cernavoda (NPP) azimuth

Complete set of data

400 In PGA =5.559- 1.154 M- 1.561 In R - 0.007 h for T = i 00 vr M = 7.2 h= 109 km BUCH.

= 6.7 = 91km •••'••" In PGA 10.562- 1.138 In R BUCH. NPP

50 100 150 201) 250 300 350 H\pocentrai distance, km

Bucharest azimuth - Moldova azimuth

400 In PGA = 3.953 - 1.020 M - 1.069 !n R - 0.006 h fort= 100 yr \ N. M = 7.2 .. h = I09km S i tru

!n PGA = 8.498 - 0.798 !n R BUCH. 50 100 150' 200 250 300 350 Hvpocentral distance R. km

Fig. 3.4 Muiti-regression mode! prediction of the mean attenuation and obsen/ations of maximum PGA Experience Database Pag. 24

Bucharest azimuth

400 ; In PGA = 4.726 +• 0.976 M - 1.146 in R - 0.0066 h NL \ ': for 7= 100 >T / I 30° i M = 7.2 g ! h=109km w <2. ! BUCH. S > 200

100 - : h = 91 km !' In PGA = 9.089 - 0.844 In R :: BUCH. 50 100 150 200 250 300 350 Hypocentral distance PL km

a.

Bucharest azimuth

400 In PGA = 9.547-0.175 M- 1.159 lnR for T = 100 yr 300 50 vr M = 7.2 i ; o h=lO9km: 73 CM In PGA = 14.864- i.954inR « > 200 .2 5 100 h = 91km. •'• ; In PGA = 9.089-0.844 in R ! BUCH. 50 100 150 200 250 300 350 Hypocentral distance R, km

b.

Fig. 3.5 Comparison of the mean attenuation found from multi-regression and regression procedures for 3 Vrancea events Experience Database Pag. 25

Bucharest azimuth

400 In; PGA = 4.726 -H 0.976 M - 1.146 In R - 0.0066 h + 0.353 P o OS 300 T=i00yr ; Mean + 1 St. deviation

Mean : Mean + I St.;deviation

50 100 150 200 250 300 350 Hypocentrai distance R, km

Complete set of data

400 . :ln PGA = 5.423 + 1.035 M - 1.358 In R - 0.0072 h + 0.397 P

50 100 150 200 250 300 350

Hypocentrai distance Rr km

Fig. 3.6 The 50 yr and 100 yr Vrancea earthquakes. Predicted mean and mean plus one standard deviation values of the peak horizontal acceleration Experience Database Pag. 26

- A somewhat slower attenuation on the Moldova azimuth compared with Bucharest azimuth (ii) A slower attenuation on the direction of the fault plane (N45E) compared with the normal to this direction (N135E) (iii) A faster attenuation for deeper focus and/or greater magnitudes (iv) A greater standard deviation of the attenuation function for deeper focus and greater magnitudes (v) A vertical acceleration attenuation slower than the horizontal acceleration attenuation (vi) A velocity attenuation faster than the acceleration attenuation and slower than the displacement attenuation.

Predicted values of the peak horizontal acceleration for 50 and 84 percentiie, as function of hypocentra! distance, return period of magnitude and azimuth are given in Fig.3.6. Experience Database Pag. 27

4. Site dependent response spectra for design

4.1 Site dependent frequency content of the accelerograms

The analysis of the frequency content of ground motions combines stochastic and deterministic measures.

The stochastic measures of frequency content are related to the power spectra! density (PSD) of stationary segment of the ground motion. They are the s (Cartwright & Longuet - Higgins) dimensionless indicator and the fio, fso and f90 (Kennedy & Shinozuka) fractile frequencies below which 10%, 50% and 90% of the total cumulative power of PSD occurs.

Cumulative power of the PSD is defined by:

Cum Gidf) = JG(»d6>. (4.1)

G(o) is the one-sided spectral density of the stationary process of ground acceleration.

The s bandwidth measure is defined as a function of the spectral moments of G(o):

1/2 (4.2) (4.3)

Narrow frequency band seismic processes are characterized by s values greater than 0.9. Wide frequency band processes have s values greater than 2/3 and smaller than 0.85. The duration of the stationary power of the ground acceleration process was selected as D = T0.g - T0.i , where T0.g and T0.i are the times at which 90% and 10% of the total cumulative energy of the accelerogram are reached.

Cumulative energy at the time ti is given by:

E(ti) = Aa(t)]2dt ' (4.4) o where a(t) is the ground acceleration time history.

Alternating duration definitions are: T0.95 - T0.05 (Trifunac and Brady, Jennings), T0.75 - T0.05 (Kennedy et al.) etc. Experience Database Pag. 28

The deterministic measures of frequency bandwidth are related to structure maximum response to the ground motion. They are the fc and fo control (corner) frequencies as defined by Newmark in the tripartite log-plot of response spectra :

fc = i/rc = (i/27c)(max SA / max SV) (4.5)

fD = 1/TD = (1/27i)(max SV / max SD) (4.6)

SD, SV and SA are respectively the relative displacement and velocity response spectra and the absolute acceleration response spectra of the SDOF structure. The correlation between the stochastic median frequency f50 and the deterministic control frequency fc was found very strong. From regression analysis, the correlation coefficients between fso and fc are very high 0.77 * 0.95, irrespective of the frequency bandwidth, the peak ground acceleration, the type of component (horizontal/vertical), or the earthquake magnitude. Examples of the frequency content of site-dependent Vrancea accelerograms are given in Table 4.1 + Table 4.3. Normalized PSD (of unit area) for typical recording sites in Romania are presented in Fig.4.1-^Fig. 4.4.

4.2 Accurate seismic response from time history

Response spectra from the time history must be computed at sufficient frequency (period) intervals to have a good resolution of spectral ordinates. The ASCE 4-86 Standard for Seismic Analysis of Safety - Related Nuclear Structures suggests the frequencies in Table 4.4.

Tabie4.4 Suggested frequencies for calculation of response spectra (ASCE 4-86)

Frequency range, Hz Increment, Hz 22-34 3.0 18-22 2.0 15-18 1.0 8.0-15 0.50 5.0-8.0 0.25 3.6-5.0 0.20 3.0-3.6 0.15 0.5-3.0 0.1

The last line of Table 4.4 can be recommended only for broad frequency band motions. For the narrow frequency band motions of long predominant period (Mexico, STC, 1985; Bucharest, INCERC, 1977 etc.) as well as for motions characterized by control periods Tc > 0.5 s, the following increment is suggested:

Frequency Increment Period range Increment range 1.0-2.5 s 0.05 s 1.0-3.0 Hz 0.10 Hz 2.5-6.0 s 0.50 s >6.0s 1 s Experience Database Pag. 29

A set of 100 frequencies (periods) is thus selected to produce accurate response spectra. In Fig. 4.6 4- Fig. 4.13 the structural damping is q = 0.05.

Table 4.1 Frequency content of the Vrancea ground motions recorded in the City of Bucharest

1 ! Station Earthquake Comp PGA PSD frequencies \ Control

j _1 frequencies cm/s2 fio f50 f90 Hz fb I Hz

Bucharest. Mar 04:1977 NS 194.9 0.97 0.4 0.69 2.0 0.75 0.53 INCERC EW 162.3 0.91 0.4 1.44 4.1 0.84 0.50 O Vert 105.7 0.82 0.5 2.57 8.3 1.35 0.46

i Aug 30,1986 NS 88.7 0.Q5 Q.5 Q 74 3.8 0.79 0.63 1 EW 95.2 0.92 0.6 1.85 4.8 1.09 0.57 Vert 28.0 - -

j May 30,1990 NS 76.6 0.78 1.1 2.57 5.2 • 2. IO 0.26 ! EW 98.7 0.34 0.8 1.94 4.9 1.35 0.57 j Vert -

!I Bucharest. Aug 30.1986 NS 135.4 0.94 0.5 1.25 3.7 1.02 0.68 Magureie, EW 114.6 0.88 0.5 1.75 4.6 1.11 0.68 !NFP Vert 50.3 0.75 1.2 4.01 9.9 1.85 0.20

1 May 30,1990 NS 89.6 0.79 1.2 3.63 8.9 3.45 0.29 EW 87.0 0.89 0.6 1.88 5.0 1.32 0.45 Ii Vert 59.5 0.72 1.5 4.63 11.4 5.00 0.26 A A Baita Alba May 30,1990 N101W 52.6 0.77 > . 1 3.51 5.5 2.70 0.43 0 N169E 65.8 0.85 0.7 2.00 5.3 2.44 0.32 Vert 53.5 0.75 1.5 4.39 9.3 1.65 0.61 I Canton Aug 30,1986 N60E 78.2 0.91 0.6 1.50 4.1 1.11 0.65 O N30W 68.6 0.90 0.5 1.37 4.9 1.05 0.62 Vert 31.0 - -

I May 30,1990 N60E 104.9 0.88 0.7 1.88 5.1 1.32 0.45 N30W 110.5 0.80 1.1 3.32 5.8 2.86 0.55 Vert 106.7 0.76 1.8 4.76 11.7 3.57 0.31

Drum.ui Aug 30,1986 - - • f Sarii I o May 30.. 1990 N84W 117.3 0.80 1.0 3.63 5.7 2.50 0.68 i N174W 116.8 0.76 1.7 3.19 5.3 3.03 0.34 j Vert 81.6 0.70 2.3 5.13 8.8 4.75 0.22

EREN Aug 30,1986 N10W 158.0 0.91 0.5 1.71 4.8 1.52 0.61 o W10S 105.8 0.89 0.5 1.89 5.8 1.45 0.61 Vert 42.0 - -

May 30, 1990 - - - Experience Database Pag. 30

Station Earthquake Comp PGA £ PSD Frequencies Control frecsuencies • fio f50 *90 fc to 2 Hz cm/s Hz Bucharest, Aug 30,1986 N15E 86.7 0.92 0.5 1.25 4.0 0.82 0.60 ISPH E15S 76.7 0.84 0.6 2.51 5.1 1.82 0.38 A Vert 40.1 0.80 1.2 3.63 9.0 1.92 0.32

Bucharest, May 30,1990 "-NS 73.9 0.90 1.0 2.01 6.0 1.33 0.50 ARM -EW 55.7 0.84 1.0 3.52 8.0 2.00 0.88 A Vert

May 31,1990 IMS 22.2 0.83 1.2 2.76 4.8 2.55 0.65 EW 23.4 0.87 1.5 2.76 6.8 1.96 0.51 Vert 19.5 0.83 1.0 3.27 11.1 1.96 0.29

Metalurgiei Aug 30,1986 W32S 69.8 0.94 0.5 0.88 2.7 0.75 0.63 O N32W 43.7 0.86 0.6 2.00 4.6 1.56 0.27 Vert 21.0

May 30,1990 N127W 59.0 0.86 0.8 2.31 4.4 1.85 0.56 N37W 76.3 0.84 0.9 2.69 5.1 1.23 0.37 Vert 43.2 0.72 1.9 5.01 10.9 3.45 0.22

Metrou Aug 3O;1986 N120W 72.7 0.92 0.6 1.12 3.8 0.66 0.65 IMGB1 1M30W 57.7 0.85 0.6 2.31 4.6 1.64 0.68 O Vert 27.0

May 30,1990 N120W 60.1 0.86 0.9 2.06 4.1 1.49 0.55 N30W 90.8 0.88 1.0 1.99 4.8 1.49 0.60 Vert 50.1 0.77 1.4 3.94 7.7 3.85 0.43 I Militari Aug 30,1986 NS 92.2 0.91 0.5 2.00 3.7 1.35 0.62 O EW 79.6 0.88 0.6 2.13 4.1 1.82 0.65 Vert 33.8 0.77 1.6 4.82 12.1 1.62 0.28 .

May 30,1990 W92N 95.3 0.84 1.1 2.44 5.3 1.72 0.59 N178E 51.1 0.84 1.2 2.94 6.3 2.50 0.29 Vert 43.8 0.77 1.5 4.32 10.3 2.78 0.30

Panduri Aug 30,1986 N131E 90.6 0.85 1.0 2.37 4.8 1.33 0.54 O N139W 101.2 0.88 0.6 1.97 4.3 1.25 0.69 Vert 68.1 0.75 1.2 4.62 9.6 1.67 0.55

May 30.1990 N131E 127.9 0.77 1.9 3.13 5.0 3.45 0.31 N139W 136.6 0.76 1.3 3.57 5.5 3.23 0.66 Vert 57.9 0.72 1.6 4.70 10.0 3.23 0.36

Titulescu Aug 30,1986 N145W 89.6 0.91 0.5 1.63 4.3 1.18 0.62 O N55W 79.8 0.86 1.0 2.38 4.7 1.67 0.66 Vert 61.8 0.74 1.3 5.08 11.0 1.59 0.44

May 30,1990 N145W 56.4 0.79 1.2 3.19 5.8 2.38 0.48 N55W 71.5 0.83 1.0 2.63 5.7 1.89 0.38 Vert 37.6 0.74 1.4 5.11 11.0 3.13 0.25

Seismic network: • National Institute for Earth Physics, INFP O Building Research institute, 1NCERC A Institute for Geophysical and Geotechnical Studies, GEOTEC Experience Database Pag. 31

Table 4.2 Frequency content of the Vrancea ground motions recorded in Republic of Moldova

I Station Earthquake Comp PGA PSD Frequencies Contr Oi j frequencies ! ho fso f» fc TD cm/s2 Hz Hz Chisina Aug 30, Y309 191. 0.65 1.3 8.31 7.9 4.16 1.38 u 1986 Y310 8 0.86 0.7 2.02 7.4 1.49 0.94 Z311 212. 0.68 2.5 5.35 9.4 5.00 0.41 -7 S ! 120. 4 May 30, Y659 77.5 0.55 5.1 7.96 12.8 3.12 0.51 1990 Y660 83.8 0.79 1.8 4.65 10.4 3.70 0.47 Y658 63.9 0.56 5.1 7.96 12.8 7.14 0.27 j

Cahui May 30, Y671 129. 0.65 1.3 6.49 10.1 3.57 0.48 1990 Y673 t 0.68 2.5 5.35 9.4 3.84 0.39 Y672 90.5 n GO 3.2 5.54 11.6 5.88 0.27 135. I j 7 I

Table 4.3 Frequency content of the Vrancea ground motions recorded in Bulgaria

I Station Earthquake Cornp PGA 8 PSD Frequencies I fso *90 crn/s Hz

Russe May 30; N20E 87.3 0.80 2.1 3.00 8.3 1990 May 31, N20E 11.9 0.70 2.4 5.15 10.1

1990 i Shabla May 30, N29W 32.9 0.78 0.5 3.73 5.9 1990 i May 31, N29W 8.6 0.79 2.0 3.39 5.15 1990 i Kavarno May 30, NS 30.5 0.90 0.5 1.85 3.8 1990 j Provadia, May 30, NS 47.7 0.60 3.0 3.98 5.14 Sait Plant 1990 Bozveii May 30, NS 80.2 0.87 1.0 1.94 3.S Village 1990 EW 54.0 0.87 1.1 2.00 4.1 Vert 20.3 0.88 0.9 2.63 6.1

Varna May 30, N72E 28.1 0.78 1.0 3.07 5 9 1990 Experience Database Pag. 32

0.35 Statioln : Bucharest - INCERC 1977;NS;M=7.2 0.30 - 1986;NS;M=7.0 1990;NS;M=6.7

c Q

<5 o Cu -a

c

0.00 - 0 10 20 30 40 50 Frequency (rad/sec) Fig. 4.1 Modification of the narrow band frequency content in the soft soil condition of Bucharest as function of magnitude

0 .40 Station : Muntele Rosu i 0 .35 • 1986; NS 1986; EW 1 0.30 i 990- NS 5 I ' _ 990; EW

ctra l 0 .25 c u. O 0,.20 O -a o..15 j c 0.10

0.0:

0.00 '/ fy!%,.._] _ 10 20 30 40 50 Frequency (rad/sec) Fig. 4.2 Narrow band frequency content in a southern Sub-Carpathian location Experience Database Pag. 33

0.10 Station Focsani 0.09 i n 86; NS 1986; EW 0.08 A

0.07 A D

o i

0.01 1 \ /

0.00 1 10 20 30 40 50 Frequency (rad/sec) Fig. 4.3 Frequency content of a strong ground motion riecorded in epicentral Vrancea area on Aug.30,1986

0.12

0.10 8/30/1986; NS 5/30/1990; NS c 5/31/1990; NS Q 0.08

o. CO w o 0.06 o a. TS 0.04

o

0.02

0.00 10 20 30 40 50 Frequency (rad/sec) Fig. 4.4 Broad frequency content of a ground motion in epicentralarea Experience Database Pag. 34

4.3 Bucharest narrow frequency band motions of long predominant period and design spectra for soft soil conditions

For narrow frequency band ground motion, the predominant frequency fP is the abscissa of the highest peak of the PSD. The reverse of the predominant frequency, i.e. the predominant period TP = 1/fP, can be easily found in the periodicity of the autocorrelation function of the accelerogram.

The seismic records in Romania for 4 Vrancea earthquakes were analyzed to identify narrow frequency band motions of long predominant period and their corresponding locations. It was established that, in the South, in the East and in the center of the city of Bucharest the principal peak of narrow frequency band spectral density indicates soft soil conditions of 1.5-1.6 s long predominant period, Table 4.5 and Fig.4.5.

Table 4.5 Frequency content of 8 long predominant period components produced by the 1977 and 1986 Vrancea earthquakes in Bucharest

Station Event Com PGA s PSD Control oAma P frequencies periods X fio f5o f90 Tc TD PGA cm/s2 Hz Hz Hz s s Bucharest, Mar 04, NS 194.9 0.97 0.4 0.69 2.0 1.34 1.90 3.16 0 1977 INCERC (East of Buch) EW 162.3 0.91 0.4 1.44 4.1 1.19 2.02 2.56

Aug 30, NS 88.7 0.95 0.5 0.74 3.8 1.26 1.58 2.81 0 1986

Carlton Aug 30, N30 68.6 0.90 0.5 1.37 4.9 0.95 1.61 3.31 O 1986 W (City center) Bucharest, ISPH Aug 30, N15E 86.7 0.92 0.5 1.25 4.0 1.22 1.66 2.43 A 1986 (City center) Metaiurgiei Aug 30, W32 69.8 0.94 0.5 0.88 2.7 1.33 1.60 2.96 0 1986 S (South of Buch) Metrou IMGB 1 Aug 30, N60E 72.7 0.92 0.6 1.12 3.8 1.49 1.52 2.94 0 1986 (South of Buch) Bucharest Aug 30, NS 135.4 0.94 0.5 1.25 3.7 0.98 1.46 2.69 Magurele, INFP 1986 (South, outside Buch) • Experience Database Pag. 35

in the soft soil condition of Bucharest, the long predominant period has the tendency to become larger as the energy released by the earthquake increases and the width of the frequency band has the tendency to become broader as the earthquake magnitude decreases. The long predominant period of the ground vibration was experienced during the 1977 severe earthquake and 1986 moderate earthquake, but was not observed during the 1990 small earthquake. This was the consequence of both non-linear behavior of the soft soil profile at the site and of the source mechanism (magnitude and time of fracture, etc.)

In station Bucharest INCERC the soil profile contains 24 m of wet soft clay in the uppermost 40 m. The median and 0.1 probability of exceedance normalized acceleration response spectra produced by the Aug 30, 1986 and the May 30, 1990 Vrancea earthquakes in the city of Bucharest were represented and compared in Fig. 4.6.a and b. The dangerous (to the town) spectral peak located in the Song period range (T > 1.0 s) is present in the 1986 earthquake (Mw = 7.2) - as well as in the 1977 earthquake (Mw = 7.4) - but is absent in the 1990 small event (Mw = 7.0). It may be emphasized that the spectra in Fig.4.6 come from different soil categories in Bucharest, including both soft soils and other soils. For soft soil conditions the maximum response in the long period range occurs when the structure period is close but slightly less than the predominant period of the ground shaking, Fig 4.7. For the 8 narrow frequency band motions recorded in the city of Bucharest the normalized acceleration (p) and velocity elastic response spectra are presented in Fig.4.8 (0.05 damping). The maximum dynamic amplification, p having 50 and 10 percent probability to be exceeded was found close to 2.5 and over 3.0 in the period range 1.2 - 1.5 s. The maximum dynamic amplification, p for the NS component of the Mar 4, 1977 Vrancea earthquake is 3.16 at a structure period of 1.2 s. The long spectral acceleration branch (0.2 - 1.5 s), the very short constant velocity branch (1.5-2.0 s) and the higher dynamic amplification (p > 3) are the consequences of the narrow frequency band content with long predominant period of the accelerograms. The following formula may be used to represent the normalized design spectra for the soft soil condition of Bucharest, Fig.4.8 :

Median (3 0.1 prob. of exceedance p

0

The results obtained for Bucharest narrow frequency band motions indicates that normalized mean response spectrum ordinates recommended in EUROCODE 8 for extreme subsoil class C are unconservative at least for the Romanian case of soft soil deposits, Fig.4.9. L Experience Database Pag. 36

0.35 1986; N120W; Bucharest- IMGB 0.30 1986; W 3 2S; Bucharest- Metalurgiei

c 0.25 Q

a. 0.20

•a 0.15 c (a "5 I 0.10

0.05

0.00 - 0 10 20 30 40 50 Frequency (rad/sec) Fig. 4.5a Narrow band frequency content of horizontal accelerations recorded in the South of Bucharest

0.25 1986; N15E Bucharest- ISPH 1986; N60E; Bucharest - Carlton

c Q "2 8 0.15 en 1 0.10 T3 c L Z 0.05

0.00 10 20 30 40 50 Frequency (rad/sec) r Fig. 4.5b Narrow frequency content of horizontal accelerations recorded in L the center of Bucharest Experience Database Pag. 37

BUCHSRES1 Aug 30, 1986 : 20 Comp

' . 0.1 prob of exceedance

3.5 - . : BUCHAREST

1 I May 30, 1990: 22 Comp : I 1 2.5 > CO -a o M I 2 ). 1 prob of exceedance =7.0

0 0.5 1 1.5 2 2.5 3.5 Period s. Fig. 4.6.a Mobility of response spectra in the soft soil condition of Bucharest as a function of source mechanism and magnitude Experience Database Pag. 38

BUCHAREST 0.5jprob ofexceedance

Aug30, 1986 :20 Comp

0.5 1.5 2 2.5 3.5 Period, s

3.5

Aug 30, 1986 :20 Comp "5

1.5

0.5

0.5 1.5 2.5 3.5

Fig. 4.6.b Comparison of Bucharest response spectra of the 1986 and 1990 Vrancea earthquakes Experience Database Pag. 39

Table 4.6 Response spectra characteristics for Bucharest recorded accelerograms

Station Earthquake Comp. PGA £>Amax SVmax SDrax SAma>/ Tc TD cm/s2 cm/s cm/s cm PGA s s

Bucharest, Mar 4, 1977 NS .194.93 615.88 130.87 39.49 3.16 1.34 1.90 iNCERC EW : 162.34 415.28 78.61 25.32 2.56 1.19 2.02 : Vert '• 105.7S 231.95 27.42 9.52 2.19 0.74 2.18

Aug30, 1986 .. NS I 88.69 249.06 49.77 12.50 2.81 1.26 1.58 •" EW : 95.26 241.96 35.52 9.94 2.54 0.92 1.76 Vert 28.00

May 30, 1990 NS 76.64 219.74 16.57 10.01 2.87 0.47 3.80 EW 98.74 277.39 32.49 9.02 2.81 0.74 1.74 Vert

Bucharest, Aug 30, 1986 NS • 135.40 364.67 56.78 13.17 2.69 0.98 1.46 Magureie, '. EW : 114.65 321.82 46.03 10.86 2.81 0.90 1.48 INFP - Vert : 50.27 168.32 14.39 11.66 3.35 0.54 5.09

May 30, 1990 . NS " 89.59 314.69 14.53 8.05 3.51 0.29 3.48 ' EW : 87.11 210.48 25.56 9.06 2.42 0.76 2.23 ' Vert 59.46 237.04 7.55 4.56 3.99 0.20 3.80

Balia Alba May 30,1990 N101W 52.55 236.53 13.80 5.07 4.50 0.37 2.31 N169E 65.86 152.45 10.03 5.04 2.32 0.41 0.41 Vert 53.52 289.43 28.77 7.50 5.41 0.62 0.62

Cariton Aug 30, 1986 N60E 78.18 240.90 34.3S 8.35 3.08 0.90 1.53 N30W 68.55 211.00 32.05 8.22 3.08 0.95 1.61 Vert 31.00

N60E 104.90 302.05 36.60 12.95 2.88 0.76 2.22 N30W 110.50 439.86 24.36 7.19 3.98 0.35 1.82 Vert 106.70 305.02 13.79 7.13 2.86 0.28 3.25

Drumul Sarii Aug 30, 1986 ------

May 30, 1990 N84W 117.30 375.01 23.71 5.53 3.20 0.40 1.47 N174W 116.80 438.18 23.31 10.83 3.75 0.33 2.92 Vert 81.62 288.10 9.43 6.88 3.53 0.21 4.58

May 31, 1990 N84W 37.15 118.73 6.53 3.72 3.20 0.35 3.58 N174W 20.40 91.39 8.33 5.42 4.48 0.57 4.08 Ver 17.56 73.83 6.77 5.06 4.20 0.58 4.69

EREN Aug 30,1986 N10W 156.00 408.22 43.17 11.28 2.62 0.66 1.64 W10S 105.80 322.29 35.58 9.31 3.05 0.69 1.64 Vert 42.00 •

May 30, 1990 ------

Bucharest, Aug 30,1986 N15E 86.75 210.60 40.91 10.83 2.43 1.22 1.66 ISPH E15S 76.75 269.65 23.46 9.83 3.51 0.55 2.63 Vert 40.06 139.49 11.46 5.67 3.48 0.52 3.11

Bucharest. May 30, 1990 NS 73.88 202.08 24.07 7.76 2.74 0.75 2.02 ARM EW 55.71 189.53 15.21 2.73 3.40 0.50 1.13 Vert

May 31, 1990 NS 22.17 95.60 5.99 1.48 4.31 0.39 1.55 EW 23.41 78.73 6.33 1.99 3.36 0.51 1.98 Vert 19.47 51.14 4.18 228 2.63 0.51 3.42 Experience Database Pag.4O

Table 4.6 (cont'd)

Station Earthquake Comp. PGA SAnw SV^ sew SAmax/ Tc TD cm/s2 cm/s2 cm/s PGA s s

Metalurgiei Aug30, 1986 : W32S 69.78 206.34 43.69 11.12 2.96 1.33 1.60 N32W 43.68 190.54 19.43 11.33 4.36 0.64 3.66 Vert 21.00

May 30,1990 :N127W "- 59.02 216.74 18.77 5.34 3.67 0.54 1.79 : N37W - 76.32 179.10 23.21 10.08 2.35 0.81 2.73 Vert : 43.25 171.22 7.81 5.65 3.96 0.29 4.55

' Metrou, Au£30,1986 :• N60E • 72.71 213.44 50.80 12.29 2.94 r 1.50 1.52 IMGB1 : N30W 7 57.75 222.35 21.43 4.98 3.85 0.61 1.47 Vert 27.00

May-30,1990 N30W " 90.80 276.28 29.65 7.87 3.04 0.67 1.67 'N120W 7 60.15 214.31 22.82 6.63 3.56 0.67 1.82 ^ Vert " 50.09 220.63 9.11 3.40 4.41 0.26 2.35

Militari Aug~30,1986 - NS ••92.19 312.91 36.66 9.45 3.39 0.74 1.62 ; EW i 79.57 348.96 30.52 7.45 4.39 0.55 1.53 Vert 33.80

May:30,1990 : N92W 95.34 290.80 26.99 7.28 3.05 0.58 1.69 • N178E •51.13 183.39 11.76 6.38 3.59 0.40 3.40 Vert . 43.79 157.02 8.99 4.76 3.59 0.36 3.33

Panduri Aug 30,1986 N131E 90.61 296.53 35.22 10.41 3.27 0.75 1.86 .N139W •101.20 342.60 43.66 10.00 3.39 0.80 1.44 : Vert : 68.11 165.05 15.86 4.61 2.42 0.60 1.83

May 30,1990 N131E :127.90 540.87 24.78 12.72 4.23 0.29 3.23 N139W 136.60 565.38 2787 6.69 4.14 0.31 1.51 Vert 57.95 201.91 10.11 4.41 3.48 0.31 2.74

Trtuiescu Aug 30,1986 N145W 89.57 323.39 43.66 11.21 3.61 0.85 1.61 N55W 79.84 247.95 23.84 5.71 3.11 0.60 1.51 Vert 61.86 150.60 15.21 5.53 2.44 0.63 2.29

May 30,1990 N145W 56.40 219.04 14.49 4.85 3.88 0.42 2.10 N55W 71.50 230.41 19.51 8.11 3.22 0.53 2.61 Vert 37.62 121.00 6.18 3.94 3.22 0.32 4.01

Seismic network: u National Institute for Earth Physics, INFP O Building Research Institute, INCERC A Institute for Geophysical and Geotechnical Studies Experience Database Pag.41

MetroulMGBl i BUCHAREST ig"3.0, 19o6, N60E Cump

2.5 \ T3 N INCERC, Mar4, 1977, NS Comp P 5 1.5 Aug30, 1986, W32S Comp,

0.5

0.5 1.5 2 2.5 3.5 Period^ s

4.5 Metrou IMGB1 BUCHAREST: Aug30, 1986, N60E Comp 3.5 Metahirgiei > Aug-30, 1986, W32S Comp 2.5

i.5 ; INCERC Mar 4 1977 MS Pomp 1

0.5

0 0.5 1.5 2 2.5 3.5 Period, s

Fig. 4.7 Normalized response spectra for the narrowest frequency band Bucharest records Experience Database Pag.42

Mar 4,1977, NS 4.5/T BUCHAREST Soft soilcojidinonm \~ jCentral, South and East

en N ./ 3.75/T "e5 .. 0.1 proib ofexceedance O Aug3Q, 1986 9/T•2;

0.5 -

Tc=1.5 TD=2

0 0.5 1.5 2 2.5 3 3.5 4 Period, s I 0.1 prob of exceedance 3.5 - ! A—.\ '. : :

Ill l A ^-^ Aug 30, 1986 > 2.5 en •a J : ; /; • s •*~ 7 1 II I / \ : // Mar 4, 1977, NS

:,\\W' ••••" '""•••--... Z 1.5

; ^^ [ M-l- l '/-' I'' BUCHAREST . 1 Soft soil condition in i ! i Central South aiiri Fast ; | 0.5 i i i ; i ! ' zones; ; i i i - ,•;/' ....'' i ' i ! 0 0.5 1.5 2 2.5 3.5 Period, s

Fig. 4.8 Median and 0.1 probability of exceedance design spectra for Bucharest soft soil Experience Database Pag.43 I •

4.5/T BUCHAREST Soft soil condition in ; - \ Central, South and East 2.5

00 1

3.75/T \ \ o 1.5 Z -1 j : 7.5/T2

: EUROCODE 8, 1993 : Soil class C 0.5 Tc=l.5 TD=2 I • Tc=0.8

0 0.5 1.5 2 2.5 J.D

Fig. 4.9 Site-dependent design response spectra for the soft soi! condition in Bucharest and EUROCODE 8 Experience Database Pag.44

4.3 Moldova and Republic of Moidova response spectra

The characteristics of the accelerograms recorded in the last three Vrancea earthquakes on the territory of Moldova are described in Appendix 1, Table A.1 -^ Table A.6 (for INFP and GEOTEC records) and in Table 4.2, Table 4.3, Table 4.7 and Table 4.8 (for INCERC records and records from Republic of Moldova).

They are:

(i) Peak values of ground motion parameters: PGA, PGV and PGD

(ii) Maximum values of response spectra: SA, SV and SD

(iii) Maximum values of normalized response spectra: SAmax / PGA, SVmax / PGV and SDmax / PGD i.e. the dynamic amplification factors for response

(iv) Cartwright & Longuet-Htggins frequency bandwidth measure of power spectra! density: s

(v) Kennedy & Shinozuka fractile frequencies of power spectral density : fio, fso, fgo

(vi) Central or corner periods of deterministic response spectra : Tc and TD.

Opposite to the Bucharest narrow frequency band records, the Moldavian records have broad and / or intermediate band frequency content. Such records were obtained in the seismic stations from Dochia, Bacau, Onesti, Vasiui, Barlad, Cahul, lasi etc.

However, narrow frequency band horizontal and even vertical ground motions were recorded in two important stations in Sub-Carpathians: Muntele Rosu and Istrita. The maximum corner period for these stations was : 1.5s- Muntele Rosu and 1.4 s - Istrita.

From Fig. 4.10, a negligible mobility of the response spectra to different earthquake magnitudes can be observed. This indicates soil categories which are completely different in Moldova than in Bucharest, on Romanian Plain.

It is also important to give emphasis to the local site effect in Chisinau, Y310 comp, Aug 30, 1986 event, Fig.4.11. Experience Database Pag.45

MOLDOVA 30, 1986 : 17 Comp

3.5

4.5

4 \ MOLDOVA May 30, 1990 :18 Comp 3.5

3

,0.1 prob ofexceedance

Mw=7.0

0 0 0.5 1 1.5 2 2.5 3 3.5 4 Period, s Fig. 4.10.a Influence of source mechanism and magnitude on spectral shapes in Moldova Experience Database Pag.46

4.5

4 MOLDJUVA T 0.5 prob of ejxceedance 3.5

; on May 30, 1990 : 18 Gomp D 2.5 i : 2 AiigSO, 198^ : 17 Comp 1.5

1

0.5

0.5 1.5 2 2.5 3.5 Period, s 4.5

4 :. May 30, 1990 : 18 Comp MOLDOVA ofexceedance 3.5

- Aus30. 1986: 1.7 Com

Fig. 4.10.b Comparison of response spectra in Moldova for the 1986 and 1990 Vrancea earthquakes Experience Database Pag.47

Table 4.7 Response spectra characteristics for accelerograms recorded in Moldova by the Building Research Institute seismic network

Station Earthquake Comp PGA SAmax svmax SDmax SAmax Tc ~!"D PGA cm/s2 cm/s2 cm/s cm s s Adjud May 30, N50E 75.63 287.27 27.05 8.67 3.80 0.59 2.01 0 1990 N40W 86.60 448.84 27.59 14.67 5.18 0.39 3.34

Bacau Aug 30, NS 105.0 330.90 24.53 4.74 3.15 0.47 1.21 0 1986 EW 0 300.67 13.72 4.43 4.39 0.29 2.03 68.48 Birlad May 30, NS 142.7 408.07 41.26 8.89 2.86 0.64 1.35 0 1990 EW 0 468.97 40.11 15.17 3.53 0.54 2.38 132.9 0 Focsani Aug 30, W07S 224.2 664.84 78.39 23.00 2.97 0.74 1.84 UCA 1986 N07W 0 703.29 53.84 9.33 2.61 0.48 1.09 0 Vert 269.4 463.06 14.20 7.07 4.22 0.19 3.13 -i 109.6 4 May 30, N97W 92.16 268.06 37.93 15.20 2.91 0.89 2.52 1990 N07W 108.6 418.33 60.67 24.88 3.85 0.91 2.58 I 0 lasi Aug 30. NS 57.53 187.77 25.36 12.80 3.26 0.85 3.17 0 1986 EW 136.3 461.53 64.90 10.34 3.39 0.88 1.00 0 Onesti Aug 30, N200E 156.1 586.23 40.66 8.15 3.76 0.44 1.26 0 1986 May 30, N200E 232.1 918.26 43.79 12.37 3.96 0.30 1.77 1990 N290E 111.8 373.69 29.19 8.47 3.34 0.49 1.82

Vaslui Aug 30. NS 152.9 532.76 27.13 8.44 3.48 0.32 1.96 A r\o 0 1986 EW 179.5 574.31 46.64 7.64 3.20 0.51 1 .UO 1

Table 4.8 Response spectra characteristics of the Yrancea ground motions recorded in Republic of Moidova

Station Cornp PGA SD T Earthquake svmax max <^Vnax Tc 'D PGA 2 2 cm/s cm/s cm/s cm c S Chisinau Aug 30, 1986 Y309 191.79 952.21 36.00 4.14 4.97 0.24 0.72 Y310 212.75 616.08 65.76 11.08 2.90 0.67 1.06 Z311 120.38 599.80 19.58 7.54 4.98 0.20 2.42

May 30, 1990 Y659 77.50 236.94 12.21 3.82 3.06 n oo 1.97 Y660 83.31 359.99 15.30 5.17 4.30 0.27 2.12 Z658 63.89 221.45 5.03 3.01 3.47 0.14 3.77

Cahui May 30, 1990 Y671 129.05 497.38 22.06 7.22 3.85 0.28 2.06 Y673 136.65 529.84 21.51 8.80 3.88 0.26 2.57 Z672 90.54 393.76 10.84 6.18 4.35 0.17 3.58 Experience Database Pag .48

0.5 1.5 2.5 Period, s

5

4.5 — '• CHISINAiU (KISHINEV) Q 4 May 30 19 0 I M I 3.5

< 3 -a ] • Mw=7.0 CD Y660 : 2-5

2 II I

1.5 Y659 comp 1 Z65 8

0.5

0 0.5 1.5 2.5 Period, s

Fig. 4.11 Mobiiity of response spectra in Chisinau as a function of source mechanism and magnitude Experience Database Pag.49

CAHUL May 30, 1990

0 0.5 1 1.5 2 2.5 3 3.5 Period, s Fig. 4.12 Response spectra for Vrancea motion recorded in Cahul, Republic of Moldova

BULGARIA Provadia Mav30. 1990 N20E Comp

Bozveli Village NSiComp

0 0.5 1 1.5 2 2.5 3 3.5 Period, s Fig. 4.13 Response spectra for three Vrancea motions recorded in Bulgaria Experience Database Pag.50

4.4 Response spectra for motions recorded in Dobrogea

The frequency content of the motions recorded in Dobrogea is quite different than the frequency content of the motions recorded on Romanian Plain. A typical for Dobrogea broad frequency band content was recorded in station Carcaliu. For Cernavoda area, all available accelerograms were obtained from the 1986 and 1990 Vrancea events in the soft soil condition of the City Hall. There are no records on the Cernavoda NPP site, on limestone. The analysts of the City Hall records presented in Appendix 1, Fig.4.14 and Fig.4.15 shows:

(i)The uni-moda! PSD has its peak near the predominant frequency of the site: «2.25Hz (ii) The width of the frequency band has the tendency to became narrower as the PGA level increases. The City Hall records were transferred to NPP site using deconvolution analysis, Fig.4.16 and Fig.4.17. The mean ratio of NPP-PGA to City Hall-PGA was found 0.75.

The acceleration response spectra for the six City Hall records, from three Vrancea events are characterized by a very small coefficient of variation. This indicates a very homogenous frequency content at this site.

NPP

CITY- HALL 100-I6.30N.M.B.

22.10m " ^ "' I Vs*917m/

-Z/ tf/>m' T-L95tf/m3 9.00 m 1 -2GJ3 ^Y Vs-SO0m/s -2UQ *_ Tnr/T/7 nrrn-nrrr ~777/T/777A/TrTT7T/ /1 2.6 km

Fig.4.16 Shear waves velocity of soil profiles in Cernavoda Experience Database Pag.51

-f- ERNAVODA 4- fi City Hall -r i! /. uig30, 19$6 HA/1 8 1 |

i : NS Com o -f- | 1 P j i Z — ;: J \j iv v / | V^V'7 EW K^Vert / A j i - 1 i i 1 : 0 0.5 1 1.5 2 2.5 3 3.5 Period, s Fig. 4.14.a Normalized acceleration response spectra in Cernavoda

C ERN A VO DA j City Hall N(Iay30, 1990

tfl I o

0.5 1 1.5 2 2.5 3 3.5 Period, s Fig. 4.14.b Normalized acceleration response spectra in Cernavoda Experience Database Pag.52

0.14 Station!: Cernavoda - City Hall

0.12 198 6 :NS: PGA=49.3gal 1990 ;NS; PGA=107.1gal

0.02

0.00 10 20 30 40 50 Frequency (rad/sec)

0.14 ~r Station:: Cernavoda - City Hall

0.12 1986 ; EW; PGA = 61.9gal 1990 : EW; PGA=100.4gal M 0.10

0.00 10 20 30 40 50 Frequency (rad/sec)

Fig. 4.15 M obility of frequency content of horizontal accelerations as function of PGA level Experience Database Pag. 53

FIGLRE 3-a Deconwilutian Analysis FIGLRE 3-C Deconuilutian flnalysis Cernauoda City Hail and hPP site Cernauda City Hall and if P site 19B6 Vrancea event, NS 1950 W-ancea event, NS j.3D 0.50

5 Iff -*- (fl _4_ Cyiy Hotl _g_ • OUTCROP _$_ 0.40 CU1OT _^-

B)

0.23 C 0.30 1 r 0

+ 0.20 k I jjo.io a

//

:.CD D.CD 4 1. 10. 103. FrequBncu Hz i J

1 { HGIRE 3-b Deconuolution flnaiysis FIGURE ;-b Deconualutlan fVialysLs j Csrnauoda City Hall and hPP site Csrnavoda City Hall and W? site j 1SB6 Vrancea event, DJ 1993 Vrancea event, EJ1 Q.5Q

NPP _*_

! ; n Cyty Hell _=_ (SKRCr _9_ ! ! 0.40 f z c HlffSte n NPSte "*D.3O rn n ; H a : il »l 1 6 11 L ; E ; / ; i i t : : W u ' / ! % D.10 Qtacp Otocp a. DO 0. 1. 10. 100. 1. 10. 100. Frequen=y Hz Frequency Hz

Fig 4.17 Deconvolution Analysis Experience Database Pag .54

5. Characteristics of the free field acceleroqrams from the last three Vrancea earthquakes recorded bv the seismic networks of iNFP and GEOTEC.

Table 5.1. Peak values of the ground motion parameters

Table 5.2. Maximum values of response spectra

Table 5.3. Amplification factors for response spectra

Table 5.4. s (Cartwright & Longuet-Higgins) frequency bandwidth measure of power spectral density

Table 5.5. fi0, fso and fgo (Kennedy & Shinozuka) fractile frequencies of power spectra! density

Table 5.6. Control (corner) periods of response spectra Experience Database Pag.55

Table 5.1. Peak values of the ground motion parameters

Station Cornp Ang 3D 1PRfi May 30 199 May 31 1Q90 PGA PGV PGD PGA PGV GD PGA PGV PGD cm/s2 cm/s cm cm/s2 cm/s cm cm/s2 cm/s cm Bacau NS 88.8 9.2 2.2 132.0 8.5 2.8 84.5 6.4 1.4 _ Z 24.9 1.8 0.9 31.8 3.4 1.4 18.6 1.6 0.9 EW 72.7 8.2 2.1 122.7 16.6 5.5 63.0 5.5 1.1 Barlad NS 112.1 11.1 2.5 85.8 6.8 1.6 Z - 108.1 4.1 1.2 27.1 1.3 0.7 EW 148.5 17.1 8.5 80.0 7.0 0.7 Bucharest- NS 135.1 22.2 3.8 89.6 4.6 1.8 MagureleJNFP Z 50.3 4.2 2.1 59.5 2.4 1.3 - _ EW 114.9 16.3 3.4 87.0 16.2 4.3 Carcaliu NS 70.0 3.8 1.1 164.0 11.6 4.8 59.0 3.0 0.5 _ Z 25.3 1.9 0.3 41.9 3.7 1.6 19.6 2.5 1.1 EW 69.7 4.8 0.7 88.8 4.1 1.0 46.5 1.7 0.6 Cernavoda NS 49.2 7.7 4.6 1 U/ .U 9.9 3.3 66.5 5.8 2.3 _ Z 63.0 4.7 4.3 5304 "7 C 4.3 15.9 3.0 2.3 EW 52.0 6.3 3 9 100 3 9 9 2.8 37.0 3.7 1 9 i Focsani NS 273.2 36.6 9 4 i _ Z 122.7 5.5 3.3 - - EW 297.0 31.9 4.9 i lasi NS 66.9 7.4 1.3 95.8 7.4 1.5 49.1 2.9 0.7 Z EW 99.6 7.9 1.3 106.5 6.5 1.5 52.8 4.0 0.8 ! tstrita NS 109.2 16.6 7.6 92.8 23.4 8.6 i _ Z 43.2 6.2 1.7 - 43.1 9.6 3.2 EW 71.6 10.7 4.7 59.0 11.3 8.7 i Muntele Rosu NS 79.1 17.0 5.3 65.5 12.9 3.8 i (Cheia) Z 39.9 6.2 2.2 30.5 4.5 2.7 - - EW 33.9 5.5 3.8 47.3 12.8 3.6 Surduc N40W 89.0 19.4 9.5 44.4 3.5 2.9 A Z - 40.7 4.9 2.8 17.2 2.7 2.9 W4CS 97.2 19.8 9.6 21.0 3.2 2.3 Vrancioaia NS 82.4 15.1 4.0 119.6 13.1 5.2 43.8 3.9 1.2 Z 39.0 6.6 3.2 63 3 7.4 2.5 26.7 1.6 0.5 EW 140.8 13.2 3.5 157.3 13.6 5.7 102.4 7.7 1.8 ' Bucharest W3S 73.9 11.4 3.1 22.1 2.1 0.4 ARM Z - - - _ 19.5 1.7 0.9 A S3E 55.7 4.8 1.3 23.74 2.5 0.7 Dochia NS 50.8 3.0 0.8 _ Z 20.6 1.4 0.7 - _ EW 37.8 2.6 1.0 Experience Database Pag .56

Table 5.2. Maximum values of response spectra (damping 0.05)

Station Comp Aug 30. 1986 May 30. 1990 May 31.1990 SD svmax max Dmax SAmax Dmax cm/s2 cm/s2 cm cm/s2 cm/s2 cm cm/s2 cm/s cm Bacau NS 370.9 22.5 7.8 688.9 25.7 7.4 381.3 18.7 5.0 _ Z 94.0 6.3 4.7 133.8 9.7 3.7 73.8 4.7 3.2 EW 313.7 21.3 9.2 527.8 41.4 10.2 371.5 15.7 3.6 Bariad NS 492.4 26.6 5.9 315.1 17.9 4.0 _ Z - 413.0 10.6 4.4 111.3 5.0 3.4 EW 542.6 47.1 14.2 226.1 21.4 2.3 Bucharest- NS 364.9 56.8 13.2 314.9 14.5 8.0 Magurele.INF Z 168.4 14.4 11.7 237.2 7.5 4.6 - P EW 322.0 46.0 10.9 210.6 25.6 9.1

Carcaliu NS 281.8 7.9 2.9 619.3 19.8 9.9 280.9 6.9 1.3 _ Z 93.3 5.4 1.3 143.5 8.6 3.7 73.0 4.0 2.3 EW 277.0 14.6 2.0 310.5 13.1 3.7 236.3 4.7 2.5 Cernavoda NS 191.4 23.4 24.7 399.4 31.8 10.6 313.0 23.7 12.6 _ Z 218.5 20.5 21.9 158.3 20.2 1,6.4 51.4 12.2 13.4 EW 284.3 22.0 22.3 481.0 39.7 11.3 190.1 12.9 11.5 Focsani NS 763.2 87.6 25.6 Z 508.8 19.4 15.4 - - EW 871.4 68.2 22.8 lasi NS 226.1 17.6 4.7 449.6 23.9 3.4 215.7 10.2 2.0 Z EW 268.1 20.2 4.0 472.3 16.2 3.4 191.6 12.9 2.0 Istrita NS 269.5 48.9 17.9 285.5 59.1 28.4 I Z 140.8 23.0 5.2 - 150.9 27.5 8.8 EW 232.9 29.8 12.2 220.0 33.8 24.3 Munteie Rosu NS 214.3 51.1 15.5 189.3 33.0 9.6 (Cheia) Z 123.7 14.7 12.9 125.9 12.6 11.0 - _ EW 128.3 21.1 16.6 164.8 31.4 12.0 Surduc N40W 331.0 40.9 28.6 229.8 13.6 14.6 d Z - 146.4 20.1 16.2 69.3 14.3 15.5 W40S 287.8 45.1 24.6 73.0 11.6 12.8 Vrancioaia NS 287.3 27.5 .11.0 356.2 37.8 11.4 186.9 9.1 4.3 Z 142.4 16.0 11.6 212.4 16.9 6.4 94.6 6.0 3.1 EW 437.7 31.8 14.8 695.4 35.4 12.4 371.4 16.7 3.2 Bucharest W3S 202.2 24.1 7.8 95.7 6.0 1.5 ARM Z - - - - 51.2 4.2 2.3 A S3E 189.6 15.2 2.7 78.8 6.3 2.0 Dochia NS 183.2 8.7 4.1 Z 83.3 4.3 2.9 - - I EW 146.6 6.7 3.3 Experience Database Pag.57

Table 5.3. Amplification factors for response spectra

Station Comp Aua 30, 1986 May 30. 1990 May 31.1990 SA SAfnax sv™ Dmax sv^ Dmax max sv™ Dmax PGA PGV GD PGA PGV GD PGA PGV PGD Bacau NS 4.17 2.44 3.54 5.21 3.02 2.64 4.51 2.92 3.57 Z 3.77 3.50 5.22 4.21 2.85 2.64 3.96 2.94 3.55 EW 4.31 2.60 4.38 4.30 2.49 1.85 5.89 2.85 3.27 Bariad NS 4.39 2.39 2.36 3.67 2.63 2.50 Z - 3.82 2.60 3.67 4.10 3.85 4.85 EW 3.65 2.75 1.67 2.82 3.05 3.28 Bucharest- NS 2.70 2.56 3.47 3.51 3.15 4.44 Magurele.INF Z 3.35 3.42 5.57 3.98 3.12 3.54 - P EW 2.80 2.82 3.20 2.42 1.58 2.11

Carcaliu NS 4.02 2.08 2.63 3.77 1.71 2.06 4.76 2.30 2.60 Z 3.69 2.84 4.33 3.42 2.32 2.31 3.72 1.60 2.09 EW 3.97 3.04 2.85 3.49 3.19 3.70 5.08 2.76 4.16 Cemavoda NS 3.89 3.04 5.37 3.73 3.21 3.21 4.70 4.08 5.48 Z 3.46 4.36 5.09 2.96 2.69 ,3.81 3.23 4.07 5.82 EW 4.58 3.49 5.69 4.80 4.01 -4.03 5.13 3.48 6.05 Focsani NS 2.79 2.39 2.72 Z 4.15 3.52 4.67 - - EW 2.93 2.14 4.65 lasi NS 3.38 2.38 3.61 4.69 3.23 2.26 4.39 3.51 2.85 Z EW 2.69 2.56 3.15 4.43 2.49 2.26 3.62 3.22 2.50 Istrita NS 2.46 2.95 2.35 3.07 2.52 3.30 Z 3.26 3.71 3.06 - 3.50 2.86 2.75 EW 3.25 2.78 2.59 3.73 2.99 2.79 Munteie Rosu NS 2.71 3.00 2.92 2.89 2.62 2.52 (Cheia) Z 3.10 2.37 5.86 4.13 2.80 4.07 - EW 3.78 3.84 4.37 3.48 2.45 3.33 Surduc N40W 3.72 2.11 3.01 5.17 3.88 5.03 A Z - 3.60 4.10 5.78 4.03 5.30 5.34 W40S 2.96 2.28 2.56 3.47 3.62 5.56 Vrancioaia NS 3.48 1.82 .2.75 2.98 2.88 2.19 4.26 2.33 3.58 Z 3.65 2.42 3.62 3.35 2.28 2.56 3.54 3.75 6.20 EW 3.11 2.41 4.22 4.42 2.60 2.17 3.62 2.16 1.77 Bucharest W3S 2.73 2.11 2.52 4.33 2.85 3.75 ARM Z - 2.62 2.47 2.55 A S3E 3.40 3.16 2.07 3.36 2.52 2.85 Dochia NS 3.60 2.90 5.12 Z 4.04 3.07 4.14 - - EW 3.88 2.57 3.30 Experience Database Pag.58

Table 5.4. s, frequency bandwidth measure of power spectral density (Cartwright & Longuet-Higgins indicator)

Station Comp Aug30, 1986 May 30, 1990 May 31, 1990

Bacau NS 0.86 0.70 0.79 = Z 0.81 0.79 0.80 EW 0.83 0.84 0.79 Bariad NS 0.77 0.80 - Z - 0.65 0.71 EW 0.81 0.85 Bucharest- NS 0.94 0.79 Magureie.INF Z 0.76 0.72 - P EW 0.88 0.89

Carcaiiu NS 0.61 0.64 0.58 - Z 0.73 0.71 0.72 EW 0.71 0.64 0.55 Cernavoda NS 0.84 0.89 0.89 - Z 0.72 0.78 0.82 EW 0.81 0.87 0.87 Focsani NS 0.88 - Z 0.58 - - EW 0.85 lasi NS 0.86 0.72 0.79 Z EW 0.86 0.70 0.79 Istrita NS 0.92 0.93 Z 0.93 0.94 EW 0.93 0.93 Muntele Rosu NS 0.97 0.95 (Cheia) Z 0.90 0.90 - = EW 0.94 0.95 Surduc N40W 0.80 0.64 A Z 0.74 0.79 W40S 0.86 0.71 Vrancioaia NS 0.87 0.70 0.70 - Z 0.91 0.82 0.81 EW 0.85 0.70 0.70 Bucharest W3S 0.90 0.83 ARM Z - 0.83 A S3E 0.84 0.87 Dochia NS 0.73 - Z 0.55 - - EW 0.72 Experience Database Pag.59

Table 5.5. f10, fso and f30 (Kennedy & Shinozuka) fractiie frequencies of power spectral density

Station Comp Aug 30 1988 May 30, 1990 May 31 1990

fio fso T90 T'10 fso f90 fio fso f90 Bacau NS 1.2 2.26 6.4 1.0 4.39 5.9 1.6 2.38 6.4 _ z 1.2 3.76 S.O 0.9 4.51 9.1 1.2 4.01 8.8 EW 1.1 3.13 5.8 0.8 2.13 6.0 1.2 2.38 6.5 Barlad NS 1.2 3.63 6.4 1.4 3.00 4.8 _ Z - 3.4 6.64 13.0 1.8 6.54 10.4 EW 0.7 3.26 5.6 1.2 2.48 4.8 Bucharest- NS 0.5 1.25 3.0 1.2 3.63 8.9 MagureleJNF Z 1.2 4.01 9.9 1.5 4.64 11.4 - EW 0.5 1.75 4.6 0.6 1.88 5.0 i t Carcaliu NS 3.0 7.02 11.3 2.9 6.27 11.8 3.4 7.27 11.5 _ Z 2.1 4.76 10.7 1.6 5.64 11.9 0.9 5.51 11.6 EW 2.5 4.39 10.0 2.6 6.64 10.8 2.9 7.89 11.1 Cernavoda NS 1.2 2.51 4.5 1.1 2.13 4.5 1.5 2.13 3.0 _ Z 2.6 5.01 9.1 1.9 4.51 9.3 1.6 3.01 8.4 i EW 1.6 2.76 4.8 1.5 2.26 4.1 1.6 2.26 2.88 Focsani NS 0.6 2.13 4.5 _ Z 2.9 7.27 9.9 - -

EW I . ] 2.26 4.6 iasi NS 1.0 2.38 5.6 1.1 4.01 9.3 1.4 3.15 7.9 -7 z. 1.1 2.01 6.1 5.89 8.8 1.0 2.90 8.3 EW 1.2 Istrita NS 0.6 1.63 3.4 0.5 1.25 3.5 — Z 0.7 1.38 3.9 - 0.1 1.00 3.9 EW 0.7 1.63 3.3 0.6 1.38 3.4 Muntele Rosu NS 0.5 0.63 1.6 0.5 1.25 2.1 (Cheia) Z 0.7 1.50 3.8 0.9 1.88 3.0 - - EW 0.6 1.25 3.3 0.5 1.25 2.4 Surduc N40W 0.8 2.61 5.1 2.0 4.01 5.8 A Z - 0.9 3.78 8.6 1.5 5.39 9.7 W40S 0.5 1.69 4.7 1.2 3.88 6.4 Vrancioaia NS 0.8 1.82 •• 3.5 0.6 2.51 4.5 1.5 2.84 4.8 _ Z 0.6 1.36 3.8 0.6 o.zo 9.0 1.3 3.18 8.2 EW 1.2 2.42 4.2 1.5 3.26 4.6 1.7 3.34 5.5 Bucharest W3S 1.0 2.01 6.0 1.2 2.76 4.8 ARM Z - - - - 1 0 3.27 11.1 _\ S3E 1.0 3.52 8.0 1.5 2.76 6.8 Dochia NS 2.1 4.14 10.5 _ Z 3.0 8.90 12.0 - - EW 2.0 4.39 9.3 Experience Database Pag .60

Table 5.6 Control (corner) periods of response spectra

Station Comp Aug 30, 198S May 30, 1990 -May 31, 1990

Tc TD Tc TD Tc TD s s s s s s Bacau NS 0.38 2.19 0.23 1.80 0.31 ' 1.67 _ z 0.42 4.65 0.46 2.36 0.40 4 25 EW 0.43 2.70 0.49 1.55 0.26 1.43 Bariad NS 0.34 1.39 0.3.6 1.41 I Z - 0.16 2.65 0.28 4.19 EW 0.55 1.89 0.59 0.66 Bucharest- NS 0.98 1.46 0.29 3.48 Magureie.lNFP Z 0.54 5.09 0.20 3.80 - _ EW 0.90 1.48 0.76 2.23 Carcaiiu NS 0.18 2.30 0.20 3.15 0.15 1.19 _ Z 0.36 1.50 0.37 2.69 0.35 3 62 EW 0.33 0.85 0.26 1.76 0.13 3.28 Cemavoda NS 0.77 6.61 0.50 2.09 0.48 3.34 — Z 0.59 6.72 0.80 5.10 1.49 6 93 EW 0.49 6.38 0.52 1.78 0.43 5.60 Focsani NS 0.74 1.84 Z 0.24 4.99 - - EW 0.49 2.10 lasi NS 0.49 1.67 0.33 0.90 0.30 1.26 - - z. 0.47 1.24 0.22 1.30 0.42 EW 0.98 Istrita NS 1.14 2.30 1.30 3.03 I Z 1.03 1.42 1.14 2.00 EW 0.80 2.57 0.97 4.52 Muntele Rosu NS 1.50 1.90 1.09 1.82 (Cheia) Z 0.75 5.53 0.63 5.48 - _ EW 1.03 4.94 1.20 2.40 Surduc N40W 0.78 4.38 0.37 6.75 A Z - 0.86 5.07 1.30 6.80 W40S 0.99 3.42 0.99 6.97 Vrancioaia NS 0.60 2.51 0.67 1.89 0.31 2.99 _ Z 0.71 4.54 0.50 2.39 0.40 3 22 EW 0.46 2.93 0.32 2.20 0.28 1.21 Bucharest W3S 0.75 2.02 0.39 1.55 ARM Z - - - 0.51 3.42 A S3E 0.50 1.13 L0.50 1.98 Dochia NS 0.32 4.24 - Z EW 0.29 3.04 Experience Database Pag.61

Part il Experience database

6. Philosophy of an experience-based generic approach

As the data base of equipment qualified by testing has grown, it has become apparent that "generic" seismic qualification in a broader sense is feasible. In other words, by establishing and observing certain specified "similarity" rules regarding the use of a specific category of equipment, no additional qualification effort may be necessary for equipment which meets the "rules" for inclusion in a category. An equipment item can be qualified by reference to qualification of an identical or similar item tested or analyzed to levels that envelope the required response spectrum of the item to be qualified.

Thus, generic consideration is the first characteristic of this approach.

The second characteristics is use of "experience" data. There are four types of experience data which have been used or are being considered for use :

• historical earthquakes

• testing

• analysis

• Hybrid Qualification by Combined Analysis and Testing

5.1 Seismic Qualification by Earthquake Experience

The direct seismic qualification of items by the use of experience from strong motion seismic events has seen limited but growing application, it has been only within the past ten years that data from strong motion earthquakes have generally been collected in the detail and quality necessary to provide the information required for direct application to individual items. Such direct qualification requires that seismic excitation of the item at its point of installation in the building structure effectively envelopes the reference or required seismic design input motion. It also requires that the item being qualified and the one which underwent the strong motion earthquake be the same mode! and type or have the same physical characteristics and have similar support or anchorage characteristics. In the case of active items it is also necessary in genera! to show that the item performed the same functions during or following the earthquake, including the potential aftershock effects. In general, the quality and detail of the information used to directly qualify individual items of the basis of experience data should not be less than those required for direct qualification by testing. As in the case of direct qualification by analysis, testing on hybrid methods, earthquake experience may also be used as the basis for qualification by the indirect method. Experience Database Pag .62

6.2 Qualification by Testing

The use of historical earthquake data has been informative, and it is expected that test data will augment the historical earthquake data in several ways. This can best be seen by considering the attributes of the two approaches. The attributes of earthquake data are :

- Real earthquake motion are involved.

- Field mounting/anchorage are typical of actual installation.

- Naturally aged equipment forms the data set.

- For nuclear power plant equipment that is also found in non-nuclear facilities (refineries or conventional power plants), the information base is large.

- Equipment has been subjected to realistic operational conditions.

- The data includes the effects of actual interfaces to connecting equipment or systems.

Test data offer a somewhat different set of attributes. Because of this, the two methods complement each other:

-Tests involve relatively high levels of simulated earthquake input motions that are measured and documented.

- Test methods incorporate a number of conservative aspects.

- Floor Required Response Spectra (RRS), used as test input criteria.

- Over-testing is common (to "envelope" the RRS).

- Broad-band Test Response Spectra (TRS) are typically used.

- Generally, the Zero Period Acceleration (ZPA) of TRS is several times greater than that of the RRS.

- Documented functional tests are normally included.

- Some failure mode information is available.

- Some fragility test data exist (from tests to failure).

- Some artificially aged equipment (thermally aged, irradiated) has been tested. Experience Database Pag .63

Because of these attributes , it is believed that test data can provide additional information which will be beneficial, particularly in showing that many equipment items are sufficiently rugged to perform satisfactorily.

!t is commonly used to qualify industrial equipment which is impossible to analyze and whose functionality before, during and after an earthquake has to be assured. The most common form of seismic qualification by dynamic testing uses shaking tables. The component to be qualified is mounted on a programmable shaking table and table provides the required base motions to the component.

When reduced scale testing is performed, similarity requirements associated with indirect methods of seismic qualification must be considered.

6.3 Qualification by Analysis

Seismic qualification by analysis is generally applied to items such civil engineering structures, tanks or distribution systems. In the analytical approach to seismic qualification, the actual component or subsystem is modeled by a mathematical model. Subjected to seismic excitation, a set of structural mechanic parameters such as stress, load and deformation is used to quantify the response of the subsystem. Judgment on qualifying the subsystem is based on comparison of the calculated responses to allowable responses. Broadly speaking, the modeling can be classified into static modeling and dynamic modeling. Static modeling is used when the subsystem is sufficiently rigid so that its fundamental frequency exceeds 33 Hz. For more flexible subsystems, dynamic modeling is necessary to take into account the possible dynamic amplification effect due to seismic excitations.

Especially after Kobe 1995 earthquake , as after California 1994 (the so called "California - Kobe symptoms "), the seismic qualification by pure analysis began to be banished from the most up-to-date norms. And that because structural engineers are now again questioning about what to do in order to offer public credibility like" antiseismic safety".

It must be said that comparison are pointing out sensible differences between dynamic identification of industrial equipment performed by pure analytical methods and that performed by experimental approaches, which differences results in unacceptable high level of approximation regarding the maximum actual stress, strain, load or deformation ( key parameters for acceptability in seismic qualification). And, one of a lot of other things, the damping factors used in the "analysis" of equipment should be based on field testing and experience (the quantity of insulation, the size, location an number of supports gaps, the frequency of response and the use of elastoplastic or energy absorbing support devices may all have an effect on the damping).

The main drawback in qualification by analysis of so complicated structures as shows industrial equipment is the possibility (maybe certainty) of human error through modeling (and also the inherent approximations). Modeling accuracy depends on the analysts' skill in representing the subsystem and its boundary conditions in an analytical modei. The Experience Database Pag.64 analytical mode! has to be sufficiently detailed to include all probable modes of failure under seismic excitations. The inappropriate representation of boundary conditions and treatment of nonlinear gap effects can have a large influence on the calculated response, although such modeling uncertainties are not readily quantifiable in general terms.

Virtually assuming that the mathematical mode! is properly formulated, there is the uncertainty of material properties and representation of the energy dissipation mechanisms which are commonly lumped under the heading of equivalent viscous damping. An accurate representation of damping is very difficult (as we already said) because the generally lack of knowledge of the energy dissipation mechanisms involved. The equivalent viscous damping value is a function of the materials used, the construction details and the stress level. I table 6.1 it is presented a comparison between natural frequencies obtained by analysis, shaking table and low impedance experiment.

One other important disadvantage in industrial equipment qualification by analysis is that it is difficult (even impossible) to demonstrate functionality.

All things mentioned before contribute to assume that pure analytical method is a very important too! in seismic qualification of industrial equipment, but only as a second step in hybrid method.

6.4 Hybrid Qualification by Combined Analysis and Testing

The hybrid combined analysis and testing method is the best approach to seismic qualification of industrial equipment which makes use of the advantages of both methods. The commonly used procedures are given below : a. A vibration test is performed and the dynamic characteristics and system parameters are identified, using identification techniques. A simplified analytical model is then generated and the model parameters are adjusted to match the test identified values. This calibrated mode! is then used to generate response spectra for equipment and appendages on the system. b. Another application of combined analysis and testing is the experimental verification of analytical models and model assumption. Generic type calification of equipment are best performed by this technique, because of low-costs and high credibility. Dynamic in situ complete modal identification of equipment structures by low power experiments is performed and then a technique is proposed , which systematically adjust the mode! of the equipment ( finite element model, by instance) to produce an update mode! in agreement with measured modal results. One of the possible approaches is to consider the desired perturbations in stiffness and damping matrices as gain matrices in a feed- back control algorithm designed to perform eigenstructure assignment. The improved stiffness and damping matrices combined with the analytical mass matrix, more closely predict the modal test results. The technique is applicable to undamped, proportionally damped, as well as non-proportionally damped items. Therefore, the method utilizes the Experience Database Pag.65

"in situ" test data available in the form of natural frequencies, damping ratios and mode shapes.

When is needed, the functionality is more completely analyzed by testing parts of equipment on small and non-expensive vibrators.

Test methods in which the test specimen can be excited to clearly define the mode shapes and natural frequencies of the test specimen are acceptable. The acceptance criterion shall demonstrate that sufficient data has been recorded to identify and clearly define all natural frequencies and mode shapes within the frequency range of seismic input motion (1 Hz to 33 Hz). Natural resonant frequencies between 0-40Hz + Equipment/Type Manufacturer Seismic Calculated by a team from: experiment "Politehnica" University Civil Engineering Institute Low-unpedance of Bucharest of Bucharest experiment "G" construction, protection ITRD Pascani 23.4 (H) 40 - 24 slieatii Signal box Electrocontact Botosani 16.4 (V) 26 30 17 Electric switch box for Contactoare 22.6 18 24 23 mechanisms driving Buzau 26.4 (H) - 26 Heating & ventilation variator Electrotehnica S.A. 70 (V) 120 135 70 (included for instance) Low voltage distribution panel Automatica 3.8 10 14 5 with apparatuses 4.7 and 7.4 16 22 5 and 7 (H) Main distribution Panel I Automatica 6.3 19 15 6 4.9 (H) 10 12 5.5 Main distribution Panel II Automatica ! 5 16 16 5 10 12 Low voltage panel PL 32 Automatica : 5.2; 14.5 and 27 10 19 12 23 5; 14 and 26 (H) (V) - 36 - 38 Low voltage panel PL 19 Automatica 15.75 and 27.8 22 38 24 - 16 and 27 13 and 30.1 - 40 20 - 13 and 30 (H) Low voltage panel PL 1620 Automatica 10 22 20 11 6,3; 21,4; 30 - 23 40 - 26 40 7; 21; 30 CH) Honeycomb type chiller Electroputere Craiova -pump head: 16.5; 22; 29 -40 -40 17; 22;30 16.8;22;23.4;29 1; 22; 24; 30 (H) 17 16.5 (V) -casing: 17.8 couldn't be calculated couldn't be calculated 18 (H) 23.4; 27.3 (V) 23,28 Table; Natural frequencies of various equipment (H=horizontal; V=vcrtical) Experience Database Pag .67

7. Approach and scope

The study approach involved the identification, collection, and aggregation of existing qualification and fragility test data into a computerized data base. First, the sources of test data were identified, then test data were extracted from the available test reports and collected into a structured data base. Once the data had been collected, they were aggregated into sets for which a Generic Equipment Ruggedness Spectrum (GERS) have to be constructed.

Table 7-1 lists equipment of interest (items required for hot shutdown) as defined by SQUG/USNRC. Based on the EPR1 study, equipment was classified as mechanical, electrical, or relays. The specific equipment classes include :

• Batteries on Racks ^Contactors and Motor Starters • Battery Chargers • Switches • Inverters • Manual Control Switches • Motor Valve Operators • Transmitters • Electrical Penetration • Instrument Rack Components Assemblies • Solenoid-Operated Valves • Distribution Panels • Air-Operated Valves • Switchgear • Safety Relief Valves- • Transformers • Automatic Transfer Switches • Motor Control Centers • Chillers • Control Panels • Motors Experience Database Pag.68

TABLE 7.1 TYPICAL HOT SHUTDOWN EQUIPMENT LIST

Mechanical Equipment

1. Vertical pumps and motors 2. Horizontal pumps and motors 3. Motor-operated valves 4. Air-operated va!ves(inc!uding solenoid valves) 5. Heating, ventilation and air-conditioning HVAC; 6. Pumps (turbine driven, diese! driven 7. MSIVs (Main Steam Isolation Valves) 8. Pilot-operated safety/relief valves 9. Spring-operated safety/relief valves 10. NSSS mechanical equipment (Control Rod Drive Mechanisms) 11. PORVs (Power Operating Relief Valves) 12. Air compressor and air accumulators 13. Heat exchanges, tanks ( anchorage review only) 14. Atmospheric steam dump valves

Electrical Equipment

1. Low-voltage switchgear 2. Metal-clad switchgear 3. MCCs (Motor Control Centers) 4. Transformers (unit substation type) 5. Motor-generator sets 6. Distribution panels 7. Batteries and battery racks 8. Battery chargers 9. Inverters 1Q. Diese! generators and associated equipment 11. Electrical penetration assemblies 12. Transformers (other than unit substations) 13. Automatic transfer switches 14. Remote shutdown panels

Instrumentation

1. Transmitters (pressure, temperature, level, flow) 2. Switches (pressure, temperature, level, flow) 3. Resistance temperature detectors and thermal couples (RTDs and T/Cs) 4. Relays 5. Control panels and associated components 6. instrument racks and associated components 7. Instrument readouts (displays, indicators such as meters, recorders, etc.) 8. Neutron detectors Experience Database Pag.69

8. Database structure and description

8.1 Data Availability

The Post - earthquake investigation (P!) Project must be setup to conducts reconnaissance and detailed research investigations of the performance of power and industrial facilities affected by earthquakes. The objective is to gather field experience data on structures and equipment similar to those in nuclear plants and to study the genera! seismic behavior of power and industrial facilities. Such investigations form the foundation of the experience based approach to seismic evaluation of equipment. This effort is also the main vehicle by which the earthquake experience database is maintained and kept credible and viable for future equipment qualification use.

An updated, current base of data is essential to the credibility of the experience-based approach to seismic qualification of equipment. The continuing PI investigations of the performance of power and industrial facilities in earthquakes is needed to substantiate and where possible, increase the ruggedness levels developed to date, to broaden the scope of equipment types, and to identify, for special consideration, outliers or deviations from the base of observed behavior. The PI investigations are the only way to evaluate the seismic performance of equipment in its actual installed and operating environment. They also provide insights into seismic behavior of structures and their effects on equipment and serve to identify new areas of earthquake vulnerability, and research needs such as the behavior of electrical switchyard equipment.

In US the Pi project maintains a network of contacts with 45 US nuclear utilities and with foreign organizations (primarily through utilities and the Earthquake Engineering Research Institute (EERI) to obtain information after an earthquake. EPRI has also established a poo! of 30 expert investigators from 17 organizations from which to form an investigation team. When an earthquake occurs, EPRI makes an immediate assessment of its significance based on information about its general effects on developed areas. If the earthquake is considered significant, EPRI sends a reconnaissance team to the area immediately for a period of up to a week to identify and investigate local facilities. !f a sufficient number of facilities are found in the area and ground motions are high (above .2 g to .25 g), a research team revisits that area

A key element of the approach is the availability of existing experience/test data which is complete and adequate for the purpose of constructing GERS. Earthquake data mainly may be found in the post earthquake reports owned by utilities. In the absence of a organized program regarding post earthquake investigation, site nstrumentation, screening and fileing of the earthquake data it is very difficult and time consuming to collect such information at required quality.

Test data are owned either by manufacturers or utilities and reside either in their files or in those of the test laboratories. Test data are of varying degrees of quality depending on date of test performance and institutional variations in procedure and experience. Consequently, an approach to data collection should be developed to observed proprietary restrictions where necessary, while still obtaining the needed information. Experience Database Pag.70

Data are available principally in two forms : 1) test reports or 2) Seismic Qualification Review Team (SQRT) report forms.

Data sources have included :

• test laboratories,

• utilities,

• vendors,

• other institutions such as national laboratories and architect-engineering firms.

The general types of information required are equipment description (type, size, weight, etc.) . Information is also collected concerning the year of testing , type of test (e.g., biaxial , sine, etc.), the test spectra, physical modifications (if any), failure mechanism (if any), and operational requirements and performance.

Test data was provided by EUROTEST SA (test lab.), under a cooperative agreement. S&A has also a cooperative agreement with ISPE (utilities engineering company) to provide earthquake data from a selected number of electrical plants. Unfortunately ISPE did not provide us the requested data. The process of earthquake data acquisition is steel ongoing.

8.2 Data Requirements

Engineering judgment is required to assess how many data points are required and to define the inclusion rules (rules for membership in the class or "club" of equipment).

The library of historical earthquake data used by US SQUG has anywhere from 50 to 500 pieces of data per equipment class. As there was some uncertainty as to the input during the historical earthquake, it was felt that a large number of data points in different earthquakes was helpful in offsetting this uncertainty. In addition, equipment details (model number, year of manufacture, etc.) were not known with certainty, thus a large data sample tended to account for class diversity. With test data, the uncertainty is less since the input motion amplitude and the equipment condition are known, as fewer data points are required-experience showed that 5 to 10 were sufficient. Experience Database Pag.71

9. Collection procedure

Figure 9-1 outlines the data collection process. Data are extracted from a test reports or Seismic Qualification Review Team (SORT) Forms. These are first reviewed by an equipment qualification engineer to determine if the data are suitable for inclusion in the data base. The initial screening criteria are :

• Does the equipment item match the specifications of one of the hot shutdown fist classes? (Table 7.1 )

• Does the report adequately describe the equipment and test procedures ?

• Does the report include test response spectra (TRS) and all other necessary information?

If, in the reviewing engineer's judgment, the test report meets the requirements for inclusion in the data base, certain data are extracted and entered into a computer file, where they are organized in "fields" for subsequent manipulation and accessing.

The database fields provide a basic description of the equipment item and summarize the information available. The database includes information concerning :

• equipment descriptors;

• size, weight, and manufacturer/mode! code number;

• year of testing ;

• type of tests and test documentation ;

• anchorage used during testing;

• number of sub components tested (if detailed in the test report);

• quantification of available TRS ;

• any exceptions or comments related to performance during testing; and

• any failures.

In this report, the term "exception" refers to a variation that results from problems with test fixtures, test procedures, or test methods. Test organizations also use the term "anomalies" to describe these variations in order to distinguish them from actual equipment failures. The term "failure" refers to inability to meet the acceptance criteria Experience Database Pag.72 during or after a dynamic test. In most instances, a failure will be equipment malfunction and not structural failure.

The spectra reported are generally TRS. The only time TRS would not be used is if they were not available, or if they could not be used due to proprietary considerations. In either of these situations, the Required Response Spectra (RRS) would be used instead given that the test report or equipment file indicated that the test level enveloped the RRS.

In test report, the TRS are shown either as graphs or as discrete ordinate values of spectral acceleration. The TRS data must be stored in the data base as discrete values at selected frequencies. The data base also includes the spectral damping value, TRS type (SSE or OBE), and test direction. Since some test specimens may contain sub components tested at the same time and which may also be of interest in the data file, they are also included in the data base along with the corresponding in-equipment TRS.

Equipment must be classified by evaluating design details and material which affect dynamic response and ability to resist loads. Equipment types which have similar operating principles and design features, but differ mainly in size, could be classified in the same subclass. If there are significant differences, a different classification (i.e., a subclass) would be used. The final result is to identify low-diversity sets of data, or "clubs", appropriate for the equipment items that are included.

In a typical test report, there are multiple TRS, since at least five OBE tests and one SSE test are performed in one direction, then repeated for a second direction. They may be slight variations in amplitude for different inputs in the horizontal and vertical directions.

After all the information has been entered into the data base, it is reviewed and independently checked for accuracy with respect to test report information. Once the data have been collected and checked, they must stored on magnetic media. Experience Database Pag.73

Figure 9.1 Data collection process

Obtain Test Report

Reviw Data for Suitability and Completeness

No Reject Data if incompite or unsuitable

Yes

Assign code numbers

Select Representative Spctra

Enter in Database

Store on Disk & Transmit to Central Data Bank Experience Database Pag. 74

10. Experience data

Based on equipment list (Table 7.1) two cooperation agreements have been set with ISPE and EUROTEST (electric engineering company and test lab.). We received only preliminary information from ISPE based on site visit performed to Bucharest West and Brazi electrical plants. Both plants have been heavily affected during the 1977 earthquake. The roof of the main electrical building collapsed and important structural damages have been reported. For auxiliary structures where no structural damages have been observed no equipment failure or malfunction were reported. For this reason ISPE extended the investigations to other two electrical plants. Equipment check list forms have been distributed. ISPE promised to provide us the filled checklist forms at the end of October. This data will be reported as an addendum to the present report.

EOROTEST provide us very useful and good quality information. An equipment list tested by EUROTEST is presented in table 10.1. Test data checklist for the following equipment have been collected and are presented in appendix 1 :

No. Generic Class Equipment type

1. Electric Motor ASCEN, 0.63 Kw

2. Electric Motor ASAD 100-4, 2.2 Kw

3. Air operated valve Pneumatic Control Valve CSC 3/86

4. Chillers Honeycomb chiller for power transformer \ forced oil and air circuit

5. Low voltage switchgear Double microswitch ex-proof

6. Batteries Stationary batteries with tube plates

7. Instruments Electric flow signallizer for potential explos atmosphere

8. Instrument racks Drawer Rack

9. Instruments Explosion-proof casing pressostat

10. Instruments Pressure gauge O60, axial head type G25

11. Instrument racks Valve supplying capsular pane! TCV

12. Panel boards Ex Signals box

13. Switch boards Low voltage panel Experience Database Pag.75

14. Switch boards Electric switch, box for driving closing/opening mechanism

15. Panel boards Distribution pane! for illumination

In appendix 2 is presented a brief description of EUROTEST facility. The quality of information provided by EUROTEST meet the requirement to be included into database. ExpGrisnce Database Pag.76

Table 10.1 SEISM TESTED PRODUCTS IN SC EUROTEST SA

No Item Manufacturer Test date Test result 1 Power Supplying Rack I Automatica 29.11.84 adequate design I.P.A. no. R4/449 Bucuresti 73303-300 2 Frame Distributing Rack DR I Automatica 29.11.84 adequate - design IPA no. R4/449 Bucuresti 73303-200 3 Conventional Automation I Automatica 29.11.84 adequate Panel TC design IPA Bucuresti no.447.73-801K-l-V5 4 d.c.Distribution Panel I Automatica 29.11.84 partial . TCC-1-220V (rack DVDZ,D2) Bucuresti adequate design IITPIC diagram 242- 2185-37/c 5 : a.c.Power Supplying Panel for 1 Automatica 29.11.84 inadequate MOV. design I1TPIC circuit Bucuresti diagram 241-6671-01 & ; 241-6671-02 Panell(TF21- i l),3(TF21-3),4(TF22-4) 6 ; d.c. Panel T 24-801 I Automatica 29.11.84 adequate Bucuresti 7 Stationary Battery with Tube I Acumulatorul 25.12.84 adequate : Plates 16S-320 Bucuresti 8 Stationary Batten,' with Tube I Acumulatorul 25.12.84 adequate Plates 8S-640 Bucuresti 9 ; Stationary Battery with Tube I Acumulatorul 25.12.84 adequate I Plates 16S-350 Bucuresti 10 Explosion-Proof Casing I.M.F. Bucuresti 12.03.85 inadequate Pressostat with Membrana I Atmosphere separator G9132153208010 11 Pressure Gauge 060 for j I.M.F. Bucuresti 31.05.85 adequate ; Automation, with Axial Pin Type G25 12 ! Explosion-proof Casing I.M.F. Bucuresti 31.05.85 inadequate ] Thermostat with Capillary 1 Tube & probe type G923 i Experience Database Pag.77

No Item ~ Manufacturer Test date Test result 13 Relative Presure electronic IEPAM-Barlad 31.07.85 partial transducer type FE-1GM (0.3-=- adequate 0.5MPa) 14 Differential presure electronic IEPAM-Barlad 31.07.85 partial transducer type GFE-3DL adequate 15 Differential presure electronic IEPAM-Barlad 31.07.85 partial transducer type GFE-3DH adequate 16 Electropneumatic converter of lEPAM-Barlad 9.08.85 partial" unifyed signals adequate type GELA-1043 17 Power supplying Rack Automatica Bucuresti 12.08.85 adequate RA-1100-CO 18 Power supplying Rack 24Vdc Automatica Bucuresti 12.08.85 adequate 1DA1, design Rl 449,73,304B/03.07 19 Conventional automation panel Automatica Bucuresti 12.08.85 adequate P17-P18 20 Unit TF40, rack D,&A» Automatica Bucuresti 12.08.85 adequate design IITPIC no 242 2424-01 21 Interlock equipment Automatica Bucuresti 12.08.85 adequate TIB 19P-21P, design IPA no 449 73-304B/011 22 Auxiliary rack for signalising F.E.A. Bucuresti 14.08.85 adequate & locking 1100 DASB-3 23 Control board Tec 9-24V Automatica Bucuresti 23.09.85 adequate design IITPIC no. 242-2185 24 Control board Tec 5-24Vdc Automatica Bucuresti 23.09.85 adequate design IITPIC no. 242-2185 25 Unit Tdc 220 racks DuD2tDi Automatica Bucuresti 23.09.85 adequate design IITPIC 242-2372 26 d.c. Panel TCC 5/24V Automatica Bucuresti 28.09 85 adequate 27 D.C. Panel 9-24V Automatica Bucuresti 28.09.85 adequate 28 Automation Rack TCC 220 Automatica Bucuresti 28.09.85 adequate 29 Conventional Automation Automatica Bucuresti 07.10.85 adequate Panel P17P18 30 Conventional Power Supplying Automatica Bucuresti 06.11.85 adequate Panel PA Experience Database Pag.78

No Item Manufacturer Test date Test result 31 Separator Membrane for IEPAM Birlad 23.11.85 partial Differential Pressure Electronic adequate Transducer FE-3DM+MS 32 Level Electronic Transducer IEPAM Birlad 24.11.85 partial with Change-Over Switch adequate Reverser GFE 7BT 33 Turbulent Current Brake Control Electromotor 28.02.86 inadequate Pannel TC-22R Timisoara 34 Asynchronuous Three-Phases IME Bucuresti 20.02.86 adequate Motor. Explosion Proof AS AD 80A-4; 0.55kW; 1500rpm; 380V 35 Asynchronuous Three-Phases IME Bucuresti 20.02.86 adequate Motor, Explosion Proof AS AD 100-4; 2.2kW; 1500rpm; 380V 36 Asynchronuous Three-Phases IME Bucuresti 20.02.86 adequate Motor, Explosion Proof AS AD 132-S-4; 5.5kW; 1500rpm; 380 V 37 Asynclironous Tliree-Phases IME Bucuresti 20.03.86 adequate Motor, Type ASCEN 0,63kW 1500rpm 38 AdjustablePower Source IPA Brasov 16.04.86 inadequate 10-110Vd.c.;20A 39 Asynchronous Three-Phases IME Bucuresti 20.03.86 inadequate Motor, Type ASCEN SN 12,5kW;1500rpm 40 Low Voltage Distribution Panel I Automatica 24.05.86 adequate with Detachable Drawers and Bucuresti Apparatuses "Distribloc CNE" 41 G- Execution Protection Sheath ITRD Pascani 10.06.86 adequate 42 Signalling Box -Explosion-Proof I Electrocontact 30.06.86 adequate Code 7020 G I-1 Botosani 43 Double Microswitch I Electrocontact 01.07.86 inadequate Explosion-Proof Botosani Code 6145 GI-1 44 Temperature Pneumatic IEPAM Birlad 28.07.86 adequate Transducer GT.PT 45 Capsular Bars 0.4kV; 2500A IPTE Alexandria 15.08.86 partial adequate Experience Database Pag.79

No Item Manufacturer Test date Test result 46 Electric Switch Box ExD 11BT4 I Contactoare Buzau 30.09.86 inadequate for Driving Mechanisms of Closing/Oppening 47 Electric Stationary Lead I Acumulatorul 13.11.86 adequate Accumulators with Tube Plates, Bucuresti Type PAS, for C.Ch.Drobeta, 8S-640 48 Electric Stationary Lead I Acumulatorul 13.11.86 adequate Accumulators with Tube Plates, Bucuresti Type PAS. for C.Ch.Drobeta, 16S-350 49 Main Distribution Panel I Automatica 04.11.86 adequate 0.4kV; Type POWER CENTER Bucuresti 50 Control Box Type CC21 I Automatica 10.11.86 adequate Bucuresti 51 Control Box Type CC9 I Automatica 10.11.86 adequate Bucuresti 52 Lamp Fitting with' Incandescent ELBA Timisoara^ 28.11.86 partial Lamps for NPP Type PCN adequate 3x60W N4 53 Lamp Fitting with Incandescent ELBA Timisoara 28.11.86 partial Lamps for NPP Type AIN 60W adequate 54 Lamp Fitting with Fluorescent ELBA Timisoara 28.11.86 partial Lamps Type FIPAD 01-240 N4 adequate Hanged on 2 chains 55 Lamp Fitting with Incandescent ELBA Timisoara 28.11.86 partial Lamps Type FIDIO 03-440 N4 adequate Hanged on 4 chains 56 Lamp Fitting with Incandescent ELBA Timisoara 28.11.86 partial Lamps for NPP Type PCN adequate lx60WN4 57 Lamp Fitting with Incandescent ELBA Timisoara 28.11.86 partial Lamps for NPP Type AIN adequate 60W N4 Mounted on Wall 58 Low Voltage Panel PL 1607 I. Automatica 22.01.87 adequate Bucuresti 59 Low Voltage Panel PL 1610 I. Automatica 22.01.87 adequate Bucuresti Experience Database Pag.80

No Item Manufacturer Test date Test result 60 Low Voltage Panel PL 19 I. Automatica 22.01.87 adequate Bucuresti 61 Low Voltage Panel PL 32 I. Automatica 22.01.87 adequate Bucuresti 62 Low Voltage Panel PL 1620 I. Automatica 22.01.87 adequate Bucuresti 63 Capsular Panel for Valve I. Automatica 26.01 87 adequate Supplying TCV Bucuresti 64 Lamp Fitting with Incandescent ELBA Timisoara 14.02.87 partial Lamp Type AEI 1x25 W N4 adequate Mounted on Wall 65 Lamp Fitting for Safety ELBA Timisoara 14.02.87 adequate Illumination Type CDIA-01 N4 66 Lamp Fitting for Safety ELBA Timisoara 14.02.87 adequate Illumination Type CDIA-02 N4 67 Lamp Fitting for Safety ELBA Timisoara 14.02.87 adequate Illumination Type LMCER-01 N4 68 Lamp Fitting with Mercury-Arc ELBA Timisoara 14.02.87 adequate Lamp for NPP Type IEV 250 N4 RS, Mounted on Wall 69 Rotameter Type Flow Indicator ITRD Pascani 28.02.87 adequate with and without Limit Contacts, DRD-92 G 70 Pilot Valve with Pneumatic IEPAM Birlad 07.03.87 partial Control G-VCP 3/2 adequate 71 Lamp Fitting for Fluorescent ELBA Timisoara 16.03.87 adequate Lamps Type FIRA 01-240 N4 72 AdjustablePower Source IPA Brasov 16.03.87 adequate 90-110Vd.c.;20A 73 Continuous Isotope Analysis G-Plant 03.09.87 adequate System for Heavy-Water Rimnicu-Vilcea 74 Asynchronous Three-Phases IME Bucuresti 17.12.87 adequate Motor. Type ASCEN SN 2,5kW; 1425rpm 75 Galvanic Separator SAN 11-NS FEA Bucuresti 20.02.88 adequate 76 Current Signalling Unit FEA Bucuresti 19.02.88 adequate SAN 21-NS No Item Manufacturer Test date Test result 77 Temperature Adaptor on 2 FEA Bucuresti 18.02.88 adequate Connexions ELT-164 NS Wall Mounting 78 Temperature Adaptor on 2 FEA Bucuresti 22.02.88 adequate Connexions ELT-164 NS Field Mounting 79 Galvanic Separator SG-36-NS IEIA Cluj-Napoca 20.02.88 adequate 80 Current Signalling Unit IEIA Cluj-Napoca 20.02.88 adequate USC-36-NS 81 Electric Flow Sigriallizer for IPEAPloiesti 09.11.88 inadequate Potentially Explosive Atmosphere and G-Execution 82 Thermoresistance TTR 1.4.06. ITRD Pascani 26.01.89 adequate NS III;'TTR 1.4.07. NS III; TTR 1.4.09. NS III 83 Electric Motor Type ASCEN IME Bucuresti 03.03.89 adequate 0.63; 1395 rpm 84 Protection Sheath TT 600-10- ITRD Pascani ; 18.03.89 adequate R081-PT-A 85 Electric Compressor 4 ECR 350 I. "Timpuri Noi" Buc. 27.04.89 adequate 86 Forged Protection Sheath for ITRD Pascani 29.05.89 adequate C. Ch. Drobeta Tr. Severin 87 Flow-Meter Probe ANUBAR ITRD Pascani 25.05.89 adequate 88 Room Thermoresistance ITRD Pascani 08.08.89 adequate Code TTR 7.2.01.7.4.9.01.0 Hor. Mount. & Vert. Mount. 89 Regular Thermoresistance ITRD Pascani 16.08.89 adequate Code TTR 1.6.1.7.3.5.1.0.1.0, Nom. Length 750 mm, Hor. Mount. & Vert. Mount. 90 Regular Thermoresistance ITRD Pascani 16.08.89 adequate Code TTR 1.3.1.6.3.5.3.7.2.0, Nom. Length 500 mm, Hor. Mount. & Vert. Mount. 91 Metallic Rack for 19" Drawers, I. Automatica 11.09.89 adequate D048 Bucuresti 92 Electric Motor Type ASCEN, IME Bucuresti 23.11.89 adequate lOkW, 1440 rpm, 380 V, class F 93 Distribution Panel for I. Automatica 29.11.89 adequate Illumination 5623-LP-33 Bucuresti Experience Database Pag.82

No Item Manufacturer Test date Test result 94 Generator Unit AGI 650-N "23 August" Bucuresti 01.12.89 adequate 95 Thermostat with Capillary Tube IMF Bucuresti 12.12.89 adequate and Probe with 2 Microswitches, code C 52 32 96 Simple Pressostat for Medium IMF Bucuresti 12.12.89 inadequate Pressure, code 914 97 Valves Battery BR 472 AN 3 IEPAMBirlad 23.01.90 adequate 98 Ignition Device for Flare Head, IPEP Bacau 26.01.89 adequate Execution G-I-l 99 Level Magnetic Indicator IAMC Otopeni 11.07.90 adequate IMN-4G 100 Flow Measurement Elements ITRD Pascani 22.08.90 adequate with ANNUBAR Probe 101 Hydrogen Sulphide Sensor IPA Craiova 11.09.90 adequate 102 Indication Device 1 AIS NS IAEM Timisoara 26.09.90 adequate 103 Generator Unit AG I-650-G "FAUR" Bucuresti 30.10.90 adequate 104 Devices Type NOTOR 3 AG "Neptun" Cimpina 19.12.90 partial R400x4 for Electrical Driving of adequate Industrial Mechanisms 105 Devices Type NOTO 3 2AG for "Neptun" Cimpina 19.12.90 partial Electrical Driving of Industrial adequate Mechanisms 106 Thermostat with Room Probe IMF-SA Bucuresti 25.09.91 adequate Code G.924.21.31.04.001.ON 107 Presostat with Diaphragm and IMF-SA Bucuresti 26.02.92 adequate Piston Code COS 108 Switch with Fusible IFAR 32A Electroaparataj 15.05.92 adequate Code 5329 D3 NS3 Bucuresti 109 Pressure Gauge d>60 for IMF-SA Bucuresti 02.06.92 adequate Instrumental Air Code N.02.2 110 Monopoled Automatic Switch Electroaparataj 12.06.92 inadequate 100A Code 4805 D5 UWN 4R Bucuresti 111 Microcontact with Hinged Arm Electroaparataj 12.06.92 adequate Code 3368 D3 NS3 Bucuresti 112 Switch with Fusible IFAR 100A Electroaparataj 15.06.92 adequate Code 5327 D5 N4R Bucuresti 113 Triphased Inductive Reactance ICPE-SEE 14 06.07.92 inadequate 40uHz; 600A Bucuresti Code RIT 40-600-3 80-NS III Experience Database Pag.83

No Item Manufacturer Test date Test result 114 Automatic Switch AMRO-16A Electroaparataj 15.10.92 adequate Code 4635 D5NS3R Bucuresti 115 Galvanic Separator SG 36 NS IEIA CIuj 30.11.92 adequate 116 Relay RI 13, RS-72500 AT with Relee SA Medias 09.12 92 adequate PlugCF-llVd.c. 117 Honeycomb Type Chiller with SC TRAFO- 23.04.93 adequate Forced Air and Oil Circulation Electroputere SA for Power Transformers Craiova RTCF-150 118 Combinated Distribution Electric I Automatica 07.06.93 adequate Panels 48V d.c./220V ax. Bucuresti PL 1585A/PL1581A TD 55000-072 119 Intermediate Miniature Relay for Relee SA Medias 15.07.94 adequate d.c. Type RM-S, N 81001 120 Galvanic Separator SAN 11 NS FEA SA Bucuresti 15.09.94 adequate 121 Current Signaling Unit FEA S A Bucuresti 19.09.94 adequate SAN21NS 122 Temperature Adaptor Connected FEA S A Bucuresti 22.09.94 adequate on Two Wires ELT 164 NS 123 Differential Presostat with IMF S A Bucuresti 15.11.94 adequate Diaphragm and Piston Code N04.2 Experience Database Pag.84

11. Conclusion

The scope of this research project is to initiate seismic experience database collection for mechanical and electrical equipment listed in table 7.1. The first part of the study presents seismic information collected from the seismic national networks. Also a comprehensive probabilistic hazard analysis for the Vrancea earthquakes have been performed based on available instrumental and historical data. The results of the hazard analysis provide the magnitude-recurrence relationship, ground motion attenuation and site depended response spectra as a background for the seismic experience database.

Taking into account:

- the deep structure of the Vrancea source where three tectonic units come in contact - the stability of the angles of the fault plane and the motion on this plane - historical data of the seismic events reported in the last 200 years - instrumental data for 1977, 1986 and 1S90 Vrancea earthquakes - the ellipse-shape of the macroseismic field produced by the Vrancea source it was observed:

- slower attenuation on the direction of the fault plane (N45E) compared with the normal direction (N135E) - faster attenuation for deeper earthquakes and /or greater magnitudes - greater standard deviation of the attenuation function for deeper earthquakes and greater magnitudes - vertical acceleration attenuation slower than horizontal acceleration attenuation - velocity attenuation faster than the acceleration attenuation and lower than the displacement attenuation - in soft soil conditions the predominant period has the tendency to become lower as the energy of the earthquake increases; -the width of the frequency band has the tendency to become narrow as the energy of the earthquake increases; - the dynamic amplification factors have the tendency to decrease as the energy of the earthquake increases

Predicted values of the peak ground acceleration for 50 and 84 percentile, as function of hypocentra! distance, return period of magnitude and azimuths are presented. Note that a good prediction have been obtained for a return period up to 100 years.

Further research it is necessary in order to consider the correlation between the free field motion characteristics and soil data.

Considering theUS experience, the second part of the study describe the philosophy of an experience based generic approach, database structure and collection procedure. Also data availability and data collected are presented. Mote that in Romania there are no Experience Database Pag.85

coordinated programs for post earthquake investigation, or seismic experience data collection. Considering the limited budget of this project, cooperation agreements have been set with ISPE (electric utility engineering company) and EUROTEST (test lab). In order to collect seismic experience data checklist forms and an equipment list were provided by S&A. Due to difficulties encountered during seismic data collection from(no post earthquake investigation reports, low cooperation of utility technical staff, etc.), this process require more time and effort. The seismic experience data will be reported in an addendum to this report until the end of this year.

So the experience data presented in this report comes only from the test laboratory EUROTEST. They provide us a full list with mechanical and electrical equipment that have been tested (proprietary information) and test data information for a limited set of equipment. Also EUROTEST expressed their disposability for future cooperation. Note that EUROTEST activity is based on a QA program and this is reflected in a good quality of data.

This report demonstrate the availability of seismic experience data and initiate the data collection process. The future of this process is strongly depended by creating an organized an coordinated national/international program. A seismic expert team must be set and maintained for post earthquake investigation, data collection review and validation. Once the experience database will become operational the first benefit will be the reduction of the seismic safety evaluation effort related with mechanical and electrical equipment. • Experience Database Pag.86

12. References

2.1 Achauer U., Granet M., Deschamps A., Enescu D., Oncescu L., Zugravescu D., Demetrescu C, Fuchs K., Bonjer K.-P., Wenzel F., 1993. Lithoscope Contribution to EUROPROBE's Vrancea Integrated Seismic Project (LEVISP), Geophysicaiisches Institut, Universitat Karlsruhe

2.2 Achauer U., Oncescu L, Spakman W., Wortel R., 1993. EUROPROBE's Dynamics of the East Carpathian Arc Project (DECAP), Geophysicaiisches Institut, Universitat Karlsruhe

2.3 Bolt B.A., 1989. The nature of earthquake ground motion. Ch.1 in The Seismic Design Handbook, edited by Farzad Naeim. Van Nostrand Reinhold, New York

2.4 Bonjer K.-P., Apopei I., 1991. Ermittlung und Vergleich von Skalierungsmodellen fur seismologische und ingenieurseismiche Kenndaten im Nahbereich von Erdbeben aus der Vrancea-Region und dem Oberrhengraben. Bundesministerium fur Forschung und Technologie, Geophysikalisches Institut, Universitat Karisruhe

2.5 Deschamps A., Patau G. Lyon-Caen H., 1990. Study of an intermediate depth earthquake in Vrancea (Romania), May 30, 1990. Preliminary report, institut de Physique du Globe de Paris, Universite de Paris 7\

2.6 Deschamps A., Monfret T., Romanowicz B., 1986. Preliminary source parameters of the Romanian earthquake of Aug 30, 1986 from Geoscope Network Data VLP and BRB channe!s,_EOS Trans., AGU.67, 44

2.7 Constantinescu L, Enescu D., 1985. The Vrancea earthquakes. Editura Academiei, Bucuresti (in Romanian)

2.8 Fuchs K., Bonjer K.-P., Bock G., Cornea !., Radu C, Enescu D., Jianu D., Nourescu A., Merkler G., Moldoveanu T., Tudorache G., 1979. The Romanian earthquake of March 4, 1977. I! Aftershocks and migration of seismic activity. Tectonophysics, 53, p.225-247

2.9 Kanamori H., 1977. The energy telease in great earthquakes. J. Geol. Res., 82, 20

2.10 Katayama T., Seismic Risk as expressed by acceleration response of single degree of freedom system. Bulletin of Earthquake Resistant Structure Research Center. No 12, March 1979, University of Tokyo, p. 15-20

2.11 Muller G., Bonjer K.-P., Stokl H., Enescu D., 1978. The Romanian earthquake of March 4,1977.1. Rupture process inferred from fault-plane solution and multiple- event analysis. J. Geophys, 44, p.203-218 Experience Database Pag.87

2.12 Oncescu M.C., 1987. On recurrence and magnitude of Vrancea earthquakes (in Romanian). Report CFPS-34-1987

2.13 Radu C, 1974. Contribution a I'etude de la seismicite de la Roumanie et comparaison avec la seismicite du bassin Mediterraneen et en particulier avec la seismicite du Sud-est de la France. These de Dr. Sci. Universite de Strasbourg

2.14 Radu C, Oncescu M. C, 1980. Focal mechanism of Romanian earthquakes and their correlation with tectonics. I Catalogue of fault plane solution (in Romanian). Report CFPS/CSEN/30.78.1 2.15 Rakers E., Muller G., 1982. The Romanian earthquake of March 4, 1977. Ill Improved focal model and moment determination. J. Geophys., 50, p. 143-150.

2.16 Tavera J., 1991. Etude des mecanismes focaux de gros seismes et sismicite dans la region de Vrancea-Roumanie. Institut de Physique de Globe de Paris, Universite Paris 7

2.17 The March 4, 1977 Romanian earthquake, Editura Academiei, Bucuresti 1982, (in Romanian). Ch.3 The source of the March 4, 1977 earthquake and its associated directivity effects, by Enescu, D. Ch.4 Seismicity of the territory of Romania with special emphasis on Vrancea region, by Radu, C.

3.1 Algermissen ST., Leyendecker E.V., 1992. A technique for uniform hazard spectra estimation in US. 10th World Conference on Earthquake Engineering, Madrid, 19-24, July, 24. Proceedings. Vol.1, p.391-397. Balkema: Rotterdam

3.2 Cornell C.A., 1968. Engineering seismic risk analysts. Bulletin of the Seismological Society of America. Vol.58, No.5, p. 1583-1606

3.3 Drakopoulos J.C., 1984. Report for the Task Group on Calibration of attenuation laws. UNDP/UNESCO Project on earthquake risk reduction in the Balkan region. RER/79/014, Athens

3.4 Esteva L.T Rosenbtueth E., 1963. Espectros de temblores a distancias moderadas y grandes. Chilean Conference on Seismology and Earthquake Engineering. Proceedings, Vol.1, University of Chile

3.5 Joyner W.B., Boore D.M., 1981. Peak horizontal acceleration and velocity from strong-motions records including records from 1979 Imperial Valley, California earthquake. Bulletin of the Seismological Society of America, Vol.71, No.6, p.2011-2038

3.6 Kamiyama M., O'Rourke M.J., Flores-Berrones R., 1992. A semi-empirical analysis of strong-motion peaks in terms of seismic source, propagation path and local site conditions. Technical Report NCEER 92-0023 National Center for Earthquake Engineering Research, State University of New York at Buffalo Experience Database Pag. 88

3.7 Lungu D., Aldea A., Demetriu S., 1995. Seismic zonation of Romanian based on uniform hazard response ordinates. 5th International Conference on Seismic Zonation, Nice, Oct. 17-19 (to be presented)

3.8 Lungu D., Demetriu S., Radu C, Coman O., 1995. Uniform hazard response spectra in soft soil condition and EUROCODE 8. 7th International Conference on Application of Statistics and Probability in Civil Engineering, ICASP-7, Paris, 10-13 July (to be presented)

3.9 Lungu D., Demetriu S., Radu C, Coman O., 1994. Uniform hazard response spectra for Vrancea earthquakes in Romania. 10 * European Conference on Earthquake Engineering. Vienna, Aug.28-Sept.2, Proceedings. Balkema: Rotterdam

3.10 Lungu D., Demetriu S., Coman O., 1994. Prediction of Vrancea strong motions for design. Second International Conference on Computational Stochastic Mechanics, Athens, Greece, June 13-15

3.11 Lungu D., Coman O., Moldoveanu T, 1995. Hazard analysis for Vrancea earthquakes. Application to Cernavoda NPP site in Romania. 13th International Conference on Structural Mechanics in Reactor Technology, Porto Alegre, RS, Brazil, Aug. 13-18. \

3.12 Niazi M., Mortgat C.P., 1992. Attenuation of peak ground acceleration in Central California from observations of the 17 October, 1989 Loma Prieta earthquake. Earthquake Engineering and Structural Dynamics, Vol.21, p.493-507

3.13 Radu C, Lungu D., Demetriu S., Coman O., 1994. Recurrence, attenuation and dynamic amplification for intermediate depth Vrancea earthquakes. XXIV General Assembly . European Seismological Commission, Athens, 19-24 Sept.

3.14 Radu C, Vlad M.N., 1991. Progress report of Romania for Task Group 3: Correlation of macroseismic intensity with acceleration and other parameters of strong ground motion, Zagreb, May 20-24, p.A2.7-A2.9

3.15 Radu C, Apopei I., 1977. Application of the largest values theory to Vrancea earthquakes. Publ. Int. Geophys. Pol. Acad. Sc, A-5 (116), p.229-243

3.16 Radu C, Apopei I., 1977. Macroseismic field of Romanian earthquakes. Symposium on the Analysis of Seismicity and Seismic Risk.Liblice, Oct. 17-22, Proceedings, p. 193-208

3.17 Sigbjornsson R., Baldvinsson G.!.t 1992. Seismic hazard and recordings of strong ground motion in Iceland. 10th World Conference on Earthquake Engineering, Madrid, June 19-24, Proceedings, Vol.1, p.419-424. Balkema: Rotterdam Experience Database Pag.89

4.1 Anderson J.C., 1989. Dynamic response of buildings. Ch.3 in The seismic design handbook, edited by Naeim F., Van Nostrand Reinhold, p. 81-119

4.2 ASCE 4-86. Standard for seismic analysis of safety-related nuclear structures and Commentary. American Society for Civil Engineers, NY, 1986

4.3 ASCE 7-93 and ASCE 7-88. Minimum design loads for buildings and other structures. American Society for Civil Engineers, NY, 1993 and 1988

4.4 CEN/TC 250/SC 8/N 83/ENV 1998-1-1, EUROCODE 8, 1993. Earthquake resistant design of structures. Part 1-1: Genera! rules and rules for buildings. Seismic actions and general requirements for structures

4.5 Clough R.W., Penzien J., Dynamics of structures. Me Graw Hill Book Co., NY

4.6 Ghiocel D., Lungu D., 1975 Wind, Snow and Temperature Effects on Structures Based on Probability. Abacus Press, Kent, England

4.7 Kanai K., 1985. Engineering seismology. University of Tokyo Press, p.105-110

4.8 Kennedy R.P., Shinozuka M., 1989. Recommended minimum power spectra! density functions compatible with NRC Regulatory Guide 1.60 Response spectrum. Prepared for Brookhaven National Laboratory

4.9 Kennedy R.P., 1989. Comments on proposed revisions to standard plan seismic provisions. Prepared for Brookhaven National Laboratory

4.10 Lungu D., Scherer R.J., Coman O., Zsohar M., 1994. On the Phenomenon of long predominant periods of ground vibration during 1990, 1986 and 1977 earthquakes from Vrancea source. Proceedings of the Second International Conference on Earthquake Resistant Construction and Design, ERCAD, Berlin, 15-17 June. Proceedings.Vol.1, p.51-59 .Balkema: Rotterdam

4.11 Lungu D., Coman O., Cornea T., Demetriu S., Muscalu L., 1993. Structural response spectra to different frequency bandwidth earthquakes. 6th International Conference on Structural Safety and Reliability SCOSSAR '93, Innsbruck, Aug. 9- 13. Proceedings, Vol.3, p.2163-2170. Balkema: Rotterdam

4.12 Lungu D., Cornea T., Demetriu S., 1992. Frequency bandwidth of Vrancea Earthquakes and the 1991 edition of Seismic code of Romania. 10th World Conference on Earthquake Engineering, 19-24 July, Madrid, Proceedings, Vol. 10 p.5633-5638. Baikema: Rotterdam

4.13 Lungu D., Popovici A., Cornea T., 1992. Studies concerning the structural behaviour of buildings in Bucharest to Vrancea earthquakes. First Internationa! Experience Database Pag.90

Conference on Disaster Prevention in Urban Areas, ICDPUA-1, Teheran, May 11- 13

4.14 Lungu D., Cornea T, 1990. Grounding of design forces in Romania based on Vrancea seismic records of 1986 and 1977. 9th European Conference on Earthquake Engineering, Moscow, Sept., Proceedings, Additional Vol., p.63-72

4.15 Lungu D., Demetriu S., 1990. Duration effect on RMS acceleration. Application for Vrancea and Armenia earthquakes. 9th European Conference on Earthquake engineering, Moscow, Sept., Vol. 10A, p. 164-173

4.16 Lungu D., Cornea T., 1989. The 1986 and 1977 Vrancea earthquakes. Stochastic analysis of their spectral content and structural effects. Constructii Nr.3-4, p. 25- 50. (in Romanian)

4.17 Lungu D., Cornea T., 1988. Power spectra in Bucharest for Vrancea earthquakes. Symposium on reliability-based design in civil engineering. Lausanne, July 7-9. Proceedings Vol.1, p. 17-24

4.18 Lungu D., Ghioce! D., 1983. Probabilistic methods in structural design. Editura Tehnica, Bucharest (in Romanian)

4.19 Martin R.G., Dobry R., 1994. Earthquake site response and seismic code provisions. NCEER Bulletin, Vol.8, No.4, National Center for Earthquake Engineering Research, State University of New York at Buffalo, p. 1-6

4.20 Mohraz B., Eighadamsi F.E., 1989. Earthquake ground motion and response spectra. Ch.2 in The seismic design handbook, edited by Naeim F., Van Nostrand Reinhold, p.32-80

4.21 Okamoto S., 1985. Introduction to earthquake engineering. University of Tokyo Press, Second edition, p. 102-105

4.22 Scherer R.J., Riera J.D., Schueller G.I., 1982. Estimation of the time-dependent frequency content of earthquake accelerations. Nuclear Engineering and Design 71, p.301-310. North-Holland Publishing Co.

4.23 Schueller G.I., editor, 1991. Structural dynamics. Recent advances. Springer- Verlag, Berlin Heidelberg

4.24 Schueller G.I., Shinozuka M., editors, 1987. Stochastic methods in structural dynamics. Martinus Nijhoff Publishers, Dordrecht, Boston, Lancaster

4.25 Simos N., Philippacopoulos A.J., 1993. Theoretical bases of DIGES. Brookhaven National Laboratory, Prepared for US Nuclear Regulatory Commission, 111p Experience Database Pag.91

4.26 Takizawa H., Jennings P.C., 1980. Collapse of a model for ductile reinforced concrete frames under extreme earthquake motions. Earthquake Engineering and Structural Dynamics, Vol.8, p. 117-144

4.27 Trifunac M.D., Brady A.G., 1975. A study on the duration of strong earthquake ground motion. Bulletin of the Seismologica! Society of America, Vol.65, p.581-626

4.28 Vanmarcke E., 1984. Random fields: analysis and synthesis. The MIT Press, Cambridge, Massachusetts

4.29 Withman R.V., editor, 1992. Proceeding from site-effects workshop. Oct.24-25 1991. Technical Report NCEER-92-0006, National Center for Earthquake Engineering Research, State University of New York at Buffalo

7.1 Seismic Equipment Qualification Using Existing Test Data, EPR! NP 4297, Oct. 1985

7.2 Generic Seismic Ruggedness of Power Plant Equipment, EPR! NP 5223s, Rev 1. August 1991

7.3 S.J. Eder, R.P. Kassawara, Neil P. Smith, Future uses of earthquake experience data, Proceedings of the fifth Symposium, Orlando Florida, December, 1994.

7.4 R.P. Kasssawara, P.W. Hayes, K. Mertz, The use of experience data for seismic qualification of advanced plant equipmen. Proceedings of the fifth Symposium, Orlando Florida, December, 1994.

7.5 K.K. Banyopathyay, R.M. Kenneally, Guidelines for seismic qualification of equipement based on experience. Proceedings of the fifth Symposium, Orlando Florida, December, 1994.

7.6 EUROTEST - Seismic qualification in EUROTEST- Bucharest. Analysis, Testing, Earthquake Experience and Indirect Methods. Advanced in Modern Low-cost and Reliable Seismic Qualification of Industrila Equipment. Research report 1995.

7.7 O. Felecan, A. Olaru, EUROTEST - A critical approch towards seismic qualification by analysis for electrical equipment. First National Simposium on High Voltage Tests, Mesurements and qualification of Electrical Equipment, Craiova, Romania, Sept. 1996 - to be presented. Experience Database Pag.92

13. Acknowledgements

This work was supported by the INTERNATIONAL ATOMIC ENERGY AGENCY, VIENNA, under Contract No.8233/N.

The KINEMETRICS INC., Pasadena, California generously made their strong motion analysis software available for the investigation of Vrancea accelerograms used in this report. We wish to thank very much to Jean Marie Fort and Dan Radulescu for this.

The report is the result of a co-operative effort made by the members of the group.

The data for the hazard analysis were obtained from: (i) Dr. C. Radu and M. Rizescu, National Institute for Earth Physics, Bucharest-Magurele; (ii) Dr. H. Sandi and S. Borcia, Building Research Institute, Bucharest; (iii) Dr. T. Moldoveanu, Institute for Geophysical and Geotechnical Studies, Bucharest; (iv) Dr. Vasily Alkaz, Institute of Geophysics and Geology, Academy of Sciences of Moldova, Chisinau and (v) Dr. M.C. Oncescu, Geophysicalisches Institut, Universitat Karlsruhe- Experience data was collected in cooperation with Ovidiu Feiecan - Program Manager, Pomiliu Taras - Scientific Director from EUROTEST and losif Bilcan - Head of Thermo- mechanical Department, Nicoiescu Nicolescu - Head of high pressure pipes, from ISPE Bucharest. We wish to thank very much for their cooperation and contribution to this report. Experience Database Pag.93

APPENDIX

Equipment test data 1. FORM ID: MOT 002 2. GENERIC CLASS: Electric Motor 3. GENERAL EQ. TYPE: Electric motor type ASCEN 4. SPECIFIC EQ. TYPE: - nominal power: 0,63 kW - nominal voltage: 380 V a.c. - nominal rpm: 1395 - nominal frequency: 50 Hz - cos cp = 0.749 - insulation class: F - current intensity: 1,76 A 5. MANUFACTURER STANDARDS: STRNS 396/87; NTRNS-0-Appendix 4; STRNS 397/24.10.88 6. MANUFACTURER/MODEL: IME-Bucuresti / 14 F 4 T-4 F IM 1001 7. SIZE: 344 x 230 x 230 nun S. WEIGHT: 42 kg 9. ELEVATION (CG): 100 mm (est.) 10. SOURCE OF INFO.: seismic test i 11. TEST ORGANIZATION: LCCNE - ICPE (nowadays EUROTEST SA) 12. TEST PLAN: 397/24.10.88 & 397A/18.11.88 13. TEST REPORT: 3.1. 5061 , 03.07.1989 14. ENVIRON. QUAL,: - Thermal accelerated ageing (B.I. 5344/10.11.1989; B.I. 5086,04.03.1988). Description: - specimens: three dismantled motors (rotor + siator) - temp.: 200 deg. C, duration: 514 h - Radiation (B.I. 5131/31.03.1988) - Specimens: three motors - Flow: 400 KRad/h; Integrated dose: 40 Mrad; Duration: 100 h: Temp.: 21-25 degC Humidity: 45-55%; Press.: 1 atm - Vibration ageing ( B.I. 5306/12.09.1988) - Acceleration: 1.5 g; Frequency: 50 Hz: Duration: 1 h - During test, motors were running, unloaded 15. TEST DATE: 02.1989 16. INPUT DIRECTION: Triaxial. simultaneous, independent inputs 17. TEST TYPE: - triaxial, monotrequency - sine sweep. 5 octave/min - frequency range: 1 + 44 Hz - 5 DBE 18. FUNCTION" MONITORED: RPM, idle running 19. ACCEPT CRITERIA: - no abnormal voltage or spurious operation - no structural damages 20. RESONANT SEARCH: not measured; used damping ratio: 1% 21. TEST MOUNTING: floor, on support plate 22. ANCHORAGE: - 4 bolts M8x25, nuts, washers and Grower washers - motor on support - 4 bolts M10x75, nuts, washers and Grower washers -support on table 23. DAMAGE: none 24. COMMENTS: - RRS required by STRNS 396/87 are in accordance with TENDERING DOCUMENTS 79 RN 34322-003(R) - Add No.2 - App 1 and 79 RN 34612-001- Add No.2 - App - SEISMIC REQUIREMENTS - Damping value: 1 % - Motor running and RPM variation have been estimated by noise monitoring - Support - bolted steel plate 230 x 230 x 20 03 . _ ver//co/

A-C/a/era/' ' A

/ - Mo/or A $C£M*O, SO 2- M - /C/=>£ ? 4- 5- '7f 77-SO 'yo /7?c?

RRS in* i nn TRS axa laterala-lEST i XUV"OO | 11CPE LCCNE j Incercare la seisa

3.750CO

2.50000 \M

anortizare IX 0.00000 i.GOCOO 10. COCO 50: COCO Hz IHEB MOTOR 0.63kW/i500rpn seria P61405

t-4 25*/. 01

RR8 TRS axa verticala-TEST i

J.V.VW |ICPE LCCNE Incercare la seism 1.75000

2.59000.

i.25000 \ anortizare IX 0.00000 } 1 I 1.00000 10.0000 50.0000 Hz IHEB KOTOR 0.63kW/i500rp« seria P61405

L * or/zonfafa A-C

A/7?or//zcrre/3 * /%

Arnor/vzore /3

A/nor/r*qre/3* 2%

/f ' Amor/fs&re/3 =/%

A /. / 1. FORM ID: MOT 001 2. GENERIC CLASS: Electric Motor 3. GENERAL EQ. TYPE: Asynchronous three-phases motor - explosion proof 4. SPECIFIC EQ. TYPE: - nominal power: 2,2 kW - nominal voltage: 380 V a.c. - synchron speed: 1500 rpm - nominal frequency: 50 Hz - cos cp = 0,72 - insulation class: F - protection degree: IP 55 - zone: I 5. MANUFACTURER STANDARDS: NTRG 189/83 6. MANUFACTURER/MODEL: IME-Bucuresti / AS .AD 100-4 7. SIZE: 405 x 340 x 250 (mm) 8. WEIGHT: 43 kg 9. ELEVATION (CG): 125 mm (wall mounting), 210 mm (floor mounting) 10. SOURCE OF INFO.: seismic test 11. TEST ORGANIZATION: ICPE-LCCNE (nowadays EUROTEST SA) + co-workers for technical assistance 12. TEST PLAN: - / 27.11.1985 13. TEST REPORT: B.I. 295 • 20.08.1986 14. ENVIRON. QUAL.: ILS atmosphere resistance - cone. 18-22 ppm: temp. 40-50 deg C; rel. humidity 70-80% test duration 21 days 15. TEST DATE: 06.1986 16. INPUT DIRECTION: Triaxial independent inputs 17. TEST TYPE: - test frequency range: 3^31 Hz - continuous sine test - 10 cycles at each testing frequency - 1/2 octave spaced test frequencies - 5 (five) OBE - 1 (one) SSE 18. FUNCTION MONITORED: - before test and during OBE: - phase current (idle running) - absorbed input power (idle running) - before and during SSE: - insulation resistance 19. ACCEPT CRITERIA: - no abnormal voltage or spurious operation - no structural damages - noise level < 77 dB al a distance of 1 m - vibration veloeitv •' 1.8 mm/s 20. RESONANT SEARCH: no resonant frequency was found within the frequency range ofl-r-33-Hz. - used value of damping ratio: 4% 21. TEST MOUNTING: - Ox & Oy: wall, on an L shaped support - Oz: floor, on the same support 22. ANCHORAGE: - 4 bolts M8x25, nuts, washers and Grower washers - for the motor - 4 bolts Ml0x75, nuts, washers and Grower washers - for the support 23. DAMAGE: none 24. COMMENTS: - support's amplification factor fa=l,l - RRS and test sequence as required by NTRG 189/83 - the TRS envelops the RRS shaped for a percentage of critical damping of 4% AOQXQ 3 Pag. 10 / 20 POZITIA DE MONTAJ A MOJQARELOR PE CELE 3 DlRECTli-

v±v

Fig.1

-3 -2

Fig. 2

-4 -2

Fig. 3

2. 4. de H0TOAHE-, Anexa-1 la \ 109-85 Fila 3/5

p. n •nr- Mpi *'-M min §JIPUL; MOTORULUl kW roMnin In "•• :Mn

..?•:>?• i* .--.>•• • ' -V ".-.•• ••'•• \ / •*•„ ;

ASAD 80a-4 0,55 1350 64 0,68 2,2 . 1400 : A-SA"'D-132M-4. 5,5 1450 86 P.76 2,2 2,2:

Fig.l

1. FORM ID: VCP.001. 2. GENERIC CLASS: Air"Operated Valves 3. GENERAL EQUIPMENT TYPE: Pneumatic Control Valve 4. SPECIFIC EQUIPMENT TYPE: - work pressure 1 Obar . - control pressure 1.5-1 Obar - nominal diameter 4mm - valve position normally closed - spring reseted valve 5. MANUFACTURER STANDARDS: CSG 3/86 + Changes 1 and 2 6. MANUFACTURER / MODEL: I.E,P.A.M. Birlad / G - VCP 3/2 7. SIZE [mm]: 55x36x20 8. WEIGHT [kg]: 0.300 (est.) 9. ELEVATION [mm]: 10 (est.) 10. SOURCE OF INFO: Seismic test 11. TEST ORGANISATION: Lab. INCREST, Lab. I.C.P.E.-L.C.C.N.E. 12. TEST PLAN: 20A/7.02.1987 13. TEST REPORT: B.I. 10015/7.03.1987 14. ENVIRONMENT QUALIFICATION: -cvclic humid heat test: - 2 cycles, 12+12 h each. +40 deg C & return to 20 deg C. rel. humidity 90% . -vibration test: - a=3g, I h, f= 12; 18: 25; 40; 55 Hz, without control signal & 1 h, same frequencies & acceleration with 10 bar control signal -shattering test: - a=lg; f=100 shatt..min; 40 min - after each test airtightness and functioning have to be checked. 15. TEST DATE: 03/1987 16. INPUT DIRECTION: single axis 17. TEST TYPE: - continuous sine test - 14 cycles at each testing frequency - 1/2 octave spaced test frequencies - test frequency range 1-3 3 Hz - 5 (five) OBE along each axis - 1 (one) SSE along each axis 18. FUNCTIONS MONITORED: - air-tightness of the pneumatic circuit was monitored before, during and after the seismic test. 19. ACCEPT CRITERIA: - proper airtightness of the pneumatic circuit. 20. RESONANT SEARCH: - no resonant frequencies found in 1-33Hz frequency range - the natural frequencies of the system - above 33 Hz 21. TEST MOUNTING: - vertical: -floor, on intermediate support - horizontal (s/s, f b): -wall, on intermediate support 22. ANCHORAGE: - flange bolted on shaking-table (M26xl,5) - intermediate support bolted on flange (4 screws MIO and nuts) - specimen bolted on support (2 screws M4 and nuts ) 23. DAMAGE: - no structural damage 24. COMMENTS: -Required qualification spectra (Ref. CSG 3/86) were table input spectra. A loss of control pressure was noticed at one of the two tested valves. This loss had no influence on valve operating condition and air-tightness of the control circuit is not an accept criterion. Only one intermediate support was used, on three different positionings, in order to test specimen along each axis. W.I.Et. CU CCIU PI^U":.l;.ilCA Ti G VCP 3/2

V V w

Piese c/e schimh r&comondah I Gornihra OR

G VCP 3/2 i I ~. 4. 000000. L VTSTTIL CU COKAHDA R7EULIATICA n.So G 3B-87 TIP G VCP 3/2 Flla 3/4

f?-J § V •v ^ Piese de schimb recomoridok \- Gomiiuro OR £000.4360'— Z - Gamihra OR 2000.0350 3- Arc compresie 3807. 023U

rj^l!

I & /. / 000000 ^ITTIT. CU CO:AAi-rnA TIP.G VCP 3/2" Pile -2O/.23

qauri 10,5

T—urnrtrifiuiffiirrrntrtn 20

vrV II.I

1 r 1 im // r/r tr 1 1 r r rm

; _lir_)O Ansomblu suporT~~pfr. verificore lo seism. Moterio/ ' OL 50 groshne .40 prindereo produsu/ui se ioce pn'n gaurile de 45 cu Zsuruburi ci cop hex. M if x 50 sf piulito h&xojonote MP4 . Fig. 2. L COMPARATIE INTRE SPECTRUL DE RASPUNS- RASPUNS DE INCERCARE- '

/, .,. dorhiQalAnrolx OP rvS COMRARAJIE MTRESPECTRUL DE RASPUNS ' '"' " " 7 CERUT-&CtS! SPEC TRUL DE RASRUNS DE 'iNCERCARE- jt&L,

j Punctde r j DirecffaN \Nn-fntrnrlflltrar Filtrat —octavo Wnortizare urba nr. ^cercbriiJ imasurQ nr.

|.11 M/i ill lii

jl/jii-jj! iiijii mil l.FORM. ID.:CHIL001 2. GENERIC CLASS - Chillers 3. GENERAL EQUIPMENT TYPE- Honeycomb type chiller for power transforme with forced oil and air circulation 4. SPECIFIC EQUIPMENT TYPE - nominal dissipated power 150 kw - protection class T2 - nr. of electrofan groups 2 pcs - total caloric transfer surface 96 mp - oil volume 701 - chiller mass whitout oil 900 kg - power consumption - idle running: 6.2 kw - loaded: 6.4 kw

5. MANUFACTURER STANDARDS: SI 49839/09.11.92 6. MANUFACTURER/ MODEL: SC TRAFO Electroputere SA/RCTF - 150 7. SIZE [mm]:2400 x 1600 x 750 8. WEIGHT [kg]: 970 9. ELEVATION [nun]: 300. 10. SOURCE OF INFO: Seismic test 11. TEST ORGANIZATION: EUROTEST SA ; 12. TEST PLAN: 9/8.04.93 13. TEST REPORT: RI 99 23.04.93. 14. ENVIRONMENT QT UNIFICATION.:vibration test:- triaxiah independent - horizontal acceleration 0.6 both axis - vertical acceleration 0.4; - sine-sweep, 1 octave.-mir 20 cycles. 10-55Hz 15. TEST DATE: 04 1993. 16. INPUT DIRECTION: triaxial, independent 17. TEST TYPE: - Monofrequency, sine - beat test - Test frequency range 1-3 3 Hz, 1/2 octave spaced, plus resonant frequencies. 15 cycles each sine beat. 3.5 sec paused, total duration including pauses 123 sec. - 5 OBE -1 SSE 18. FUNCTION MONITORED: .Alter test: - insulation resistance and dielectrical rigidity: air tightness 19. ACCEPT CRITERIA: No structural failure. Measured values of insulation resistence and dielectrical rigidity and air tightness as required by SI 49S39 20. RESONANT SEARCH: direction vertical longitudinal lateral mesuring point pump end 16.5 16.5;22;29 16.74;22:23.4;29 casing 23.4;27.3 - 17.75 - damping ratio not calculated 21. TEST MOUNTING: - floor, on 4 supports - one for each corner 22. ANCHORAGE: - supports on table: 4 bolts M20 - specimen on supports: 4 bolts M20 x 105, washers and Grower washers 23. DAMAGE: None 24. COMMENTS: - Test sequence as required by: CHANGE A. SI nr 49839 fig 182 - Support construction: square plate 500 x 500 x 50 [mm] fixed on bossages. Total support height 135 [mm]. ICMET DESEN DE INSTALARE T4 55366 Di i * V CRAIOVA BATERIE DE RAC1RE TIP RTCF .150 •Editial 10.07.1991 ~~| 1595 A

L 505 _

0210

Caracferistici tehnice -Capacitate de rdcire: j min150Kwj -Puterea consumGta Tn gol; I 6,2Kw; -Puterea consumeta n sar-j

-Masa neta f5rc ulei: ! max900Kgi -Volumul de ulei: 70 I j -Electropompa tip': ERMO100I -Electroventijator tip: *

-Presiunea Tn racitor ia pro-} ba hidrcmiicG: 5barri ;: -Suprafata totala de tran- | sfer caloric: 96m -Nivel global de zgamot: 3 + 3 dB i i

j ; V01 ISC 2-00

u... 7T7T i- • "'• i. I/.. * t. 'A i J ... • ... - __ "si i

Let.

1 • •.

••?-

•\

Cr. ••>.

T s' i A

STAS X 7 — OL C CfA - - ••

rv Mlot 0,5 U OL /? it; to V SO OL J? 2f

• !_ l *i*< anir yea •

i • ••*••" -x /i/~^"\+i< S&-01. 00

V6J/>j*7 /^. j j-$yr?/

Caracteristici iehnice ; -Capacitate de racire: | min150Kw ! -Puterea consumata In gol: ; 6,2Kw, -Puterea consurriGia n sar-j dn&: 7,£.Kw • -MQ5G neta fare ulei: ' max900Kg' -Volumul de uleu 70 I ;: -Electropompa tip- ERMO100J -Electroventijator fio: VA*T?530Vv' -Presiunea Tn racitor la pf"o-; ba hidrau'ica: 5 barri -Suprafcfa totala de tran- sfer caloric: 96 mz

-Nivel global de zgomot; ! i r max83 + 3dB L O L

r f: . -s Z .

..;;;i i« Leva la L'liE 1

L Lat. 1 i_J_Jj i_ . (J_, > I I I '"* « M r! TTTTTYT ••!:;!;; ! z :i i i I C '; r;:Ji' ' ' i i i I ULJUUL 7 *f i i" i i! ! !

r r-. c !

r

4 ' • ' ' .1 • ' .. ' : ' --' ' l i / I , I t 1 r t r i I • , 1* 25.CCCC 50.COCO i&O.GGO 125.0CO seconds

ax.a IongitutJinala i.20000r

h ift- i.:i; i5 I j! I- .i- I |! i 1 i »!•''. ' •'J J J t ! " J I I ? I m * -,&>»> t J r

-1.2000L • ' ' i . • . ' . J J 0. QCCOQ 25.C000 50.0^0 " seconds

axa verticaia T" T

n i it 5 ii S 1

IO'.L'T - f:.'iCHC:t TIP f/rii'i-

\J - -a- -

MY 'FREQ -RESF H2 ' 11fiG V: 2O'.OdB 40dB , •X: G.OQHz* 2QOH2- • 491.

/-'.';• .*••• '52?

•• -»<

-JO L.

gs»;;::^^^ ' {oo

y i. VUo

jDT.nnco. _ . core pjuj : DELHY; - * . Cn.rt"?D i fii/ERfiGING: FEflK 1500' : : : rkix SPnn -" 20GHz if 250mHz • T 4s .JM'.95»S rrurcD cocft.

CH.fi: ' .10V DC-DIRECT--. FILT-50TH • i.OOV/G G 'riERnT0R; fSEuDO RnHDOri HGISE

>. fC 1. FORM ID: DSW001 2. GENERIC CLASS: Low voltage svvitchgear 3. GENERAL EQUIPMENT TYPE: Double microswitch ex-proof 4. SPECIFIC EQIUPMENT TYPE: - nominal voltage 380Vac - nominal current 4A - nominal frequency 50 Hz - protection class: IP 54 5. MANUFACTURER STANDARDS: NTR-G 131/83 STR-G131/AJBrC,D-85 6. MANUFACTURER / MODEL: Electrocontact Botosani/6145 Gil 7. SIZE: [mm] 180 x 110 x 210 8. WEIGHT:[kg] 2.4 (est) 9. ELEVATION: [mm] 100 (est) 10. SOURCE OF INFO: Seismic test 11. TEST ORGANIZATION: ICPE-LCCNE (nowadays EUROTEST SA) -r co-workers for technical assistance 12. TEST PLAN: 59-3.06.86. 13. TEST REPORT: BI 1482.9.07.1986 14. ENVIRONMENT QUALIFICATION: - vibration resistance test - thermal test: -cold: -25 dog C. 16 h -dry heat: -55 deg C. 16 li -humid heat: 6 cycles 12 -12h at 40 deg C - salty mist 15. TEST DATE: 06/1986 16. INPUT DIRECTION: single axis 17. TEST TYPE: - continuous sine test - 1.2 octave spaced test frequencies. 16 cycles at each testing frequency - test frequency range: 1-33Hz - 5OBE -^ one SSE along each axis IS. FUNCTION MONITORED: - during test: -the electrical working - the microcircuit break.es duration (-'onisec) - the electric contacts state - after test: - the proper working of the microswitch - mechanic and electric work during 15 manoeuvres at 380V4A 19. ACCEPT CRITERIA: - circuit hreakes signaled by the LED - proper mechanic and electric working during 15 manoeuvre at 3X0V4A - no microcircuitbreakes :" 5msec - no abnormal voltage - no spurious operation - no structural failure 20. RESONANT SEARCH: No resonant frequency was found in the frequency range 1-3 3 Hz with a sweep rate of 2 octaves/min. 21. TEST MOUNTING: - floor; with 2 mainstays 22. ANCHORAGE: - support on table: 2 bolts M6 - specimen on support: 1 bolt M6 23. DAMAGE: None 24. COMMENTS: - RRS and test sequence as required by STRG/C-85-fig.4. Discrete RRS and TRS are established in l-33Hz frequency range (11 steps for each OBE and 10 steps for SSE) lCM. - INSNTUTUL DE CERCETARE $TltNTlFlCA $t INGTNERIE Nr. bi TfHNOLOGlCA PENTRU JNDUSTWA ELECTROWHNJCA

OUSiSRVASII SI HBWSUHDMX ...... In Moaentul vpUoSrll ««Il«l«SrU«r lasupra pxodu«ulttl» in •entrul lul da «r«ittat« na%i aS. -\ I * *r* • - "...

. 1 * . i O i

Avind in vedere e£ prodns«l mi este echilltrat static, forts- zultatS, din ooiqpunerea aceatocr forte ereass^ un ootaent car© solloi- ta^uruburllo 1 de flzaxe. Avind in ve&ere eS la o Inoeroar* anteri oara aesste fluruturl s»au sl&bit pennltind amplifioar«a aolicitS- rilor selenioe aplicat© produsulul9 se reooaandl prlnderaa lul in 4 euruburl (douS pe fi«oare part© rez± figura 2), INSTITUTUL DE CERCETARI PENTRU INDUSTRIA ELECTROTEHNICA Pag.

16.06! 22,765 32,o42 1.521 1.537 •1 +2 S3E -

/lia/ I,ol7 l,42o 2tol3 2.841 4.o3o 5,633 3,oo5 11,263 o,2o4 o,538 lt35 2ft372 3j291 3.138 i +2 +2 +4 V"" •9 •10 +5 3.044 •I SS3 - CJ3t

£ AiZ7\ ie> 02i f 3,o64 u Ekf 3,121 >3 +0

02 f plzj ltoo9 l,41o 2,001 2,019 3.996 5.639 8,ol4 11,207 fe7 o215 o,574 1,083 1,553 1,555 1,551 l547 l,57o •0 +4 4 +3 i +5 OSS - 03

SGI3 02

l,ool l,4oo 1,934 2,3oa 3.965 5,596 11,232 Q o,2oo o 543 I,o27 I,6o7 2,399 3.27o 3.043 +3 t 3 +7 ' 1 COS—

-wPeutru produ3ole ow aoidilo 544*546 care* ou'foot ixioercato »i. oouforaa puaotolor 1,2,3 dla ils.4 32SG 131/C5-65J 0B3 - dlrao^la QX(544), 0X(546)

o,994 1,397 1,935 2,847 4,025095 5,659 8,ol5 11,283 0,213 o,572 I,o37 1,563 1,571 1.550 1,531 -t-8 is •4 +5 +5 033 - 0X(544), OY(546)

16,o43'- 22,736 32,o49 1-507 • 1,522 1,541 Sr^/I +6 +3 M _ 11N3 OE CSRCETARE $THNJiHCA $1 ' TfHNOLOOlCA PENTRU INDUSTRIA ELECTROT-EHNfCA Pag. ^

SSS - dlrec^la 0X(544)» OY (546)

1,419 2tol4 2.041 4fo26 5,675 11,29a t o,539 1,611 2,4oo 3,317 a of2o5 I,o3o 3,147 3,o67 Is 2 2 +Z .tUT • 5 SSS - direo$ia OX(544), Gl (546)

I6,o55 32,145 3.012 3,o85 2 032 - dirac+jia 0Y(544), 0X^546}

I, 1,424 2,o2o 2,849 4fo42 5,693 Stoo3 11,294 O.572 1,074 1,552 1,569 1,553 1,553 §66 o,2ob ±7 ±1 +5 44 +3 G3S - direofcia 0Y(544), 02(546)

QY(544), 0X(546) if ltol3 1,421 2,ol5 2,844 4,o31 5,637 7,983 11,255 o,2oo O.533 I,ol6 I,6o2 2,4ol 3,292 3.104 3,o35 o J2 • 7 ±J0 l +3 0Y(544), CQC(546)

15,996 31,903 a ' 3,lo6 3,123 i^rv -J +4 +4 0B3 - dlrectjia OZ

'''Ate? I,ol6 l,42o 2,014 2,839 4,o2o a,oo3 11.292 f7 o,2o2 o,573 I,o39 lf567 1,582 lt.595 1,618 1,612 •A 5T •, y . 03B -

SSS - 02

1.015 1,423 2,o25 ! 2,357 4,o46 5,691 8,o3o 11,236 0,531 I,o24 ' 1,616 2,421 3,3o3 3,184 3.132 o,2o5 +2 ! 4-G 1. FORM ID: BAT 001 2. GENERIC CLASS: Batteries 3. GENERAL EQ. TYPE: Stationary batteries with tube plates 4. SPECIFIC EQ. TYPE: - nominal voltage: 16 V dc - nominal capacity: C10=350 All (discharge in 10 hours) 5. MANUFACTURER STANDARDS: NTRG 81/82 6. MANUFACTURER/MODEL: ACUMULATORUL - Bucuresti /16 S - 350 7. SIZE: 201 x 104 x 565 mm 8. WEIGHT: 243 kg 9. ELEVATION (CG): 280 mm 10. SOURCE OF INFO.: seismic test 11. TEST ORGANIZATION: ICPE-LCCNE (nowadays EUROTEST SA) + co-workers for technical assistance 12. TEST PLAN: "Acumulatorul" - 05.1986 13. TEST REPORT: B.I. 2411/13.11.1986 14. ENVIRON. QUAL: - H2S action test: cone. 10 ppm; temp. 23-27 deg C: rel. humidity 70-80%; duration 21 days - climatic test: cold: -5 deg C, 24 h i dry heat: +40 deg C, 24 h humid cont. heat: +40 deg C, 93% rel humidity 15. TEST DATE: 06.09.1986 16. INPUT DIRECTION: single axis (f/b, s/s, v) 17. TEST TYPE: - f/b & s/'s: continuous sine 5 cycles/test frequency, test frequency spaced: 1/3 octave 1 -=- 2 Hz 1/2 octave 2 + 33 Hz - v : sine sweep for 3-3 3 Hz manual operated shaking table for 1-3Hz - 5 OBE & 1 SSE on each axis IS. FUNCTION MONITORED: - 180 A'^T" output current intensity for 5 sec, during OBE and SSE - output voltage, before & after test - discharge capacity and current intensity - after test - air tightness - after test 19. ACCEPT CRITERIA: No abnormal voltage or spurious operation, no structural failure 20. RESONANT SEARCH: f/b: 9.24Hz; I2.766Hz s/s: 9,338Hz: 12.691 Hz v: not measured - used damping ratio: 5% 21. TEST MOITNTING: rack: floor mounting 22. ANCHORAGE: batteries fixed between two rails bolted (4 M 20 x 80) on the shaking table, stiffened using two supplementary rails bolted on the other two 23. DAMAGE: none 24. COMMENTS: - For the vertical axis test, using sine sweep input made resonant frequencies measurement not necessary - The input for the shaking tables have been calculated in ICPE- LCCNE (now EUROTEST S A), using the required FRS - FRS have been required by INCERC - The considered damping ratio: 5 % - Horizontal tests have been performed by INCREST - air tightness checking has been required by NTRG 81/82, point 4.1.3 i> ...'•--..: '--i, ......

i . -.% :i t^

,1 »tT . '•- •* - VkJJ. • - -••-!- ' " •' -•"'••--•. >.- ^ •••••»• ;"v- Jit1 \-~'.-7.^ .r. '. ,-i • -S^v • >-> _T,'. . ' •* A'.-. - '1 • • . > ^•'.•> - *-;' ' 'i!^ •. . -*» -7 li S3*.;. % ^.^••^ -:^ ^. - • "v> > i:^" ^ - V'."-- "-f i.1i"-5 i. • ;-,

-,' ^. • . ';t':-"

•''-" *- .". .• • V::: ";:-^: \^- r^ - •'-u • ,.

"*•<: v^:fc\s\!VA ^

'••' <: ••^' • ^^«4f%l-

' •(., -C • •': ' ; •'•- "f'^V - • * ." • f ' '• ^-^ "' r •.- .-• v -'iJ' • •• '• '.'•".:" }-. . •.*•." • •"V'.t;

K-v iJ r. t ^ 1 i'tv •: 1

Schema e/edniea

•:• ':'• "•.. '.• • •••-••.*

. •

f/q.Z Prindorao

Fta. 3 Dr'recf* c/& acfianare. I KJ,', ->!•£•*

OUlJ! seismica INCERC I echipament ,,ACUMULATORUL contr.A275/%86 RRS,iRS peniru n=5% — accelerate la masa

**-?>Cr

4Zu:xm4drq

H-H-h- -rn-.irrn-i! a-4iuia!J

1 fEchipoment Nivel exciiatie ilUirecti. QBE 1 ' - • tlvertiCQia RE5P0MGA- VERIFICAT-, DATA REVIZIEI SEF SECTIE

Enacfx/ntT lEndcecnu" 27 06. 1G35 \ Calificare seismica • I N C E R C echipament.ACUMULATCRUL contr.4275/*66

RRS , TRS ppntru m

m/s "" —-,—acceleraiie ia masa

-0.2 tO • 125'159'20 "2.52 3.17 'W 'iW 0.35 BU 1O.C3T2.Xl'15.0 JQB 25i 32J3' FIG. Echipament iNivol excitatiet DirecTie 16 S-35Q (iOOJ QBE- 2 • J \ . vorticnla HA1A civ. i s|l|:c Mil. Tl MA l '" 0 'ng.L.Endcecr.u 1;ing- ^j^ r q 27. 06. Enacearvj 1 Endceani 1'- ^M 1986 i I

.• • •• • . 'i • . ~ : Zr X -X.- .-»- Ti^<^r~ ' ''' '

lijXji..-tinI,,ACUMULATO^UCj js^^WSi-

i

- • •• t -I ...l.i !

]::.:: \±:.r::p-Y- • ;r;- r~ I I, .;• _ .-• _ ._ j_v ;_ .-iJ X _ -!H i

• L. .iLLX-il | iuLU:LiL-_

(313,5 •232 r \2ZA'\ rCfcdrrrru

i i. • i > i

i I ! i h! j!'"hi.:}; -I |-ii! -;:::•:••!••

i. i I i 1 ! !8,9 ! i ! I !'T T

t ..l-i_!. :\~r.

.. -j.i.-...-.. i

-,' ->V il!h>i

I I j <- r -4- I ;_ .1 I. .i i_;

• I '>

; '• i ! i . ! i ' i i : i i i it t - » * i » • . - • •

' 2 . ,[• ;3 6 7 8 15 20 25

SPECTRE CE ^ASFUNSii-lPjSE (FftSl ; 30^' •• • i Dir&ctioOrizontal nn \CUMUUT012UL' hhipu , (

1 J- 1 1 1 i s1 li-j : ' I7C.S-I ! |- I •I I T : 7 -"- -' ir- Jl _1-___1-. 1 r ijj-i:r: j.i; i-i J? !: ' • ^iU- 'C S/llli:!!*:-

V,,6.!| 1 «» 11 1 } ,» 1 t 1 •iifliiiil!!:

i! • • Jip . : j

—r: /^ ffi\W[f\ 19 / ' I:

6-'7. 8 Sip ; -15' 20 2-3 2;

: : •" ^. SPECTRE,QE RASRJNS IMPUSE ("FRS) .• J • "!i;-r.t;v-""-'"'i'3O^'•' !- "• "i- • 'Oirc-ciieOriZORtGld ' Mivol SSE 1. FORM ID: FSX001 2. GENERIC CLASS: Instalments (Relays) 3. GENERAL EQUIPMENT TYPE: Electric flow signallizer for potential explosive atlimosphere 4. SPECIFIC EQUIPMENT TYPE: -Operating environment: - normal, eorosive. inflammable fluids, - current velocity 0.5... 11 m/s - fluid temperature: -15dogC...-i-l lOdegC - normal protection degree:±P65 Mieroswitch: voltage 125Vac 220Vac 48Vdc current 5 A 2 A 1A cos(j) 0.3 0.3 no. of cycles 10? 105 105 - max. preasure: 64bar

5. MANUFACTURER STANDARDS: STR-MIP 21425/87 6. MANUFACTURER MODEL: IPEAPloiesti SEC 15 ".SIZE: [mm] 160x160x110 8. WEIGHT:[kg] 2.7 9. ELEVATION: [mmj 60 (est.) 10. SOI 'RCF, OF INFO: Seismic test. 11. TEST ORGANIZATION: ICPE-LCCNE (nowadays EUROTEST SA) - co-workers for tecluiieal assistance 12. TEST PLAN: 478-T7.06.88 13. TEST REPORT: BI 5378 9.11.88 14. ENVIRONMENT QUALIFICATION.: - climatic qualification: - 16 h at -25 deg C (ref. STAS 8393-2-77) - 16 h at '-55 deg C (ref. STAS 8393 3-77) - 6 cycles at 40 deg C (12 -i-12 h humid cyclical heat) ref. STAS 8393.5-81 - in the first 15' after test, specimen must fulfill the requirements of points 4.5. 4.6. 4.9. 2.16 from STR-MIP 12425 '87 - H?.S atmosphere resistance qualification - cone. 8-12 ppm; temp. 23-27 deg C; rei. humidity 70-80° b; duration 21 days 15. TEST DATE: 06 1988 16. INPUT DIRECTION: single axis - horizontal - f b 17. TEST TYPE: - continuous sine. 20 cycles test frequency - 1-2 octave spaced test frequencies. l-33IIz -5OHK t 1 SSE 18. FUNCTION MONITORED: -before, during and alter test: - mierointerruptions detection and duration ]'). ACCKPT CRITERIA: - no abnormal supply voltage, no spurious operation, no structural failure. Acceptance threshold of interruptions duration, 0.5s.(ref. STR-MIP 12425 87) 20. RESONANT SEARCH: No resonance in the test frequency range (l-33Hz) 21. TEST MOUNTING: - floor, on a frame 22. ANCHORAGE: - bolted (4 screws Ml6 + nuts + washers) on a frame support, bolted on the shaking table. 23. DAMAGE: - no structural damage - functional failure appeared after the first OBE 24. COMMENTS: - The two specimens failed the test, at first OBE. - Measured microintemiption duration have been over 0.5s (threshold value) - During test, a pressure of lbar has simulated a current velocity of 6,7m/s. At this pressure, measurements before seismic test have indicated very small interruptions duration. (25-30 ms) - The accepted threshold value has been exceeded for frequency range 7-3 3 Hz - The shaking table input spectra (not RRS) have been required by STR-MIP 12425/87. \'\~ SBTNALIZATOR ELECTRIC DE :URGERE PI ! tATttOSFERE POTENTIAL EXPLOZIVE SI "-G "

SCHEMA ELECTRICA l.CORP APARAT -2 " 2. DISPOZITIV .DE^RACORDARE 3. DiSPOZITIV ' REGLAJ 4. FLANSA _.! . 5- ELEMENT SESIZOR

SEMNALIZATQR ELECTRIC 'DE CLJRGERE IN CONSTRUCTIE ANTIEXPLOZIV^ Sl"G" TIP SEC Ex G-'F - „- FIG.5 . _- .i'-K iiLLCFRIC tic LUKULRI: I-•». :> PAG. .,.>-!ATM0SFERg--4 ^TENTIAL EXPLOSIVE SI " G "

I

SCHEMA BLECTRICA

-•'•• ;C 1 CORP APARAT 2 DISPOZITIV DE RACORDAF 3.PRESETUPA 4. INEL 5. ELEMENT SESIZOR

5^'NAUZAT0R ELECTRIC DE CURGERE IN CONSTRUCTIE ANTtEXPLOZP. SI "G" TIP SEC ExG -2F ••--•. ' FIG. 4 i ELECTRIC tic. LUrtGERE M. ! JATMOSFERE'POTENTIAL FyprnrVF.ST ..fi"• PAG23J.

3-i. r •

•1 _.

...

1 CORP APARAT . 2 CiSPOZITlV DE RACORDAIT . .__ 3 DfSPOZITIV -REG-LAJ .r..:—^-_—it -FLANSE 5" ELEMENT SESIZOR 0 -.0

F1ECTRIC-DE CURGEREP1N CONSTRUCTIE ANTIEXPLOZIV, S!"g" TIP SEC Ex G-1S • ~~ - FIG.3 ...I ;•:...u i

OBE- ox.oy

OBE- 02 i !

4 5 8 : 16 , 32 ; f(Hz) INTRARE LA MASA : OBE

SSE- ox, oy

SSE-oz

4 5 8 16 32 "• -.-f(Hz)

7-.~M"AS-A"/SSE ; . * * • FIG.1

—• • l.FORMID:RCK001 2. GENERIC CLASS: Instrument Racks 3. GENERAL EQUIPMENT TYPE: \9" Drawer Rack 4. SPECIFIC EQ1UPMENT TYPE: Destined for electrical apparatuses 5. MANUFACTLIRER STAND.ARDS: NTRNS-0- Anexa4; PO-0000-007-010 6. MANUFACTURER / MODEL: I Automatica Bucuresti / D048-A001 7. SIZE: [nun] 686 x 763 x2132 8. WEIGHT: [kg] 150 (est) 9. ELEVATION: [mm] 1000 (est.) 10. SOURCE OF INFO: Seismic test 11. TEST ORGANIZATION: ICPE-LCCNE (nowadays EUROTEST SA) - co-workers for teclmical assistance 12. TEST PLAN: 259/19.06.1986 13. TEST REPORT: BI 5313'26.09.1989 14. ENVIRONMENT QUALIFICATION: - vibration resistance test (ace. to STAS R 9321-72) - life duration test (ace. to STAS 553 '4-80) 15. TEST DATE: 09/1989 16. INPUT DIRECTION: triaxial, independent &. single axis 17. TEST TYPE: Ox.Oy.Oz - continuous sine . mono frequency -•• resonant frequencies - 1/2 octave spaced test frequencies, 5 cycles at each testing frequency - test frequency range: 1 -33 Hz - one OBE along each axis Oz:- continuous sine; - test frequency range 1-2.5Hz: - 1/6 octave spaced test frequency - 16 cycles at each test frequency - test frequency range 2.5-33Hz> 116 octave spaced test frequency - 16 cycles at each test frequency - one OBE 18. FUNCTION MONITORED: - after test: - structural integrity 19. ACCEPT CRITERIA: - no structural failure 20. RESONANT SEARCH:-Ox: 17.96IIz : Oy: 12.7Hz Oz - not measured - used value of damping ratio: 4°o 21. TEST MOUNTING: - floor 22. ANCHORAGE: - 4 holts Ml6, nuts, washers and Grower washers 23. DAMAGE: None 24. COMMENTS: - The RRS as required by "Spectru de raspuns 302 - IRNF. DS 20000-030" - The TRS closely envelops the RRS for the considered damping ratio of 4°o.

o

p

• •'•<' [Si f ,\ -<..• ';.• • I 62O

v \-

. i i A Mi J I

ri * 1 - ^n ' I i A f |( 1 r i < o

•:• I .'•*••; CNE CERNAVODA U1-U5 '... ' '.. SPECTRE DE RASPUNS' DE PROIECTARE'••

. •:!• PENTRU Dv/vpurX 1 K- D BE-DIRECT!A ,\ COEF. AMORTIZARE= ;j Penfru SDE valorile accelaratiilorse^C^ hmultesc cu [0,65

i ivLLiiua

\—r—\-r~n.-\ ( •••(-,, *T "- "• —r- - i

0 r

- 2 [ / •

i. .*_ t.. L— : Li; ,.-•.» .:.ri:-»:«—_Ll^_._i L_.1 «•- _

ACTIONAF,^ 5! .• . DIRECT^ X

•'

V,

/•

. • V'-., . ., v \>vs-.: TFTS

71 6 .

\ \ I ,

^'.' •if. '• •.!•' : / ;•!:• •' •• .

• . — .i a. , _ . .. J . : i -l_ ...... 1 . -i .- 1 i . .... '*.'" I! 6 'V. So SA SO

. . • ' "b)* ACJ10MA»^e Vi COMTMUU h * o • D1KVIC-T:A Y • PIG' I, C. C. r. D. C.-FiUALA !AS1 . ^e Dr I ' Oy. AU7OMAT.CA bUCU l.FORMID:PRS001 2. GENERIC CLASS: Instalments 3. GENERAL, EQ. TYPE: Explosion-proof casing pressostat with membrane atmosphere separator 4. SPECIFIC EQ. TYPE: - Adjusting differential pressure: 3-f-25 bar - Fixed differential pressure: 4-=-40 bar - Contacting error: ±1,32 bar - Highest permissible pressure: 150 bar 5. MANUFACTURER STANDARDS: NTRG 161,83 6. MANUFACTURER/MODEL: IMF-Bueuresti G-913 7. SIZE: 180x97x87 (mm) 8. WEIGHT: 2 kg 9. ELEVATION (CG): 50 mm (est.) 10. SOURCE OF INFO.: seismic test 11. TEST ORGANIZATION': ICPE-LCCNE (nowadays EUROTEST SA) + co-workers for technical assistance 12. TEST PLAN: PI • 21.11.1984 & 12.03.1984 13. TEST REPORT: B.I. 89931.05.1985 14. ENVIRONMENT QUALIFICATION: - vibration resistance tesi - thermal test: -cold:-25 deg C. 16 h -dry heat: 55 deg C. 16 h -humid heat: 6 cycles 12- 12h at 40 Jcg C - salty mist

15. TEST DATE: 04.1985 16. iNPIT DIRECTION: single axis 1 7. TEST TYPE: - 5 OBE - one SSE for each axis (Ox. Oy. Oz). sine-beat lest (10 cycles test frequency) - test frequencies between 1-f 33 Hz. 1 2 octave spaced - test acceleration: 1.1 times the accelerations required in the test plan 18. Fl"NOTION MONITORED: - before, during and after lest: external pressure, microswitch position - before test: commutation acording to NTRG 161 83 - during test: contacting error 19. ACCEPT CRITERIA: good functioning, no structural failure, no spurious operation, admissible contacting error values within ± 1.32 bar 20. RESONANT SEARCH: no resonant frequency below 33 Hz 2 1. TEST MOl 'NTING: floor mount, on support 22. ANCHORAGE: bolted on support 23. DAMAGE: none 24. COMMENTS: - Seismic parameters required by NTRG 161/83 were not achieved within low frequency range (l-r-4 Hz), because of imposed testing installation limitations - Increased acceleration values were used because of the rigid type supports - Three pressostats were tested at the same time, on the same support _

>.' • ~i,\TJ Cr Til- •.-.-..'• •'.: , . 'i 4

96,3

4 61,5 //Vi_V//'' ' '/•, V.A

P/frOA/AfA/VC/AJL

ty.f

fO •* norma/ Fr?c/?/j

V • „£?'

\ /O*

comun G ^~7

6' 7'

fic/.2 I N i •> U- ,... JO 2-

? N

P=---- |

to V, O

'• CM

i V u u « •l5 S .u vn

l/J Ui ^ 0

. i vo \n

1 >

\

\

u .. i •• i \

X

HI

1 o:- ^

\

s •*-.

i

v \

T ' V.. 1. FORM ID: MAN 001 2. GENERIC CLASS: Instalments 3. GENERAL EQUIPMENT TYPE: Pressure gauge

ox

L

t

OZ.

•f »X i - INSTITUTUL D£ CEKCETARI PKNTIIU. Nr. bulclin : - IXDUSTRIA ELKCTROTKIINICA P.i;:. .. 5-. /_

V K urs 1

LlJ q

<* T 1

U. i

__j

V? — <•'- j •• •——- • "• • • —i—f. "1

V -+ _j j L_ s. i\ - -f -^-^r ^ — I ^^ I i "N -4- \

A T" ^

• L_ JL -i V « -T l.FORM. ID. TCV001 2. GENERIC CLASS - Instrument Racks 3. GENERAL EQUIPMENT TYPE-Valve supplying capsular panel TCV 4. SPECIFIC EQIUPMENT TYPE - Input voltage 380Vac/50Hz; current: 100A - 2 panel supplying circuits \ protection 1P50 - 15 valve supplying circuits 5. MANUFACTURER STANDARDS STR-N 83/85 6. MANUFACTURER/ MODEL AUTOMATIC A Bucuresti/TCV 7. SIZE [mm] 1500x810x540 8. WEIGHT [kg] 350 (est) 9. ELEVATION [mm] 600.(est) 10. SOURCE OF INFO: Seismic test 11. TEST ORGANIZATION: ICPE-LCCNE (nowadays EUROTEST SA) + co-workers for technical assistance 12. TEST PLAN:— 13. TEST REPORT: RI 78/26.01:87. 14. ENVIRONMENT QUALIFICATION.: - fire resistance - shattering test (for transportation): 1 2 h transportation by 30 km/h on a rough way 15. TEST DATE: 12.1986 16. INPUT DIRECTION: single axis 17. TEST TYPE: - Ox, Oy: 5OBE along each axis, continuous sine test (5 cycles) at the test frequencies - test frequencies between 1-33Hz, 1/3 octave spaced plus resonant frequencies - Oz: - sine-sweep within 2-33Hz range - continuous sine, hand-operated within 1-2Hz range - 5 OBE 18. FUNCTION MONITORED: -Before and alter test: input voltage (380 V). switches and relays functioning -During test: switches functioning -After test: - insulation resistance and dielectrical . rigidity 19. ACCEPT CRITERIA: No abnormal voltage or spurious operation, no structural failure, switches and relays functioning + insulation resistance and dieleetrical rigidity according to STR N 83-85 20. RESONANT SEARCH: Ox- 13.375 Hz & 15.25 Hz Oy- 15.25 Hz Oz- not measured - used value of damping ratio: 5°o 21. TEST MOUNTING: floor mount, on support 22. .ANCHORAGE: bolted 23. DAMAGE: none 24. COMMENTS: Shaking table input values according to RRS 5% damping (appendix of STR-N 83/85). r (CATALOG sTotP) SISTEM SUPORTI SI ACCESORn INSTRUMENT RACK INSTRUMENT RACK SYSTEM REVIZIA :0

810 630

720

i in

o

tJ"-I

1

l- -

Denumirea : TABLOU CAPSULAT ALIMENTARE VANE.-TCV CHE'CIS Anexa...r...'Pc:c./L u COMPARATIE INTRE SFECTRUL DE R.4SPUNS

SPECTRLl DERASPUNS DE INCERCARE -TRS :!

Nivsl | Dircctid Nefiltrat Filtrat Fund_dQ Incerccrcl Inccrccni vr.s'jra nr n

OX -'- COVPARATIE INTRE SFECTRJL DE RASFUNS

CESUT-RRSS! SPEC TRll DE MSPUNS DE 1NCERCARE -TRS ,\'ivsi Oircctia Net Hi ret \ Filtrat Fund c'3 incerccrii nr

OY T : I !: l! I i E 11 i! M ii ! n li I i'i : i II i! II 11 i j 1 j | i j ii ! ! 1 i I ti lj ! '1 h ii . : h «I i i ii r •i->-

8 16 rz w.

Vorifkuf ''( r—— %z%

T*£-^~».--«.Wo Calificare soismica • INCERC echipament^AUTOMATlCA c. 4338/86 - RRS,TRS peniru n=5% — accelerate la'masa 1C0

2916 2i.A Nivel excitan DirectiG'! FIG. 1 Echinciment veriicala TC7 1 1 PP.HLU -- I f.ALCUL REr,POMOA- OATA C^AT I SPHCTRF Rll. TFMA 0 M : 1 jn^r /Vu'idi, 12.12. -nacoanu Eracoanu Siancu * Stancu . 5 V i \ l.FORMID:SBX001 2. GENERIC CLASS: Panel Boards ••' Switchboards 3. GENERAL EQUIPMENT TYPE: Ex Signals box 4. SPECIFIC EQ1UPMENT TYPE: - Input voltage: knob: 300Vac lamp: 220 Vca - Thermal nominal current: 6A - Knob nominal current: 1A - Protection: IP 54 5. MANUFACTURER STANDARDS: NTRG 137/1983 6. MANUFACTURER / MODEL: I. ELECTROCONTACT Botosani/7020 GI-1 7. SIZE: [mm] 305x114x110 8. WEIGHT: 7Kg (est) 9. ELEVATION: [mm] 50 (est.) 10. SOURCE OF INFO: Seismic test 11. TEST ORGANIZATION: ICPE-LCCNE (nowadays EUROTEST SA) -r co-workers for technical assistance 12. TEST PLAN: PI 26.11.1985 13. TEST REPORT: BI 1386 30.06.1986 14. ENVIRONMENT QUALIFICATION: - shattering: a-lOg: f-1-3 Hz: no=4000 - H:S action test: 100 ppm: 23-27 deg C: 70-80° orel. humidity - ihermal test: -cold: -25 deg C, 16 h -dry heat: -55 deg C. 16 h -humid heat: 6 cycles 12 -r-121i at 40 deg C - salty mist 15. TEST DATE: 11-12/1985 16. INPUT DIRECTION: single axis 17. TEST TYPE: - Continuous Sine Test. 5 OBI\ and oa^ SSE along each axis - Test frequencies between l-33IIz, 1/2 octave spaced, plus the resonant frequency 18. FUNCTION MONITORED: .After test: - lamps functioning at 220Vac - dielectric rigidity in cold. dry. warm and wamp stade (voltage 2.5 Vac.lmin) 19. ACCEPT CRITERIA: No abnormal voltage and no spurious ope?-ation. no structural failure. Measured values of dieiectrical rigidity according to STAS 553-4/1980 20. RESONANT SEARCH: Oz: appr. 16.411/. Ox. Oy - no resonant frquencies - damping ratio: not calculated 21. TEST MOISTING: - wall mounting, on support 22. ANCHORAGE: - 4 bolts M6 23. DAMAGE: None 24. COMMENTS: - The three specimens (20,21.24 series) have been tested at the same time using 4 configuration: 1. Ox: 20.21.24 2. Oz: 20,24 3. Oy: 21,20 4.Ov:24:Oz:21 ••>•.

- VI

"•>• ?•:-•.

•^f/ ":1 •:

J-. 1Q2JL

>: ; ••• ^.' '>".•':'"••

•«• .-'•: JINS.XITU.TUW NATIOWA^'^^^f^U vL^ij^VOft:\:;;-,...• • -: £TKNTIFICA §t iTEHNIG/V '••- • " %

• •'" -

- IFr Am] Accel, [gj- Er.IfVU PiiGDUSi Cutx de sennalizare £x Cod I-- . -.)- .- I i vjj ' 1.399" '" •i.2ir rtr.fabricatieY 21/85 ; 24/05 ; 20785 I I Alt J 541 •t.ni 1 f 1 ** i i2 I.t41 •I.I4I mcercarui <2< .i (OBE) • i t A 1.595 •a. in t i v . t;.. .• 1.581" •I.eSI I B i''il " 1.546 " •4.S51 - - - .. ^ _

;.»' • .•••• • .' ' • •v

IFr. .igj ZrAqil 1" -I ! n.29? 1.57? i it ,D25 • 1 .501 1 22.755 1.505 1 31 .m 1.4V8 -1.101

-i-k. •'•.- „ v. .-•' "*.-->

7020G

— 1 24/05 J 1 1.093 0.397 tl .211 1 I .414 0.540 .141 (C3E) 1 2.007 1.394 ' *\ .39! 1 2 . b3fl • 2 .939 •1.411 1 4 .013 2.972 • » .791 . ar.inctrcarw .658 3.243 •t .641 1 8 J29 2.997 -» .081

03 . 1 2 ,

IFr. [Hi] Accel .iBl Er.lgll

1 11 .291 3.305 •0.311 1 15 .991 3.814 ti.en 1 22 .716 3.174 •1.171 .04? 4.647 11.651

".•-•.'-•. ••••• >/ V STUNT! FICA SI.TEHN1CA

'! ' ! Cutie Jfc sennj»Ur«re £x /020G

ri.. -.: Accel.Ig] Er.fjll ,; - .' 2 • 24/85 ; 20/8b a. Klk +6.221 ,•>.'

1.117 . ti.j2|. j^.,.* .;•. • . , fcill tl.Sli:^ irtr.xncersari: ..•;.•-•.:.5.- 1.553 •8.65i;.':^f; .,...';V;- •./, : . '

1.S10 . ti.lill SI :rfijrectiar'vOz : U l.SBO • -O.Otti;'••.•.•' v" . :••::.•;. . • .. ' JJatai 0i.12.198S

h'r in:: Accci.lg] Er.Igil

; W.^'yt 1.535 tfl,03i I li i2: "1.698 +I.20I j.S3i 1.499 -0.651 .- :.L'-'« 1.5D1 tJ.BOl

At.-.i'ftQUUS; .-Cutia de i »ic:ei. it}] tr.(g]| ••_"-

1 •••• • ftr.f 6bMcatie J 2^ /t}5 t 20/B5 1.0J2 •0.24! '. >> Tipul inc«rc«rtti : .M< ti.MV •I.Ill • dt v«rif;c»r«

• t:v,

;•'• \ '. • ' :..- .- • UliJ K-.eJ.l^I Er.Ij.l

i . ^ 3.314 tit.311 3.9t7 tS.97| • : • 3 4s3 •8.431 .l-i ' 4.034 *1.J3I l.FORMID:LVP001 2. GENERIC CLASS: Switchboards 3. GENERAL EQUIPMENT TYPE: Low voltage panel 4. SPECIFIC EQIUPMENT TYPE: 220 d.c. & 220 a.c. /50Hz 5. MANUFACTURER STANDARDS: STR N 83-85 + Appendix 1 6. MANUFACTURER / MODEL: AUTOMATIC A/ PL 19 7. SIZE: [mm] 800x800x1000 8. WEIGHT: 200 kg (est.) 9. ELEVATION: [mm] 400 (est.) 10. SOURCE OF INFO: Seismic test 11. TEST ORGANIZATION: ICPE-LCCNE (nowadays EUROTEST SA) + co-workers for technical assistance 12. TEST PLAN: -/14.10.86 13. TEST REPORT: RI 75/22.01.87. 14. ENVIRONMENT QUALIFICATION.: - fire resistance - shattering test (for transportation): 1/2 h transportation by 30 km/h on a rough way 15. TEST DATE: 09-12/1986 16. INPUT DIRECTION: single axis 17. TEST TYPE: Ox & Oy axis - Continuous Sine Test (5 cycles at the testing frequency) range: 1-33Hz. 1/3 octave spaced plus resonant frequency. - 5 OBE along each axis. Oz axis - Sine-Sweep: 2-33Hz - Continuous Sine: l-2Hz 18. FUNCTION MONITORED: Before and after test: - input voltage - proper working of switches and relay After test: - insulation resistance and dielectrical rigidity During test: - the proper working of power supply circuits 19. ACCEPT CRITERIA: No abnormal voltage and spurious operation, no structural failure. Measured values of insulation resistance and dielectrical rigidity required by STR X 83-85 20. RESONANT SEARCH: Ox - 15.75Hz & 27.8Hz Oy-13Hz & 30.125H? Oz - not measured -damping ratio 5° b 21. TEST MOUNTING: - floor mounting 22. ANCHORAGE: - 4 bolts M10. nuts and washers 23. DAMAGE: None 24. COMMENTS: - Shaking table input values according to RRS 5% dumping. (Appendix of STRN 83-85) - TRS closely envelops the RRS. . da 100

i

? I _&>iY^ I i -] KM pw scar

1U Z3

SLOi i 1 csol SO/ 0 - f £21

320 320 ...ft -**•

Sirnbol & ecu pare P30i+F316 blUlQ ZI o^ -5- H

Supori sir cteme yer//co/ 5cy Tb Tb Ripi/ra F Masa *z Mr. destn sau ST?6 8oc Observafii neta

3-3M220 ONE CERUAVODA : PUN ECHIP^Re PUPITRU PU9 n2X .rCA/f- OS CONPARAjIE "fNTRE SPECTRUL DE RASPUNS °" "I CERUT-RRS Si SPECTRUL DE RASPUNS DE INCERCARE- TRS

1f , Nivel Diroc ha \N fj'trot Filfrat jj^f^ocrc.-i }•*

1 1 1 F f i (

1 ! !

[ 1

I i : I

• i

I * i : ; i

i , i

i t ! I

' i

• - i

1 i 1 I

i y> i

\ i

'O i i * i

rjz:- • . ,v .--_ x-; 7 \ r-- '• '

^i— y^-\—-/~^ — 7 \ — /^ — ^-c-r- —

x 1 • \D A/ \j^ * J y- , _ ^ J • ! | 1 : /% J . ! _^

t? 76 i?W F/y.

\Ann.t/jt fcti/Q/ •^ — ^ Dcsenat 1 '•;/••/ ~~~ r> nr /• AC/'O/^'A/?'C/i'-'/**79' •- ".- """' "v " Nr txj&rn rr~^rt jrcNE^ClS . . '* AmJ..{..lP^/f LLLNC CONPARATIE INTRE SPECTRUL DE RASPUNS 1 CERUT-RRSSISPECTRUL DE RASPUNS DE INCERCARE- TRS

II " ~"~1 -Hivel \ Direch'a \^n.f;urni. ipm-m* 1 LurLU '• \Nnncercarc'\incQrcani I 1 OJ5£ I oy I * °/° ! T"T

a* -Si I

/Sfif-

I i

/to - i

i /2o- . -i i

• t //n - i ! ! t

fDO- t i : ! i i i

so- Li I \ i i

70 t

• i

t i »

i i ; j * i so

4o t T ; \ 2o Xi-/\--/i\ V v \/ j -v - to i i 1 i i i - - -j-1 "* "P

1 1 1 1 1 1 1 1 . 1 1 1 . 1 1111] 16 22 fI Fig. Q Calificare seismica • I NCERC echipament,, AUTOM ATICA c.4338/86 RRS , TRS pentru n= 5 % — — — accelerate la masa 100

,. ..i-

02 1 1.0 12b 1<£ 20 2-..' WS SO ! 1C.C3 T2.7cjiGO 2Q'o 2i.A 32.0 Hz • FIG." 1 Echipc Nivol oxcitatie'- Direct i(? PL 19 ' 03E1. ' : vertir.nln |>...,EG1 blfV PF

£- i i

Hf?T*"^*»»« l.FORMID:ESB001 2.GENERIC CLASS: Panel Boards / Switchboards 3. GENERAL EQUIPMENT TYPE: Electric switch box for driving closing/opening mechanism 4. SPECIFIC EQIUPMENT TYPE: - Input voltage: 380 V ac./50Hz - Control voltage - local: 220Vca - remote: 220Vdc - Nominal insulation voltage: 500 Vac - Nominal thermal current: 16 A 5. MANUFACTURER STANDARDS: CSG 1-86 6. MANUFACTURER/ MODEL: I Contactoare Buzau/EXD II BT4 7. SIZE: [mm] 330x600x770 8. WEIGHT: 150 kg. (est) 9. ELEVATION: [mm] 400 (est.) 10. SOURCE OF INFO: Seismic test 11. TEST ORGANIZATION: ICPE-LCCNE (nowadays EUROTEST SA) - co-workers for technical assistance 12. TEST PLAN:91/19.07.86 & 5-1986 no 2-5 13. TEST REPORT: BI 2188/9.10.1986 - BI 2163/30.09.86 14. ENVIRONMENT QUALIFICATION.: - shattering (wrapped) - a=l0g: f=80 shatt./min: no of shatt.: 4000 - vibration ageing (unwrapped) - a=lg: f= 10: 20: 30: 40: 55 Hz: duration: 2 h at each test frequency 15. TEST DATE: 07/1986-08 1986 16. INPUT DIRECTION: single axis 17. TEST TYPE: INCREST:Ox.Oy axis - 5 OBE (0.3 5g) - one SSE (0.3g). sine-sweep test - test frequencies between l-33IIz, 1/2 octave spaced, plus resonant frequencies - acceleration values over required values (STR INCREST 13/86) Oz: - 5 OBE - one SSE - Sine-Sweep within 3-33Hz range - Manual operated shaking table for 1-3Hz 18. FUNCTION MONITORED: -Before test: idle running and load functioning of the mechanism according to CSG 1-86 -.After test: - load functioning, according to CSG 1-86 -During test: - correct functioning according to CSG 1-86

19. ACCEPT CRITERIA: No abnormal voltage and spurious operation, no structural failure, proper functioning according to CSG 1-86. 20. RESONANT SEARCH: Ox,Oy: 22.56Hz; 26.6Hz Oz - not measured - used value of damping ratio: 5% 21. TEST MOUNTING: - floor mounting 22. ANCHORAGE: - 4 bolts 23. DAMAGE: None 24. COMMENTS: TRS greater than RRS, because of the specific test method - Shaking table input values according to RRS with 5% damping. (CSG 1-86) y-:^ '-"•'"• :'•''''. S-y'&a'-jX vlV- t-''.'^::/::'V^*r^-'''"""-^'^';'-:^^^i^^ "Calificare seismica • N - ' CONTACTOARE 6U2ALM1 JUil / OO RRS , TRS pentru n^ 5% acceleratie la maso <.eo.o

1 1-1 r!!ii!!:::!!

I ! M '• II

! iMli!i!i

ruvnrntnrii.. -iiH-H-i

1.0' 1.25 159 20 2.52 3.17 4.0 6.3^.0 10.C812.7016.0 2Q':5 25.4 32.0 Hz chipament (Nivel excitatie. Directie. I FIG 1 OBE-1 •-• ' A veriicnla to/It • Calificare seismicd I N C E R C CONTACT 1 j echipament • D?,^f, * -RRS,TR5 pentru n = 5% /2 acceteraiie la masa m

U.{ !L1!J.ji iji.^

i !

1-0" 1.26 1.'i,9 2D 2.52 3.17 A.O ^JOU §.25i%SjnGJS&WG .o.G- 2aia-25;Z, 32.0 Hz [ no,7 Eci"\ipnment I

.:'." .!»i:•'•*"*'• • 1. FORM ID: DPI 001 2. GENERIC CLASS: Panelboards / Switchboards 3. GENERAL EQ. TYPE: Distribution Panel for Illumination 4. SPECIFIC EQ. TYPE: - nominal voltage: 380 V - three phase - nominal frequency: 50 Hz 5. MANUFACTURER STANDARDS: STR-NS 465/87 6. MANUFACTURER/MODEL: AUTOMATICA-Bucuresti / 5623-LP 33 7. SIZE: 2000 x 600 x 300 (mm) 8. WEIGHT: 60 kg (est) 9. ELEVATION (CG): 120 mm (est.) 10. SOURCE OF INFO.: seismic test 11. TEST ORGANIZATION: ICPE-LCCNE (nowadays EUROTEST SA) + co-workers for technical assistance 12. TEST PLAN: — 13. TEST REPORT: B.I. 5381 : 29.11.1989 14. ENVIRON. QUALIFICATION: - accidental conditions test: 40 deg C rel. humidity 95°o. no condensed water. 72 h - transportation test: wrapped, 1/2 h transportation by 30 km h on rough way - life duration qualification (min. 30 years i.d.) 15. TEST DATE: 11.1989 16. INPUT DIRECTION: Single axis 1 * TEST TYPE: Ox. Ov axis - test frequency range: l-r-33 HZ - continuous sine test - resonant frequencies - 1 6 octave spaced test frequencies - number of cycles at each test frequency: - 1-r 5.04 IIz: 5 cycles -5.04-f 10.8 Hz: 10 cycles - 10.8-33 Hz: 15 cycles - 5 (five) SDE Oz_axis - test frequency range: 2 -=- 33 Hz: sine sweep test -test frequency range: 1 -f 2 Hz: discrete frequencies-1/3 octave spaced - 5 (five) SDE 1 8. FUNCTION MONITORED: the acceleration in five points (null bar, coniactors. electric collection, support bar) 19. ACCEPT CRITERIA: after test: proper mechanic and electric work of the components during 3 manoeuvres oivoff at 3 x 380 V 50 Hz 20. RESONANT SEARCH: - Ox -13.12 Hz (frequency range: 1 -f 33 Hz) - Oy - 19.77 Hz (frequency range: 1 - 33 IIz) - Oz - not measured - damping ratio not calculated 21. TEST MOUNTING: floor 22. ANCHORAGE: 4 bolts Ml6, nuts, washers and Grower washers 23. DAMAGE: none 24. COMMENTS: The RRS as required by STR-NS 465/87: SDE = 2/3 DBE RRS = 1,5 FRS; RRS - 1,5 SDE = DBE MA5A.DE lf-;CERCARl

1 - grupide Labl-j'ri 2-qri;p 2 de cc^-.-jri (cclj/jn de alirrientare 3-tevi- ccblun H-supcrfi hevi cabiuri

8 qcuV; 0 13 oentru

-h

5561 '55 42 PL1555A PL 1581 A VEDERE DE SU5 t i • ., 1

Fig.1 ' DETAL1I GE MONTAJ PE MASA" DE INCERCARI ' •' - * „ ^ .... 2,2, Kontajjul aooloromatrolor §i lesSturile electrioe pentra alimentaroa dulapului Dint date in figura 2,.

AG _n 3*3*0 >

I

-nJL

3• Inoercar'ea la solirijtarl 's'eis'aice' *pa""d'lreo yiil'

( 3"il. Solicitarile seisiaioe pe direotiile OX,OY -s-au!

IS out la 1CCPDC Ia^i in perioada 21-24.06".1989* - . \ k Inoercarea explorativa' pentru daterminarea £reoven~ t«lor de rezonant^ S-A faout p'rin metoda impulsului,:, Pe direc^ia OS t Pr » 13,12 Hz' ' •- . -Pe direotia OY t Pr - 19;77 Ha S-au efeotuat cite 5(oinoi) inoarcari de tip SDE npontrt: xieoare diractie de inoeroare.'Speotrul de-raspuns Ctft/M pontru dirodtiile OX,OY) eats dat in figura 3, - lietoda de incercare a fost cea cu sinus oontinuu la fixa distantfate la §esis33 de octava §i la de rezonant^ in gana 1 - 33 Hz, diferind nunarul de eiiluri pe fmtorvale de Ireovent-a 'dura oum urmaazXt in ^ana 1 - 5,04 Hzi oite 5 cioluri la fiscaro freoventa de inoercaro, in gansa • 5,04 - 10', 3 Us cita 10 oioluri In fie care froovontS de in o ere are,' fcoaa 10,9 - 33 Hz cite 15 oiclviri la llecare ixicei-oare. n

. 2O •8

(00\ 4OO •' &00

\^r~^ // " r . a

ACTIOMARE SINUS

f :—i r - -v •

:'ii.

2O

.-Y. (2'TESTE) '' no. 5\ .C. -• TIL'-ALA l~Aco\ -a0" . AuTOivlAuCA 15UCVI\CSTJ SINUS CON"!'\HUU. Y

\ C C P D.C - riUALA Ii RASP'OMS C'lE'CERNAVODA -U1-U5 ' SPECTRE DE RASPUNS DE PfiOIECTARt PENTRU Dc/cr/jU^t c/e" c/c/fornoy/tore*. D8E-DIRECT!A vsxr/cALA CCEF. AMORTIZARE - - *; ^ ;** Penfru SDE valorile accelerafiilor se

- mmulfesc—cu—0,65. Lrv...__. :-J.,..,.

FRECVENTA ( Hz)

-DATA: . CONTRALI I

_ — ~^. _ .-. ".,_.___ ..__* — A - j NCERC i^nt..AUTOMATICAL: ' IS.ec.7631/1989

•" Echipament: Tablou ilumiriqt' iV 'prize ,'5523 -LP 33, •,-•"•

•l

,'.) ?O;2S2 3.17 /.. ]r chrpamont j • Nivel excjiaTie — - t>623, LP 33 _DB CALCUL VER1F1CA7 | 'JAIA SPECIFU:- B!L o ing.M ing.M^ ing. M. ' f 1;3 08. Stancu Siancui^" APPENDIX II

Description of EUROTEST Laboratory capability A T€ST

Cercetare, Tncercari echipamente, inginerie industrial^ si servicii stiintifice Research, Equipments Testing, Industrial Engineering & Scientific Services Recherche, essais pour equipments, inginerie industrielle & services scientifiques

313, Splaiul Unirii, 73 204 Bucharest 3, Romania. Tel: 40(1)321.72.42, 321.72.43 Fax: 40(1)323.26.28 Registered in the Register of Commerce at. no. J 40 - 20 978 -1992. SIRUES code 401263271

LOCA (Loss Of Coolant Accident) simulation for different pressure/ temperature requirements

Our company carries over 12 years of experience in testing equipment to severe environment conditions, and precisely to LOCA simulated environment, aimed at certifying the operating capability of various types of equipment bound to function in safety related circuits of the reactors at Cernavoda nuclear power plant, specifically those under the reactor's main envelope. We already tested wide ranges of electric motors, switchgear, relays, control and automation panels, electric cables, pressure gauges and pressure control devices, a.s.o. All tests were performed following the specific pressure / temperature diagrams of the Cernavoda cooling and safe shutdown systems (fig.1), but, due to the fact that the environmental parameters are computer controlled, and the installations allow a large fan- out for pressure and temperature values or gradients, we could easily simulate LOCA environmental conditions particular to other types of reactor's accidents. Consequently, our goal is to extend in this stage the testing activities to simulations of WER (PWR) - specific loss of coolant accidents, therefore allowing complete testing and capability assessement of safety related equipment operating in power plants in Eastern Europe or the former USSR. To our knowledge, prior to service laboratory testing of the such equipment was in most cases very insubstantial, when performed at all.

Summary presentation of the state of the research work

As stated above, EUROTEST has already performed testing and operating capability assessement research for many types of electrical equipment. Ail tests were conducted following standard procedures, localiy developed and accepted by the designer and the builder of the plant, the LOCA test being the final stage in the Class 1E qualification program (that included: thermal life estimation, functional and vibration aging, radiation aging and seismic tests). All tested specimens came out with a report that include: the description of the testing procedure, testing parameters, relevant values monitored during the test and measured afterwards, conclusions and measures to be taken in order to improve the general behavior and design of the equipment. The block diagram of the LOCA testing installation is presented on the following page; fig. 1 (below) illustrates a standard temperature / pressure diagram for CANDU type reactors: fig.1

Tests are usually performed according to international standards such as: IEEE 323, 79-3650-DG-003 and TS-XX-60000-6 (specific to CANDU type reactors), but can be conducted following WER or other reactor's type specific diagrams. The same installations can be (and already were) used for conditionning and testing of electrotechnical, mechanical, hydraulic systems for uses other than nuclear. All activities are submitted to a quality assurance program, locally developed and approved by the relevant romanian organisations

Type of activity

Activities on the LOCA testing facilities were mostly experimental, but helped a lot for the development and evolution of products fit for the use in nuclear power stations.

Description of the experimental facilities

The LOCA simulation facilities include three testing enclosures, having volumes of 45 m3 (horizontal), 30 m3 (vertical) and 6 m3 (horizontal), connected to an autonomous steam supply. The facility also disposes of independent power station, water treatment station, heating and instrumental air supplies (see the block diagram above). Saturated steam is supplied at 208 °C and 18 bar. Controlled water spaying with treated fluid can be performed at 20 - 90°C. Parameter control is automated - pre programmed, with precisions of ±2°C and ± 0.1 bar. The process is computer controlled, and surveillance is performed through graphical displays and / or printed reports. Data acquisition is performed by means of a PC IBM compatible computer, provided with a multi purpose (National Instruments) board (16 channel) AT-MIO-16 -F -5. Data acqiusition and processing is performed by 486 PC's, using LabView 3.0. Specimens are tested in energized condition, at the nominal parameters values, and continuously monitored. The facilities1 independent power station can supply specimens in the following range of voltages and currents: - alternative voltages: 0.4... 15 kV; - alternative current: 0...2000 A; - continuous voltages: 0...4 kV; - continuous current: 0...300 A. The facilities also include a complete electrical testing laboratory, fully equipped.

Accelerated thermal and/or operational ageing

The acceleration techniques we use allow degradation mechanisms not to differ from those normally occuring during the actual operating life. It is also possible to perform combined stress ageing (thermal, electric, operational, humidity) taking into account the synergistic effects involved. The main features of our thermal ageing laboratory are:

• Enclosures: 100 - 2000 dm3 with overtemperature protection and a temperature control accuracy + 1.5°C, for temperatures up to 300 °C. • Complete monitoring of specimens aged in operation. • The voltages and currents ranges available largely cover all supplying needs. • Controlled environment enclosures can generate and maintain relative humidity up to 95 + 5% and temperatures ranging from -70°C to +40 °C. • Data processing and storage are computer aided. • High voltage testing facilities (up to 100 kV) are available.

Accelerated ageing techniques apply to any electric, automation or electronic equipment, providing fast, reliable and significant data about the equipment's safe operation life. Testing equipment and instalations at EUROTEST S.A.

•Experimental laboratory and in situ seismic testing of equipment using a high power entirely computerized shaking table (MTS - USA production, 6 degrees of freedom) and various facilities to check up performing functions. The main facility is a seismic test system MTS 469 (USA) with two seismic tables. The seismic test system contains the following hardware: - The seismic table- supports the specimen to be tested; - Special bumper assemblies and a concrete foundation/reaction mass provide damping for table motion in the event that excessive lateral or longitudinal actuator displacements occur; - Horizontal and vertical actuators apply the force and motion necessary to create the desired table movement during seismic testing; - The hydraulic power supply system and the hydraulic distribution system provide hydraulic power for peak system performance and deliver hydraulic fluid to the system actuator servovalves, respectively; - The nitrogen spring cylinder provides static support to the table when hydraulic pressure is not being applied to the system actuators. - The analog control system conditions and controls analog program command and feedback signals for operation of the test system. The analog control system, or analog console, houses the main controls and indicators used in operation of the test system. The analog console consists of the following control units: - Oscilloscope- Monitors electrical signals from the analog control console. - Readout Selector- Allows the operator to select specific signals listed on the front panel for readout on the system oscilloscope or any other suitable analog readout device. - Pressure Temperature Monitor Panel- Control unit for nitrogen spring cylinder and HPS temperature monitoring. - System Control Panel- Centralized control unit for system fault detection, table ramp positioning, range selection and hydraulic pressure and program run'stop functions. - 469 Control System- Multiple chassis housing the module circuitry which receives and conditions program and feedback signals to generate the command signals that control the servovalves. - The digital control system provides computerized program management through the conversion of the command signals from digital to analog forms and the conversion of the feedback signals from analog to the digital forms. The purpose of the digital control system, or digital console, is to provide test waveform creation and data storage functions. It also acts as one of the test waveform sources for the test system, and provides data acquisition, processing and storage functions for system motion and specimen response data acquired during testing. The digital console also contains a main power on/off switch and the necessary fans, power supplies and interconnecting cables. - The seismic tables are computer controlled: a PDP unit with MTS original software for tables driving and data acquisition and processing or a PC 486 with EUROTEST SA software: virtual signal analyzer (based on LABVIEW soft package). System specifications are the following:

System 1 ( master table ); - Table size : 2meter x 2meter - Maximum specimen weight: 500 kg ( 3000 kg special case ) - Controlled degrees of freedom : 6 ( x,y,z,0x,0y,6z )

Horizontal- Vertical (Z) Dynamic characteristics longitudinal (X) & lateral (Y) Displacement ±265 mm ±177 mm Velocity ±2.14 m/s ±1.43 m/s Acceleration ±5g ±3.35 g '

-Operating Frequency Range : 0,5 ...50 Hz

System 2 ( small table ): - Table size : 0.75meterx 0.75meter - Maximum specimen weight: 60 kg ( 100 kg special case ) - Controlled degrees of freedom : 4 ( x,y,z,8z )

Horizontal- Vertical (Z) Dvnamic characteristics longitudinal (X) & lateral (Y) Displacement ±324 mm ±217 mm Velocity ±4.6 m/s ±3.15 m/s Acceleration ±7.7g ±5.16 g

- Operating Frequency Range : 0,5 ...33 Hz - Both systems can test oversized specimens (only weight is limited) •Vibration and Shock Testing of Industrial Equipment in NPPs

Main facilities are the following:

1. Vibration Shakers, Model VE 100 ( P.R. of CHINA )

- The shakers may be transported on the testing site. Shaker control, data acquisition, processing and storage can be made by using a PC 486 with a specially data acquisition system and dedicated software (made in EUROTEST SA). -Operating Frequency Range : 5 ...3000 Hz -Excitation position : horizontal or vertical -Max. Acceleration ±120 g -Max. Velocity : ±18 m/s -Max Displacement :±12.5 mm -Max Loading Weight: 120 kg

2.Shock and Shattering Testing Machine, Model Heckert St 800 (Germany)

-Command from analogic console -Table size: 0.5 m x 0.4 m -Maximum LoadingWeight: 400 kg -Maximum Shock Acceleration (unloaded): 800 g - Shock Form: semi-sine - Maximum Shock Frequency: 3 Hz - Data acquisition, processing and storage can be made by using a PC 486 with a specially data acquisition system and dedicated software (made in EUROTEST SA).

• Portable System for "IN SITU" Seismic Testing

- The system consists of a portable vibration shaker, a Notebook PC486 with data acquisition module and dedicated original software based on LAB VIEW 3.0 (see appendix figures 1-5) and a set of B&K accelerometers, amplifiers and different fixtures. Using this system and a combined experimental-analytical testing method, the seismic resistance of large and/or already mounted equipment can be assessed. •Structural Dynamic Experimental Analysis System (for finding the dynamic basic characteristics of equipment by "in situ" low energy and low cost experiments and monitoring real mode shapes by original software).

- The main facility is a portable system for vibrations testing and IN SITU modal analyses, with data acquisition and processing on PC Notebook and dedicated original software based on DAQWARE, LABVIEW (see appendix figures 1-5).

Other Facilities:

- Dynamic data B&K aquisition lines and B&K standard calibration system - for accelerometers.

•Climate and LOCA Laboratory Testing Using Various Stalls

- The main facility is the LOCA simulation and testing equipment including a master testing enclosure of 6 m^ (horizontal), connected to an autonomus steam supply. Saturated steam is supplied at 208°C and 18 bar. Controlled water spraying with treated fluid can be performed at 20-90°C . Parameters control is automatic, with precision of ±2°C and ±0.1 bar. The process is computer controlled and surveillance is performed through graphical displays and/or printed reports . Data aquisition is performed by means of an IBM-PC compatible computer provided with a multipurpose (National Instruments) board (16 channels) AT-MIO-16-F-5 . Data acquisition and processing is performed by 486 PC's, using dedicated software packages based on LABVIEW 3.0. Specimens are tested in energized conditions, at the nominal parameters values, and continuously monitored .

•Aging Test and Analyses (Thermal. Operational., Mechanical)

- Using a combination of facilities in order to assess complete operating life of equipment. Main facilities are the 40 electrical drying ovens with forced ventilation and 5 climated cabinets. APPENDIX

00

FIG. 1A SIGNAL ANALYSER EURO-82 MAIN CONTROL PANEL .• y.'VAV /•>>X* ^^iiip::>-

: : ; : ::>5 : i??S S?: ^Sv^^ •x:x:S?S5:S^::::3 !;> •Xv/Xv*;*v"v!y>>>>>>^ J'^HSSC-S?: Wmffk S?x? >• V.V.-.V ". m J> /; v.y.-.v XvXvX'X'X'XvX'J

<-•'':•:•.•:•••:•:•:•:•:•:•:•:•'' '''I .•; f*~+* ^•^x-x^x^:'>:'^vx'| ':*: * >'> • :•: .*. w /•' ;>>Xv:vXv:s:y3 ":': O :COKXSXHssi ft )i-X«vXv:X-3 ::C3 to •-•.•.•.v. • = •.:; en en y. .'•.v.v. aS cii; ;::::::S «3:::.:!cr> enj- I •.'.•-•.'."-•.• in •'•'••I .•.•-••.• V..-.V.-.V ^ .-.•. ;Xv>Xv.;'>vivX^vv>X;Xv.v.; » II « ' •!•-•

:• 0 ;:•:•:•:•.::•:• 4>:.:; :: : 0 :•:.•: X-:M,- w c rned . °rS £:>< is cure r II -'- < fiWM £; ; •**" iS •.••. *^

';.v.\vX-i\.vvivi;iy ^:.i^v:;jvi-.vv:;:^:vH •iisis XvX'JC'XwwXvXvi'XwXvX- v.* vj i-.\ : :•; x ? v: '§ ' •' ; ~. ') '<:'\ ; ;•> >; I; 0 : '\ 0 •:• •:*• i? :i /.; J:: .^ ; •; d :•: «? : • V*. V CW ••' '• :•' '\ UJ - • : $ i i- c :; : 3 : 3 ':•; ; •!• ':? S^ ;S c: •D .1JJ! •:•':•• ~Z> :• OJ •-•; ": * •• '.; "-' <••/. 0 •• i: :E 0 • : : :- 5: •:.>: — : ; , •-/ *.-" -'- 0 : 0 ; 0 :> : •'•• -'.'• ';'•' :: ; : • \ ^ "" * Xi-^>- . •*. ~o ••;' •j • J) i *7 : : ; •*«3 '•'•• • £. :5. o5 - - "•'./ ;•*• ;. . "ID •:•••: ! J5. <_> • u :: c .• 0 • 0 :< 3: ). Ca n i C L. ^ ..%. I I Ca n

^ •f*"> :;Ln :co-;o -:::O :.;o D ::O :• 0 •: C3 •: 0 :• a '.•:} -T- :o •:• ::::o::a ;>c 1 •C3 :•: 0-4; •CO ;!•*.-.^t :;o ;:.o :.;CD••••0 --CD >-:c 0 '. CD :• CD :•:o •: 0 •'• • CD ::C: D :• 0 < CD •:• CD •• :co ;;ro • •^ :'.o HO :;CD::.:CD ::CD j-:Dc ; ;O: : :: y— * < • 1— • •:1—1 :• •cb;;^ ;!::»— :-:-r-^ : : T— ••: T— v j r f— •' 1— •'• 1— ••• r— :•::? :CD 'icD: •'. •;.* ' ; .• :••: ••: .'• c • -!\ • *•* !•-" •!• : '<:k ;•'. f*. V: V \\ '\ \ 7 ACNI : *'&"*%' «<•*•• co: 4 y A *. .'iir.V •%''*:<"•*'•*">"* > >'• •4 V". €

<_>• id CD 3' >>U> •'. •' C • •: •? <> 3 :• 3 :»• ; a c >• : £:;£ s; : D ;3;i3: :i 3 CD ! !•'' -.: e :;>; =;; = C : '•••z. :>f;.: :-:o i;Z;:2B3 :2.i":Z; •*™ ^ M" i £ 1 O :CN :•> :]OJ :; j^ ;.! ;•'• -1 r- 3" ^L « »-• > >" * > I.9.; .«.;»!:« • i"i •<">' lf> i;.^fTJJl*rl^' :1^:-S .^vSi0!3' 1*!? jS^: •:;^T::x:^i .S:>

: cu ••.•.•:.•..• 500 ••••::••:

•in ;:O:;CD:: : :•<=> y.CD ,•: • •': £ E : •.• o: • : cb :;cz> •:c ; •'CJ:."

i.:-in_:-:in/: ^ : • •« » <• >> •• c '• i:- 8 •. in ;CD • •CD • : co: :

FIG. IB SIGNAL ANALYSER EURO-82 SECONDARY CONTROL PANEL X r "J _

Ol

CJD •!

S -o :

«J __J , o 5 ' CL -5 ° ' 2 , o-

o

a. -3 J u_ O LLJ

*} CO E -ao-

-o

o

Q

Ol - Af a

•CD . e.--o O 'CD Oi:.TT.J - — «:» o p _• CO o oqin f\J CM co noj CM n ro co • CD CD

FIG.2 DYN7 VIRTLIAL INSTRUMENT THAT ASSOCIATES MEASURED DYNAMICAL CHARACTERISTICS TO THE GEOMETRICALY DEFINED STRUCTURE "ID JO; jo;

CO "*• LU t o O LU N 1 CD c •£ JV O as (ty' Csl ; =K

Mi s Con ! o CO io'§il r— ^_ CD en i o n

ii I ill:- o "CD •mmmm.

"£;1 1 I I ' O O C5 £! CM -e*

<

>: U3 i CO ^ LJ

Q::

FIG.3 VIRTUAL INSTRUMENT FOR IDENTIFYING MODAL SHAPES .AND MOTION DISPLAY 1 P EUROTEST S.A. Functie do transfer; Rama Dqm fr Start i 204T ~{!200 00 "})) 0(f 4 *. 2 JOJ'JJJD 00

; 00

Nyquist t Cit AS Bal Rot Za

:jy(agnitudine,_dBi A CF C2 Am G Afa

O JO o

•80.0=', , ii.. 0.0 50.0 ,100.0 150.0 200.0J i£E 51.57 •MHiuQ E 68.67 28 86 lB[T1E| o C2 115.72 -22 05 O|T o o Fiecyenta.HzjG3.61} Magnitudine|63;35E-3jdB|-24.0 i518'''l|;ReJ-5&8SE-3 |m"

o —: —

, T, CD- ®,D "°..J, CO o CO ro J2 2; 1-41.6 8 I'f" i-i .f{ \f:« gj CD :O0 .w

38 0.4 0 | » O -t c *5,

FIG.5 VIRTUAL INSTRUMENT FOR DAMPING COMPUTATION USING HILBERT TRANSFORM :*£MA\. ifc-

fo/of

\ ,-fei;]

Sb/cP 1 ps-i • oro Title: Experience Database of Romanian Facilities Subjected to the Last Three Vrancea Earthquakes - Final Report

Contributor: Stevenson & Associates

Date: December 1996 STEVENSON & ASSOCIATES - Bucharest Office

EXPERIENCE DATABASE OF ROMANIAN FACILITIES SUBJECTED TO THE LAST THREE VRANCEA EARTHQUAKES

Final Report

Research Report prepared for the International Atomic Energy Agency Vienna, Austria Contract No. 8223/EN Rl

Chief Scientific Investigator : Ovidiu Coman

Stevenson & Associates Bucharest Office Faurei#LPll, Apt.80 Bucharest -784091 P.O. Box 68-61 ROMANIA

Senior Consultant:

J.D. Stevenson - Consulting Engineer. USA

Period Covered December. 1995 - December 1996 STEVENSON & ASSOCIATES - Bucharest Office

EXPERIENCE DATABASE OF ROMANIAN FACILITIES SUBJECTED TO THE LAST THREE VRANCEA EARTHQUAKES

Final Report

Research Report prepared for the International Atomic Energy Agency Vienna, Austria Contract No. 8223/EN Rl

Chief Scientific Investigator : Ovidiu Coman

Stevenson & Associates Bucharest Office FaureiSl, Pll, Apt.80 Bucharest -784091 P.O. Box 68-61 ROMANIA

Senior Consultant:

J.D. Stevenson - Consulting Engineer. USA

Period Covered December, 1995 - December 1996 Experience Database

PARTI:

Probabilistic Hazard Analysis of Vrancea Earthquakes

Research Team:

Prof. Dr. Dan Lungu - Technical University of Civil Engineering - Bucharest Eng. Tiberiu Cornea - IPCT-SA, Bucharest

Experience Database Experience Database

Contents:

1. INTRODUCTION 4

2. PROBABILISTIC HAZARD ASSESSMENT (PHA) FOR SI BCRUSTAL VRANCEA EARTHQUAKES 5

2.1 GENERAL METHODOLOGY FOR PROBABILISTIC SEISMIC HAZARD ASSESSMENT 5 2.2 INSTRUMENTAL AND HISTORICAL CATALOGUES OF VRANCEA EARTHQUAKES 5 2.3 RECURRENCE- MAGNITUDE RELATIONSHIPS 13 2.4 ATTENUATION OF VRANCEA SUBCRUSTALEARTHQUAKES 20 3. SITE-DEPENDENT RESPONSE SPECTRA (SRS) CHARACTERISTICS 24

3.1 ELASTIC RESPONSE SPECTRA FOR VARIOUS SITE CONDITIONS 24 3.1.1 Classification of site-dependent frequency content of recorded ground motions 24 3.1.2 Elastic response spectra for typical site (soil) condition in Romania 30 3.1.3 Peak dynamic amplification factor versus peak ground acceleration 37 3.2 VERTICAL MOTIONS 37 3.3 NONLINEAR RESPONSE 41 4. REFERENCES ~_™_™ — 44

5. APPENDIX A _„ 47 6. APPENDIX B - — 49 7. APPENDIX C . . _— ™~ 54

Experience Database Experience Database

1. INTRODUCTION

The scope of this research project is to use the past seismic experience of similar components from power and industrial facilities to establish the generic seismic resistance of nuclear power plant safe shutdown equipment. The first part of the project provide information about Vrancea earthquakes which affect the Romanian territory and also the Koslodui NPP site as a background of the investigation of the seismic performance of mechanical and electrical equipment in the industrial facilities.

The project has the following objectives :

a) first part:

- to collect and process available seismic information about Vrancea earthquakes; - to perform probabilistic hazard analysis for the Vrancea earthquakes; - to determine the attenuation relationships for subcrustal Romanian earthquakes; - to analyse the frequency content and the elastic and inelastic spectra for Vrancea accelerograms recorded on various soil condition in Romania and Republic of Moldova

b) second part

-to investigate and collect information regarding seismic behaviour during the 1977. 1986 and 1990 earthquakes of mechanical and electrical components from industrial facilities;

The seismic database used in the analysis of the Vrancea earthquakes includes more than 150 digitised biaxial and/or triaxial accelerograms from: - Mar 4, 1977, - Aug 30, 1986, and - May 30 and May 31, 1990 events.

Historical and instrumental catalogues of the Vrancea events are presented herein for the first time. Also, a series of comparisons are performed for these two sets of data.

The records obtained by the seismic networks of Romania (ESTP. INCERC. GEOTEC), Republic of Moldova and Bulgaria are identified by the following special characters:

G for INFP (Romania). O INCERC (Romania), A GEOTEC (Romania), • Republic of Moldova. 0 Bulgaria.

The present report represent the second year of the research project.

Experience Database Experience Database

2. Probabilistic hazard assessment (PHA) for subcrustal Vrancea earthquakes

2.1 General methodology for probabilistic seismic hazard assessment

Probabilistic seismic hazard assessment has a cornerstone position for the prediction of the strong ground motions likely to occur at a particular site. For most seismic regions, the basic information for the hazard analysis (source characteristics, catalogue of events, records for relevant intensity, soil geolo'gical data, etc.) is very limited. Moreover, the adequacy of earthquake catalogues, the model of earthquake occurrence, the structure of the attenuation relation, the non-homogeneity of recording conditions, etc. artificially contribute to the randomness, inherent in the hazard analysis. One may notice that the quality of seismic information has an important influence on the accuracy of the probabilistic results. The general PHA is based on the following methodology: (i) Identification of the independent sources of seismic activity and determination of the Gutenberg-Richter relationship from contribution of each source; (ii) Fitting the attenuation relationship on peak ground motion (or structural response) parameter, property' classified according to the soil category; (iii) Calculating the peak ground motion (or structural response) parameter having a specified probability of non-exceedance at the site during structure lifetime (recurrence intervals may be alternatively used) i.e.: - Peak ground acceleration, velocity and displacement (PGA, PGV, PGD); - Effective peak acceleration (EPA) and effective peak velocity (EPV); - Elastic spectral acceleration (SA) and spectral velocity (SV) at specified frequencies (periods) developed for a damping ratio of 0.05; (iv) Construction of uniform hazard site dependent response spectra for design.

2.2 Instrumental and historical catalogues of Vrancea earthquakes

The tremendous work done during the 1974 - 1994 period by Cornelius Radu for the accomplishment of historical and instrumental catalogues of the earthquakes which occurred on the territory of Romania is summarised -for the Vrancea source- in Table 2.1 and Table 2.2. Similar catalogues were completed by Constantinescu and Marza (1980, 1995).

Experience Database Experience Database

Table 2.1 Instrumental catalogue of Vrancea earthquakes (M > 5.0) occurred during the 1901- 1994 period (Radu. 1994)

Nr. Dare Time Lat. Long. h L M (GMT) \ Focus depth, Epicentral Gutenberg- h:m:s \ N" ! E" km : intensit>- Richter j masnitude 1 •• 1901 Sep 23 18:11 45.7 . 26.6 i ; 5 5.0 '• 1902 Marti : 20:14 ! 45.7 i 26.6 i : 6 5.5 3 i 1903 Jun 8 15:07 i 45.7 ! 26.6 i ^ 6 5.0 4 Sep 13 : • 08:02:7 ; 45.7. |. 26.6 - i * 7 6.3 5 • 1904 Feb 6 i 02:49 i 45.7 i 26.6 i 6 5.7 6 '•• 1908 Oct 6 : 21:39:8 • 45.7 i 26 *> 150 ; 8 6.8 ! — : 1912 May 25 : 18:01:7 i 45.7 ! 27.2 i 80 ! 7 6.0 : I 8 Mav25 : 20:15 : 45.7 i 27.2 j 80 6 5.5 1 0 May 25 ' 21:15 ! 45.7 i 27 2 I 80 ; 5/6 5.3 ; 10 Jun 7 1 01:58 j 45.7 | 2-7.2 ! 80 ! 5 5.0 : i 1913 Mar 14 \ 03:40 i 45.7 j 26.6 | i i 5/6 : 5.3 ! 12 1 Jul23 ! 22:03 45.7 26.6 i i 5/6 5.3 13 ! 1914 Jul 1 ! 01:00 45.7 26.6 i 1 5 5.0 14 i Jul31 ; 18:23:12 45.9 26.3 100 i 5/6 5.3 15 j Oct 26 | 02:59 45.7 j 26.6 i i 5 5.0 16 ! 1917 Mar 15 ! 20:42:46 46.0 26.5 i ! 5 5.0 17 i Mav 19 i 21:00 45.7 26.6 i i 6 5.5 18 Jul 11 ! 03:23:55 , 45.7 26.6 l i 6 5.5 19 ! 1918 Feb 25 i 02:07 i 45.7 26.6 i 1 6 5.5 20 i 1919 Apr 18 : 06:20:05 1 45.7 26.6 100 ! 6 5.3 21 1 Aug 9 ! 14:38 i 45.7 26.6 i 1 6 5.5 ii i 1925 Dec 25 i 02:37 1 45.7 26.6 i ! 5 5.0 i 23 1 1927 Jul 24 i 20:17:05 45.7 26.6 i ! 6 i 55 24 i 1928 Mar 30 I 09:38:57 45.9 26.5 l ! 6 5.4 25 i Nov23 04:23:12 45.7 26.6 150 i 5 / 6 5.3 26 i 1929 May 20 • 12:17:56 45.8 26.5 100 i 6 • 5.3 1 27 Nov 1 : 0657:25 45.9 26.5 160 : 6/7 : 5.8 28 ! 1932 Mar 13 ' 02:53 45.7 26.6 i ' 5/6 : 5.3 29 Mav 27 i 10:42:15 45.7 26.6 i i 6 ; 5.5 ! 30 Sep 7 : 18:36 45.7 26.6 i ; 6 5.4 i 31 : 1934 Feb 2 i 10:59:13 45.2 26.2 150 ; 6 5.3 : : 32 Mar 29 ; • 20:06:51 45.8 26.5 90 / 6.3 i JO 1935 Jul 13 : 00:03:46 45.3 26.6 140 6 5.3 ! : 34 Sep 5 06:00 45.8 26.7 150 ! 6 5.5 : I 35 i 1936 Mav 17 : 17:38:02 45.3 26.3 150 ! 5 5.1 ; i 36 ! 1937 Jan 26 i 14:34 45.7 26.6 i i 5 : 5.0 ! i 37 i 1938 Jul 13 ; 20:15:17 • 45.9 ' 26.7 120 i 6 5.3 ; j 38 ! 1939 Sep 5 : 06:02:00 45.9 26.7 115 ; 6 5.3 : 39 : 1940 Jun 24 ; 09:57:27 . 45.9 26.6 115 j 5/6 5.5 I 40 Oct 22 : 06:37:00 i 45.8 ; 26.4 122 7/8 6.5 i 41 Nov 8 : 12:00:44 : 45.5 ; 26.2 145 6 5.5 : 42 Nov 10 01:39:0" 45.8 i 26. ~ 140-150- 0 "4 : 43 Nov 11 06:34:16 : 46.0 ; 26.8 150 6 5.5 44 Nov 14 14:37 : 45." i 26.6 i ' 5 5.0 : 45 Nov i9 : 20:27:12 : 46.0 1 26.35 150 6 5.3 :•

Experience Database Experience Database

Nr. Date ; Time Lat. ; Long. i h : L M ; (GMT! '•• Focus depth: Epicentrai Gutenberg- i h:m:s N° E- km ; intensity Richter maenirude 46 Xov23 • 14:49:53 45.8 26.8 150 5 6 5.3 4" Dec 1 ' 1":19 45." 26.6 l 5 5.1 ; 48 i 1941 Jan 29 ; 07:04 '•. 45.7 • 26.6 i i 5 5.1 • , 49 , 1942 Apr 13 •• 03:07:22 I 45.7 ; 26.5 100 5 • 6 : 5.2 ; i 50 M29 : 19:19 45.7 i 26.5 l I25 5 : 5.0 : i 51 : 1943 Apr 28 i 19:46:40 : 45.8 i 27.1 i 66 6 : 5.0 : i 52 ; 1944 Feb25 : 16:59 ; 45.T i 26.6 ! 155 5; 6 ; 5.2 ; : 53 1945 Mar 12 i . 20:51:46 i 45.6 : 26.4 i 125 6 '•. 5.5 i '•• 54 Sap 7 j 15:48:26 i 45.9 ! 26.5 i 75 7/8 ; 6.5 ; 55 Sep 14 i 17:21 i 45.7 i 26.6 ! l S i 5.1 ! ' 56 Dec 9 •: 06:08:45 ! 45.7 i 26.8 ! 80 7 ! 6.0 57 1946 Nov 3 i 18:46:59 i 45.6 ! 26.3 I 140 6 i 5.5 j 58 1947 Mar 13 : 14:03 i 45.7 '• 26.6 i i 5 i 5.0 59 Octl7 ! 13:25:20 ! 45.7 26.6 i i 6 ! 5.4 ! 60 1948 Mar 13 I 21:05:56 I 45.9 i 26.7 i 150 5.3 61 Apr 29 ! 00:33:40 I 45.9 26.7 I 150 i j 5.0 62 May 29 | 04:48:58 i 45.8 26.5 1 140 6 / 7 ! 5.8 63 1949 Dec 26 I 03:36:10 ! 45.7 26.7 i 135 5/6 ! 5.3 I 64 1950 Jan 16 i 04:25:01 1 45.6 : 26.3 1 120 5/6 i 5.3 65 Jun20 ! 01:18:54 ! 45.9 26.5 1 160 6 ! 5.5 66 Jull4 ! 06:29:57 ! 45.7 | 27.1 100 5 | 5.1 6" 1952 Aue 3 i 16:36:14 I 45.6 I 26.5 150 5 j 5.1 68 1953 May 17 ! 02:33:54 45.4 26.3 i 150 5 i 5.0 69 1954 Oct 1 ! 13:31:00 45.5 27.1 ! 50 6 j 5.2 70 1955 May 1 1 21:22:52 45.5 26.3 i 135 5 ! 5.4 71 1935 Jull3 ! 12:51:48 45.7 27.2 1 35 6 i 5.2 72 Aus 19 | 15:32:03 45.9 26.8 150 5 • 5.1 73 1960 Jan 26 i 20:27:04 45.8 26.2 140 5/6 i 5.3 i 74 Oct 13 i 02:21:25 45.4 26.4 160 6 ; 5.5 1963 Jan 14 ! 18:33:25 45.7 26.6 133 I 6 ! 5.4 ! 76 1965 Jan 10 1 02:52:24 45.8 26.6 128 6 5.4 77 1966 Oct 2 | 11:21:45 45.7 26.5 140 6 i 5.5 78 Oct 15 j 06:59:19 45.6 26.4 140 5 ! 5.1 ! "9 Dec 14 I 14:50:00 45.7 26.4 158 j 5 i 5.0 SO 1973 Aus20 ; 15:18:2S 45.73 26.52 70 6 .. \ • 5.5 81 Oct 23 ; 10:50:59 45.72 26.48 171 i • 5 ; 5.1 ; 82 1974 JullT • 05:09:23 45.76 26.61 135 5:6 '•• 5.4 S3 1975 Mar 7 ; 04:13:05 45.86 26.63 21 ; 6 ; 5.1 84 1976 Oct 1 ! 17:50:43 45.72 26.54 142 ! 5-6 • 5.5 ; 85 19^7 Mar 4 19:21:56 45.78 26.78 93 ; 7 ••' 9 : 5.5 86 Mar 4 j 19:22:00 45.72 26.94 ~Q I " 9 : 6.5 87 Mar 4 i 19:22:08 45.48 26.78 93 i 7/9 i 6.5 88 Mar 4 i 19:22:15 45.34 26.30 109 - 0 i 89 1978 Oct 2 : 20:28:52 45.78 26.48 164 i 5-6 : 5.3 i 90 • 1979 Mav31 ' 07:20:0" 45.57 26.38 120 i 5-6 '• 5.3 91 Sec 11 15:36:55 45.59 26.31 154 : 6 5.4 •; ' 92 1980 Jan 14 • 15:07:54 45."8 26.60 141 : 5 6 5.3 ; 93 1981 JunlS 00:02:59 45.68 26.38 144 5 6 5.4 : 04 : 1983 Jan 25 : 07:34:49 45.6" 26. "5 160 ! 5 6 : 5.2 : 95 1984 Jan 20 i 07:24:23 45.51 26.34 135 i 5 i 5.0

Experience Database Experience Database

Nr. Date Time LaL Long. h I, M (GMT) Focus depth; Epicentrai Gutenberg- h:m:s km intensify Richter maenitude 96 1985 Aus ! 14:35:03 45.-8 26.52 105 6 5.5 9" : 1986 Aua 16 . 06:41:25 45.58 26.34 154 5 5.0 98 ' Aus 30 21:28:37 45.53 26.4" 133 8 ".0 OO ! 1988 Jan 8 16:50:39 45.54 26.26 137 5 5.0 100 ! 1990 Mav30 10:40:06 45.82 26.90 91 ; 8 6.T ioi : Mav3I ; 00:1":49 45.83 26.89 "9 ! 6.1 102 : 1991 Jan 31 ; 13:29:14.8 - 45.73 26.52 13" i 5 5.0 i

103 •• 1993 Aue26 i 21:32:33.5 : 45."0 26.62 138 ; 5 5.1 i 1) Radu's original estimate is 130 km.

Table 2.2 Historical catalogue of Vrancea earthquakes (Io > 6.0) occurred during 984 - 1900 period (from Radu's manuscripts. 1994)1

Nr. Date 1 Time U M i Source | (GMT) Epicentrai Gutenberg-Richter h:m:s intensity masnitude Radu Others Radu i Others 1 984 8 6.7 > CM 2 1022 May 12 7 6.1 ! RT. CM , 3 1038 Aus 15 8.5 6.9 ! RT. CM 4 1091 ±1 May 21 7 I 6.1 I 6.2'KS KS 5 1100 7/8 6.4 ! N 6 1107 Feb5 03:00 8 8/CM 6.7 i 6.2/KS R.KS 7 1122 Oct 1/ 6.1 1 5.9/KS KS 8 1126 Aus8 00: 7/8 8/CM 6.4 i 6.2'KS KS 9 1131 7/8 6.4 '• N i : 10 1170 Apil i o 8.5/CM 6.7 7.0/KS KS i 11 1196 Feb 13 07: 8/9 9/CM (6.717.2 : 70/KS KS i 12 1211 7/8 6.4 I N 13 1230 Mav 10 07: 9" 8.5/CM (6.9)7.3 ! ".IKS N,R,KS 14 1258 Feb 7 15: 8 6.7 : RT. CM i 15 • 1327 ±1 8 o.. ' . 0/ K^S KS ; 16 1411 7/8 6.4 : R.INC i 17 : 1446 Oct 10 04: j 8 8.5,'CM i 6." : "3.-KS KS : : 18 1471 Aua 29 10-11: 9' 8/9 KS i (6.7)"4 : ".IKS R i 19 ': Aus 29 13: 6 5.5 : Aftershock • RT ' 20 : Aus 31 6 5.5 Aftershock : R ! : 21 i Septl 02: i 6 5.5 : Aftershock - RT i 22 ; Sept 1 i 13: i 6 5.5 : Aftershock • RT i 23 ! Septl ; r-18: ; 6 ! 1 5.5 : Aftershock ! RT ! 24 I 1474 778 : 6.4 :• I N i 25 ; 1479 ? i 7 j 1 6.1 N : : 26 1516 Nov8 Q ; S/KS I.O.8T.2 6.8-KS ! R. RT. KS : ; 2" : 1521 8 o.- RT : 28 1523 Jun9 — o.l 5.S . R. CM. KS : j 29 : 1531 ? ; 7/8 : 6.1 RT ;

1 Selected and adapted by D. Lungu, 1996

Experience Database Experience Database

Nr. : Data Time i 1, M Source (GMT) i Epicentral Gutenberg-Richter h:m:s intensity maanitude Radu OtheTS • Radu Others 30 : 1545 Jul 19 08-09: • 8 "KS 6." 6.2 KS RT. R. KS : 31 : 1552 Aua 21 : 03-04: 6.1 CM. RT : : 32 1554 Aus21 •• o 5.5 RT ! 33 1556 Jun IS : T 6.1 RT i 34 1558 Nov 20 : 6 ; 5.5 : RT ' 35 1559 MavO5 6 ; 5.5 : RT ! 36 1563 Oct 19 6 ; 5.5 .; RT : 37 1569 Aua 15 ! 8 ~/KS 6." ; 6.2''KS R.RT T ': 38 1570 Aua 1" 00-01: 1 ! 6.1 ! R.RT ; i 39 Aual" 05-06 6 j 5.5 RT ! ! 40 1572 Mil 5.5 ! RT i I 41 Nov 11 23: 7 ! 6.1 i RT ! 42 Nov 12 03: 6 ! 6.1 i Two shocks RT | i 43 1575 Jan 3 23: 7 6.1 ! RT I 44 1578 Apr 1 7 1 6.1 i RT 45 1588 Apr 28 13: 6 i 5.5 j RT ; 46 1589 Jan 7 23: 7 6.1 i RT i 47 1590 Apr 28 10: 6 5.5 I RT ! 48 May 1 6 5.5 | RT | 49 Aua 10 20: 8.5 | 8/KS 6.9 i 6.8/KS R. RT J 50 1590 Oct 28 6 i 5.5 RT 1 51 Nov 22 6/7 5.9 ! RT 52 1591 Jun 8 02: 6.5 1 5.8 | RT 53 1592 Jul 7 01-02: 6 i 5.5 i RT 54 1594 Dec 1 6 7/CM 5.5 i RT I 55 Dec 2 ! 6 ! 5.5 j RT 56 1595 Apr 21 11: 7 I 8/CM 5.5 ! RT 57 1596 Apr 16 6.5 5.8 i 6/KS KS i 58 i 1598 Nov 22 1 02-03: 6/KS 6.1 5.5/KS R,RT 59 ; 1599 Mav 4 ; ' T ! 6/KS 1 6.1 5.5/KS '• R_RT 60 May 20 ; : 6 • i 5.5 , RT 61 ! 1600 Jul 26 i i 6 ! i 5.5 RT ! 62 : 1601 Feb20 ! " ! ! 6.1 : RT • 63 '• 1605 Dec 6 * 10: .: 6 : 6/7/KS ; 5.5 5.9/KS ' RT 64 Dec 24 : 15-16: ; s ; 67 Main shock R.RT 65 Dec 24 i 16: • 6 ! ! 5.5 : Aftershock RT 66 Dec 24 i 18: : 6 : i 5.5 Aftershock RT 67 Dec 25 ; 02: 6 •: : 5.5 Aftershock RT 68 : 1606 Jan 2 ; 03: ' 6.5 i 5.8 : Aftershock : RT 69 i Jan 13 ! 01-02 ) 7 I 6/KS i 6.1 : 5.5/KS R,RT 70 Feb20 : 6 ; ; 5.5 ! Aftershock RT

71 Dec 2 ••• 6 i ! 5.5 ! RT : 72 \ 16O~ Jan 22 i 20: 6 i i 5.5 '•• RT 73 i 1612 Apr 25 ; 01-02: ; 6 ; i 5.5 : RT i "4 Dec 5 :• 05: 6 i 5-5 RT : "5 ; 161" Sep 14 05 6/7 5.8 RT 76 Sec 25 : 20: 6/7 : 5.8 RT -"7 : 1619 Nov 1 . 01: 6 5.5 RT 78 i 1620 Nov 8 13-14: 9 ; 8/KS : (6.9)7.2 : 6.5/KS FLRT i 79 : 1625 Aua 2" 20-21 RT

Experience Database Experience Database 10

Nr. : Date Time : L M Source (GMT) 1 Epicentral Gutenberg-Richter h:m:s ; intensitv magnitude Radu • Others Radu Others 80 1628 Apr 4 01: o. RT 81 • 163" Feb I 01-02 -_5 • 6.4 0.6; KS R.RT ; ~ : 82 i 1639 Apr 9 02: • 6.1 RT ; 83 i 1644 Feb 20 03: : 0 I 5.5 RT '• 84 Feb 22 18: ' 6 ! : 5.5 RT ! 85 i 1650 Apr 19 mornins ; ~ [ : 6.1 KS : 86 ! 1656 Oct28 1 / i : 6.1 6.2'KS RT : 87 i 1658 Apr 5 19: i 6 j i 5.5 RT ' 88 I 1660 Feb 8 01: 7 ! i 6.1 RT i 89 1 Mar 13 15: • 7.5 ! ! 6.4 RT ! 90 | May 13 05: 6 i i 5.5 RT 91 1 1661 Dec 12 15: ' 6.5 ! 1 5.8 1 RT ! 92 ! 1662 Junl7 6 i 1 5.5 1 RT ! 93 ! 1666 Feb 6.5 i j 5.8 6.0/KS | KS 1 94 i 1667 Mav 25 22: 7 1 1 6.1 i INC i 95 ! 1671 Nov 5 18: 6 | 1 5.5 ! RT ! 96 ! 1679 Aug9 6 j i 5.5 6.8/KS CM. R, RT j 97 i 1681 Ausl9 1 00-01: 9 i i (6.7)7.4 6.8/KS CM. R, RT J 98 1 Oct 16 i 6 I ! 5.5 RT ! 99 1 Oct 18 j 6 i i 5.5 • RT ! 100 Nov 24 04-05: 5.5 RT 101 | Dec 6 • 08-09: 6 ! 5.5 RT 102 Dec 27 04:30 6 1 5.5 i RT 103 1 1683 8.5 i 6.9 ! RT 104 JJ689 Sep24 : 09-10: 6 1 5.5 RT 105 I 1690 Jan 07 \ 13: 7 i 6.1 RT.AF 106 ! 1693 Jul 13 • 08: 6 I 5.5 RT ! i 107 i Oct 2 ! 11-12: i 6/7 I | 5.8 i j RT. AF i

i 108 ! 1698 Sep3 ! 20-21: ! 6 1 i 5.5 • I RT, AF ! | 109 ! 1701 Jim 12 ' 00-01: i 7/8 i 8/KS i 6.4 ! 6.9/KS ! R_RT i 110 Junl4 5.5 Aftershock RT 111 I 1703 Nov 19 5.5 RT.AF 112 ! 1705 Apr' 02-03: 0// 5.8 RT.AF 113 I 1711 Oct 11 : 00-01: 7 ; 8/KS I 6.1 6.5/KS R.RT

114 i 1715 Dec 5 6 5.5 i RT 115 i 1719 AU2 12 •• 00: 6 5.5 RT Oct 9 ! 5.5 RT : no ; r, 11" : 1723 Dec 9 06: • 6 ; 5.5 • : RT 118 : 1725 Jan 10 20: i 6 ! 5.5 ! RT 119 ! Feb 13 00: ; 6 ; 5.5 I ! RT ' 120 ! 1728 Sep25 •• 16: ! 6.5 ; 5.8 i i RT 121 i 1730 Apr 6 i 05: ! 6 ! 5.5 ! ! RT 122 | May 31 6.1 ! i R : 1 123 Oct 12 23: I 6 i 5.5 ! RT 124 ! 1731 Dec 9 •: evenina ! 6 ; 5.5 : ; RT • 125 • 1732 Nov 16/Nov 28 ; evening i 0 :>.:> INC :- 126 : 1734 JunlO : 6 : 5.5 CM 12" : 1738 Marl" : 6.5 6.4 "0/KS • KS , 128 Mav&'lP 05: i 6 : 5.5 Aftershocks : R ; 129 Mav 31/Jim 11 10-11: ; 9" ! • '.6.9)7.4 ••• Main shock i R.RT

Experience Database 10 Experience Database 11

i Nr. i Date Tune I, M Source (GMT) Epicentral Gutenberg-Richter h:m:s intensitv masnitude Radu Others Radu Others 130 Mav3I Junll 13: 0 :o AftersnocK INC : 131 Mav31 Junll • 14: 6 5.5 Aftershock RT ! 132 i Mav 31/Junll i 18: 6 : 5.5 : Aftershock INC : 133 i Jul30 . 6 : 5.5 : ; RT I 134 : 1739 Jan 3 1 16-17 ; 6 ;. : 5.5 1 ; RT i 135 i . Jun 6.1 • : RT i 136 : 1740 Apr 5 20: 6.5 ; 5.8 : 5.5/KS R.RT i 137 1741 Mar 11 nisht 6 i 5.5 ; RT 138 1 1742 Mar 2 03: 6 i 5.5 : RT ! 139 Apr 6 01:45 6 : 5.5 ; RT 140 1744 Jan 15 07:30 7 i 6.1 i RT 141 1745 Jan 5 ! 5/6 ! 5.3 I RT i 142 1747 Apr21.May2 mornina o/7 i 5.8 i R.RT 143 1749 Nov 28 17-18: 6 i 5.5 | RT 144 1755 Apr 16 mornina 6 i 5.5 j RT ! 145 Nov 1 6 i 5.5 i RT 146 1764 Mar 16/27 21: 7 ! 6.1 j RT. INC j 147 SeplO nieht 6 j 5.5 1 RT 148 1777 Jul. 14/25 09: 6 . ! 5.5 i RT INC 149 1778 Jan. 18 05:45 • 7 | 7/8/KS 6.1 j 6.5/KS R, RT INC 150 1779 Jun.27 05: 6 i 5.5 i CM 151 1781 Sea 15/26 6 i 5.5 i RT.INC 152 Oct. 09/21 03: 7 I 6.1 ! RT 153 1784 Mar. 18 6/7 | 5.8 i R 154 1787 Jan. 18 6 i 5.5 i CM 155 Mar. 5/16 23: 7 i 6.1 i RT INC 156 1789 Mar. 26 PM: 7.5 ! 6.4 ! RT. INC 157 1790 Apr. 06 19:29 _L 8 i 6.7 ! 6.9/KS R.RT 158 1793 Nov 26/Dec 8 6: 7 I 6/7 6.1 i 6.4/KS FL RT. TM i 159 i Nov 26/Dec 8 21: i 5 ! ! 5 : Aftershock • RT 160 1 1797 Apr30/Mayl0 night i 6 ! j 5.5 i INC 161 i 1798 Mar. 14 07: I 6 i ! 5.5 ! Main shock I RT 162 I Marl5/Mar26 12: ! 5 i i 5 ! Aftershock i RT INC 163 I Mario-Mar 27 ! 5 ; i 5 i Aftershock • INC 164 Marl-Mar 28 i 5 ; Aftershock • RT. INC 165 j 1802:'; Oct26 10:55 j 0" : 7.5 i (".5)7.6 ; 7.4/KS : R_KS 166 ' 1821 FeblO 00:00 i 6/7 i : 5.8 : 5.9/KS KS 16' Nov r 13:45 6/7 "S/KS 6.7/KS R.KS 168 i 1829 Nov 26 : 1:40 7/8 i &-9/SKH i 6.4 6.9/KS R.KS 169 ! 1831 Aus3 ! 00:00 6 i 6 i 5.5 5.8/KS ' KS 170 i 1835 Apr 21 ; 20:30 6 : 6 • 5.5 KS 171 ! 1838 Jan 23 I 18:45 8 ! 9'CM j 6.7 6.9/KS : R.KS 172 i 1843 SeplO 6 i : 5.5 ' KS 173 j 1862 Oct 16 1 1:11 6/7 : ~SKH 1 5.8 R.SKH 174 : 1868 Nov 13 i 7:45 TVS : 6.KS i 6.4 5.8/KS R.KS I "5 Nov 2" : 20:39 6.1 5.5/KS R.KS 1"6 ; 1880 Dec 25 : 14:30 -T 6.1 6.2KS FLKS 1" 1893 Aual" ; 14:45 6/7 : ~KS :• 5 7 6.1/KS R.KS 178 Sep 10 : 3:40 6/7 •: -KS i 5." 6.1/KS R.KS 179 ! 1894 Mar : I lv25 6 5.5 • R.KS

Experience Database 11 Experience Database 12

! Nr. Date i Tune I, M Source ; (GMT) '• Epicentral Gutenberg-Richter h:m:s intensitv masrutude Radu Others • Radu Others 180 Mar 4 • 6:35 6-7-KS 6.1 5.8-KS R.KS ; 181 Aua3I ! 12:20 • ~ &KS : 6.1 6.5, KS R.KS : 182 ! 1896 Mar 11 I 23:30 ; 6 ; 6;7/SKH '• 5.5 5.8, KS R.KS. SKH •

Notes: 1) Simplified location of the epicenter: 45.7° Lat. N, 26.6° Long. E. Depth of the subcrustal Vrancea focus: 60 4- 170 km.

2) Source abbreviations: R Radu, C, 1971, 1974 catalogues RT Radu. C. Torro, E., 1986 catalogue KS Kondorskaya. N. V., Shebalin, N. V., 1977 catalogue N Niconov catalogue SKH Shebalin. N. V., Karnic, V., Hadzievski D., 1974 AF Events from Ambraseyes's list wrongly considered as having the epicenter in Transylvania INC Building Research Institute (INCERC), Bucharest data

3) Radu's relation (1974) between Gutenberg-Richter magnitude and the epicentral intensity: M=O.56Io4-2.18

4) (...) Radu's initial estimation of magnitude (after the 1977 event)

5) Marza's estimation of the magnitude of 'the largest observed Vrancea earthquakes" is M=7.7 (Marza. Kijiko, ]MantyniemL 1991).

6) Underlined values for epicentral intensities denote a more probable value.

The revision of the data, made by Radu during his last years, led to an increase of the epicentral intensity previously (1971. 1974) estimated in the catalogue (see Table 2.2. Note 4). To mitigate the erroneous interpretation of information, two columns containing estimates of the epicentral intensity- and or the magnitude made by other authors were added to the original catalogue.

Experience Database 12 Experience Database ' 13

2.3 Recurrence - magnitude relationships

The Gutenberg-Richter relationship for the recurrence of the earthquakes is: log n (>M) = a-bM (2.1) where n(>M) represents the mean number of events in one year having a magnitude equal to or greater than M. and a an b are coefficients which have to be fitted to the data. The Hwang and Huo (1994) modification of the Gutenberg-Richter relationship to satisfy the property of the probability distribution is recommended for engineering applications. The recurrence expression for the magnitude interval (M^ M^) is:

1 ) n(>M) = e^ (2.2) i -P(Mmax-Mo)

1 ™ C where: Mo is the threshold magnitude Mmax is the maximum credible magnitude of the source, and ct = alnlO, andp = blnlO.

The mean recurrence interval (in years) of an earthquake of magnitude greater than or equal to M is the reverse of the number n(>M): 1 T(>M) = (2.3) n(>M)

According to Hwang and Huo, the proof of Eq.(2.2) is as follows: (i) From Eq.(2.1) the mean number of earthquakes in one year having a magnitude equal to or greater than the lower-bound magnitude of the analysis. Mo is: n (>Mo) = e"-**1 (2.4) (ii) The probability distribution function of M. i.e. the probability of an earthquake of a magnitude smaller than M is: n (>M) e"^1 F(M) - P(Mo) ea"PMo

(ifi) To satisfy the condition: F(M) =1.0 for M=Mm«, a modified probability distribution F*(M) is defined as:

Experience Database 13 Experience Database 14

F(M) i. F*(M) = = (2.5) F(-\W) 1 - e^***"*1*"

(iv) Using Eq.(2.4) and Eq.(2.5). the recurrence expression for the magnitude interval (Mo, becomes: I _ n(>M) = n(>Mo) [1 - F*(M)] = e*^

The magnitude scale used for measuring earthquakes should be specified together with the upper bound (maximum credible) magnitude of the source and the lower bound (threshold) magnitude of the .analysis. In the Catalogues of events presented in Table 2.1 and Table 2.2, the magnitude scale is the scale used for the Vrancea earthquakes by Gutenberg and Richter in their book "Seismicity of the earth and associated phenomena" (2nd edition), Princeton University Press, Princeton. New Jersey, 1954. For the subcrustal Vrancea earthquakes, the following magnitudes conversion relationship was proposed by Marza, 1995:

M = 0.86 Mw + 0.85 (2.6) where: M is the Gutenberg-Richter magnitude Mw - the moment magnitude, defined as a function of the seismic moment Mo (KanamorL 1977): Mw = logMo /1.5 - 10.7 The Mw scale is promoted as a systematisation requirement by the Global Seismic Hazard Assessment Program in Europe (GSHAP. 1993). .Although an exact estimation of the maximum credible magnitude of the source can not be done, even an approximate estimation of it has important numerical consequences on the prediction of magnitude having large recurrence interval. The recurrence relationship clearly depends on the magnitude intervals it refers, such as. the threshold magnitude calibrates the coefficients of recurrence expression. The Gutenberg-Richter law for the recurrence of earthquakes with magnitude greater titan or equal to M is determined from the Radu's Catalogue of the Vrancea intermediate depth magnitudes during this century (1901 -1994), Table 2.1. The average number of Vrancea earthquakes per year with a magnitude greater or equal to M, as resulting also from Fig.2.1, (see IAEA 1995 Report, pag.21) is: log n(>M) = 3.49 - 0.72 M (2.7) The Hwang and Huo modification of the Gutenberg-Richter relationship for the Vnmcea source is, (Elnashai. Lungu. 1995):

j _e-1.6S8r.S-M) n(>\f) = e8-036-1-658" (2.8) j _ e-l.«8 ("8 • 6) where the threshold magnitude is selected MD=6.0, and 8.036 = 3.489 inlO and 1.658 = 0.720 inlO.

Experience Database 14 Experience Database 15

The maximum credible magnitude of Vrancea source was estimated in the past to be at most 8.0 and at least 7.5. Marza, Kijko and Mantyniemi 1991 estimate as "reasonable and stable" a maximum magnitude of the source M^ = 7.75 = 7.8. together with the associated standard deviation of 0.21 magnitude units. According to the same authors, the strongest observed Vrancea earthquake is the 1802 event with a magnitude of M = 7.7 and an uncertainty of - 0.3.

The value \Iaax=7.8 might be accepted as the most probable value by both the chil engineers and seismologists. The sensitivity to M^ of the mean recurrence interval of the Vrancea magnitudes is presented in Table 2.3a and Table 2.3b as well as in Fig.2.1. For a magnitude M^ = 7.8. the Vrancea magnitudes having 50, 100 and 475 yr. recurrence interval are 7.0, 7.3 and 7.6+7.7 respectively. For a magnitude M^ = 8.0, the Vrancea magnitudes having 50, 100 and 475 yr. recurrence interval are 7.1, 7.4 and 7.8 respectively.

Table 2.3a Vrancea magnitudes corresponding to various recurrence intervals

Mean recurrence interval Maximum credible magnitude T(>M), years of the source, Mnax 7.8 | 8.0 i 50 7.1 7.i ; 100 7.3 7.4 i 200 7.5 i 7.6 j 475 7.6-7.7 7.8 i

The effects on buildings and structures of the Vrancea earthquakes must be understood as a combined result of both magnitude and focal depth. The recurrence interval of the damage intensity is not the same with the recurrence interval of the magnitude. Investigating the possible relationship between the magnitude of a destructive earthquake (M>6.0) and the corresponding focal depth, the following mean dependence is found (see Table 2.1 and Fig.2.2): In h = - 0.77 - 2.864 inM (2.9)

The correlation coefficient p=0.78 implies a moderate joint linear tendency between h and M. The earthquakes of a magnitude smaller than 6.0 display non-correlation between h and M

The mean minus one standard deviation curve in Fig.2.2 may be used as the pessimistic correlation of magnitude with focus depth: In h = - 0.95 - 2.86 In M (2.10)

Experience Database 15 Experience Database 16

Table 2.3b Mean recurrence interval of magnitude. T(>M) for various maximum credible magnitudes of the Vrancea source, vears Gutenberg-Richter Maximum credible magnitude Eq.(2.7) Magnitude. M of the source. ! 7.8 ! 8.0 8.0 ! 187 7.9 996 ! 158 ; 7.8 457 : 134 ; 7.7 704 279 ! 114 ; 7.6 323 ! 191 ; 96 I 7.5 197 139 81 • Nov 10, 1940 7.4 135 105 69 7.3 98 82 58 i Mar 4, 1977 7.2 75 65 50 1 7.1 58 52 42 :Aug30, 1986 7.0 46 42 36 i 6.9 37 35 30 \ 6.8 30 28 26 ! ; May 30, 1990 6.7 24 24 22 ! 6.6 20 20 18 ! 6.5 17 16 16 6.4 14 14 13 6.3 12 11 11 6.2 10 10 9

The Gumbel and/or WeibuII bivariate probability distribution of magnitude and focal depth for the Vrancea source is under study (the skewness of the distribution of focal depth is negative and the skewness of distribution of magnitude is positive). The statistical counting procedure applied to Radu's historical catalogue of observed epicentral intensit}- during the last millennium (threshold intensit}' Io=6.O, aftershocks not included) yields the following intensit}' recurrence relation for subcrustal Vrancea events:

log n<>lo) = 1.99 - 0.46 (2.11) where n(>I3) is the average number of events per year with an epicentral intensit}' equal to or greater thanlo. A somewhat similar relationship is determined for the data contained in Constantinescu and Marza historical catalogue (984 -1900):

log n(>Io) = 1.54 -0.41 (2.12)

The relations (2.11) and (2.12) are compared in Fig.2.3. Based on the intensirv-magnitude conversion relationships for intermediate depth Vrancea earthquakes, recommended by Radu, 1974:

Experience Database 16 Experience Database 17

M = 0.56 Io-2.18 (2.13) or bvMarza. 1995: M = 9.02 logic - 1.37 (2.14)

The Eq.(2.11) combined with Eq.(2.13) lead to:

log n(>M) = 3.78-0.82X1 (2.15) or the Eq.(2.12) combined with Eq.(2.14) lead to:

log n(>M) = 3.137- 0.732 M (2.16)

The recurrence magnitude relations determined from Radu"s historical (984-1900) and instrumental (1901-1994) catalogues of Vrancea events are compared in Fig.2.4. As generally expected, the instrumental data during this century seem more severe than the historical data collected over a millennium. The inherent inaccuracies of the historical catalogue data are caused by many reasons such as: subjective interpretation of the damages done by the seismic motions, general non-homogeneity of the macroseismic observations, etc.

Intermediate-depth Vrancea earthquakes 1901-1995

c ? 0.1 A logn(>M) = 3.49-0.72M H

3 S •5 0.01

Eq.(2.8) X X X _v = 7.8 \ \ 8.0 ! \ \ 0.001 6.0 6.2 6.4 6.6 6.8 7.0 7.2 7.4 7.6 7.8 8.0 Magnitude. M

Fig.2.1 Magnitude recurrence relation for the Yrancea source (M>6.0)

Experience Database 17 Experience Database 18

20 r-o- Intermediate-depth Yrarcea earthquakes 40 — 1901-1995

§• 100 f

5.0 5.5 6.0 6.5 7.0 7.5 Magnitude, M

Fig.2.2 Vrancea source: magnitude (M>6.0) versus focal depth 1 Historical catalogues 984-1900

Radu catalogue ~ 0.1 b± logn(>Io)= 1.99- 0.46 h

"5 i i ! ! ^5 0.01 ••— C onstantinescu & •Vlarza :— catalogue : ~ logn(>Io) = 1.54-0.41 Io

i , , . . i . 0.001 '<•••• 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 Epicentral intensity. Io Fig.2.3 Yrancea source: epicentral intensity (IQ>6.0) recurrence relations found from historical catalogues of events

Experience Database 18 Experience Database 19

Instrumeniai catalogue 1901 - 1995 logrx>M) = 3.49 - 0.72M - 6 £• 0.1 :, ^^^^^^

! : i c i

c • ! : •5 0.01 j i S- E Historical catalogue 984 -1900 = 3.78-0.82M

0.001 6.0 6.2 6.4 6.6 6.8 7.0 7.2 7.4 7.6 7.8 8.0 Magnitude, M Fig.2.4 Comparison of magnitude recurrence relations computed with the data from historical and instrumental C. Radu's catalogues

Experience Database 19 Experience Database "• 20

2.4 Attenuation ofVrancea subcrustal earthquakes

The attenuation law of the ground motion parameters in respect to the distance to the earthquake focus is the smooth curve fitted to the data by non-linear regression or multi-regression procedure. The curve is used to predict the parameter values for specified conditions of magnitude, distance, and soil.

The attenuation parameters consist mostly of: peak ground acceleration (PGA) and peak ground velocity (PGV), or effective peak acceleration (EPA) and effective peak velocity (EPV). Also used are the spectral ordinates. SA and SV, at specific periods of interest (0.3, 0.6, 1.0 s. etc.) or even the intensity. Various formats may be adopted for the analysis of the attenuation phenomenon:

(i) Joyner and Boore formats:

hPGP = c1+C2M + c3inR + C4R-i-s (2.16)

In PGP = d + cz M + C3 mR + cs h + s

In PGP = c1- + c2M + C3taR + c4R + C5h + s

c7M In PGP = ci + c2 M + C3 lnR + c4 R + c6 e + s

(ii) McGuire and Campbell format:

34 8 In PGP = a, + a2 M •*- a3 lnCR + a5 e ^) + s (2.17)

(iii) Annaka and Nozawa format:

10 In PGP = at + a2 M + ^ ln(R -r a5 e*™) + a? h - s (2.18)

(iv) Fukushima and Tanaka :

10 3 In PGP = at+ a2 M -r a3 ln(R - a5 e ^) - a8 R - s where: PGP is the peak value of the ground motion parameter. R - Irypocentral distance. M - magnitude, h - focal depth, s is modelled as a random variable with zero mean and the standard deviation aE = ainPGp. CI-H> and a^a? are data dependent coefficients to be fitted to the actual data set. Obviously, decimal logarithms can be used instead of natural ones in Eq.(2.16) -f-Eq.(2.18). The reliability' of the attenuation relationship may be improved by evaluating the standard deviation of the attenuation function. GZ. Consequently, the attenuation function can be computed either as a mean (50 percentile) function, or as a mean plus one standard deviation (84 percentile) function. For Iognormal distribution of PGP. the standard deviation is:

2 1 = (ln(l - (Vpop) )) * = VPGP (2.19)

Experience Database 20 Experience Database 21

where: VPGP is the coefficient of variation of PGP. From second order moment formats, the approximation (2.19) holds for any probability distribution in the case of small coefficients of variation. The same formats yield the standard deviation of decimal logarithm of PGP as 0.434 of the standard deviation of natural logarithm of PGP:

= 0.434 a

In the 1995 Report to IAEA, mean and mean plus one standard deviation attenuation relations appropriate for Vrancea subcrustal source were established through nonlinear multi-regression of the available set of peak ground accelerations, as function of magnitude, hypocentral distance, focal depth, and azimuth.

Table 2.4 Characteristics of the recorded Vrancea earthquakes

Date Origin Lat. Focus Richter Seismic Moment Stake of Time of Seismic time Long. depth magnitude moment magnitude fault fracture" stations h:m:s km M Mn plarr s with o° records 1977 Source 1 45.78° 93 9.1x10^ 220 20 Mar 4 19:21:56 26.78° 7.2 7.4 26 T Source 2 45.48° 109 7.1xI0 194 10 i. 19:22:15 26.30° 1986 21:28:37 45.53° 133 7.0 8.1xlO26 7.1 T)-r 42 Aug30 26.47= 1990 10:40:06 45.82° 91 6.7 3.9xlO26 6.8 s 50 May 30 26.90° 1990 00:17:49 45.83° 79 6.1 3.5x10^ 6.1 308 3 43 Mav 31 26.89° After Tavera After Marza

A Joyner - Boore model was applied to a database containing more than 100 biaxial and/or triaxial records from four Vrancea events recorded in Romania, Republic of Moldova and Bulgaria, Table 2.4:

lnPGA = Ci - c2 M - c3 lnR - c4 h - a inpGA P (2.20) where :

PGA is the maximum peak ground acceleration at the site M - the magnitude R - the hypocentral distance h - the focal depth <7 inPGA - the standard deviation of In PGA P - a binary variable (0 for mean attenuation curve and 1 for mean plus one standard deviation attenuation) Ci, c:, C3. c4 - data dependent coefficients.

Experience Database 21 Experience Database . " 22

Taking into account :

(a) The deep fracture structure in Yrancea zone where three tectonic units come in contact: (b) The stability of the angles characterising the fault plane and the motion on this plane: (c) The ellipse-shape of the macroseismic field produced by the Yrancea source: the attenuation analysis was performed on two orthogonal directions corresponding to an average direction of the strike of the fault plan,

As a result 3 circular sectors (of 90° each) centred on these directions were established :

(a) The first sector contains stations in Bucharest area and in central Walachia. on the '"younger, thinner and warmer" (Oncescu, 1993) Moesian Platform:

(b) The second sector contains stations in Moldova, on "old, thick and cold" (Oncescu. 1993) East European Platform:

(c) The third sector contains stations in Eastern part of Walachia and in Dobrogea, including Cernavoda Nuclear Power Plant site as well as the contact line between the East European and Moesian platforms.

The influence of the data obtained for the largest ever recorded Vrancea event in Romania (March 4, 1977) is extremely strong resented in the multi-regression procedure, though these data come from a single station.

The May 32, 1990 event, of a very small magnitude, it is not included in the prediction of the attenuation phenomenon in the range of large magnitudes. The cut-off hypocentral distance is 320 km.

The data-dependent coefficients q-^ as well as the corresponding standard deviation of the inPGA attenuation function are determined through non-linear multi-regression and are presented in Table 2.5. These results can be used to predict 50 and 84 percentile of PGA, produced by a magnitude with specified return period and focal depth. The coefficients presented in Table 2.5 slightly improve the attenuation results from previous report to IAEA (1995).

Table 2.5 Coefficients of the attenuation function for Vrancea subcrustal earthquakes, Eq.(2.20)

Coefficients Complete data set Bucharest sector : Moldova sector Cernavoda sector 5.432 4.726 1 3.953 5.560 : c. 1.035 0.976 ! 1.020 ; 4.154 : -1.358 -1.146 | -1.069 : -1.561 '

c4 ! -0.0072 -0.066 ! -0.060 ! -0.0070 i OtaPGA ! 0.397 0.353 I -0.376 : 0.372

Considering onfy one event Eq.(2.20) becomes:

In PGA = c, - c3 lnR + a,^ P (2.21)

Experience Database 22 Experience Database j 23

The attenuation characteristics of the observed maximum peak ground accelerations from the 1986 and 1990 Vrancea events are given in Table 2.6.

Table 2.6 Attenuation coefficients for three subcrustal Vrancea earthquakes.

Sector ' Aug 30. 1986 ; Mav 30. 1990 Ma\•31.1990 !

c> c3 OtaPQA '' OtaPOA c3 Moldova ; 11.987 1.370 0.551 i 6.887 ! 0.395 : 0.215 9.725 ! 1.071 ' 0.417 : Cemavoda ; 18.678 i 2.711 0.368 11.280 I 1.298 i 0.296 1 11.367 1 1.474 0.464 i Bucharest \ 14.864 i 1.954 0.328 ! 9.084 ! 0.884 I 0.341 i 9.959 ! 1.295 • 0.477 i All data 1 15.565 : 2.092 0.458 ! 10.562 ! 1.138 1-0.315 i 10.347 i 1.315 I 0.533 !

The regression results from Table 2.5 and Table 2.6 reveal the attenuation characteristics for the recorded Vrancea ground motions namely: (i) The azimuthal dependence of the attenuation pattern i.e.: - A slower attenuation along the direction of the fault plane (N45E0) compared to the normal to this direction - A slower attenuation along the Bucharest sector compared to Cemavoda (NPP) sector - A slower attenuation along Moldova sector compared to the Bucharest sector. (ii) An ninexpected^ faster attenuation for greater magnitude and deeper focus (i.e.for the 1986 event compared to the 1990 event); (iii) A relatively constant (0.35 -5- 45) coefficient of variation of the attenuation function of the peak ground acceleration.

The above conclusions indicates that the mean plus one standard deviation attenuation for the PGA ordinates can be simply obtained by multiphing the mean attenuation relation by a factor of 1.4 •*• 1.5.

Experience Database 23 Experience Database 24

3. Site-dependent response spectra (SRS) characteristics

3.1 Elastic response spectra for various site conditions

3.1.1 Classification of site-dependent frequency content of recorded ground motions

The increased number of seismic records during the 1986 and 1990 Yrancea earthquakes have provided new opportunities for the evaluation and classification of the strong ground motions in Romania. Parameters used to classify the frequency content of the records are obtained either directly from stochastic modelling of the time histories, or indirectly by passing the seismic signal through a SDOF structure and calculating the response spectra. The stochastic modelling implements the concept of the power spectral density (PSD) function and its related measures as a tool to analyse the frequency content of the ground motions. The deterministic approach uses SD. SV and SA. respectively the relative displacement, velocity and absolute acceleration response spectra to identify the frequency content of the recorded accelerograms.

The stochastic descriptors of the frequency content, used in this Report, are: (i) s (Cartwright & Longuet - Higgins) dimensionless indicator of frequency bandwidth; (ii) f10, fso and f<» (Kennedy & Shinozuka) fractile frequencies below which 10%, 50% and 90% of the PSD's total cumulative power occur.

The above measures are defined as follows:

2 a i s = (1-A2 / %oX4f Xi = !(n G

(i) Broadest frequency band ground motion recorded in Romania. Fig.3.1: Station: Carcaliu (G), Dobrogea, 1986 and 1990 events Soil profile type: rock (ii) Narrowest frequency band motion with long predominant period recorded in Romania, Fig.3.2:

Station: TNCERC (O)f Bucharest. 1977 and 1986 events Soil profile nye: very soft soil (iii) Stablest predominant period of the ground motion recorded during three Yrancea events, Fig.3.3: Station: Cemavoda-City Hall(G,O), Dobrogea. 1986 and 1990 events Soil profile type: stiff soil (iv) Strongest ground motion recorded in Romania displaying a medium frequency bandwidth content Fig.3.4:

Experience Database 24 Experience Database 25

Station: Focsarri (U.O), Moldova. 1986 event. 3.50

3.00

2.50 '—

2.00

1.50

1.00

0.50

0.00 0.1 10 100 n,Hz

4.00 ! ! * > i I 3.50 I I Mi •Aug30, 1986; EW 3.00 h May 30, 1990; EW II

0.00 i 0.1 10 100 n.Hz Fig.3.1 Normalised PSD for horizontal acceleration recorded at Carcaliu seismic station (EJ)

Experience Database 25 Experience Database 26

3.50 Mar 4. 1977: XS 3.00 Alia 30. 1986: NS

2.50

o 2.00 '•

1.50

1.00

0.50

0.00 0.1 1 10 aHz

2.50

Mar 4, 1977; EW

2.00 •— Aug30?1986;EW I

1.50

1.00

0.50

0.00 0.1 1 10 aHz Fig.3.2 Normalised PSD for horizontal acceleration recorded in Bucharest at Es'CERC seismic station (O)

Experience Database 26 Experience Database 27

6.00

5.00

- Aug 3O7 1986; NS •May 30, 1990; NS 4.00 i— May 31. 1990: NS

c 3.00

2.00

1.00

0.00 0.1 1 10 n,Hz

6.00

5.00 i i

-Aug30r 1986: EW I ! i ! ; < 4.00 I— - May 30, 1990; EW -Mav31, 1990: EW

33.00 C c 2.00

1.00 r

0.00 - 0.1 1 10 n.Hz Fig.3.3 Normalised PSD for horizontal acceleration recorded at Cernavoda City Hall seismic station (G)

Experience Database 27 Experience Database 28

3.50 r Focsani: IXFP : 3.00 - Aig 30. 1986: XS Aus30. 1986:

0.1 1 10 aHz 3.00 Focsani; INCERC May 30, 1990; N07W 2.50 May 30, 1990, N97W

2.00

1.50

1.00 \

0.50 r

0.00 • 0.1 1 10 n.Hz Fig.3.4 Normalised PSD for horizontal acceleration recorded in Focsani at EvFP (_. 1986) and INCERC (O. 1990) seismic stations

Experience Database 28 Experience Database j 29

The deterministic descriptors of the frequency' content of the ground motion time history- are the two controL or comer, frequencies (periods) defined from the maximum values of the response spectra as follows:

fc = 1 • Tc = (1. 2JI) (SA™, / SV^ (3.2)

fD - 1 TD = (12TI) (SV^ / SD^) (3.3)

The maximum control periods. Tc of the response spectra which characterises the site condition of the seismic stations with records during the 1977. 1986 and 1990 Vrancea events are presented in the three maps appended to this chapter. Some examples of site conditions in Romania with long and medium control periods are listed below:

1.35 -s- 1.50 - Bucharest 1977. 1986 1.50 - Muntele Rosu (Cheia), 1986 1.26 - Bolintin. 1986 1.21 - Cimpulung MusceL 1986

1.14 * 1.30 - Istrita. 1986T 1990 0.95 - Ploiesti. 1990 0.91 - Focsani 1990 0.87 - Galati 1986 0.83 - Cimpina, 1990 0.81 - Peris, 1990 0.80 - Braila, 1986 0.79 - Slobozia, 1990 0.79 - Valenl 1986 0.77 - Cernavoda (City Hall), 1986 0.72 - Branesti 1986 0.72 - Calarasi 0.71 Buzau. 1990. etc.

Experience Database 29 Experience Database 30

3.1.2 Elastic response spectra for typical site (soil) condition in Romania

Elastic acceleration response spectrum for a conventional damping ratio of 0.05 characterises the ground motion at the site. The site-dependent averaged response spectra are defined as a weighted average of the spectra having appropriate frequency content for the soil characteristics of the site. The classification of the frequency content appropriate to a specified soil condition is obtained using the control period criteria. The seismic records from four Vrancea events were analysed to identify their frequency bandwidth. It was established that in the South. East and center of Bucharest, capital of Romania, the principal peak of the narrow frequency band spectral density indicates site conditions of 1:4- 1.6s long predominant period. A 30 meter layer of wet soft clay, in the uppermost 50 meter depth, offers the explanation for the long period in the soil condition at EsCERC station in the Eastern Bucharest. The long predominant period was experienced during the severe 1977 and the moderate 1986 earthquakes, Table 3.1, but not during the small 1990 event. This can be explained by the nonlinear behaviour of the soil profile at this site and by the source mechanism (magnitude, time of fracture, etc.).

Opposite to the Bucharest narrow frequency band records, the records in Moldova have broad and medium frequency bandwidth and a negligible mobility of the spectral shapes to different magnitudes (see 1995 Report to IAEA). Two sets of records are selected:

(i) Bucharest set of (2+6) narrow frequency band motions of long predominant period

(Table 3.1) having the control period Tc > 1.0 -s- 1.2 s; (ii) Moldova set of 20 medium-frequency band motions having 0.2s < Tc < 0.6 s and the peak ground acceleration greater than 1.0 m/s2.

The lognormal distribution is used to compute the spectra with specified probability of non- exceedance.

Table 3.1 Long predominant period records produced by the Vrancea source in Bucharest i Station and j Event Comp PGA, s PSD RS control ! location I cm/s2 frequencies. Hz i periods, s i f-o f« fo, : T, 1 TD i East i INCERC : Mar.4,19" NS 194.9 i 0.97 0.4 0.69 2.0 ; 1.34 j 1.90 ; . of ; ; Mar.4, 19" EW 162.3 | 0.91 0.4 1.44 4.1 1.19 j 2.02 Bucharest ! : Au2.30.1986 NS 88." I 0.95 0.5 0.74 : 3.8 : 1.26 j 1.58 Canter of : Carlton i Aug.30.1986 N30W 68.6 i 0.90 0.5 1.38 i 4.9 0.95 | 1.61 ] Bucharest • ISPH Aug.30.1986 N15E 86.- i 0.92 0.5 • 1.25 4.0 1.22 I 1.66 ; South i Metalurgiei ; Aug.30,1986 W32S 69.8 i 0.93 0.5 ; 0.88 2.8 1.33 i 1.60 i of Metro IMGB • Aug.30,1986 N60E 72.7 ! 0.92 0.6 1.12 ! 3." 1.50 | 1.52 I Bucharest i Buc.Magurele ' Aug.30.1986 NS 135.4 I 0.94 0.5 : 1.25 : 3.8 0.98 ! 1.46 !

The normalised elastic acceleration response spectra (£=0.05) with 0.1 and 0.5 probability of exceedance, for the soft soil conditions of Bucharest (in Romanian Plain) and for medium soil conditions in Moldova, are given, according to the Eurocode 8 format in Table 3.2. Fig.3.5 and Fig.3.6. The spectra for the strongest ground motions from the Yrancea source recorded in Romania are illustrated in Fig.3.5 (March 4. 1977 record in the soft soil of Eastern Bucharest ha\ing a PGA=194.9 cms2) and Fig.3.6 (Aug.30, 1986 record in Focsani in the epicentral area, having a PGA=297.1 cms2).

Experience Database 30 Experience Database 31

3.5 Mar 4. 1977. NS BUCHAREST 8 components 3.0 4.8T soft sofl condition

2.5 1 probabiiry of exceedance

2.0

1.5 f

i n Li— L-v - O.Sprobabffiry

0.5

0.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 Period, s Fig.3.5 Site dependent elastic response spectra for soft soil condition in Bucharest 4.5 ; : MOLDOVA & 4.0 t REPUBLIC of MOLDOVA i 3.5 • 20 components _| -Aig30, 1986, Focsaii/EW I j

0.1 probab2irvr of exceedance

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 Period, s

Fig.3.6 Elastic response spectra for medium soil condition in Moldova

Experience Database 31 Experience Database 32

The results obtained for Bucharest indicate that the median normalised response spectrum recommended by Eurocode 8 for extreme soil class (Tc=0.8) are not conservative, at least for the Romanian case of soft soil deposits.

Table 3.2 Design response spectra for various soil conditions in Romania (Eurocode 8 format)

: Soil catesorv Soft soil condition. Bucharest Medium soil condition. Moldova i Control periods of TE 0.12 0.12 0.1 0.1 ! response spectra TV '• 1.5 1.6 0.5 0.6 i TD 2.0 2.0 3.0 3.0 ; Probability of exceedance : 0.5 0.1 0.5 0.1 T

TBTV. 7.5 IT 9.6 IT2 3.75/T' : 6.2/T

Extreme soil conditions in Bucharest are illustrated by the two soil profiles in Table 3.3:

(i) FNCERC station soil profile, in the Eastern part of Bucharest, predominantly a clay profile: (ii) EREN station soil profile, in the Northern part of the city, predominantly a sandy profile.

The relative velocity and absolute acceleration response spectra for the above soil conditions are compared in Fig.3.7 and Fig.3.8. The corresponding PSD's are compared in Fig.3.9.

It is important to note that the highest spectral ordinates (i.e. dynamic amplification factors - DAF) are located in the frequency range > 1.0 Hz for the sandy soil profile, at EREN station, and in the period range > 1.0 s for the clay soil profile at INCERC station.

The city of Bucharest is located on the path of Dimbovita and Colentina rivers, in Romanian plain. In the East South and Center of Bucharest the peaks of narrow frequency band spectral density indicate soft soil condition of long predominant period. The Dimbovita and Colentina rivers cross the city of Bucharest diagonally, from NW to SE. As a consequence, the lower part of the city' (i.e. Eastern. Southern and even Central) is situated on deep alluvium deposits representing the softer soil condition. In the vicinity of INCERC seismic station location, the shear wave velocities for the dominant 30m thick clay deposits of lacustral origin were determined as being 250-300 m s (GEOTEC, 1995). The importance of site effects was firstly observed in Bucharest during the 1977 Vrancea earthquake. A substantial understanding of this phenomenon came later from the analysis of the frequency content of the 1986 Bucharest accelerograms and of the corresponding soil profile types.

The effects of the site soil conditions on the frequency content of the accelerograms are also proved - bv the Vrancea seismic records in the cities of Iasi Chisinau. Cemavoda. etc.

Experience Database 32 Experience Database 33

BoringFM3-113 : Boring: F536 Station: EsCERC. Bucharest. El. - 77.85 Station: EREX. BucharesL EL - 87.37 Deoth • Tnick. Deposit tvoe • Desth • Thick. Soun^e Dstjosit t%T-e o.u 2.8 I i Backfill 0.0 0.9 DBackfiH -0.9 Mz* 2} Sandy clay 1.5 y? 2) Sandy day superior superior derwsits deposits 3.8 MeJarx 3) ~Co. -4.4 ; 9.9 j Fme-mediiSs j 3) "Coknsna" coaxsesand sxavei i I exavd & sand \ sravei -S.I 5.2 Fine-coarse gza.vJ.-wtk coarse Nsiid Water taole Water table -13.3 Fine - coarse sravei 3 4)Interrnediate -14.3 4}Intermediate -15.2 ~._3 deposits 1 deposits -16.4 0.8 ofiacustiai _. ofSacusuai -17.2 2.0 origin oxigiri (80% ciavj (80*% clay)

-J9. 4.3 -23.0 ! 31.9 , 5.rMostistea" -255 sand wife j banks of sand: 1.9 lens of day sand & silty ./no 0.7 clav -30.0 10.0 -40.0 3.8 oanks of sand: -4O.U 4.0 sand & siitj* clav -50.0 23.4 6) Laciistrai deposits: iens of marisd -54.9 o} Lactistrai Jay and Sne ceoosits: tens, of marled -63.0 : 6.0 Sane cL.\ and fine -69.0 i 5.Q sand & some -74.0 ume

Soil layering for the uppermost 73.4 m in Soil layering for the uppermost 74.0 m the Eastern Bucharest the North of Bucharest (by PROJECT - Bucharest) (by METROU - Bucharest)

Table 3.3 Extreme soil conditions in Bucharest

Experience Database 33 Experience Database 34

INCERCXS - IRES: K10W

O.I 1.0 10.0 100.0 Frequency, Hz

50

45 i 40 E

35 r

I 25 t §20 « 15 - 10

0.1 1.0 10.0 100.0 Frequency, Hz Fig.3.7 Comparison of the response spectra for NS components recorded on two extreme soil profiles (Table 3.3) in Bucharest: Aug 30. 1986 event

Experience Database 34 Experience Database 35

350 EN'CERC: EW 300 EREN: W10S

0.1 1.0 10.0 100.0 Frequency ,Hz

40 ( i i i i - ! i i 1 i i 35 1 - . 1 INCERC;EW i I ! i ;

30 . 1 11 f EREN: W10S i ! •A'. i i I i - 25 1 . : • j * I '• o J \ i i "cP 20 1 1 i H 15 i \ V^ ! i :,! 10

'• '.'•/<{

} i i • j

0.1 1.0 10.0 100.0 Frequency, Hz Fig.3.8 Comparison of the response spectra for EW components recorded on rwo extreme soil profiles (Table 3.3) in Bucharest Aug 30. 1986 event

Experience Database 35 Experience Database 36

3.50 Es'CERC; XS 3.00 EREX; N10W

2.50 r

o 2.00 \

~ 1.50 r

1.00 \

0.50

0.00 0.1 1 10 aHz

2.50

INCERC; EW

2.00 ,- EREN: W10S

1.50

c C = 1.00

0.50

0.00 0.1 1 10 aHz

Fig.3.9 Comparison of the normalized PSD"s for the records on two extreme soil profiles (Table 3.3) in Bucharest: Aug 30, 1986 event

Experience Database 36 Experience Database 37

3.1.3 Peak dynamic amplification factor versus peak ground acceleration

The peak dynamic amplification factor is the maximum value of the normalised elastic acceleration response spectrum:

DAF^ = S A™* / PGA (3.4)

The regression of the peak dynamic amplification with the peak ground acceleration is analysed for two control period intervals: Tc^0.7 and Tc>0.7. The relations between the peak dynamic amplification the peak horizontal ground acceleration are:

2 Tc<0.7s DAIw = 4.43 - 0.0058 PGA (cm/s ) (3.5) 2 Tc>0.7s DAF^ = 3.59 - 0.0044 PGA (cms ) (3.6)

The results, presented in Fig.3.10 and Fig.3.11, indicate that:

(i) The decrease of the peak dynamic amplification with the level of the PGA; (ii) Higher dynamic amplification for lower PGA values (<50^-100 cm/s2); (iii) Higher dynamic amplification for smaller control periods.

It is emphasised that the DAF values represented in Fig.3.10 and Fig 3.11 are peak values and not averaged values over a specified range of frequencies. The decrease tendency of the peak dynamic amplification with the increase of the PGA it is not so evident in the case of vertical acceleration.

3.2 Vertical motions

The relations between vertical and horizontal peak ground accelerations for the recorded Vrancea subcrustal (60 - 170 km) earthquakes are presented in Fig.3.12. For the complete set of data consisting of 101 components, the mean relations are found as:

2 PGAV = 0.4 PGAH + 10 cms (3.7)

2 2 Selecting the pairs of components with PGAH>100 cms and PGAv>50 cms , the set is reduced to 35 biaxial components and the relation (3.7) changes to:

2 PGAV = 0.14 PGAH + 61 eras (3.8)

The mean plus one standard deviation relationship is close (but below) to the Newmark 2'3 rule. The consequence of the differences in the frequency content and the amplitude of vertical and respectively horizontal motions is the difference in the shapes of the corresponding response spectra. For the soil conditions of Romania and the analyzed Vrancea events, it should be noted the shift of the control period for the vertical acceleration response spectra compared to the control period for the horizontal response spectra as represented in Fig.3.13:

Tov = 0.57 TC,H + 0.15 (s) (3.9)

Experience Database 37 Experience Database 38

12 ,—B- Romania & Republic of Moldova 176 horizontal components 10 Tc < 0.7 s O 8 r— • 4-Mar-77 DAFmiK= 4.43 - 0.0058 PGA • 30-Aug-86 o 30-Mav-90 =: 6 n 31-Mav-90

50 100 150 200 250 300 PGA. em's2 Fig.3.10 Regression of the peak dynamic amplification factor (DAF,^) with horizontal PGA

for control periods Tc < 0.7s 5.0 r 4.5 Romania & Republic of Moldova J 62 horizontal components

Tc > 0.7 s

1.5 - • 4-Mar-77 — • 30-Aug-86 J_ 1.0 - DAFa«= 3.59 - 0.0044 PGA o30-May-90 j 0.5 'r- n31-Mav-90 — 0.0 t 0 50 100 150 200 250 300 PGA cms2 Fig.3.11 Regression of the maximum dynamic amplification factor (DAF^) with horizontal PGA for control periods Tc > 0.7s

Experience Database 38 Experience Database 39

130 r : • 4-Mar-77 Romania & Republic ofMoldova \->Q — • 30-Aug-86 35 biaxial components : o 30-\Iay-90 „_ Y- n31-May-90 j ..--

60 \ PGAv= 0.14 PGAH + 61cms' 50 r 100 150 200 250 300 2 PGAH -cm/s Fig.3.12 Vertical PGA versus horizontal PGA for Vrancea subcrustai earthquake. 1.5 , m 4-Mar-77 Romania & Republic of Moldova • 30-Aug-86 35 biaxial components o 30-May-90 n 31-Mav-90 1.0

Tc,v= 0.37TC,H^0.11S

0.5 -

0.0 - 0.0 0.5 1.0 1.5

Tc.H -S Fig.3.13 Vertical component corner period versus horizontal component corner period for Vrancea subcrustai earthquakes

Experience Database 39 Experience Database ^ 40

> 2 Selecting the pairs of components with PGAH 100 cms and PGAv>50 cms", the relation (3.9) changes to:

Tc-v = 0.37 TC,H- 0.11 (s) (3.10)

The result is contrary' to the code provisions which do not make a difference in the frequenc}' content of vertical and horizontal ground motions.

The conversion of the horizontal spectrum to the vertical spectrum must take into account the higher dynamic amplification for smaller peak ground acceleration of the vertical components of the motion.

Experience Database 40 Experience Database ^ 41

3.3 Nonlinear response

The severity of the ground shaking can be characterised by the nonliner response spectra of the SDOF structure with an elastic-perfectry plastic resistance. These spectra are obtained by numerical integration of the equation of motion for the nonlinear oscillator. The response can be evaluated either: (i) In terms of constant lateral displacement ductility, when the yield seismic resistance coefficient varies, or (ii) In terms of constant yield seismic resistance coefficient where the displacement ductility varies. ' The response for u = 1.0 is the elastic response. The initial viscous damping of 0.05 is kept constant during the analysis. The response modification factor due to the nonlinear behaviour of the structure . 1/R is generally the product of two factors. Fig.3.14 :

1/R = (l/Rtl)(l/Rw) (3.11) where:

1/RM is the elastic to inelastic response factor to reduce the base shear force from the elastic level to the collapse level and 1/Rov - the overstrength factor.

The 1/R^ factor based on the Newmark format 1/R^ = (2u-l)1/2 is given as function of ductility in Fig.3.15 and Table 3.4:

= {cly.-(cl-l)f (3.12)

Table 3.4 Elastic to inelastic response factor 1/R^, Eq.(3.13)

Probability of I Bucharest soft soil condition Medium soil condition exceedance ! (TR=1.5s) in Moldova ! Ct c> c, j c. 0.5 1 4.580 -0.274 2.794 ! -0.400 0.1 i 3.943 -0.229 1.603 i -0.349

The values of l.E.^ are dependent on the frequency content of the seismic input i.e. soil category. In

Table 3.5, for each type of soil category, the elastic to inelastic response factor l.-Ru is computed in terms of displacement ductility (a) and initial period (T) and damping (O=0.05) of the structure.

Table 3.5 Elastic to inelastic response factor. I/Up. Eq.(3.13) and Eq.(3.14)

1 Probability ; Bucharest soft soil condition ! Medium soil condition i of exceedance i (T,=l .5 s) ; : Ci C> Cj C4 Ci c, c3 c4 ; 0.5 I. 858 : -0.010 : 1.959 0.231 : 1.151 1 0.1207 : 6.216 -0.00089 ; ; o.i i 2.415 : 0.0105 \ 1.362 0.409 | 0.780 ; 0.106 4.96! 7 -0.00161 !

Experience Database 41 Experience Database 42

; 0.1 prbb. of exceed?"^ ! MOLDOVA 0.5 j 1 ! i i Wide freq. band motions 0.2 H -. i 1 2 3 4 5 6 Ductility. u. A-n Ac Fig. 3.14 The response Fig. 3.15 1/Rjx factor as function of structure lateral ductility modification factor 1/R

The statistical analysis of the nonlinear response ordinates uses the lognormal model. Median and 10% probability of exceedance 1/R^ factor are shown in Fig.3.16 as a function of the frequency content of the ground motion, i.e. soil category:

(i) Narrow frequency band motions on soft soils:

=U (3.13)

(ii) Wide and intermediate frequency band motions on medium soils :

1 X> —r. cl[c2-!-«p<-c3T)-esp(-c4T)J (3.14)

For narrow frequency band motions recorded on soft soil conditions characterized by a long predominant period, the 1 Ra factor is a function of the ratio of the structure period (T) to the site period (Tg). The coefficient of variation of 1,RU factor has a peak for T/TgSl.0. The higher the structure lateral ductility .u the larger the coefficient of variation of 1/RU . For the wide and intermediate frequency band motions recorded on medium soil conditions, the 1/RU factor does not depend on the structure period for periods greater than the corner period of the motion. T>Tc - 0.6s. The scaling of the elastic spectrum to obtain inelastic spectrum through a factor which is not dependent on the width of the frequency band of the excitation is neither rational nor appropriate. For the narrow frequency band motions, the practice-in-codes of scaling using a period-independent factor is contrary to the results provided by nonlinear analysis.

Experience Database 42 Experience Database 43

BUCHAREST 0.9

~ 0.8 b

V. 0.7

§• 0.6

•4 0.5

.£ 0.4

£ 0.3 i ~ 0.2

0.1

0 0.0 0.5 1.0 1.5 2.0 T/Tg

1.00 0.90 p i ZJ Droaa frequency Dana comp. | 0.80

S 0.70 [ I 0.60 \ i 0.50 f .1 0.40 .a 0.30 r V. 2 0.20

0.0 0.5 1.0 1.5 2.0 3.0 Period, s Fig.3.16 Elastic to inelastic response factor. 1/Ru. with 0.1 probability of exceedance

Experience Database 43 Experience Database j 44_

4. REFERENCES

Ambraseys, N.N.. Bommer. J.J.. 1995. Attenuation relations for use in Europe: An overview. European Seismic Design Practice. Elnashai (ed.). Baikema. Rotterdam, p.67-74.

ASCE 4-86 and ASCE 4 Revision 1995, ASCE Standards: Seismic analysis of safety-related nuclear structures and Commentary. American Society' of Civil Engineers. New-York. 1987 and 1995 (Draft).

ASCE 7-95. ASCE Standard: Minimum Design Loads for Buildings and Other Structures. American Society of Civil Engineers. New-York. May 1995 (Draft).

Cernovodeanu, P., Binder. P.. Natural disasters in the past time of Romania. Silex Publishing House, Bucharest, 1993.

Chiper, M., History of seismic motions in Romania (in Romanian. 83 p). INCERC Report Nr. 135/1990, Oct-1993.

Ejiri, J., Sawada, S.. Goto. Y., Tokl K.. 1996. Peak ground motion characteristics. Special Issue of Soils and Foundations. 7-13 Jan., Japanese Geotechnical Society, p.7-28.

Elnashai A., Lungu D., 1995. Zonation as a tool for retrofit and design of new facilities. Report of the Session A. 1.2. 5th International Conference on Seismic Zonation. Nice, France, Oct. 16-19, Proceedings Vol.3, Quest Editions, Preses Academiques.

Eurocode 8 - Design provisions for earthquake resistance of structures. Part 1-1: General Rules - Seismic actions and general requirements for structures. CEN European Committee for Standardization, Oct. 1994.

Fajfar P., 1995. Elastic and inelastic design spectra. Proceedings 10th European Conference on Earthquake Engineering, Aug. 28-Sep. 2, 1994, Vienna Austria. Vol.2, p. 1169-1178. AA Baikema. Rotterdam.

Florinescu. A.. Catalogue des tremblements de terre ressentis sur Ie teritoire de la Roumanie. Academie de la R.P.R. Comite National de Geodesie et Geophisique pour l'A.G.L. Litographie et Typographie des Enseignement, Bucharest, 1958, 167p.

Hwang H.H.M., Huo J.R.. 1994. Generation of hazard-consistent fragility curves for seismic loss estimation studies. Technical Report NCEER-94-0015. National Center for Earthquake Engineering Research, State University of New York at Buffalo, Aug.

Hwang H.H.M. Hsu H-M.. 1991. A study of reliability based criteria for seismic design of reinforced concrete frame buildings. Technical Report NCEER-91-0023. National Center for Earthquake Engineering Research. State University of New York at Buffalo. Aug.

Experience Database 44 Experience Database j 45

Idris. I.M.. 1991. Earthquake ground motions at soft soil sites. Proceedings: Second International Conference on Recent Advances in Geotechrrical Earthquake Engineering and Soil Dynamics. March 11-15. St.Louis. Missouri. Invited paper LP01. pp.2265-2271.

Lungu D.. Coman O., et al.. 1995. Probabilistic hazard analysis to the Vrancea earthquakes in Romania. Research Report to the International Atomic Energy Agency. Vienna. Contract No. 8223.EN. Stevenson & Assoc. Office in Bucharest.

Lungu D.. Cornea T.. Craifaleanu L. Aldea A.. 1995. Seismic zonation of Romanian based on uniform hazard response ordinates. 5th International Conference on Seismic Zonation. Nice. France. Oct. 16-19. Proceedings VoLl. p.445-452. Quest Editions. Presses Academiques. Nantes

Lungu D.. Coman O.. Moldoveanu T., 1995. Hazard analysis for Vrancea earthquakes. Application to Cemavoda NPP site in Romania. 13th International Conference on Structural Mechanics in Reactor Technology. Porto Alegre. RS, Brazil, Aug. 13-18

Lungu D., Coman O., Cornea T., Demetriu S., Muscalu L., 1993. Structural response spectra to different frequency bandwidth earthquakes. 6th International Conference on Structural Safety and Reliability ICOSSAR "93. Innsbruck, Austria. Aug. 9-13. Proceedings Vol.3, p.2163-2170. A.A. Balkema: Rotterdam

Lungu D.. Cornea T., 1990. Grounding of design forces in Romania based on Vrancea seismic records of 1986 and 1977. 9th European Conference on Earthquake Engineering. Moscow. Russia. Sept. 11-16. Proceedings. Additional Vol., p.63-72

Lungu D.. Cornea T.. 1989. The 1986 and 1977 Vrancea earthquakes. Stochastic analysis of their spectral content and structural effects. Construct!! Nr.3-4, p. 25-50. (in Romanian)

Lungu D., Cornea T., 1988. Power spectra in Bucharest for Vrancea earthquakes. Symposium on Reliability-Based Design in Civil Engineering. Lausanne, July 7-9. Proceedings Vol. 1, p" 17-24

Lungu. D.. Cotnea. T., Craifaleanu. I.. Demetriu. S.. 1996. Probabilistic seismic hazard analysis for inelastic structures on soft soils. 11th World Conference on Earthquake Engineering. Acapulco, Mexic. June 23-28.

Lungu D.. Cornea T.. Demetriu S.. 1992. Frequency bandwidth of Vrancea earthquakes and the 1991 edition of seismic code in Romania. 10th World Conference on Earthquake Engineering. Proceedings. Vol. 10. p. 5639-5644. AABalkema, Rotterdam.

Mahin. S.A., Lin. J., 1983. Construction of inelastic response spectra for single-degree-of- freedom systems. Computer program and application. Report No. UCB/EERC-83 17. EERE. College of Engineering. L'niversify of California, Berkeley.. California, June 1983.

Marza. V.I.. 1995. Romania's seismicity file: 1. Preinstrumental data (to be published in Special Publications of the Geological Society of Greece, 1996).

Experience Database 45 Experience Database 46

Marza. Y.I.. Kijko. A.. Mantyniemi. P.. Estimate of earthquake hazard in the Yrancea (Romania) region. Paleography. Vol.135. No.L 1991. p 143-154. Birkhauser Yerlag. Basel.

Marza. V.I.. Pantea. A.I.. Enescu. D.. Reappraisal of Historical Subcrustal Seismicity of the Yrancea (Romania) Seismogenic Region. European Sdsmological Commission. XXIY General Assembly. 1994, Sept 19-24, Athens, Greece. Proceedings.

Miranda E., 1992. Nonlinear response spectra for earthquake resistant design. Proceedings of the Tenth World Conference on Earthquake Engineering. July "9-24. 1992. Madrid. Spain. Vol. 10. p. 5835-5840. AA Balkema, Rotterdam.

Molas. G.L.. YamazakL F.. 1995. Attenuation of earthquake ground motion in Japan including deep focies events. Bulletin of Seismologjcal Society of America, vol.85. No.5. Oct. pp. 1343-1358.

Radu, C, Catalogue of strong earthquakes (3o>6) originating in Romania during the period 994-1900

Radu, C, The revised and copieted catalogue of historical earthquakes occured in Romania before. 1801. European Seismological Commission, XXIV General Assembly, 1994, Sept 19-24, Athens, Greece, Proceedings.

Seismic Workstation, Strong Motion Data Analysis, User's Manual, Rev.E, Sept. 1987. Kinemetrics. Inc.. Pasadena. California.

Experience Database 46 Experience Database • 47

5. APPENDIX A

Characteristics of the accelerograms recorded in BUCHAREST during Vrancea earthquake on March 4, 19~~ at the seismic station of INCERC (Buildina Research Institute, O) Bucharest.

Dieitized data of the stronH motion from:

Kenchiku Kenkyu Shiryo, No.20, January1978

Digitized Data of Strong-Motion Earthquake Accelerograms in Romania (March 4A977) by Observational Committee of Strong Motion Earthquake Building Research Institute, Ministry of Construction (Prof. M. Watabej'

Experience Database 47 Experience Database 48

Table Al. Peak values of the ground motion parameters Station Comp. : PGA PGV PGD cnrs" cms cm INCERC NS 194.9 -1.9 16.3 O Z 105.8 14.2 o ~ EW i 162.3 28.2 9.6 .

Table A2. EPA, EPV values Station Comp. EPA EPV cm/s" em's INCERC NS 233.9 50.6 0 z 70.3 6.0" EW 117.6 24.7

Table A3. Maximum values of response spectra (damping 0.05) Station 2 em's cm/s cm INCERC NS 615.9 130.9 39.5 Z 231.9 27.4 8.5 EW 415.3 78.6 25.3

Table A4. Amplification factors for response spectra Station SV^ PGA PGV PGD INCERC NS 3.16 1.82 2.42 O Z 2.19 1.93 0.88 EW 2.56 2.79 2.64

Table A5. e frequency bandwidth measure of PSD (Cartwright & Longuet-Higgins; ! Station ! s ; INCERC NS 0.97 O Z 0.82 EW 0.91

Table A6. Lz fractile frequendes of PSD (Kennedy & Shinozuka) ! Station f,-. f;o INCERC NS i 0.4 0.69 2.0 O Z I 0.6 2.57 8.3 : EW • 0.4 1.44 4.1 '

Table A7. imer) periods of response spectra ' Station Come. ; Tr Tr. ; INCERC NS : 1.34 1.90 O Z O."4 1.95 EW 1.19 2.02

Experience Database 48 Experience Database 49

6. APPENDIX B -

Characteristics of the accelerograms recorded in REPUBLIC OF MOLDOVA during the Vrancea earthquakes of 19", 1986 and 1990 by the seismic network of Institute of Geophysics and Geology.. Academy of Science of Republic of Moldova. Chisinau.

Table B1. Peak values of the ground motion parameters

Table B2. EPA, EPV values

Table B3. Maximum values of response spectra (damping 0.05)

Table B4. Amplification factors for response spectra

Table B5. s frequency bandwidth measure of PSD (Cartwright & Longuet-Higgins)

Table B6. f10, f;o and f^ fractiie frequencies of PSD (Kennedy & ShinozuJka)

Table B7. Control (corner) periods of response spectra

Experience Database 49 Experience Database 50

Table Bl. Peak values of the ground motion parameters

Station Comp. March 4. 19" Aue.30. 1986 Mav 30.1990 PGA PGV PGD PGA PGY PGD PGA PGY PGD cms" cm/s cm eras" em's cm cms" cnvs cm ChisinauISS-1 Y309 | 191.8 8.1 2.1 2311 - 1 120.4 8.3 — •> - Y310 212.8 20.4 4.0 : Chisinau ISS-2 N42E ! 99.16 3.8 1.9 | • Z 49.92 2.2 4.1 - - N48W 1 95.36 4.6 5.2 Y682 i 179.9 8.0 4.7 Z - - - Y680 204.3 5.9 1.9 1 Chisinau ISS-3 Y651 125.3 12.9 • •7 - - - Y652 151.1 9.35 Chisinau Y659 77.5 6.0 DimoSt. Z658 - - 63.9 4.4 1 • Y660 83.8 5.7 ! Cahul Y671 129.1 10.6 j • Z672 - - 90.6 5.1 i Y673 136.7 15.7 i Krasnogorka Y304 82.0 3.0 0.6 • Z - j Y305 69.2 2.4 0.9

Table B2. EPA, EPV values

Station

153.93 5.58 Krasnogorka Y304 I 53.39 1.50 Z Y3Q5 ! 59.01 1.51

Experience Database 50 Experience Database 51

Table B3. Maximum varues of response spectra (damping 0.05)

Station Comp. March 4.19" AU2.30. 1986 Mav30. 1990

cms cms cm cms cms cm cm s cm s cm Chisinau ISS-1 Y309 952.2 36.0 4.0 I • Z311 - 616.1 19.6 7.5 - Y3I0 599.8 65.8 11.1 ; Chisinau ISS-2 N42E 355.2 7.0 0.7 • Z 144.0 4.5 1.2 - - N48W 224.1 S.5 1.7 Y682 711.5 25.7 11.2 Z - - - - Y680 673.1 25.6 9.4 ; Chisinau ISS-3 Y651 439.4 11.2 6.0 : • Z - - - - - j : Y652 7822 16.3 13.0 j Chisinau Y659 236.9 12.2 2.5 ; Dimo St. Z658 - - 221.5 5.0 2.3 • Y660 360.0 15.3 3.7 1 Cahul Y671 497.4 22.1 5.7! • Z672 - 393.8 10.8 6.2 Y673 529.8 22.5 8.8 Kiasnogorka Y304 237.0 6.6 1.0 Z - - - - - Y305 332.8 8.2 1.1

Table B4. Amplification factors for response spectra

1 Station Comp. March 4. 1977 Aug.30, 1986 Mav30. 1990 1 SA_,T SV-,T SD-,. SA-,T SVm.iT SD-^ SA^ai SV-,, SD^T PGA PGV PGD PGA PGV PGD PGA PGV PGD i 4.44 1 Chisinau ISS-1 Y309 4.96 1.92 i • Z3I1 - 5.12 2.36 1.04 - Y310 2.82 4.08 2.77 i Chisinau ISS-2 N42E 3.58 1.84 0.36 • Z 2.88 2.04 0.28 - - N4SW 2.35 1.87 0.33 ! Y682 3.95 3.21 2.39 Z - - Y680 3.29 4.34 4.95 i Chisinau ISS-3 Y651 3.51 0.87 i _ | • Z - i Y652 5.18 1.74 i Chisinau Y659 3.06 2.03 i Dimo St. Z658 - - 3.47 1.14 ! 4.30 2.68 j_ • Y660 : Cahul Y671 3.85 2.08 • Z672 - - 4.35 2.12 Y6T3 3.88 1.43 Krasnogorka Y304 2.89 2.20 1.6" i Z - Y305 : 4.80 3.42 1.22

Experience Database 51 Experience Database 52

Table B5. s frequency bandwidth measure of PSD ( Cartwright & Longuet-Higgins)

• Station Comp. : March 4. 19" Aug.30. 1986 May 30. 1990 Chisinau ISS-1 Y309 0.64 j • Z311 - 0.66 - Y310 0.85 ; Chisinau ISS-2 N42E O.~4 Z • 0.76 - 1 - N48W 0.78 Y682 ; 0.5" Z - - Y680 0.62 Chisinau ISS-3 Y651 0.59 • Z - Y652 0.39 Chisinau Y659 0.75 Dimo St. Z658 - - 0.54 • Y660 0.77 Cahul Y671 0.64 • Z672 - - 0.68 Y673 0.67 Krasnogorka Y304 0.66 z ; - Y305 i 0.65

Table B6. f;0, f;o and fw fractile frequencies of PSD (Kennedy & Shinozuka)

Station Comp. i March 4. 1977 Aug.30,1986 Mav30.1990 : ! f,r. f« £-0 1 f:. f?o f™ fin ff-0 fTO Chisinau ISS-1 Y309 1.5 7.17 9.0 ; • Z311 i 1.8 5.63 9.5 - 1 Y3I0 0.8 2.30 8.5 Chisinau ISS-2 N42E j 1.9 5.04 10.6 1 • Z • 1.7 4.48 9.8 - - N48W • 1.2 4.49 11.4 Y682 4.4 6.62 10.8 : Z 1 - Y680 3.9 6.62 11.6 i Chisinau ISS-3 Y651 3.9 8.10 12.9 i • Z ! - j Y652 6.1 9.20 n.o ! Chisinau Y659 ! 1.5 5.1 12.6 Dimo St. Z658 : - 5.3 8.45 13.5 • Y660 1.9 4.8 10.6 Cahul Y6T1 1.5 "15 10.9 ' • Z672 - - 3.6 6.10 12.4 : Y6T5 7 r 5.89 10.3 : Krasnogorka Y304 3.3 5.3 9.0 : •" Z - - Y305 3.2 5.6 8.6 ;

Experience Database 52 Experience Database 53

Table B7. Control (corner) periods of response spectra

Station Comp. March 4. 19—— : Aus.30. 1986 Mav 3-0. 1990

Tc T- : i s S < s s s s • Chisinau ISS-1 Y309 0.24 i Z311 - - 0.21 2.42 - j • i Y32O 0.67 1.06 Chisinau ISS-2 N42E 0.12 0.61 • Z 0.20 1.63 - - - N48W 0.24 1.24 Y682 0.23 2.30 Z - -

• Y680 0.24 2.75 Chisinau ISS-3 Y651 0.16 3.37 j Z _ - - . Y652 0.13 5.07 i Chisinau Y659 0.32 1.30 DimoSt. Z658 - - 0.14 2.91 • Y660 0.27 1.54 | Cahul Y671 0.28 1.64 • Z672 - Y673 0.26 . 2.56 Krasnogorka Y304 0.17 0.93 • Z - - - Y305 0.26 0.84

Experience Database 53 Experience Database 54

7. APPENDIX C

Characteristics of the accelerograms recorded in BULGARIA during the Yrancea earthquakes of May 30 and 31. 1990 bv the seismic network of Bufparia.

Table C 2. Peak values of the ground motion parameters

Table C2. EPA, EPV values

Table C3. Maximum values of response spectra (damping 0.05)

Table C4. Amplification factors for response spectra

Table C5. e frequency bandwidth measure of PSD (Cartwright & Longuet-Higgins)

Table C6. f;0, fJ0 and f^ fractile frequencies of PSD (Kennedy &, Shinozuka)

Table C7. Control (comer) periods of response spectra

Experience Database 54 Experience Database 55

Table Cl. Peak values of the ground motion parameters

'• Station Comp. Aus30.1986 Mav 30.1990 Mav 31.1990 : PGA PGV PGD : PGA PGV PGD PGA PGV PGD cms" cms cm cm/s2 cm/s cm ' cms" cms cm Bozveli Village NS 60.2 5.6 2.1 0 Z 20.3 3.0 2.5 - EW i 54.0 5.2 2.0 Kvarna NS i 30.5 5.6 2.1 i 0 Z 22.2 3.7 3.9 - EW 36.2 5.4 2.2 Provadia NS ; 47.7 2.3 1.0 0 Z i 17.7 2.1 1.4 | EW 1 48.2 3.0 1.4 Russe N20E ] 87.3 4.1 2.9 11.9 0.5 - ! 0 Z i 41.6 1.8 0.9 9.5 0.3 E20S ! 112.4 6.6 2.2 22.8 0.8 - 1 Shabla N29W t 32.9 3.8 1.5 8.6 0.5 0.1 0 Z ! 23.1 2.6 0.8 5.4 0.3 0.1 | i Varna N72E l 33.6 3.9 1.9 i 0 Z i 16.9 2.4 1.3 E72S i 28.1 3.9 1.8

Table C2. EPA, EPV values

Station Comp. Aue 30. 1986 May 30,1990 Mav 31.1990 EPA EPV EPA EPV EPA EPV em's' cm/s cm/s2 em's cm/s' em's Bozveli Village NS ; ; 6i.7i 7.40 0 Z i ! 21.69 2.20 - EW ; 47.18 4.83 Kvarna NS • : 27.52 3.51 0 Z ; - I 19.65 1.80 - - EW : ; 26.52 4.13 Piovadia NS j: ': 45.85 1.36 0 z I 15.85 0.90 - EW ': ! 44.70 1.96 Russe N20E : : 81.98 2.80 11.37 0.34 0 Z i ! 33.07 1.15 7.47 0.14 E20S : ! 106.21 3.85 20.05 0.38 Shabla N29W : 31.34 1.38 8.43 0.29 0 Z - : 23.21 1.45 5.12 0.25

Varna N72E : . 30.39 2.37 0 Z i - : 13.59 1.49 - - E72S i I 27.25 2.26

Experience Database Experience Database 56

Table C3. Maximum values of response spectra (damping 0.05s

; Station Comp. Aug30.1986 : May 30. 1990 May 31, 1990 SA^ SA^ SV^ SD^ ; SA^ sv=JX sv_ SD^ cm/s~ cms cm i cm/s" cms cm i cm s" cms cm 1 Bozveli Village NS ! 224.4 26.1 4.95 ; i 0 Z - 70.78 6.44 3.74 ! - EW 175.5 13.64 5.27 j 1 Kvama NS 129.2 15.08 8.94 | ! 0 Z - 67.9 16.27 10.2 ! - EW 116.4 12.02 7.21 ! i Provadia NS 249.4 10.5 4.01 j 0 Z - 71.39 6.72 6.7 j - EW 196.8 8.55 6.49 | Russe N20E 295.9 15.77 6.50 j 38.95 1.74 o.i7 ; 0 Z - 136.5 5.78 3.60 j 33.38 0.97 0.17 E20S 438.9 19.34 6.49 | 84.'5 2.88 0.18 Shabla N29W 147.1 16.07 6.97 ; 43.43 2.04 0.36 j 0 Z 85.2 9.24 3.32 | 20.37 0.99 0.31 |

Varna N72E 135.7 11.53 8.27 \ 0 Z 65.79 6.58 529: - E72S 99.35 11.88 5.80 i

Table C4. Amplification factors for response spectra

Station Comp. Aug30, 1986 May 30,1990 May 31, 1990

SA., SD-JT PGA PGA PGV PGD I PGA PGV PGD Bozveli Village NS 4.66 2.36 0 Z 3.49 2.15 1.50 EW 3.25 2.62 1.82 Kvama NS 4.24 2.69 4.26 0 Z 3.06 4.40 2.62 EW 3.22 "7 ?? 3.2S Provadia NS | 5.23 4.56 4.00 z j 4.03 3.20 4.78 EW I 4.08 2.85 4.63 Russe N20E 3.39 3.85 2.24 3.27 3.48 0 Z 3.28 3.21 4.00 3.51 3.23 E20S ( ^3.90 2.93 2.88 3.59 Shabla N29V 4.47 4.23 4.65 5.05 4.0" 3.62 0 Z 3.69 3.55 4.15 3.29 3.10

Vama N72E 4.04 2.95 4.35 0 z 3.89 2.74 4.07 3.54 3.05 322

Experience Database 56 Experience Database 57

Table C5. s frequency bandwidth measure of PSD (Caitwright & Longuet-Higgins)

Station Comp. Aug30.1986 May 30. 1990 May 31. 1990

! Bozveli Village NS ; 0.86 • ! 0 ~ z I 0.S7 0.87 i EW ! j Kvama NS 0.90 0 Z ; 0.90 i EW : 0.90 Provadia NS 0.60 i 0 Z - '. 0.73 EW ! 0.63 ! Russe N20E 0.80 0.70 i : 0 z 1 0.77 0.66 ! E20S 0.78 0.64 | Shabla N29W 0.78 0.79 ] 0 Z - 0.81 0.81 * Varna N72E 0.77 0 . Z . 0.84 - E72S 0.81

Table C6. fi0, fso and fso fractile frequencies of PSD (Kennedy & Shinozuka)

Station Comp. : Aug30, 1986 May 30,1990 I May 31, 1990 i f f f fso MO *-50 I90 f'O f90 i fio fso fio Bozveli Village NS : 1.0 1.94 3.9 j 0 Z i 0.9 2.63 6.1 i - EW I 1.1 2.00 4.1 ! Kvarna NS 0.5 1.85 3.8 ; 0 Z . 0.4 1.70 5.3 i - EW : 0." 1.70 5.0 : Provadia NS 3.Q 3.98 5.1 . i 0 Z • 0.6 4.93 8.4 • - EW : 2.6 4.13 6.2 I Russe N20E : 2.1 3.00 8.3 : 2.4 5.15 10. 0 Z I 2.8 4.82 10.5 i 3.9 6.03 10. E20S : 1.9 3.76 8.2 • 2.5 3.76 9.8 Shabla N29W - 0.5 3.74 5.9 : 2.0 3.40 4.9 1 0 Z 0.5 3.74 8.3 '< 1.9 3.64 9.3

Varna N72E 1.0 3.13 5.9 0 Z 0.56 3.26 7.4 - E72S 0.94 2.32 5.4

Experience Database 57 Experience Database 58

Table C~ Control (comer) periods of response spectra

! Station Comp. : Aug30,1986 ! May 30. 1990 May 31,1990

TD : X; 7D s s s s ; S s

j Bozveli Village NS I 0.73 1.19 i ! 0 Z 0.57 3.64 EW 0.49 2.43 .' Kvarna NS : 0.73 3.73 ! I 0 Z . j 1.51 3.95 EW i 0.65 3.77 Provadia NS \ 0.26 2.40 0 Z 0.59 6.27 - EW j 0.27 4.77 Russe N20E | 0.33 2.59 0.2S 0.62 0 Z 0.27 3.91 0.18 l.il E20S j 0.28 2.05 0.21 0.39 Shabla N29W 0.69 2.73 0.29 1.12 0 Z 0.68 2.26 0.30 1.97

Vama N72E 0.53 4.51 0 Z 0.63 5.05 - E72S 0.75 3.07

Experience Database 58 STEVENSON & ASSOCIATES

PART TWO:

SEISMIC EXPERIENCE AND TEST DATA COLLECTION

In cooperation wih:

EUROTEST SA, Bucharest, test lab.

ISPE SA, Bucharest, Engineering company

Experience Database Experience Database Pag.2

CONTENTS:

1. INTRODUCTION 4

2. APPROACH AND SCOPE 4

3. DATABASE STRUCTURE AND DESCRIPTION 6

3.1 DATA AVAILABILITY 6 3.2 DATA REQUIREMENTS 6 4. COLLECTION PROCEDURE 7

5. EXPERIENCE DATA 9

5.1 POWER STATION BUCHAREST WEST 10 5.1.1 Generals 10 5.1.2 Power plant description: 10 5.1.3 Thermo-mechanical Equipment: 11 5.2 SEISMIC BEHAVIOR, s OF THE MAIN MECHANICAL AND ELECTRICAL EQUIPMENT 13 5.3 POWER PLANT BUCHAREST SOUTH 14 5.3.1 General description 14 5.4 SEISMIC BEHAVIOR OF MAJOR EQUIPMENT DURING AND AFTER 1977,1986 AND 1990 SEISMIC EVENTS 15 5.4.1 Unit 1IJA1 - 50MW) 15 5.4.2 Unit2'TA2 5Q.\mrr. 15 5.4.3 Unit 3 'TA3 lOOMw) 15 5.4.4 Unit 4 >TA4 100Mw) 16 5.4.5 Unit 5 >TA5 -130Mw) 16 5.4.6 Unit 6 >TA6130 Mw: 16 5.4.7 Steam generator Cl: typeGMS4 16 5.4.8 Steam generator C2: type TGM 84, 17 5.4.9 Steam generator C3: type TGM 84, 1? 5.4.10Steam generator C4: type TGM 84A, 17 5.4.11 Steam generator C5: type TLMACE. 17 5.4.12 Steam Boiler C6: type TLMACE. 17

Experience Database Pag -2 Experience Database Pag.3

6. CONCLUSIONS 18

7. REFERENCES 19

8. .APPENDIX - Al Al - 1

9. APPENDIX - A2 A2 - 1

10. APPENDIX - A3 A3 - 1

11. APPENDIX - A4 A4 -1

Experience Database Pag -3 Experience Database Pag .4

1. Introduction

The present report represent the second year of the research project. The background regarding generic approach philosophy was presented in previous report submitted in November 1995. This report presents the experience data that have been collected and processed in January- November 1996 period.

2. Approach and scope

The study approach involved the identification, collection, and aggregation of existing seismic experience qualification and test data as a background for a computerized database system. First the sources of experience data were identified, then experience data were extracted and collected.

Table 2-1 lists equipment of interest (items required for hot shutdown) as defined by SQUG/USNRC. Based on the EPRI study, equipment was classified as mechanical, electrical, or relays. The specific equipment classes includes:

• Batteries on Racks •Contactors and Motor Starters • Battery Chargers • Switches • Inverters • Manual Control Switches • Motor Valve Operators • Transmitters • Electrical Penetration • Instrument Rack Components Assemblies • Solenoid-Operated Valves • Distribution Panels • Air-Operated Valves • Switchgear • Safety Relief Valves • Transformers • Automatic Transfer Switches • Motor Control Centers • Chillers • Control Panels • Motors

Experience Database Pag -4 Experience Database ~ Pag .5

TABLE 2.1 TYPICAL HOT SHUTDOWN EQUIPMENT LIST

Mechanical Equipment

1. Vertical pumps and motors 2. Horizontal pumps and motors 3. Motor-operated valves 4. Air-operated valves(including solenoid valves) 5. Heating, ventilation and air-conditioning HV AC; 6. Pumps (turbine driven, diesel driven 7. MSIVs (Main Steam Isolation Valves) 8. Pilot-operated safety/relief valves 9. Spring-operated safety/relief valves 10. NSSS mechanical equipment (Control Rod Drive Mechanisms) 11. PORVs (Power Operating Relief Valves) 12. Air compressor and air accumulators 13. Heat exchanges, tanks ( anchorage review only) 14. Atmospheric steam dump valves

Electrical Equipment

1. Low-voltage switchgear 2. Metal-clad switchgear 3. MCCs (Motor Control Centers) 4. Transformers (unit substation type) 5. Motor-generator sets 6. Distribution panels 7. Batteries and batten' racks 8. Battery chargers 9. Inverters 10. Diesel generators and associated equipment 11. Electrical penetration assemblies 12. Transformers (other than unit substations) 13. Automatic transfer switches 14. Remote shutdown panels

Experience Database Pag -5 Experience Database Pag.6

Instrumentation

1. Transmitters (pressure, temperature, level, flow) 2. Switches (pressure, temperature. leveL flow) 3. Resistance temperature detectors and thermal couples (RTDs and T.'Cs) 4. Relays 5. Control panels and associated components 6. Instrument racks and associated components 7. Instrument readouts (displays, indicators such as meters, recorders, etc.) 8. Neutron detectors

3. Database structure and description

3.1 Data Availability

Data are available principally in two forms : 1) test reports or 2) Seismic experience.

Data sources have included :

• test laboratories. • utilities, • other institutions such as national laboratories and architect-engineering firms.

The general types of information required are equipment description (type, size, weight, etc.). Information is also collected concerning the year of testing or first operation, type of test (e.g., biaxial , sine, etc.) or seismic event the test spectra, or site seismic response spectrum, physical modifications (if any), failure mechanism (if any), and operational requirements and performance.

Test data was provided by EUROTEST SA (test lab.), under a cooperative agreement. The seismic experience data was collected in cooperation with ISPE (utilities engineering company) base on investigation of two power plants.

3.2 Data Requirements

Engineering judgment is required to assess how many data points are required and to define the inclusion rules (rules for membership in the class or "club" of equipment).

The library of historical earthquake data used by US SQUG has anywhere from 50 to 500 pieces of data per equipment class. As there was some uncertainty as to the input during the historical earthquake, it was felt that a large number of data points in different earthquakes was helpful in offsetting this uncertainty. In addition, equipment details (model number, year of manufacture, etc.) were not known with certainty, thus a large data sample tended to account for class diversity. With test data, the uncertainty is less since the input

Experience Database Pag -6 Experience Database Pag.7 motion amplitude and the equipment condition are known, as fewer data points are required-experience showed that 5 to 10 were sufficient

4. Collection procedure

Figure 4-1 outlines the data collection process. Data are extracted from a test reports or seismic qualification review forms. These are first reviewed by an equipment qualification engineer to determine if the data are suitable for inclusion in the data base. The initial screening criteria are :

• Does the equipment item match the specifications of one of the hot shutdown list classes? (Table 2.1 ) • Does the report adequately describe the equipment and test procedure or seismic conditions ? • Does the report include test response spectra (TRS), or site seismic information (seismic events, peak ground acceleration, etc.) and all other necessary information?

The database fields provide a basic description of the equipment item and summarize the information available. The database includes information concerning :

• equipment descriptors; • size, weight, and manufacturer/model code number, • year of testing / seismic event: • type of tests and test documentation or seismic event information • anchorage description: • quantification of available TRS or seismic review team reports: • any exceptions or comments related to performance during seismic even or during testing: • any failures.

The term "failure" refers to inability to meet the acceptance criteria during or after a dynamic test seismic event. In most instances, a failure will be equipment malfunction and not structural failure.

Equipment must be classified by evaluating design details and material which affect dynamic response and ability to resist loads. Equipment types which have similar operating principles and design features, but differ mainly in size, could be classified in the same subclass. If there are significant differences, a different classification (i.e., a subclass) would be used. The final result is to identify low-diversity sets of data, or "clubs", appropriate for the equipment items that are included.

.After all the information has been entered into the data base, it is reviewed and independently checked for accuracy. Once the data have been collected and checked, they must stored on magnetic media.

Experience Database Pag -7 Experience Database Pag.8

Figure 4.1 Data coDection process

Obtain qualification report

Review Data for Suitability and Completeness

No Reject Data if incomplete or unsuitable

Yes

Assign code numbers

Select Representative Spectra

• Enter in Database

Store on Disk & Transmit to Central Data Bank

Experience Database Pag-8 Experience Database Pag.9

5. Experience data

Considering the equipment list (Table 2.1) two cooperation agreements have been set with ISPE and EUROTEST (electric engineering company and test lab.).

EOROTEST provides additional 15 equipment test reports, presented in Appendix A4.

Main equipment description for power plants Bucharest South and Bucharest West and general seismic behavior of these two power plants during and after 1977. 1986 and 1990 seismic events are presented in this chapter. Seismic experience data for mechanical and electrical equipment that have been collected are presented in appendices Al. A2. A3. The ground motion characteristics for all three seismic events are presented in the first part of the report. Also the database must include picture of the mechanical and electrical equipment as they are installed. This will require more effort and co-operation from the electric utilities.

This report demonstrate the availability of seismic experience data and initiate the data collection process. The future of this process is strongly depended by creating an organized an coordinated program. A seismic expert team must be set and maintained for post earthquake investigation, data collection review and validation. Once the experience database will become operational the first benefit will be the reduction of the seismic safety evaluation effort related with mechanical and electrical equipment.

Experience Database Pag -9 Experience Database Pag.1O

5.1 Power Station Bucharest West

5.1.1 Generals

The Power station has two units of 125 Mw - 160 Gcaih each plus 5 heating units of 100 Gcaih each- The fuel is oil or gas. Each unit has the following main equipment: - Unit 1 - 125 Mw electric power - steam generator Cl - turbo generator TALI

Cl was manufactured in Czechoslovakia and has the following characteristics: - Qn = 525 tones/hour of steam; - nominal temperature Tn = 540 C - nominal pressure Pn = 152 bar - service water temperature =240 C

The turbo generator is located at elevation ^10.0 m. and has the following characteristics: - nominal power =125 Mw - Qmax = 525 tones/hour of steam - Steam nominal temperature Tn = 535 C - maximum power of the electric generator =135 Mw - nominal speed = 3000 rot/min.

5.1.2 Power plant description:

The turbine hall has classical design with the following main elevations:

• -4 m local basement • 0.00 grade floor • -7m the platform of auxiliary systems

• -10.00 turbo-generator

.Air compressor station:

• 3 vertical air compressors with piston (Czech)

Diesel generator: It serves as an auxiliary power supply. It has automatic startup and the power is : 190 KVA. Voltage = 400,231 Volts. It is located in turbine hall building near air compressor station.

Heating unit:

The Bucharest West Power Station is equipped with 5 heating units (produce seam and hot water for heating of civil buildings). Each unit has a boiler of 100 GcaLh

Experience Database Pag -10 Experience Database Pag.11

and a low pressure pumps type 18 XDS (UPI Buch) and a high pressure pumps type D2 F AN () Q = 3000 m3 hour and H = 120 water column (12 bars).

Chemical processing station:

chemical installation: mechanical filter installation; demineralization installation;

Liquid fuel storage:

Access platform: Pump station level I; Storage tanks; Pump station level II. Gas storage facility.

The power plant main equipment: imported equipment:

- steam generators type SES TLMOCO - fans type ZWZ - Milevske: - turbo generator type Skoda - Plzen; - degazor CKD - Dukla; - feed water pumps type - Sigma Lutin; - cooling pumps - CKD - Blonsko.

\Ianufactured in Romania :

- heating boilers 100 Gcal/h; - startup boilers 10 th; - auxiliary equipment (pumps, valves, tanks, etc.); - chemical processing equipment, etc.

5.1.3 Thermo-mechanical Equipment:

Steam generator equipment:

- Support steel structure ; - Gallery and stairs; - Main steam vessel (with tambour); - Fittings; - steam generator pipe system: - heat exchanger - steam: - intermediary steam heat exchanger. - Steam temperature regulator. Experience Database Pag -11 Experience Database Pag.12

- Gas regulator - Fine fittings: - .Air heater with steam; - Supported steel structure for masonry: - Masonry and heat isolation: - Steam generator Steel liner: - Fire device for gas and oik - Air and gaze pipe system; - Air and gas channels; - Exzosted gas channels; - Air fans: The steam generator is equipped with two axial fans, including the electrical engines, for 89 m3/sec with air temperature = 30 o C. -Exzosted gas fans: The steam generator is equipped with two fans for exzosted gas. with Q=149m3 sec. and AP=350 daN/cm2. - Recycle Fans : The steam generator is equipped with two recycle fans for gas. Q=6I nrVsec and T=300°C. located into the steam generator building.

Steam Turbine, tvpe SKODA 125 Mw:

- Oil cooling system ; - Oil pipes and fittings. - Condensers: - Pre-heat system high and low pressure ( PIP 1 and PIP 2): - Tanks: - Peak pressure tanks: - Steam Cooling tanks (degazor) 6 bars. - Oil cooler.

Pumps: - Feed water pump type 150 water column - 280 -18-8 - 3 pcs./unit; - Primary Condense pumps WKT 150-6 - 3 pcs./unit Q = 225 tk H = 130m water column. - Secondary condense pumps - 3 pcs./unit

Q = 175 th. H = 185 m water column

Pipe systems and fittings

- heat transport (steam) pipes and fittings; - high pressure over heat steam pipe system and fittings;

- medium and low pressure condensed stea•*=>m• pipe system and fittings; - water/steam distribution svstem for heating. Electric generator - type H644872 2. cooled with H>O. Nominal power 135 Mw.

Experience Database Pag-12 Experience Database Pag.13

5.2 Seismic behavior s of the main mechanical and electrical equipment

The following information is from the plant file.

1. 1977 seismic event: the turbine hall roof collapsed and fall down over the operating turbo-generator (trigger the plant shutdown). Also the turbine cooling system and oil system were damaged. The turbine bearings have been melted.

The main reported damages are mainly due to building structure damage. Some steam boiler auxiliary systems have been damaged due to fall down of construction parts.

2. 1986 seismic event: no damage.

3. 1990 seismic event: no damage.

Experience Database Pag-13 Experience Database Pag.14

5.3 Pmver Plant Bucharest South.

5.3.1 General description

The power plant Bucharest south has 6 units as follows:

Unit 1 and 2: are equipped with steam generators (Cl and C2) type TGM-84 manufactured in URSS. with the following characteristics: - Qv = 420 tons/h (steam rate) - Pv = 137 bar (steam pressure) - Tv = 540° C (steam temperature) and turbo-generators TA1 and TA2 of 50 Mw power each. The turbine types are VPT - 50-3 and VPT-50-5 manufactured Czechoslovakia. The steam parameters for turbo-generator are: -Qv= 386tons/h - Pv 130 bar - Tv -535 C Steam generator Cl operate with petrol only and C2 operate with gas or petrol.

Units 1 and 2 operates since 02.10.1965 and 06.02.1966 respectively.

Units 3 and 4: are equipped with the steam generators C3 and C4 and turbo- generators TA3 and TA4. Steam generators C3 and C4 types are TGM-84A - URSS with the following characteristics: - Qv = 420 tons/h -Pv=155bar -Tv=+540C Both steam generators operates with gas or petrol. The turbo-generators power is 100 MW each. The steam parameters are: - Qv = 460 t/h - Pv = 130 bar - Tv = -535 C Unit 3 operates since 15.09.1967 and unit 4 since 06.12.1967.

Units 5 and 6: are equipped with steam generators C5 and C6 and turbo- generators TA5 and TA6 of 125 Mw each.

The steam generators C5 and C6 were manufactured in Czechoslovakia, type SES - TLA LACE with natural circulation and intermediary overheat system with the following parameters: - Qv = 525 tonsh -Pv= 15234 bar - Tv = -540 C

The fuel is petrol or natural gas. Both turbo generators have a power of 125/135 Mw. The steam parameters for turbo generators are: Experience Database Pag -14 Experience Database Pag .15

- Qv = 525 th (steam) - Pv = 142 30 bar - TV -540 C Units 5 and 6 operates since May 1975 and Nov. 1975.

Each unit is connected in parallel to the grid. Each unit has auxiliary systems as: feed water pumps, fans, cooling system, degazors. condensers, liquid and gas fuel facilities.

5.4 Seismic behavior of major equipment during and after 1977, 1986 and 1990 seismic events.

5.4.1 Unit 1 (TA1 - 50MW)

The following information was found in plant file:

a. 1977 seismic event: Plant shutdown due to loose of electric power (blackout). No damages was reported after the visual inspection.

b. 31.08.1986 time 0.30 TA1 was shutdown due to turbine trip and re-start at time 1.30 a.m. On 1.09.1986 time 23.35 TA1 shutdown due to failure of cooling pipe system and pre-heat low pressure system. The steam regulator was also damage due to a nozzle break. TA1 was fixed and started on 02.09.1986.

c. 1990 seismic event: no damages.

5.4.2 Unit 2 (TA2 50MVV):

a. 1977 seismic event the plant shutdown was triggered automatically. After a visual inspection, no damage has been reported.

b. Aug. 31. 1986 seismic event the plant shutdown was triggered by turbine trip. Xo damages have been reported.

c. May 1990 seismic event no damage have been reported.

5.4.3 Unit 3 (TA3 100 Mw)

a. 1977 seismic event - no damages. Plant shutdown, inspection and restart. b. Aug. 31.1986 seismic event -Plant shutdown, inspection and restart.

c. 1990 seismic event - no damages.

Experience Database Pag -15 Experience Database Pag.16

5.4.4 Unit 4 (TA4 100 Mw)

a) 1977 seismic event - no damages. Plant shutdown, inspection and restart. b) Aug. 1986 seismic event - no damages. Plant shutdown, inspection and restart. C) 1990 seismic event - no damages. Plant shutdown, inspection and restart.

5.4.5 Unit 5 (TA5 -130 Mw)

a) 1977 seismic event - the plant shutdown was triggered due to turbine trip. The following damages have been reported: The oil pump faille. The turbine bearings L5 and L6 have been damaged. The pumps 5A. 5B. oil tanks and oil tubes were also damaged. One transformer was damaged.

b) 1986 seismic event - no damages.

C) 1990 seismic event - no damages.

5.4.6 Unit 6 (TA6 130 Mw):

A) 1977 seismic event - plant shutdown, inspection and restart. No damages have been reported.

B) August 1986 seismic event - plant operated during and after the earthquake. No damages have been reported.

C) 1990 seismic event - plant operated during and after the earthquake. No damages have been reported.

5.4.7 Steam generator Cl: type GM 84

a) 1977 seismic event time 21.25 - emergency shutdown, inspection and restart. No damages have been reported

b) August 31. 1986 seismic event - no damages

c) May 30 1990 seismic event - no damages.

Experience Database Pag -16 Experience Database Pag.17

5.4.8 Steam generator C2: type TGM 84,

a) 1977 seismic event time 21.25 - emergency shutdown, inspection and restart. No damages have been reported •

b) August 31. 1986 seismic event - no damages

c) May 30 1990 seismic event - no damages.

5.4.9 Steam generator C3: type TGM 84,

a) 1977 seismic event time 21.25 - emergency shutdown, inspection and restart. No damages have been reported

b) August 31. 1986 seismic event - no damages

c) May 30 1990 seismic event - no damages.

5.4.10 Steam generator C4: type TGM 84A,

a) 1977 seismic event time 21.25 - emergency shutdown, inspection and restart. No damages have been reported b) August 31. 1986 seismic event - no damages c) May 30 1990 seismic event - no damages.

5.4.11 Steam generator C5: type TLMACE,

a) 1977 seismic event time 21.25 - emergency shutdown, inspection, revision. No damages have been reported b) August 31. 1986 seismic event - shut down, inspection and restart. On Sept. 16. 1986. a crack have been detected on medium pressure pipe system. c) May 30 1990 seismic event - no damages.

5.4.12 Steam Boiler C6: type TLMACE,

a) 1977 seismic event - damages have been detected to the supporting steel structure and main steam line supports. b) Aug.31.1986 seismic event - the steam generator display device was damaged. The display level was replaced and the plant was restarted.. c) May 30 1990 seismic event - normal operation during and after the earthquake. No damages have been reported.

Experience Database Pag -17 Experience Database Pag.18

6. Conclusions

The scope of this research is to initiate seismic experience database collection for mechanical and electrical equipment listed in table 2.1. The first part of the study presents the background seismic information.

Historical and instrumental catalogues of the Vrancea earthquakes are presented herein for the first time. The seismic data used in the analysis of Vrancea earthquakes includes more than 150 digitized biaxial and or triaxial accelerograms. The Hwang and Hou modification of the Gutenberg-Richter relationship were used to account for the maximum credible magnitude. Attenuation low of the ground motion parameters has been developed in respect to the epicentral distance, focal depth and azimuth. Different attenuation relations were analyzed:

- Joyner and Boore - McGuire and Campbell - Annaka and Nozawa - Fukushima and Tanaka

Frequency contents of the earthquake records have been analyzed. Elastic site dependent response spectra and nonlinear response were generated and analyzed. Regression relations for peak ground acceleration versus dynamic amplification factors were calculated. Elastic to inelastic response ratio versus frequency (period) was also calculated.

The probabilistic hazard analysis presented in part one of the research project provides comprehensive information regarding the Vrancea earthquakes.

Part two '"Experience Database." provides results that demonstrate the availability of seismic experience data and present also an important amount of such information:

- 30 test reports (15 presented in 1995 report) - 26 mechanical equipment - 16 electrical equipment

Collection procedure and data requirements are also presented. The process initiated by this project is strongly depended by creating a coordinated program and a post-earthquake investigation expert team similar with US SQUAG program. The data collection, review and validation must be a continuous activity. The database will become operational when each class of equipment will has more than 20-30 records.

The experience database represents the support information for the Procedure for Seismic Adequacy Evaluation Re-evaluation or Margin Assessment of Selected Equipment and Systems of Operating or Constructed Xuclear Power Plants.

An operational experience database benefit will be a significant reduction of the seismic safety evaluation effort related with safety related mechanical and electrical equipment of operating NPPs. Experience Database Pag-18 Experience Database Pag .19

7. References

J.D.Stevenson - Procedure for Seismic Adequacy Evaluation Re-evaluation or Margin Assessment of Selected Equipment and Systems of Operating or Constructed Xuclear Power Plants. 1996.

J.D.Stevenson - US Experience in Seismic Re-evaluation and Verification Programs. Proceedings of SMIRT 13 - Post Conference Seminar 16, 1995.

Stevsnon & Associates. Romania - Experience database of Romanian facilities subjected to the last three Vrancea earthquakes - IAEA Working material. Coordinated research program on Benchmark study for the seismic analysis and testing of \VWER-type Xuclear Power Plants, 1996.

K.K. banyopathyay, R.M. Kennealry, Guidelines for seismic qualification of equipment based on experience. Proceedings of fifth Symposium. Orlando. Florida, December 1994.

Generic Seismic Raggedness of Power Plant Equipment, EPRI XP5223s. Rev 1 August 1991.

Experience Database Pag -19 Experience Database Pag A1-1

8. APPENDIX-Al Power Plant Bucharest West, unit 1 - 125 Mw Mechanical equipment

The database structure is presented below:

A - equipment (ID); B - generic class: C - Equipment t>pe and operation date: D - Manufacture code; E - Supplier. F - dimensions; G - weight: H - elevation ( WC); I - source of information (test or seismic experience); J - seismic event; K - anchorage (bolted or welded); L - damage; M - functionality; N - Other comments.

Experience Database Pag A1 -1 Experience Database Pag A1 -2

- A 5 - Heat exchanger - high pressure low pressure B Tanks and Heat exchanger C type vertical, S = 525 m2, type vertical, S = 300 m2 and S = 500 m2, in operation since 1974 D E Czech F dimension 1800 (mm) (j) 1700 G H elev. ±0,00 turbine hall elev. - 4,00 1 Seismic experience J Seismic events: 1977,1986,1990 K bolted on steel supports L no damage M normal operation during and after seismic events N 1977 - plant shutdown due to other damages

A i 5 - Condenser cooler B C i type: Surface Condenser cooler S = 6750 m , in operation since:1974

E I Czech F i dimension (mm) - 7000 x 7000

H i eiev. ± 0,00 Seismic experience J 1977, 1986,1990 K boited on concrete foundation L no damage M Normal operation during and after seismic events. N . The damage of a condenser pipe produces loose of 50% of the cool | capacity and condenser failure lead to plant shutdown. Plant shutdown due to other damages in 1977 seismic event

Experience Database Pag A1 -2 Experience Database Pag A1-3

A 6 - Fans for gas Fans for re-circulation B C ; type ZWZ, in operation since: 1974 : type ZWZ, in operation since: 1974 D E Czech F dimension (mm): 3500 x 11000 ; 1500 x 3700 G H elev. ± 0,00 (outside) eiev. ± 0,00 1 1 seismic experience j seismic events: 1977,1986, 1990 K bolted on concrete foundation L no damage M normal operation during and after seismic events N Fan trip will produce a decrease with 60% of the boiler power. 1977 - plant shutdown due to turbine trip (oil pipe break)

A 9 - feed water pumps with automatic regulator B ; horizontal pumps C i type: Sigma 150 CHM - 280/8, in operation since 1974 D E ! Czech F i dimension (mm): 3500 x 1500 G H : elev. ± 0.00 I seismic experience J • seismic events: 1977, 1986, 1990 K i blotted on concrete foundation L i no damage M normal operation during and after seismic events.

N Feed water pump shadow lead in decrease of power with 50% and trigger the auxiliary pumps. 1977- plant shutdown due to turbine trip.

Experience Database Pag A1 -3 Experience Database PagA14

A 10 - Cooling water pump B Vertical Pump C type: 6 DR, in operation since: 1974 D Q = 2,1 m3 / h and H = 21 m (water coiumn) E F dimension(mm):

N Pump damage decrease the power with 50% and trigger the auxiliary pumps. 1977- plant shutdown due to turbine trip.

A 16 - Fans B Fans C type ZWZ, in operation since: 1974 D E Czech p dimension: 2500 x 800 (mm) G H elev. ±0,00 I seismic experience J seismic events: 1977,1986, 1990 K bolted on concrete foundation L no damage M normal operation during and after seismic events N : Fan failure lead to decrease with 60% of the boiler power. 1977 - plant shutdown due to the turbine trip.

Experience Database Pag A1 -4 Experience Database Pag A1 -5

A 19 - thermal element assembly - boiler #. 1 B heat exchanger internal pipes C type SES Tlmace - in operation since 1974 D Q = 525t/h,temp.540 0C E Czech F dimension: 14000 x 15000 x 35000 (mm ) G H elev. ±0,00 I seismic experience J seismic events 1977, 1986,1990 K bolted on concrete foundation t no damage M normal operation during and after seismic events N Boiler failure lead to plant shutdown. 1977 - plant shutdown due to turbine trip.

A 20 - air compressor B : air compressor C I typeZHSE, in operation since 1974 D j air compressor with piston E Czech F • dimension $ 1600 mm G H elev. ± 0,00 (turbine hail) I seismic experience J seismic events 1977,1986,1990 K ; bolted on concrete foundation L : no damage M normal operation during and after seismic events N compressor failure trigger the auxiliary compressor. 1977 - plant shutdown due to turbine trip

Experience Database Pag A1 -5 Experience Database Pag A1-6

A 21 - Diesel generator - automatic trigger. B Diesel generator C ! type: 6S 160 PN, in operation sincel 974 D i E F dimension{mm): 4000 x 1200 G H elevation ± 0,00 (turbine hall) seismic experience. J seismic events: 1977,1986,1990 K bolted on concrete foundation L no damage M normal operation after seismic events N i

A ! 25 - Piping B ! Distribution system C D E i Czech and Romanian

F ' Dn 25 -s- 600 mm , in boiler nail, turbine hall and auxiliary systems G H elev. - 4,00 m and + 35 m I • seismic experience J : seismic events: 1977,1986, 1990 K vertical and horizontal supports L •. no damage M ; normai operation during and after seismic events N supports failure without pipe break.

Experience Database Pag A1 -6 Experience Database Pag A1 -7

A 24 - heat water pipes B distribution system C type - welded pipes, in operation since 1974 D E i Romanian F Dn 250 - 500 mm, distribution of hot water for heating

H ; elev. ± 0,00 and + 6,00 m seismic experience J seismic events 1977,1986,1990 K ; horizontal and vertical supports L I no damage M i normal operation during and after seismic events N supports failure have been detected without pipe damages.

A M 2 - isolation valve - manual B ! valves C i in operation since 1974 D i

F G H ! elev. ± 0,00 I seismic experience J seismic events1977,1986, 1990 K : installed on pipe with flanges L no damage M normal operation during and after seismic events N

Experience Database Pag A1 -7 Experience Database Pag A1-8

A 13 - valve - electric drive mechanism B Motor operated valves C in operation since1974 D E F G H elev. ± 0,00 I seismic experience J seismic events'! 977,1986,1990 K ! flange joint L j no damage M i normal operation during and after seismic events N i

Experience Database Pag A1 -8 Experience Database Pag A2 -1

9. .APPENDIX -A2 Power Plant Bucharest South Unit 1-100 M\Y Mechanical equipment.

A 5 - heat exchanger: high pressure low pressure B Tanks and heat exchangers C in operation since 1967 D E Russian p dimension ~ 1800 mm ; H « 6300 mm ; ~ (j) 1400 mm ; H * 4500 mm ; G H elev. ± 0,00 1 seismic experience J seismic events: 1977,1986,1990 K bolted on steel supports. L no damage M normal operation during and after seismic events. N 1977 plant shutdown due to loose of power (blackout)

A 5 - condenser cooler Q Tanks and heat exchangers c type KG2 - 6200 -1 in operation since 1967 D S tot = 6200 m2 E Russian F dimension - 7300 x 7300 x 3500 (mm) G H elev. =0,00 I seismic experience J seismic events 1977,1986,1990 K boited on concrete foundation L : no damage M normal operation during and after seismic events. 1977 plant shutdown due to loose of power (blackout) N Cooler pipe break lead to decrease of 50% of the cooling capacity. Condenser failure lead to plant shutdown.

Experience Database Pag A2-1 Experience Database PagA2-2

A 6 - Fans for gas. B Fans

C : type 3A - in operation since 1967 • type 3B - in operation since 1967 D : Q = 368000 m 3 / h E : Russian F dimension 3500 x 11000 G H elev. =0,00 I seismic experience J seismic events 1977,1986,1990 K blotted on concrete foundation L no damage M normal operation during and after seismic events. N Fan failure lead to decrease of boiler power. 1977, plant shutdown, inspection and restart.

A 9 - Feed water pumps B ; horizontal pumps C I type PE - 500 -180, in operation since 1967 D ; Q = 500 m / h , H = 1800 m (water column); automatic regulator E ; Russian

H : elev. = 0,00 I seismic experience J seismic events: 1977,1986, 1990 K bolted on concrete foundation L i no damage M normal operation during and after seismic events N 1977, plant shutdown due to loose of power (blackout); Inspection and restart.

Experience Database Pag A2-2 Experience Database Pag A2 -3

A 10 - pumps - condense B vertical pumps C type 12 KSV - 9 x 4 -in operation since 1967 D Q = 300 m 3 / h , d H = 16 m (water column), 4>= 1100 mm

H ; elev. - 0,00 seismic experience J I seismic events 1977,1986,1990 K : bolted on concrete foundation L | no damage M ••• normal operation during and after seismic events. N I 1977, plant shutdown, inspection, restart.

A • 16 - Fans - (boiler ventilation system) B i Fans C j type 3A; 3B,in operation since 1967 D i Q= 240000/180000 m * I h E ! Russian

H elev. ± 0,00 seismic experience J seismic events 1977,1986,1990 K blotted on concrete foundation L | no damage normai operation during and after seismic events N Fan faiiure lead to decrease with 60% of the boiler power.

Experience Database Pag A2-3 Experience Database Pag A2 -4

A 19 - steam boiler #3 B C type TGM - 84 A - in operation sincel 967 D i Q = 420t/h E i Russian

G dimension 15400 x 13100 x 31400 (mm) H i elev. ± 0,00 seismic experience J j seismic events 1977,1986,1990 K i bolted on concrete foundation L | no damage M i normal operation during and after seismic events. N 1977, plant shutdown, inspection and restart.

A 20 - Air compressor B Air compressor *+ in operation sincel967 D E Russian c G H elev. =0,00 I seismic experience J seismic events 1977,1986,1990 K bolted on concrete foundation L no damage M normal operation during and after seismic events. N 1977 Plant shutdown, inspection, restart.

Experience Database Pag A2-4 Experience Database Pag A2 -5

A 21 - diesel generator - automatic trigger B Engine generators C ; in operation since 1967 D i E : F G H ! elev. r 0,00 I : seismic experience. J i seismic events 1977,1986,1990 K i bolted on concrete foundation L j no damage M i normal operation during and after seismic events N •

A I 24 - pipe systems - heat distribution B ; distribution system C I weided pipes, in operation since 1967

E I Romanian

H elev.: ± 0,00 and + 6,00 m I seismic experience J seismic events 1977,1986, 1990 K horizontal and vertical supports L ; no damage M normal operation during and after seismic events N supports failure without pipe damage.

Experience Database Pag A2-5 Experience Database Pag A2 -6

A 25 - technological pipe systems B distribution systems C ; welded pipes, in operation since 1967 D E Romanian and Russian

G Li eiev.: ± 0,00 and + 32,00 m I seismic experience J seismic events: 1977,1986,1990 K vertical and horizontal steel supports L no damage M normal operation during and after seismic events N some supports failure without pipe damage

A 12 - isolation valve - manual operated. B Valves C in ooeration since 1967 D Dn 1400 mm E Russian F G H | I seismic experience J seismic events: 1977,1986,1990 K flange joint L no damage M normal operation during and after seismic events N

Experience Database Pag A2-6 Experience Database Pag A2 -7

A 13 - valve - motor operated B Motor operated vaives C in operation since 1967 D E i Romanian F G H elev. + 6,00 m 1 seismic experience J I seismic events: 1977,1986,1990 K : flange joint. L : no damage M i normal operation during and after seismic events. N i

Experience Database Pag A2-7 Experience Database Pag A3-1

10. APPENDIX - .A3 Power Plant Bucharest West, unit 1 and 2,125 Mw each- Electrical equipment

The database structure is presented below:

A - equipment (ID); B - generic class; C - Equipment type and operation date; D - Manufacture code: E - Supplier. F - dimensions: G - weight; H - elevation ( WC); I - source of information (test or seismic experience); J - seismic event: K - anchorage (bolted or welded); L - damage: M - functionality; N - Other comments.

Experience Database Pag A3-1 Experience Database Pag A3 -2

A 1,2 - electric panel 0.4 kV ffl Distribution panels C type Distribloc OROMAX ; in operation since 1975 D E •• Automatica Bucharest F : dimension 636 x 1200 x 2300 mm G weight 800 Kg H elevation + 18,00 m (bottom) elev. of the weight center: + 19,15 m 1 seismic experience J seismic events 1977,1986,1990 K welded on steel channels L no damage M normal operation during and after seismic events. N 1977 - disconnected, visual inspection and re-connected. Some minor abnormal reset function of secondary switches have been detected.

A 3 - electric panel 6 kV B distribution panels C . type Cll -1-10 with switches IO-10, 2500 A type Cll - 1M -10 with switches JO - 10, 1250A. In operation since 1975 D U J CE Bailesti F ; dimension 900 x 1600 x 2100 mm 675x1600x2100 mm G 1400 Kg; 1000 Kg H bottom elev. +/-0.00 Weight center elev. +1.05 m 1 seismic experience J seismic events 1977,1986,1990 K welded on steel channels L no damage M normal operation during and after seismic events. N disconnected, visual inspection, re-connected. Some minor abnormal reset function of secondary switches have been detected. Power connection wires have been displaced.

Experience Database Pag A3-2 Experience Database Pag A3 -3

A 4 - Oil Transformers 170 MVA B Transformers TTU - FS, 116 +/-9 x 1, 78 % /13,8 kV, 170 MVA in operation since 1975

E i Electroputere Craiova F ! dimension 8935 x 4040 x 6555 mm; rail: 2935 x 1435 mm G M 71 tones (oil weight = 34 tones) H | bottom elev. +/-0.00 ! WC elev. +2.3 m I ; seismic experience J seismic events 1977,1986,1990 K i on rail L ; 1977 - displaced on N-S, 12 cm, a | - damage of isolator of 13.8KV tr. - broken, and; 20 isolators found ; cracks ' 1986, 1990 - no damage M After the seismic event 1977, was disconnected, visual inspection, re- ! connected. After a month, trigger the shortcut protection due to damage of S- i coil N ; The anchorage must be improved.

A 4 - transformer 25 MVA B : transformers C i 110/6kV,25MVA

E i Eiectroputere Craiova F ; dimension 5710 x 4040 x 2025 mm; raii 2000 x 1435 mm G 42,3 tones, (oil: 14 tones) H eiev. +/-0.00 : WC elev. 2.0 m I seismic experience. J seismic events 1977,1986,1990 K ; rest on rail L no damage M normal operation during and after seismic events N support system must be improved.

Experience Database Pag A3-3 Experience Database Pag A3 -4

A 4 - transformer 1000 KVA B transformers 6/0,4 kV; 1000 KVA in operation since 1975 D IEC E Czech F dimension 2500 x 1200 x 2000 mm G 3,21 H ; bottom elev. + 18,00 ' WC elev.+ 19,00 I seismic experience J ! seismic events 1977,1986, 1990 K j supported by a steel frame L I no damage M : normal operation during and after seismic events N Require to check the clearance between power connection wires.

A 8 - electric panel B electric panels C in operation since 1975 D E Automatica Bucuresti F dimension 900 x 800 x 2300 mm G 500 Kg H elev. + 10,00 WC elev.+ 11,15 I seismic experience J seismic events 1977,1986,1990 K welded L no damage M normal operation during and after seismic events N

Experience Database Pag A3-4 Experience Database Pag A3 -5

A 11 - battery 24 V cc B battery racks C led battery type LS 24, LS 12; in operation since 1975 D E : Acumulatorul Bucuresti F i dimension 3450 x 760 mm G ; 1500 kg H i floor elev. + 4,00 m I WC elev. + 4.50 m 1 ; seismic experience J i seismic events 1977,1986,1990 K i no lateral restrains. Seated on rubber plate. L i 1977 - displaced about 10 mm; : - no acid leak I 1986, 1990-no damage M i normal operation during and after seismic events. N i Must be laterally restrained.

A i 11 - battery 220 V cc B i Battery racks C | Led battery type LS 24 with 108 elements; I in operation since 1975 D i E : Acumulatorul Bucuresti F ; row dimension 760 x7500 mm G ; 1500 Kg H i floor efev. + 4,00 m ; WC elev. + 4,50 m 1 ; seismic experience J ; seismic events 1977,1986,1990 K \ Seated on rubber plates. No lateral restrains. L ; 1977 - displaced about 10 mm; ; - no other damage 1986,1990 - no damage M normal operation during and after seismic events. N Lateral restrains required.

Experience Database Pag A3-5 Experience Database Pag A3 -6

A 17- Electric Cabinet B Control and instrumentation cabinets C type UNISTOR, 400A, 220 V cc; in operation since 1975 D i IEC E ! Czech F i dimension 2200 x 800 x 2100 mm G i 1500 Kg floor elev. + 4,00 WCelev. +5,10 I seismic experience J seismic events 1977, 1986, 1990 K bolted on stee! channels L no damage M ! normal operation during and after seismic events N i

A 18 - Control Pane! B Electric panels C in operation since 1975 D E Automatica Bucuresti F dimension 1000 x 850 x 970 mm G 400 Kg H floor elev.+ 10,00 m WCelev. + 10,485 m I seismic experience J seismic events 1977, 1986, 1990 K welded on steel frame L no damage M normal operation during and after seismic events N :

Experience Database Pag A3-6 Experience Database Pag A3 -7

A 23 - Cable trays (raceway) B Cable trays C in operation since 1975

E '• Energomontaj Bucuresti F i dimension 700 x 500 (4 levels) G ! 300 Kg/m H . elev. +/-0,00 m seismic experience J seismic events 1977,1986, 1990 K i vertical and horizontal supports. L I no damage. M ; normal operation during and after seismic events. N

A ; 24 - Switchgear B ; Medium Voltage Switchgear type 13,8 kV, 7500 A m 6 kV, 2500 A t

E I Electroputere Craiova F | dimension : $ 500 mm (13,8 kV) ! 1200 x 600 mm (6kV) 600 Kg/m (13,8 kV) 200 Kg/m (6kV) H elev. + 5,00 (13,8 kV) I seismic experience J seismic events 1977, 1986,1990 K ; Steel support system. L no damage M normal operation during and after seismic events. N Disconnected, inspection, re-connected.

Experience Database Pag A3-7 Power Plant Brazi Electric Equipment

No. Dimension Weight Behavior during Source of Equipment Type (mm) (Kg) Anchor. Elevation seismic events: information Damages a)1977;b)1986;c)1990 1 2 3 4 5 6 7 8 9 10 ...... Electric panels for Panel 0,4 kV jt 2300 x 900 x bolts +/-0.00 no damage Walkdown No 800 600 2. CII-1-10 2300x900x Electric cabinet 1300 800 bolts +/-0.00 no damage Walkdawn No 6kV CII-M-1- 2300x675x 12 1300 700 bolts +/-0.00 No 3. Main transformers - Trezerva 20/20/20 MVA Yo/Yo/d- TTUS- 60000 rail +/-0.00 a) jump out of rail Walkdawn No 12,100/38,5/6,3 NS kV -11 bl.1,60/60/60 TDTNG - 9820x5860x6 15800 rail +/-0.00 a) jump out of rail Walkdawn No MVA 60 980 Yo/Yo/d12,115 /38,5 /6,3 kV - T2, T4, bl.2,4 TDTN- 9820X5820X 158000 rail +/-0.00 a) displaced Walkdawn No 80/80/80 MVA 80 6980 Yo/Yo/d12,115 /38,5 /6,3 kV - T3 bl3, 75 MVA, TD-75 7000x4650x6 80000 rail +/-0.00 a) jump out of rail Walkdawn Oil lick Yo/d11,38,5/6,3 300 kV -T5, T6, bl5,6 160 TTUS- 8928x4036x6 171000 rail +/-0.00 a) jump out of rail Walkdawn Isolation MVA, Y/d11 FS 556 damages - T7 bl7, 80 MVA TTU- 6000x4000x6 90000 rail +/-0.00 b), c) no damage Walkdawn Y/d11,123/10,5 kV FS 000 10 -T8,T9,bl8,9 240 1400x5000 isolation MVA,Y/d11,242/15, EC0093 X5500 222500 rail Walkdawn damage 75 kV -T15, T16, 16MVA TTU- 4730 x 3625 30500 rail Walkdawn No D/do, 10,5/6,3 kV FS x4050 -T17, 1 BT, 2BT, 16 MVA, D/do, 10,5/ rrus- 4730 x 3625 30500 rail Walkdawn No 6,3 kV FS X4050 -T101.T102.T103, TTUS- 5900 x 3660 43430 rail Walkdawn No 25 MVA, YO/dH, NS X4630 110/ 6,3 kV - OBT1, OBT2, 25 TTUS- 5900 x 3660 43430 rail Walkdawn No MVA, Yn/d11, NS x5630 110/6,3 kV -1AT, 2AT, 80 TTU- 5150x4200 84300 rail Walkdawn No MVA, Yn/d11, FS X5790 123/10,5 kV

- Led Battery with acid LS20 215x470x 156 Seted, +15,10 a) Overturn Walkdawn Broken 220V, C10 = 720 108 645 Ah, bl.8,9 elem.

- same, de 24 Vcc, LS24 215x550x 188 Seated + 15,10 a) Overturn .bl.8 Walkdawn Broken .bl 8 C10 = 864 Ah 12 elem 645 - same, de 24 Vcc, LS10, 215x265x 78 Seated + 15,10 a) Overturn bl.8 Walkdawn Broken pt. bl 8 C10 = 360Ah 12 elem. 645 - same, de 60 Vcc, L.S10 215x265 78 Seated + 15,10 a) acid leak Walkdawn No C10 = 360 Ah - Led Battery with LS24 215x470x 156 Seated + 4,00 a) acid leak Walkdawn No acid 108 645 220V, C10 = 720 elem. Ah, Bl. 1 - 7 2 3 4 5 6 7 8 9 10 - Same de 24 Vcc, LS24 215 x550x 188 seated + 4 00 a) acid leak Walkdawn No C10 = 864 Ah 12elem. 645 - Same de 24 Vcc, LS10 215 x265x 78 seated + 4 00 a) acid leak Walkdawn No C10 = 360 Ah 12 elem. 645 Experience Database PagA4-1

APPENDIX - A4

Test reports for 15 mechanical and electrical equipment, provided by EUROTEST.

Experience Database Pag A4-1 EUR®TEST S.A. FS01

1 FORM ID MOT 004 2 GENERIC CLASS Electric Motor 3 CENERAL EQ. TYPE Electric Motor Type ASCEN 4 SPECIFIC EQ. TYPE - nominal power: 40kW - nominal rpm: 1470 - nominal voltage: 380V - nominal frequency: 50Hz - cos (p = 0,84 - efficiency: 90% - insulation class: F 5 MANUFACTURER STRN 2171/89 STANDARDS 6 MANUFACTURER/MODEL IME- Bucuresti / 40H4 W - 4F 7 SIZE (mm) 405 x 340 x 250 8 WEIGHT(kg) 40 9 ELEVATION (G.C.)(mm) 100(est.) 10 SOURCE OF INF. Seismic Test 11 TEST ORGANISATION ICPE - LCCNE (nowadays ELFROTEST SA) 12 TEST PLAN — 13 TEST REPORT 5096/10.07.1990 14 ENVIRONMENT Vibration ageing: frequency 50Hz QUALIFICATION acceleration... 1.5g (vertical direction) duration lh Functional ageing: the motors were coupled to an independent excitation generator voltage 380 V frequency.... 5 OHz duration 40h at a frequency of 10 starting / h 15 TEST DATE January-April 1990 16 INPUT DIRECTION triaxial, simultaneous independent inputs 17 TEST TYPE 1 DBE random frequency range 0.1 - 45Hz 18 FUNCTION MONITORED During and after test: idle running current insulation resistance noise level vibration level After test: load running characteristics: - n. -cos 9 -rpm 19 ACCEPT CRITERIA no abnormal voltage or spurious operation no structural damages noise level < 75dB 20 RESONANT SEARCH no resonant frequency was found within the frequency range of 0J -45 Hz 2! TEST MOUNTING floor on 2 plate shaped support 22 ANCHORAGE 4 bolts M20 x 200, nuts, washers and Grower washers 23 DAMAGE none 24 COMMENTS RRS as required by STRN 2171/89 the TRS envelops the RRS shaped for a percentage of critical damping of 1% / - mare c/e //?cercc?r/

Mo/or //O JrW - /47Oro///x//? \$upor/ 6 l E/

G- Sa/ba 7377-

I 2.CC0C0;

i.COXO

O.00OK-

-i.0000

-2.0CCOt 20.5000 20.7000 20.3300 21.0000 seconds ASCEN 40 Ky 1470 rot/nin 9' '* 12:33 'it seria : 525286 17-JAN-90 2.00W0

1.00000

0.00000

-i.OCO)

-2.0CC0 21.0000 21.1CC0 21.2000 21.3000 21.4000 21.5000 seconds ASCEN 40 KU 1470 rot/tun '9' 12:36 serla : 3Z5287 . 17-JAM-SO 2.000CO

i.COOCO n IHI nil, \\i\\

O.O^DOO

-i.0000 \\

.0000 10.-0000- 10.1W0 10.50CO - 10.4CO0 10.5000 seconds //r. £c//e//h

COHriCURATIE: 1 motor, nontaj vertical .. 15:31 • 02-APR-30 5.00COO lateral a ICPE: SCCHC Incercare la seisn 3.73X0 Spectru de raspuns: inpus ..... realizat 2.50000

i.25000

._.o.ooooofelif!£iiL 0.00000 10.0000 20.0000 30.0000 40.0000 50.CO00 Hz

02*-APR-9O

: longitudinal a I ICPE SCCNE Incercare la seism

3.75COD Spectru de raspuns: i p.pus realizat 2.KOCO

o occc^Lanortri2are O.OOCOD 10.0000 20.0000 50.0000 40.0000 50.0000 Hz 15:56 02-APR-90 5.00000 AXA: vertical3 ICPE 5CCNE | Inccrcare la seiss

3.75CCC Spectru de raspuns: inpus realizat 2.50000

1.25CC0 \

O.CCCvO i0.0C>.\) iO.OCOO JO.OOCO A 50-uCCO IfO-Hotcr ASCEH 4CK* 1470rp* : seria: S2528S

•,/y. 3 r 2 woloaro, wontaj oriaontal 02-APP.-90 5.0CCO0 latorala ICPE SCCHE Incercare la seis 3.73CO0 Spectru de raspuns: inpus realizat — 2.5C0C0

1.25C00

o.wooota*ortizare lx 0.0CCCO 10.C«0 30.CCCO _. K'.OOOO Kz

02-APR-90 5.00000

3.75CO0

2.5COX

i.25000

o.coocotertizare iO.COOO 20. COCO 30.0000 •W.CO00 50.0000 i o.cocoo Hz t ffrs 5.C0COC ICPE SCCNE Incercare la seisa 3.7SCO0 Spectru de raspuns inpus .... realizat

O.COCCO 10.0000 40.0000 50.OOM ASCEN 4CK»< H70rp* seria: S25235, S25207 EUR©TEST S.A. FS02

1 FORM ID TPD/01 2 GENERIC CLASS Control Panels 3 GENERAL EQ. TYPE Distribution Main Panel 4 SPECIFIC EQ. TYPE nominaJ voltage 380 Vac max. operating voltage 660 Vac nominal current 1000A; 1600A; 2500A; 4000A termal boundary current 55kA/ls boundary dynamic current, max. 125kA 5 MANUFACTURER STR 63-85 Anexa 4 STANDARDS STR 63/c-86 Anexa 4 6 MANUFACTURER/MODEL I Automatica Bucuresti / POWERCENTER 67429.1/85 7 SIZE (mm) 2350x1300x2972 8 WEIGHT(kg) 240 9 ELEVATION (G.C.)(mm) 1000(est.) 10 SOURCE OF INF. Seismic Test 11 TEST ORGANISATION Lab INCERC 12 TEST PLAN — 13 TEST REPORT RI 61/4.II.1986 14 ENVIRONMENT — QUALIFICATION 15 TEST DATE 7.10.1986 16 INPUT DIRECTION monoaxial 17 TEST TYPE Ox. Ov axis: 5 OBE (see appendix) continuous sine test frequency range 1 - 33 Hz + resonant frequencies 5 cycles at each test frequency 1/3 octave spaced test frequencies Oz axis: 5 OBE (see appendix) continuous sine test frequency range I - 33Hz 18 FUNCTION MONITORED After test: structural integrity insulation resistance dielectrical rigidity 19 ACCEPT CRITERIA no abnormal voltage or spurious operation no structural damases 20 RESONANT SEARCH resonant frequencies: (Ox): 4,124 Hz (Oy): 3,83 Hz; 4,97 Hz 21 TEST MOUNTING floor on 2 plate shaped support 22 ANCHORAGE 4 bolts M20 x 200, nuts, washers and Grower washers 23 DAMAGE none 24 COMMENTS • RRS as required by STR 63-85 Anexa 4& STR 63/c-86 Anexa 4 • the TRS envelops the RRS shaped for a percentage of critical damping of 5% t. n i-nviiTAXJj Ufi o 63-85 TIP.PC isSTINATE CA'S

- ; •?.•>.•••

r vgmr •. \

'••.•••...•_' .,;•:":..« " •: ' T^;:'^ "

,.-« '....

• •'•s •" '' '•• zoaa dt 2 z«n& i« aparataj sacundstr 3 zoaa bar* ganeral* orizoatult 4 cauluri r^iificare seismjca j I N C E R C echipamcnt AUTOMATIC A I isc-c £338/86

TRS-, RRS pentru n= 5 % <2 acceferaija .la masa

i • ' H-1 1 j-"

M' ' I I ' ; I •I \ '1 ' " -1 -/ -—H-t-i-T f-H'T "nT^fflsiPi!/"KMlti! ?! ,: i-!Ji-4TM o - -M-: ill-.

•.L. 1.1-J V-: /;: si'JXa /..0 ci0i 6.3ii 8.0 10.C8l2.7J 100 2Q«li '£'>& 32.0 Hz •J-V'i; 1 excifaTTG ifDiroctie. i POWER CENTER__L_ 0BE1 ' / L vc--»rjj.t:*_rLe!

V'A- ' ;:?! M*1l Tl MA SirT l 1 i ing M ; uig .M^j ing M^j v :M,J •7 \' I .' SIANCU .' STANCU bT ;. .i Oclificare seismica • jiNCERC ,:;chiparnGni,,AUTOMATlCA" IS&C.4338/86 RRS,TRS pentru n-5% r2 acceteratie la masa

. i.i... ..^ii.

i!i!l if 1SZZ runni ! U |I j .

! l;l IIUT UiL-TiJ.!-LJ V.7 .3:3 8.0 K).C3 M' ViO 2Q-.:, &!, 32.0 Kz

l ivel uxcnauo! IDsrectio J 2 •POWER CENTER OBE 2 • ; !vor!k:a!ci .I'I'IVI! ,r ^. 1 i.'i ri f."'<•••• r I t w •. I ['.<;: •.. - iV\\ 7l".M.A !••:•>• Sl-r-K:; iSing p • sng. my. i •^.IIJ_^_ | S1ANCU; STANCU STANCUl [1080 care s&isrnic• r a-. TTNCERC nt AUTOMATICAJ {ISC-c.4338/86

RRS,TR5 pentru n=5%

• 3 t j T t i ' j i i 1 ' i i r i J 1 ) | f i 4 |

. : A * j

-!- U!-4 J4--I ! :r>nr . i : • '

;i G.35 8.0 10.G8 U.*>U 2QS ?i/. 32.0 Hz 3 :T. :-;. :.'aC-:-.i H-ivel excitems POWER CENTER 1 OBE 3 i-.';;r A i vi'KU KJA \S.\\L\

jnsT •• irv^ .-M. • ing >K ing . STANCU STANCU r-b seisrnica N C E R C echipameht,. AUTOMATICA - ISC-a 4338/86

•RRSjTRS pentru n=5% _-.— acceteratie la masa

_: i i—

4 6.35 3.0] -^0.0312/fn5Q 2Q*6 ?i..'. 32.0 Hz ~^-\"' '•*•:•.:iv.'iTI [Trivet excjitoliej Direciio. jPOVVER ..CENTER .1 ORE. JL.^i • L HA! A

.! ..' 7.X S1ANUU STANCU : • fj ;Glificare | I N C E R C ochipameni,, AUTOMATICA IISC-c.4338/'86

RRS , TRS pentru n=5% acceleraiie fa masa

-0 1.J& ISO ?0 2.52 117 A.0 6.35 8.0 10.0812.V0160 2Q'S 7\l. 32.0 Hz fE c h i a am enl iNivel exciiaiie Direct! G 1 POWER, CENTER OBi verticnla • r \-r \ ilFL-J-. j CAi.GJL RE5TONSA- VEFUF1CA"! n/-v in REVfZlEl 311. TEMA SEF Sf-XTlE 0 ing. M r ing.M. ing. M.

jSTANCU STANCU 1; STANCjinnv-Uu r j'iQ86 FS03

1 FORM ID VARIV 2 GENERIC CLASS Fans 3 GENERAL EQ. TYPE Variating device for heating ventilation 4 SPECIFIC EQ. TYPE - nominal power. 67kW I0 - nominal voltage: 3f x 380V~ .,5 - nominal current: 103 A - nominal frequency: 50 ±2Hz - admissible temperature range: +5...+40°C - monthly relative humidity, average: 80% at 20°C - max. relative humidity: 95% at 40°C -72 h/year - self vibration level: acceleration: 0.5 g frequency: 10-^-5 5 Hz 5 MANUFACTURER STRNS 1175/80 STANDARDS 6 MANUFACTURER/MODEL I Electronica SA/ VARIV-NS-IV 671380-3T 209 7 SIZE (mm) 350x350x1425 8 WEIGHT(kg) 78 9 ELEVATION (G.C.)(mm) 500(est.) 10 SOURCE OF INF. Seismic Test 11 TEST ORGANISATION EUROTEST SA 12 TEST PLAN — 13 TEST REPORT 131/14.09.1992 14 ENVIRONMENT Vibration ageing: frequency 70Hz QUALIFICATION acceleration...0.6g (vertical direction) duration 60h Functional ageing: the device was connected at 380±10%V l\ 03 A source drive current: Ic=20mA duration lOOh 15 TEST DATE 14.09.1992 16 INPUT DIRECTION monoaxial 17 TEST TYPE Ox, Ov axis: continuous sine test 5 OBE (see appendix) frequency range 1 - 33Hz + resonant frequencies 5 cycles at each test frequency 1/3 octave spaced test frequencies Oz axis: continuous sine test 5 OBE (see appendix) frequency range 1 - 33Hz 18 FUNCTION MONITORED During and after test: output voltage overcurrent protection overtemperature protection " vibration level 19 ACCEPT CRITERIA no abnormal voltage or spurious operation no structural damages noise level < 68dB EUR@TEST S.A. FS03

1 FORM ID VARIV 2 GENERIC CLASS Fans 3 GENERAL EQ. TYPE Variating device for heating ventilation 4 SPECIFIC EQ. TYPE - nominal power: 67kW - nominal voltage: 3f x 380V~'°.i5 - nominal current: 103A - nominal frequency: 50 ±2Hz - admissible temperature range: +5...+40"C - monthly relative humidity, average: 80% at 20°C - max. relative humidity: 95% at 40°C -72 h/year - self vibration level: acceleration: 0.5 g frequency: 10*55Hz 5 MANUFACTURER STRNS 1175/80 STANDARDS 6 MANUFACTURER/MODEL I Electronica SA/ VARIV-NS-IV 671380-3T 209 7 SIZE (mm) 350x350x1425 8 WEIGHT(kg) 78 9 ELEVATION (G.C.)(mm) 500(est.) 10 SOURCE OF INF. Seismic Test 11 TEST ORGANISATION EUROTEST SA 12 TEST PLAN — 13 TEST REPORT 131/14:09.1992 14 ENVIRONMENT Vibration ageing: frequency 70Hz QUALIFICATION acceleration...0.6g (vertical direction) duration 60h Functional ageing: the device was connected at 380±10%V /103 A source drive current: Ic=20mA duration lOOh 15 TEST DATE 14.09.1992 16 INPUT DIRECTION monoaxial 17 TEST TYPE Ox, Ov axis: continuous sine test 5 OBE (see appendix) frequency range 1 - 33 Hz + resonant frequencies 5 cycles at each test frequency 1/3 octave spaced test frequencies Oz axis: continuous sine test 5 OBE (see appendix) frequency range 1 - 3 3 Hz IS FUNCTION MONITORED During and after test: output voltage overcurrent protection overtemperature protection * vibration level 19 ACCEPT CRITERIA no abnormal voltage or spurious operation no structural damages noise leveK 68dB 20 RESONANT SEARCH no resonant frequency was found within the frequency range of 1 - 33 Hz 21 TEST MOUNTING floor no support 22 ANCHORAGE 4 bolts M8 x 100, nuts, washers and Grower washers 23 DAMAGE none 24 COMMENTS • RRS as required by STRNS 1175/80 • the TRS envelops the RRS shaped for a percentage of critical damping of 1% VARIATOARE PENTRU INCALZIRE Fil 8^ VENTILATIE - 3.5 — -67 Is

d).

C=3 C3

CO

_ *02 O* ZO ' 310' 350 Prinderea variatorului ao face cu"4 ^uxuburi M8 preva.zu.te cu yaibii plat5., yaibi Grower ^i ilii Maoa maximal 72,2^0Kcj.

- VARIV - NSIV - 67/300 - 3 .EUR®TEST S.A. FS04

1 FORM ID NOTOR 001 2 GENERIC CLASS Electric Motor 3 GENERAL EQ. TYPE NOTOR Device for Electrical Drive 4 SPECIFIC EQ. TYPE - nominal power: 0.55kW - nominal rpm: 1500 -mechanical max. torque: 12 daNm - reduction ratio: 30 5 MANUFACTURER CS 117/89 STANDARDS NTRNS-0 Appendix 4 6 MANUFACTURER/MODEL I Neptun Campina/ 2-A-G 7 SIZE (mm) 1200x700x800 8 WEIGHT(kg) 56 9 ELEVATION (G.C)(mm) 250(est.) 10 SOURCE OF INF. Seismic Test 11 TEST ORGANISATION ICPE - LCCNE (nowadays EUROTEST SA) 12 TEST PLAN — 13 TEST REPORT BI 10040/19.12.1990 14 ENVIRONMENT — QUALIFICATION 15 TEST DATE dec. 1990 16 INPUT DIRECTION monoaxial, simultaneous independent inputs 17 TEST TYPE IOBE continuous sine test frequency range 0.5 - 35Hz 1SSE continuous sine test frequency range 0.5 - 35Hz 18 FUNCTION MONITORED After test: open/shut limitation check open/shut position signalization electric switch box running on frontal panel manual drive coupling automatic coupling to electrical drive when starting electric motor 19 ACCEPT CRITERIA no abnormal voltage or spurious operation no structural damages noise level < 75dB 20 RESONANT SEARCH no resonant frequency was found _within the frequency range of 0.5 - 35 Hz 21 TEST MOUNTING floor on 1 plate shaped support 22 ANCHORAGE • support on table: 5 bolts M20 x 150, nuts, washers and Grower washers • specimen on support: 8 bolts M30 x 75, nuts, washers and Grower washers 23 DAMAGE none 24 • RRS as required by NTRNS-0 Appendix 4 COMMENTS • the TRS envelops the RRS shaped for a percentage of critical damping of 2% jo

/

"9 i

/:0O

/ ce 2000 * 2 ftp voro/? 2AG-GS a-cn'o/vcrre e/ecfr/cc? ex. 7}oA//vbr/xcfvys/r/z/s- - A'pro/e2AG-/2///5'-/7-0,SS//^OO\

<3 S 6 w&r A/20; J/ 7 . •cf 7S; S 'D/\sc c/sprinter? ; /O // 12: i.vrrrcr rr T t A / C/6/

ICFE SCCNE Incercarc la OS 51*

V.J 10 J2 iO 5QHZ

G

AXA LONGITUDINALA ICPE SCC»E Incercare la seisH

0.5 10 20 33 40 50HZ

ftXA VERT ICALA ICPE SCCNE Incercare la SS13*

10 20 50HZ I. NEPTUN ClhFIXA-Kscanisji tip NGTDR AG cie actionare electnca a araaturilor industnale de inchidere-deschidere N2A-G-12/4S-17-0.55/1500 seria: 73837 0 . .. € AXA LATDJ; I CPE SCC? Ir.crrC3I-K la £S1 sn

4 A- i 2 \ \ ; J • j 1 \ 1 0.5 10 33 40 5C-HZ

10 30 33 40 50H2

G

AXA VERTICALA ICPE SCCNE Incerc3re la SB1SB

,™

0 5 T - 1 2 5 10 20 33 40 50HZ \> JiEPTUN CIKPIN.ft-ttecanis^ tip H0T0R ftG de actionare electrica "a arnaturilor industriaie da inchidera-deschidrrre H2A-G-12. 45-17-0.55/i£00 seria: 73837 [email protected]. FS05

1 FORM ID IAM001 2 GENERIC CLASS Metal Clad Switchaear 3 GENERAL EQ. TYPE Automatic Monopolar Switch 4 SPECIFIC EQ. TYPE - nominal current: 100A - nominal voltage: 220 Vac - mechanical wear: 10000 cycles - electrical wear: 5000 cycles 5 MANUFACTURER STRNO 387/87 STANDARDS 6 MANUFACTURER/MODEL I. El ectroaparataj Bucuresti / 4805 D5 UW N4 R 7 SIZE (mm) 300 x 250 x 400 8 WEIGHT(kg) 4 9 ELEVATION (G.Q(ram) 600(est.) on support 10 SOURCE OF INF. Seismic Test 11 TEST ORGANISATION ICPE - LCCNE (nowadays EUROTEST SA) 12 TEST PLAN — 13 TEST REPORT BI 36-55/12.06.1992 14 ENVIRONMENT Thermic ageing; QUALIFICATION Radiation ageing; Functional ageing. 15 TEST DATE June 1992 16 INPUT DIRECTION triaxial, simultaneous independent inputs 17 TEST TYPE 5 SDE 1 DBE random frequency range 1 - 50 Hz critical damping: 4% IS FUNCTION MONITORED Before test: insulation resistance starting features During test: micro-interruptions After test: structural damages 19 ACCEPT CRITERIA no micro-interruptions longer than 10 ms no abnormal voltage or spurious operation no structural damaaes 20 RESONANT SEARCH • no resonant frequency was found within the frequency range of 1 - 50 Hz • support resonant frequency at 54 Hz 21 TEST MOUNTING floor on 1 rigid support (see Appendix) 22 ANCHORAGE 16 bolts M12 x 150, nuts, washers and Grower washers 23 DAMAGE structural damages micro-interruDtions lonaer than 10 ms 24 COMMENTS • RRS as required by STRNO 387/87 • the TRS envelops the RRS shaped for a percentage of critical damping of 4% • specimen failed the test r ',' Ampf///'cafbr Sarcfna

••<

ScAe/no a/oc dk produsu/uT fneercaf f

HI FRE9-RESF-K2. ' MRG iffllH V- Ifl.-GiS 204B 4-.00 0H2 IGOHz LIH • Sfl : 30?

**. • *

«»^ * • • »• •• ii ! L.W :..,. .-^:

-"•-•-- - - — •« —~'V-

• • •» -. - '•-••*,••

cr r • . •;*• . "i

S-ETUP 1-112 DETERHIHSREfi FRECVEHTEI 0E REZOHRMTH ft SUPORH PT: PROD. IHTRERUPTOR fiUT". -HOhCPOLflR iOOfl HEflSUREHEHT*- CUfil SPECTRUM flVERflGIHG • • "'TRIGGER: FREE RUN ' ••••..' CH.ft4B= 0.0ms :•.„ , :. fiVERRGIHG: PEflK 600 -OVERLfiP= HR.X •' . FREQ IOOHZ AF:125mH2 T=8s CEHTER FREQ: ZOOM 54Hz . .HEIGHTIHG-- . HflHHIHG .' 4V r DC-DIRECT FILT'BOTH l.OCV/iih'i CH.B= ••• 3V . i DC-DIRECT F.ILT = l.OOV/US GEK£RflTOK> PSEUDO RflHDOM HOISE 1"I HI FREQ RESP H2 Hfiltl Yj_O.O.iB iO.OdB . 20dB- y . « UMHz * lOOHz LIN A*- •• 133

SETUP H12 DETERKINfiREft FRECVEHTET-DE REZOHRNTR fl PRQDUSL IHTRERUPTOR- RUTOHflT HOIIOPOLHR 10'Ofl-flXfl LONG- HEfiSUREMEHT OUflL SPECTRUM RVERHGIHG'- ' • • TRIGGER' FREE RUN • - • . ..- • DELfiY: . CM* 0.0ms *••..' . •flVERflGIHGv PEfiK 300' OVERLflP: MRX" . '. ' ' FREQ S IDOHz At s.7". 81ms CENTER F.REQ ZflOH1• 54Hz HEIGHTIHGs HflHHIHG

"4V + DC-DIRECT •1 nny/HHI1 f FILT'BOTHrT . 3V \ DC-DIRECT riiLT=BOTH i.oov/iwn: GEHERflTOf- PSEUDO RflHDOH NOISE HI FREQ RESP H2 ttftG HfllH lO.OdB 20dB 4.Q00HZ + lOOHz LIH 188

l-i

/ ••^-^fc^Xi*ii/if«*'iiiW.i'Arf^\A,ii fcMM»ii r* Hi i r a«"iy\.1^»» .^atA .I^Xrt^afc^rJM) • it SETUP I'll2 DETERHIHHREfl FRECVEHTEI DE REZGHRHT.fi R PRQDUSUl IHTREROPTOR RUTOHRT HOHOPOLfiR 1OOR-RXR VERTICfil •HERSUREHEHT-. DUflLI SPECTRUM flVEKfiGIHG • • ' TRIGGER: FREE" RUH " .. " ' ' DELflY' CH.fl«B: 0.0ms . - • . :• OVERflGING: PEBSC 300 • OVERLRP-. MRX .••"•." FREQ S lOOHz AT.-7-.81i»s CENTER FREQ: ZOOM 54Hz HE1GHTIHG- " HRHHIHG 4V. t. DC-DIRECT FrLT = BOTH J.OOV/JIHIi CH.B = - • 3V • i DC-DIRECT FILT^BOTH 1.00V/UHU GEHERflTOR: PSEUDO RRHOOH HOISE Hi FREft RESP H2 HfjG ; • ' HfllN -0.2dB Y: lO.OdB 20dB 4.000H2 IOOH2 LIH ' • • •* * 1ft : 300 • • '-= [ ]

— • • T,

- ^'-^'^''S'r^W'^riV -11^** "*iT"^ >* VI^IIA' --" •J*c "-'i^*-*•/•• ^'iT *•' n ^V^** *-* jV*^Vrf--^rf 5ETUP UI2 P.RES FRECVEHTEI 0E REZOHBHTB H PRuDUSULU IHTRERUPTGR BUIGiinI HOHOPOLfiR iOOfi-fiKfi LfiTERfiLR 1EfiSUREH£HT = DUflE SPECTRUM flVERRGIHG .*•-.' • . RIGGER: F«EE RUN ' * ' .. " • /• ELfiY: : CH.ft^B: 0.0ms. • VERflGIHG- PEAK 300- OVERLflP: Hfik1 " •: "-.'. ';• " [REQ SPfiK- iOOHz : I25mHz T.-8s ENTER FREQ: ZOOI'i 54H: (EIGHTIHG: . HftHHIHG • 4V +. DC-DIRECT- FILT = BOTH i.OOV/.UHIT* 3V + DC-DIRECT FILT'BOTH 1.00V/UHIT :HERRTOR: PSEUDO RflHDOH HOISE ' . RRS 8:33 TRS sxa lateral a' TEST 1 id-JLJN-92 so.ooa-c i—i 1 ! :—- TCPE-S CC? irr^ j r-H Incercar e a seisW i j / t } 1 i

t / I- i i.OCCOO !•- "' 1 1

i i i i i .iCOOCO 1—

! 1 1—i i i > ! I .010000 Ri ' | .1C0C0D 1.00X0 10.CC00 5j.tO00 Hz

axa longitudinals • 50.CCOD J i ;• > 1 ^-J 1—1_ 1 j 10.00OC:- t=T3—~ I Si- 1 111 - 1 i—' . , i t— '.-' i "i ' • i ! ' •••-••.! i -•'••• ! i 1 j • j •1 I Sr 1 ! 1 1 i < •• 1 I • 1 1 1 i 1 I 1 1 1; j I • I!. -I i ' —A 1 — —H 1 1 .OiOOCC I i.00000 IQ.0000 Hz 8:5C- axa verticala 5.00OO: —1 —I 1 ' —1- i rrp 1 A- ! I j 1\ . i /•' i I-' - i

—,.^ —, ,——< • ' : \ ;—r— —1 ]•'' ' 1 1 1 '< • '• i 1 A I- • t i 1 : i t ; ' 1 1 I i . • :—r—• T 1 i • ' ! i! ' ' ' i i i '• • i -• 1 i i j

0 .0K\W- 111 ill . k\\VO RRS S:5+ TRS axa laterala TEST 2 10-JUN-92 50.00CO j Incercart? la seisr* i! iO.OOOC

H t-fV • "

l.COCCO ! 1 I /-I —

!—I hri 1 1 i axoriizare 4X .100CO0 ! l|i 1 1—i... i i . . i r—i— 1 i i • ' ! * I ..iOtOCO 1.00000 10.0COO 5D.CO00. Hz

11:29 axa lonsi'.udinala 10-JUN-92 50.0CCOP , 1 i 1 | ; ; i ' j • i ; t •I / 10.0000 =r fl •—1 _^^..—zjrz—~^——-=r^

<—•»—- i • ! 1 1 /v' ! i i 1 1 I i.oooo:- 1 ! ! •• Mi

j •• 1 I —1~ i : : • i r-iH i ! saortizare 4X ! .iOOCCC i • . r U ... —{- 1 ! ! j j .OiOOOOL j ! . t i i i .100005 i.OOWO 10.CCOO 50.CCO0 Hz

ixa vertical a • 5.0CCCO —'—1 T 1 1 \: 1 1 !

J •' I l.CCOOO \ i ! n

: —i— \,s i •i i — -J 1 i i

— il l | 1 a«or ti; ar 41 .iCOOCO —•

TI | • j ! ! . : i ' . I i 1 i ! 1

.01COCO 1 i II .liX\\\> IO.COJO .COCO Hi ELECTROAPAKATAJ u°v

RRS 11:35 TRS axa laterala TEST 3 10-JU.N-92 50.000 L_ICP E-SCCME. i Ir.cer carp la seispi / ! i 10.0000! =

j ] i ' '' i i

• i !! 1.00COC ! /-•• \ ! i 1 1 1 ( i t . aitortisare 4X .100000OI L E •ill

> 1 t i ! | ! ! i i ! • t .010000 I • i • i II .100000 1.00COO 10.0000 50.0000 Hz 11:38 axa longitudinala i'J-JUH-92

50.00CO 1 1—1—I . ; i r ...,,. . . , . . • : • • J . i i • I . '• ! 1 i i i i j_i •: < 'II 3 lO.COOOj 1 1 i i ! / ! ! i i! ;N^~U%. i i

i I i i ! i 1 >. i ' ; :

i. COCO?! — T i I j | 111 //\ \\

I I MM! anortizare <2 j

i- , ; ! • \w • i 'i { i ! l I ! MM.! • lOCCOQ i.CCCCO 10.0000 50.00CO Hz li:<2 axa vertical a 10-JUM-S2 5.00COO 1 1 r—r—,—i . • i *~<—^ • J ' 1 1 I I i i , y—"...j ...... , I 1 i i ••'• \ • N;- j. ,' T v I " i.COOCO 1 i . . -— • i t 1 •; 1 . i 1 • i • J r : , • ! : 1 • a« or tl2 MC •p • IQiWV S * 1 :___;— r——1——1——:'—t—r-t—r-i ! I - 1 -4-1 ,—1 1 i I i 1 ] II 1 | 1

if: /O vac TRS axa laterals .THST 4 iO-JUN-32 KJ.0000 1 i l_r_r_i_uJ , . j . 1_ • 1 E-Sro I 1 i / Ir.r.pr car e a sc-isn I ! ! V

•— —-1 t 1 } I 1 I 1

• /•-•

i.06000

1 j • • . 1 ) —;—' 1 awortizaro 4X .icooco

i 1 1 i 1 ! 1 .10CO0O i.COOOO iO.OOCO 5). COOO Hz

J A_ t. 1»>_fv#*. axa longitudinala 50.0OD0 | % j ! | I 3 iO.OCOC i • i i X T

1 i ) 1 ! . . i . y. : | ; • •• i j I; i 1 ^ //\ l \ 1 1

1 i anortizare 4X 1 1 i i • f • •

1 1 T 1

i i r .100)00 iO.CCOO Hz ii:53 axa verticala 5.COCOD i 111M i i i i i ) A: i 1 U -—J i \ 1 i! | -r————' • • *** * . :i- I.. Mi l t t —— / 1 . ' • » • '

.LXCCO J i

„., !> i l 1 1 ——•-IT———1 1 I 1 1

— i i I •OlOOOO 1 ! 1 1O.00CO Hz w.cocc- ' - •

RRS • v li:57 TRS axa latera lO-JU'l-92

1 1 1 * < . • E-5CCHD ; • ( < .J—U—^.: 1 ( i Incor care !a i 10. COCO

i ..... —- -:;r.--! i- l • : j : j * i 1 ? sy i 1 1.0SO00 — —V— i i I i • i • j a«orti23re 4X .100000 1 1 1 1 r -

.OiOCCO .100000 1.00000 10.0000 55.0000 H2 12:02 4 A fill axa longitudinala 1 50.0000 1 1 J ! i : ii ) • .' 1 | • i i i

L-v. l i II I t iO.OCOC 1 J- * r -11 — =

i I 1 } i i

., i ' t=a I i i

,r-rr; • • 1 — \ ' ' . • i j i 1 I - 1 1 rr r-.-i-rr- J - I—r~ • ; i.. 1 1 .010000 r" .10O0O0 i.CvOCO 10.0000 50.0000 Hz 12:05 .• axa verticals 1O-JLW-22 •5.00000 i-M

i.OCOGO

run

.iococo

—— f—^" T i i 4•>—•* 4-II- —+-4. .oiccco li .liXWX) 10.Ov.VO 'JO.COOO Hz ELtCTROAPARATAJ I RRS J2:tl TRS axa Iatprala 10- :-jft- 22 50.0000 • • vrr.—r :—, irr E-SCCNE, 1 | ( i Ir.cpr care la seisK Mil! -.-.;.. N^_ 10.CCCO V PIFU —,—^—,—. —^ 1 j ! X \ ; i • ! • ; ( j ! ! ! ! 1.00000 = ! M r^xrt-a

! 1 t t 1 J i -:••- aaortizaro 4X ..1000001=^ = I nh i !

;.;.4 -•- ;•" •' 1[ i ; 7;. ,•; : j 1 1 .010000 ! I . .100000 1.00000 10.0CO0 53.0000 Hz 12:29 axa longitudinala lO-JLK-92 50.0000

10.00CO TTT

>• i i.OCOOO

-i—l- aaortixare 4X .100DCO I TTJ

-i—)—) I i I I

.010000 .100000 1.00CO0 lO.CCOO Hz

axa verticala 0"jL7" LV.WOU ^ , -r- -,--1

1 i

* • | 1 i L.OOOOO ~—: 1 •••• "• ••••if •••••• 1 "I i i 1 1 • 1. it nor ti'j •c • 1COOCO t-r--r=r •: -•- -r -1

• ~| • i j !—i-H - | ; -

.010000 i .il\\\» 10.CCW Hz to.coco

L '3 .EUR9TEST S.A. FS06

1 FORM ID AMRO 02 2 GENERIC CLASS Metal Clad Switcheear 3 GENERAL EQ. TYPE Automatic switch 4 SPECIFIC EQ. TYPE - nominal current: 16A - insulation nominal voltage: 660 Vac - nominal voltage: 220 / 380 / 500 Vac - regulating current range: 0.4...1.8 72.4...6/ 8...16 A - cos cp =0.7 5 MANUFACTURER STR-NS 334/87 STANDARDS 6 MANUFACTURER/MODEL I Electroaparataj Bucuresti / AMRO 16A 4635 D5 NS 3R 7 SIZE (mm) 56x85x 102 8 WEIGHT(kg) 0.42 9 ELEVATION (G.C)(mm) 50(est) 10 SOURCE OF INF. Seismic Test 11 TEST ORGANISATION ICPE - LCCNE (nowadays EUROTEST SA) 12 TEST PLAN — 13 TEST REPORT BI 78/1992 14 ENVIRONMENT Thermic ageing; QUALIFICATION Radiation ageing; Functional ageing. 15 TEST DATE Oct. 1992 16 INPUT DIRECTION triaxial, multi frequency 17 TEST TYPE 5SDE I DBE random acceleration: 0.2g frequency range 0.1 - 100 Hz critical damping: 4% duration: 45 s 18 FUNCTION MONITORED Before test: insulation resistance starting features During test: micro-interruptions After test: structural damages 19 ACCEPT CRITERLA. no micro-interruptions longer than 10 ms no abnormal voltage or spurious operation no structural damages 20 RESONANT SEARCH no resonant frequency was found within the frequency range of 0.1 - 100 Hz, including support resonant frequency 21 TEST MOUNTING floor, on rigid support (see Appendix) for all 3 specimens simultanouselv 22 ANCHORAGE • specimen on support: 2 bolts M4 x 40, nuts, washers and Grower washers -for each one • support on table: 16 bolts MlOx 100, 32 washers 23 DAMAGE none 24 COMMENTS • RRS as required by STR-NS 334/87 • the TRS enveiops the RRS shaped for a percentage of critical damping of 4% 711-, . SIB-35 -if

!

••i . i

INTRERUPTOR -AUTOMAT AMRO 16A COD M35-D5-NS3R

R S1 T

I

I. Nr. . fo 91, 3 Till

i i • | MM1 \__.J i J—j nj__ ~ f.uKotLsi- I j i ; ;;- «~*Ti I I •Inctrrcnre l«i sotss~t- i ! I ! ' : I i

• i ' • • : t r'-i-rrrr l.OOOCOt i I HULL

j i I ' •'•'" i • ' • ' • ; '• !-' : ! : i i i i ! I < • i i 1 i 1 . 1 . , . 1 —H i .1CCOCO i 1 ! M II! 1 .1CCO0O l.CCCCO 10.CCCO 50.CCC0 • Hz 12:10 axa longitudinala

! • I ! ! ' i I i • i \ r MI' I L I i i i MM ! lO.Cv" ! / \ 1 ! j! !O

i'il' —!—T T~r—! :—TT • ; , . - • , i ' ":•— iii>i 1 • i i i i • i i A' i tin; 1 / r t : 'j i * 1 • i lilil //A 1 snortizare V;

1 ! = _ \..;.j-: .•'• 1 i—i——— i—i—H ••I"-! i L.L.\..:.'J- i i i - H i i i ! '• \ M i i i i i ! i; i j ! .100000 ! 1 i N 1II Ill I I I'M!'i.ooac! o Hz

11:02 axa vertical a 30-SEP-22 5.O00CO 1 i I i i 1 ^::..p..|...i_|.. .i_..;y 1 ! 1 ! 1 * r V !!!l VVi /. 1 i i i 1 i 1 \ snortizaro 41 \ / 1 i 1 1 M ! \ i.oo:-:o

i . i . : . i /-s<- ( • ...... i •. l i

i . 1 • i ; i >.;- i i ; i i;;i i . i ... 1 i.i', i i i ! ->~i' I 1 i i i ii i 1 !

i j [_!_ i i i; ! I ! i i II I 1 1 i t l\ h: i * ,, , , 1 1 i 'i'.'.-.'CO AMttO-lGA K'.>rf»i! .iivichis

^ . « /vr. e>trrcri in • rat Anexa -i ? RRS THS JatrralJ TEST 7 50. I • v i < i r : -I ! 1—.' IT si T~\-T;]Ti •Inccrc.irc la sci-. ! i i • I II i :••!!•'' ; • L.

———-I ' t: ! —i— • 1 : ! * 1 / • 1 i t »1i' i1 anorti;:a re 4X l.CCCCO 1 ! • t t

• : : ' ' • 1 1 1 i t t I 1 | l! 1 i •.locooo iO.CCOO 50.0CO0 Hz 12:23 • s- longitudinal a oO.CCw i 1 I 1 ! i . f ' ' i i ; ; lit ! 1 r-i-- 1 1 • T i i 1 1TT 10.0CCO /i !

1 :—-' . —

i ' ' j j ;' '. ! 1 i i • A- 1 ! r! j i ; i * ; 1 / • • I t till t 1 j // j • a.Tiortiznra , i ! i • •

| —•• "•• -:, , j— —r-771"—: ) ; ; ; i— 1 ,' ' ' . - . •. I - • i I i ! 1 I....'.. ' i i 1 1 1 IT 1 ! I i ! 1 : i | li 1 > i.WOCO' 10.K09 50.0000 Hz

axa vertical a 30-SEP-92

i i . ! .' i i t Ml • • i * t I J k I * T i j i 1 f ^ \ _^i ' i ; 1 I •. \** i <\ ! I i '-. 1 amortizare AX '•• 1t 1 1: i ! • ! i 1 1 * • ! ! i • > i • • . .•-.,• ! \ i i ; ! ! ' ' : % "'[ " • '•>•'•'" 1 i .'">•'\! I i i 1 r I ' 1 • i I A i > l t t 1 ! I 1 i i1 1• i ! If MM i t l !i ••..«.«.' to.ccoo

Fiy. tZ CDS TRS Inter a l.i TIIST 8

A — .*. t.fc.f .«.._

la :> LTJJJ'*! fi! ' \ \J\ : i.!j' ^ j "T^

Z. —• , _—— , 1 1 ; ; •: * i • —? —\ i i i / y i | ! •• i i - -. AX • • - - l.COCCO •f ~ •/'/•

| , 1 T . _;._ ~ . ——— .—•-.—-. L ' ) 1 , : ' ' '• ^ ' • 1- ' • — •• • i ! f ! 1 1 1 •

! I i ili 1 .iCOCCO 1.03CC0 50.COD0 Hz

axa

5D.C0WI; _, 4 i 1*11 1 I • 1 i 1 i i • 1 J lift i i i • i 1 1 i : L: ^—• • i /i '10. i I ! il I ^™X_| 1 I i • '

, j I ; i • :> i --T—• i I i ! ! A-' ! i (• Si 1 i I : ' = 1 1 / y : 1 • a, c i i i | )rt.i2-,^ 4.X 1

1 i •* ' :—— -.-tr :•- •; r-— :—, . J 1

i ; | i '...-.. • •r,.- • , , 1 ' ; • • • i i •' > 1 i i ! i I ! ii i * i li IliiH- Hz

11:17 axa verticals i I i i • 1 | j s.ccc^, ( j i \ j | 1 ! r"i:-\-\ I / k | ! (.TT A ' ' i i • i •. / ar.orti; : > i • ! • \ ' i.CC'XCr1 ! / I ! i —\

i j i •—: i S

[ i i 1 i i i ' _" j I [ ';: •; '. 1 —** r — t.— I i t ; ! • I 1 .!_ i ! i 1 i¥il[/.Iiuf i_LJJj.Li:.!. . ] nz

Fy. Nr. LufeYm DOC Ancxa 3. ?CL< THS axa latrrala TLSf 1

50.CCCOI: i V •\—H TTrnr "Incercare la 10.OXO- I I i i i i i

1 i I : ' ; I / 1 L i i I 1 S I i I I . • aaortizare

I I . i •;

.iOOGCO .iccoco 1.00000 10.OCO0 50. OXO Hz 9:38 axa Jongitudinala 30-SEP-92 50.0000 i \ \ I I i 1 1 ., \ \ | i

/ 1 | t * ; : i ". 10.COCO r—1- 1 i • t • • i i i •—*• i ! • A ( 1 • i 11 apiortizare 4X =

i—t—i— i j j—H-j— i . | | . ' • I j .; t 1f • i i ; 4

.10COO0 • ! l.CCCOO- 10.KO0 50.COD0 -Hz

11:22 axa verticala 30-SEP-92 5-OOOCO 1 ! M ! 1 1 1 1 i /

t < 1 1 ; ! —*-p I : 1 1 t i i • • * • i i 1 1 1 ! 1 j i 1 I •- I 1 i • lf-

f- a;Kon:sT : ."TTTT Inccrorr In •s«."it>»»~J" .v.v." i -• i-1.- — 1 -.

i 1 —, - • " •!——————.-—-— j '••"— t~- « 1 • ! s j | / ! :• I' 1* i 1i; I 1 «j ! I / •' zr.crlizare 4\ • j l.oow 1 : ' ' ' '''!._. ... ,.1 , ,1 1 .:. i.

' III' ' ' ! 1 « ! jt I J .100COO • | .1CC000 i.OKCO Hz

axn lor.ritudtnala 5O.0C0O; ' } i : 1 1 ; i ' i ; 1 . I i , 1 I ! 1 ! 1 : • ! 1 i J i ^.__ _•.-.' i 1 i 1 ' ! j\ ^ ! i A \ v 10.CCCC ! ! ! l\ ^" .V

1 ! t i i ' ) i | I 1 • . : j i ~T-I 1 1 1 J I ! • A/ j i • ; 1 lii i 1 1 1 i i • . i ; i i i i /A j3*0 rtiznrs 4X i.OOCW: is 1 I i ; : :—. • , r?] : ; • • i • '..,.:..,..•..:.. •/ ; ' ! i 1 • I 1 1 1 I 1 1 i ! ' 1 ' ' ' I ! ! 1 i \ m • i .. ! i i ! 1 !! i i I 100000 !• i hn 1 1 I ! MM I • i l.OQOCO He

vertical a 3C-SEr-5

i!i: -'-A -rtTtr 1 I i 1 . . ! I iff! i ]_]

tli.-.t:hi •> .EUR9TESTS.A. FS07

1 FORM ID TTR 2 GENERIC CLASS Sensors 3 GENERAL EQ. TYPE Thermoresistor 4 SPECIFIC EQ. TYPE Type Pt 2x100 Tnux(°C)=300 IP56 Ro=100Q(Rla0°C) W1Oo= 1.385 ±0.0005 Time constant = 8s Immersion ienghts for 004 series - 400 mm 005 series - 800 mm 006series- 1854 mm 5 MANUFACTURER STR-NS 980/88 STANDARDS NTRNS -0 (Appendix 4) 6 MANUFACTURER/MODEL ITRD Pascani/ TTR 1.4.06.NS / TTR1.4.07NS3ATR1.4.09/NS3 7 SIZE (mm) 690 x 600/ 4)90 x 1000/ 90 x 2054 8 WEIGHT(kg) 2/3/4 9 ELEVATION (G.C.)(mtn) — 10 SOURCE OF INF. Seismic Test 11 TEST ORGANISATION ICPE - LCCNE (nowadays EUROTEST SA) 12 TEST PLAN "— . 13 TEST REPORT Bl 5014/26.01.1989 14 ENVIRONMENT Functional ageing. QUALIFICATION 15 TEST DATE Jan. 1989 16 INPUT DIRECTION triaxial, simultaneously 17 TEST TYPE 5SDE logarithmic sine sweep frequency range 1 - 33Hz + resonant frequencies sweep speed: 5 octaves per minute critical damping: 2% 18 FUNCTION MONITORED During test: structural damages tightness; temperature measuring accuracy; electrical insulation integrity; After test: nominal value of electrical resistance 19 ACCEPT CRITERIA no structural damages 100% tightness dielectric resistance value 100MH nominal value of electrical resistance: 100± 0. \Q at 0°C 20. RESONANT SEARCH for horizontal mounting: 86 Hz; for vertical mounting: 20.5; 86 Hz 21 TEST MOUNTING • floor, on rigid horizontal support (see Appendix) for all 3 specimens simultanousely; • floor, on vertical support (resonant frequency :20,5 Hz; see Appendix) for all 3 specimens simultanouseiy 22 ANCHORAGE see Appendix 23 DAMAGE none 24 COMMENTS • RRS as required by STR-NS 980/88 • the TRS envelops the RRS shaped for a percentage of critical damping of 2% J-J.3. CoiidiVLn tchnicS .cis-la pci. ii2«3. ^o verli'Ic/i <«ct. 4.2. Oin l^M* ti-07-82. , . ^ ••• /: ,..3.v- Coiii>ovi^'"totmica ue la pet, c.2«4* }5e v&rii'icii visual ;j v>x-:.a citiici vjaloiii pxCaiuiiii tucc'iului Co liiSsural; ir.di a.::r.o;-:;otr.u do pe atttnd pa- toata. paxioaua £iicara|LrIi»:'..

Y//////

'i' ji. £ U, i'•; p i Otf:o ^ .'.^;

t> lc i:s c ?-i'iu.'ri •:•- in' is-1 31/36 '>$§^s. ~i. •••. ; ••••! .V" T*. -it •'. ^ 32/36 \..,.-f>,v.

••'.•;yr-Av.>/ii

Q . .-..i.1.

•8

:.•; t.'

•-.- r

• ••••< '*•

- • »-• *•

0 < r$"

'5 -

% • » •» . lIuUS j m>T< g0010 R g-33 - PS - A i'iia: 34/36 . Fig.-a. -.•.^rv-.vv-; ., (proilucjiq • • •„ • ^ p .•^ert'-.pr^siatcrita eupucS /Jp incercirii Is -seirjiaj-avlad' luagiass de iisorai© 'la ^ te^.ca de protoctie surslii '.oooutul §i cXoi- neutara de 400 ::~ SOO nji.;-;^ : : : , IJ. incercSxii la; vS<^ A.!.

. <*-i-iU «^

"•ict do.'iirdplere .r---^: •. ».:• . .• •'• i.-tk'V.-sl > - •-;uc-cie'ia:-?J>) " • ' >

t.t/tv'Vs - • ...r-."'

-,T.rvox -r—

•iVW.

• ...>«

I : T. 60010 P. 033 - P2 - *• -ila- 3 5/36

f<-^4?t

© -^

*-* * r*v o , ^ ct - l^ 53 •K •n --' -; f • •.* Z) r-! u a v •ri >" • . iv •j-.' * w *3 49 jj >=J w O •.•*. •. v„•'•'•. •. »'-Yr "ii rj J3 a JH 1 0 O •1 zt '•1 JJ •-> O M ,.•< -1 i-0 u —4 ri •••» ' fj * C •: icj *•-'* *•" "• ^J O O o B ^* j-" •H fa. i * ci •4-* ,-t *}" o Pj C «J ^, J i> p{ •7,3 •»,•» •Ja .- . '•f , t 'r'i •-} * •, . 0 03 . "r •+» : Ej •;£> %;^ ^ o 13 c ;{- • ^p»

.'• . ':"•

•H

••- .' M b 55 - i;: :^:t;

ri

X-

I ISI I I

* • / •"t **•"*» • * *. J r; *.- * t M t3 . i •.-; * *', .1 O O n rj --. >•• Z+ .• 1 *% !*; • i.-*4 d; 'A r* 1 . i :"; • ' r - * ** * •.*• til 1 r* r\ r r. r\ r- ;\ r. 11 J W .-. .1 U A »tt ii -i 1 I\ u '.-. KL\if HI ritib in P .j u . • 40dB 86.00KZ X:' O.OOHz ^t 2C0Hz LIN i- If): 557

/ \

ou5ETUP. W2 HEHSUREHEHT: DUfiL SPECTRUM fiVERHGIHG TRIGGER: FREE RUH DELflY: CH. fi-^B = 0.0ms RVERRGIHG- PERK 1OOO OVERLRP- HflX • FREB SPRN = . 200Hz iF = 250(fiHz T-4s 4T-* 1.95ms CENTER FREQ: BfiSEBfiHD HEIGHTIHG:- HfiHHIHG '. . . • . •CH.fi.- • 4V- - + DC-DIRECT FILT-'BOTH 1V/V CH.B: -2V + DC-DIRECT FILT=BOTH 1V/V GEHERRTOR = —-r -PSEUDO RflHDOH HOISE PLOT' W DESTIHBTIOH .*...: PRIHTER A -CAtCULUL : rreoo/o - ^033-/^r-A /.(-*/

A/na*

c/B \32.3 \3?J

3/3 3/ -

0,3 . 30-

7.6 27-

SSJ75 ss iS.575 85 85SS S5.5 £$?5 Cb #6,25 86,5 6^ 7% 3

WATU

8V i 3Hz OIR FILT=6.4kHz -1V/V 3Hz OIR FILT=6.4kHz ERRTOR OISfiBLED DESTIHRTIOH • PRINTER • 1

:f:;;::;f:.-::.-:| .:.L::/ . /: -:: ! ::I !:-:

— ••*•• "-.. * .!• .../...... I- —-...... Ka& v i/FREQ RESP Hi HflG HflIN 990 qqfl LIH ' + 200H: LIH , #fl= 420

a 1 ETUP \\l\ TERHOREZISTEHTR TT60010-R033-PT-H U LI=800M tt ITRD PftSCfiHI ttt DETERHIHflREfl RMORTIZRRII+F.REZ it EflSUREHEHT: DURL-SPECTRUM RVERRGING RIGGER^ FREE RON • • - . - - E L'fi Y: CH.fl->B= 0.0ms- lUERflGING-- • PERK 1500 . OVERLRP-. KRX- 20.0H2 ATM. 95ms :i!TER FRE.fi: BRSEBRHD :iGHTIHG:" HflHHIHG

10V DC-DIRECT FILT:BOTH .B iov DC-DIRECT FILT^BOTH HERflTOR SftFLED 0T= -JO: DESTUIRTIOH.;. : PRIHTER

l 0

4 TIME CH.fi REfiL 33.8sV X a * 3 a <} .a s s a i H -1 A ^ f1 i u 0 4 ^ *ii ri M H r ?i H M ri f4 H ri

ii H r y y y N y i vi H ^M y y r9 u $ P 11 ii u i4 a. (.], t| II i. if. u irj.: >t a H i $ 4 \

ITRD 'PfiSCRHI SUPORT VERTICfiL DETERMIHRREfi F.REZ. S SI fl fiHORTIZBRII-HETODfi IHPULSULUI DIRfiC LI=800aa: OUfiL SPECTRUM HVERAGIHG H FREE RUH . -T CH.fl-*B- 0.00ms • D LIN 100 OVERLRP= HRX fl .6!;Hz = 500ms r 'ER FREQ: BRSEBftHO C !HTING= - HflHHIHG- H

: C 1l: " 2V .+ 3Hz DIR FILT:25.6kHz 1V/V 2V + 3Hz DIR FILTHS.6kHz i«/V C RRTOR: RRHDOH HOISE ,- • G : SO: DESTIHRTIOH •:'.... PRINTER P *. ? lIiL i!:dO!i!iO!hliiydfe

!"• ""•/&•-•':• T-:\r\

^

Lrt"t!:.*r!i*nirrr:j

j:T:ri:H:tr::r nrr-n \\\ u r. n Mr. T it ir n A ri rib riHiH _ P .j^ fi fiiB •* 80dB A • t'.-.v.-lfVr.Vtf 4":--" + lOCHz LIU • 369

ITRO PRSCRHI- TERHOREZISTEHTEHTfl 60010 LI=400«m DETERMINRRER RHORTIZRRII I KEUBfl BRLERJULUI SUREHEHT DUflL SPECTRUM HVERRGING ;GER: FREE RUH y- CH.R-*Bs O.OBS • f^f , ^RGIHG- PERK 1500 -OVERLBP-' HfiX V

iOOHz AF-125asHz U I V • ^ * ill «• FER FREQ BRSEBRHD IHTIHG: HRHHIHG IOV + DC-DIRECT FILT^BOTH IOV + •DC-DIRECT "FILT=BOTH iV/V :RBTOR: .DISRBLED DESTIHfiTIOH • PRIHTER

J J

CALCULUL

JlT?i^pffi

:::i. :.:::•

- :r.;;—::::i ::"t::::::::-.:

'•'•'•••'•'•__••.: Si||li s

^w^it::m^^

.-f.--L."-;";-'-|-.^:^a;.ll^t^-;^^L:T -,"•:-:-—~l—""wi ":" •zu:—l:—l-:::::~ :::-.r:i::

I •:;:::. 94,725 '::•'• ':i';:i:

;:• :i:. ~*V7S~*. -8.3,375S3f 33,675 • • &/JS 8i25

• '!• :: T: : : r: ::::!•:•:;-: !:-r::::-:F::i::;-: ::.::i;^H:i: ~"\J .':\v~ \'" \T . ;j:ii;;:!-:;;;r:i":T •i\Y-.v\\ I.:.T .1 .: :.;. . .:

; • :i-.- ! ::"i:.. • ";":::i: " :".: [..:

.::.::s::..i::: I ::::• t : . : i. : • i- : : i. . /•/&. JO .!.:.- .1- •: •• t

...1 A ? a

2 FREQ RESP Hi HfiG • HRIH Y = 33.1 40.0 LIN. X^ ! (Uii)Hz_i,£UUr!l Lrti

11 ' v -•

ETIIP i-12. ITRD PfiSCfiHI SUPORI VERTICBL BETESKIHRREP, F.RE2. Si R RHORTIZRRII-BfiL. LOG. 1 OCT/HIH 0.25G CRESC EflSUREMEHT: DUflL SPECTRUM RVERRGIHG • RIGGER: FREE RUH ELHY: . CH.fl^: 0.Oos IG: PERK 1500 OVERLflP- HRX REQ SPRH-. 200Hz TMs .95ms HUER FREQ: BRSEBRND EIGKTIHG: HRHHIHG

H.R: " I0V DC-DIRECT FILT=BOTH H . B : lov • + DC-OIRECT TILT=BOTH "•"ERfiTOR: DISfiBLED LOf - DESTIHRTIOH PRIilTER" CALCULOL rreoo/o -

,:•::::::[:::• ;;•'.: / r :.:

^

?O,2 ' RRG 1:2C TRS axa laterala(y)-TEST 1 i^-DEC-88 4.00000 ICPE LCCNE Incercare la seiss

3.00000

2.CCCCO

anortizare 2X i.oooco

''••'''' i-00000 . 13.25O) , 25.5CW 37.75CO 50.00CO ITRD PASCAKI TERMQREZISTENTA TT £0010 R033 FT A LI854

/77a. s •v..

9:46 axa longitudinala(x)-T£ST i6-DEC-83

ICPE LCCNE Incsrcare la seiss

anortizare 2i

25.5000 50.0000 l.ooxo 13.2500 37.7500 Hz ITRD PASCANI TERMQRE2ISTENTA n 60010 R033 PT A L1S54'

L * 1 io:5* TRS axa verticala(z)-TEST i ' iS-DEC-88 4.0CCO) ICPE LCCNE Incercare 2a seisa

3.00000

2.00000

i.OCOOO

o.cooooL.

ITRD PASCANI TERHOREZISTEHTA TT 60010 R033 PT A L1854

L RRS TRS aka "later'a"; 4.C0000 ICFE ICCHE Inccrcare la

3.00000

2.00000 a?>ortizare

i.MOCOr V

o..ooocoL_u_L i. 00000 . . 13.2500.. . 25.5000 37.7500- u, 50.0000 ITRD PASCAHI TERHOREZISTENtA TT 60010 R033 PT A L800 nz

i

L M: I

ff 10:09 TRS _ axa 16nBitudinala(x)-TEST i 16-DEC-88 4.0C00Q ICPE LCCNE Incercare la seisa 3.00000

. 2.0COC>0

(WVrt

0.00000 . . i.00000 . 13.2500 25.5000 37.7SCO 50.0000 ITRD PASCAMI TERHOREZISTEHTA TT SOOiO R033 PT A L800 "

I A'r./UJtn $&

RRS ii:32 TRS _. axa verticala(z)-TEST 1 16-DEC-83

ICPE LCCNE ]ncercare la seis*

3.00CCO - J

4 2.00000 anortizare 2i

.* • t .

*/ \ i.ooooo /

'. • **••••

o.ocooo • 13.2500 50.0000 i.00000 25.5000 37.7530 Hz ITRD PASCAHI TERH0RE2ISTENTA H 50010 R033 PT A L800

J

t , r:y Sf__

RRS '4 t t\r i*- i"Tf **• •*• TRS axa lateral a (y)-TEST i 14-DEC-S" 4.00000 ICPE LCCNE .Incercare la seis»

3.00000

2.00000 a»ortizare 2% i.OCOCO V o.occoo i.00000 13.2500 • 25.5000 37.7500 50.0000 Hz ITRD PASCANI TERHOREZISTENTA TT 60010 R033 PT A U00 4.00000F ICPE LCCNE Incercare la ssis*

3.CO00O

2.0C0O0

l.OOOOG

1.00000 13.2500 25.5000 ITRD PASCANI TERHOREZISTEHTA TT 60010 R033 PT A L400 7 *?

ii:52 axa verticala(z)-TEST i ~ •• 16-BEC-e8

ICPE LCCNE I ncercare la seis?

3.00000

2.000CO • aaortizare 2X 4

\ i.OCOOO • \_:

0.00000 i.OGOOO 13.2500 25.5D00 37.75C0 50.0000 Hz ITRD PASCANI TERHOREZISTENTA TT 60010 R033 PT A L400

y EUR@TEST S.A. FS08

1 J FORM ID TTCS 2 GENERIC CLASS Instrument Racks 3 GENERAL EQ. TYPE Thermostat with capillary tube, probe and 2 microswitches 4 SPECIFIC EQ. TYPE adjustment range: +10... +55°C over temperature: max. 90°C 5 MANUFACTURER STR-MIE 1513/88 STANDARDS NTRNS (Appendix 4) 6 MANUFACTURER/MODEL IMF Bucuresti / C52.32 NQ 7 SIZE (mm) see Appendix 8 WEIGHT(kg) 9 ELEVATION (G.C.)(mm) — 10 SOURCE OF INF. Seismic Test 11 TEST ORGANISATION ICPE - LCCNE (nowadays EUROTEST SA) 12 TEST PLAN — 13 TEST REPORT BI 5388/1989 14 ENVIRONMENT Functional ageing. QUALIFICATION Thermic ageing 15 TEST DATE Dec. 1989 16 INPUT DIRECTION triaxial, simultaneously 17 TEST TYPE 5SDE frequency range 1 - 33Hz sine sweep: for 1 to 4 Hz: lHz/ min >0.i5% 0 for 4 to 33 Hz: fVlOOO Hz/ s * .i5«. critical damping: 2% 18 FUNCTION MONITORED During and after test: structural integrity spurious operation micro-interruptions 19 ACCEPT CRITERIA no micro-interruptions longer than 10 ms no spurious operation within -15 to +50°C temperature range no structural damages 20 RESONANT SEARCH no resonant frequency was found within the frequency range of 1 to 33 Hz 21 TEST MOUNTING floor, on rigid support 22 ANCHORAGE 16 bolts M12 x 150, nuts, washers and Grower washers 23 DAMAGE none 24 COMMENTS • RRS as required by STR-MIE 1513/88 • the TRS envelops the RRS shaped for a percentage of critical damping of 2% VK &V~-: ' Si 3

1 Z&T 1

k.

^- '•. •f-

.2^/? ^S. ••l,'P~x \ .-V -: w

••• • -j-V 'K i-; V J :,: • n i.'j. ±;n. x Oi. I'vi- STR-.»13t-S Kr, i& 21? C^ Pi la 12/33 :

r itara yi darata tA determinate de caracteristica duratel - ^""liii 'ia^--. a -.Tz-teria lei or utiliaate. ' ' <. i'roducslc trebuie a% coreapundl condifciei tehnice de la:-: dupa ce au foat supuse, in conditi'ile categoriei Bj.la o, •>* &*«* & r ^ sei.iui de uivc-1 lt carr.cterir.at; .-.i.r : '" a) nivelul o

3 15 6 789 10 20 • Frecvento [Hzl — pentru direc^Ia verti_c^J^._iss— ia—2/-3—sli^n'~3i"?:c«a"irea~"aeiB— raic"!" la raasa "pentru direc^ia orizontalS. b) £8.7ia de frecven^e : 1...33 liz. " c) oolicitSrile sint date per.tru suprafa^o de prindere a produsului Qonfo'xia deseiiulLti din figura nr.3. In- incerc^rii.la :seiss produsui nu.trebuie a\ i oontsct§.ri false. Ori'ce defecijiuni de naturi timpul Incercarii la aeisia gi.care'nu ofecteaza i, ;iu coiiiititu.i - dafeefcari, —• '• . ' 3 irebuie a2 coreopundsi la vtirificnrea func^io- li:aitS. si anu-"n8 : a ) la touperotura ambiant-;; de -15°C; •b ) la fc'j.iiporatura a.Tjbianta da +5C°C; c ) la u-iiiltntea rclativS .Tiftx.SO.'S In 35°C, .:* 35:* l<» 40°c. ft lateral a Intrare la mass:

0.5 i 2 5 10 20 33 40 50HZ IKF-TERMCISTATE OJ SONDA SI DOUA HICROINTR. seria 0 nr. 015. 016. 009

ICPE LCCNE Incercare la seisn

Axa longitudinala Intr3re la aasa:

'•5 12 5 10 20 33 40 50HZ IHF-TERHOSTATE CU SONDA SI DOUA HICROINTR. seria ZERO nr. 015, 016. 009 a' 6 _^_ ICPE LCCNE Incercare la SQi.su

Axa verticala Intrare la nasa: iapusa .... realizata 1

'•'•- i 2 S 10 20 33 40 50HZ Ifir-TERMOSTATE CU SONDA SI DOUA HICROIHTR. seria ZERO nr. 013. 016. 009 >EUR©TESTS.A. FS09

I FORM ID CILF 002 2 GENERIC CLASS Instrument Racks 3 GENERAL EQ. TYPE Illumination group with fluorescent tubes 4 SPECIFIC EQ. TYPE nominai voltage: 220V nominal frequency: 50 Hz nominal power: 4 x 40 W source type: fluorescent tube lightning efficiency: 70% electric insulation class: I protection degree: IP 43 5 MANUFACTURER STRNO 77-85 STANDARDS STRNO 59-85 6 MANUFACTURER/MODEL ELBA Timisoara/ FIDI-03-440 N4 7 SIZE (mm) see Appendix 8 WEIGHT(kR) 12 9 ELEVATION (G.C.)(mra) — 10 SOURCE OF INF. Seismic Test 11 TEST ORGANISATION ICPE - LCCNE (nowadays EUROTEST SA) 12 TEST PLAN — 13 TEST REPORT BI 5177/ 17.02.1987 14 ENVIRONMENT — QUALIFICATION 15 TEST DATE Feb. 1987 16 INPUT DIRECTION monoaxial 17 TEST TYPE 1 DBE continuous sine 5 sine on each test frequency frequency range 1 - 33 Hz critical damping: 4% 18 FUNCTION MONITORED During and after test: structural integrity spurious operation micro-interruptions 19 ACCEPT CRITERIA no micro-interruptions no spurious operation no structural damages 20 RESONANT SEARCH OX axis: 9.375 Hz; 15.25 Hz; 28.35 Hz OYaxis: 16.5 Hz; 28.23 Hz OZ axis: 22.125 Hz; 30.875 Hz 21 TEST MOUNTING hanged 22 ANCHORAGE 4 chains 23 DAMAGE none 24 COMMENTS • RRS as required by STRNO 59-85 • the TRS envelops the RRS shaped for a percentage of critical damping of 4% •V':'""'i> CONPARAFi:: i.VlVE Si-ECTX'JL DE R-\SPU.\'S CER'JT-RRSSI SrtCTRllCERASPUNS DE IXCERCARE -TRS-

j N/Vef . i C/rccr/a 8;v9//:*rc/ \ Flllrat

Fig. t

•>:,->t '( v.-( — ( '-•I J :: J CGHPARAW l.YTRE SFECRil Cz RASiVXS ""^":'''•'j ' 2 •enr-RXSV SPt?C7Ril LERASPUMS HE i.XCERCARE -TRS

— octavo.a tNr.'ncc-rcnr*:-. incnri-cr:i 1 5 JL. mi IT i l

> i

: i i i

i : t

I i

M i t i i ,t\i I ' l . ' t * i JMiliii] J' ' '- i i i I /! ! j^ji IT Ji I ; •!!• I h i i • i i i I i tJ I 111!! i 111 i i r iii If i ! VJ 11 !\ II

TV

/\ /V ' i i i\ 1 i ' ! . TT- • j A- I : r^i

_ _*. t . i-_i» ! ! I ! i I -LJ-4-^- ,8 16 32 a

r/^rt '~J\>it '.. ;;jr '(I'-"••i/Aj '-'•'** r-T-S ••'; . h— ~ Ancxa.:*?...xa..'.-?.. fIpr.gjg/ pr,r CONPARAIJL l.STRE SFECrRUL DE AMSA7.VS -RRSSf SPEC TXLIOE RASP! WS DE !,\'CERCARE 'TRS

X.Nr.lnccrcmv* Inccrcr.m !i

•'////// •: ?T'//r!;l»/A"i CONPAPAL'E hXTRE SPSCTRJL DE RASPl'XS ! SPECrxii C HE :XJEXCA.:;E -TR<

^ ,v^

.j , .., . , , .,..). 1J 1 -

Tvf^i ; ;

Vil: 1/ i • UtV7i

yfJ/Sord*'s/>\/-tjthUVJ (if tl.n/-f'At*'.-'• --^^-_ /;/?.;/V/c;/ 1. • 1' - :~ CpNPARATlE I\'7R~ SPECTR'Ji OE R-XSP'JS'S l OS

) • J »."»." f •'* •> J * ir'^cvrccvx lnccrc::r:i 6SE 1 or

—n ~ "TT 1 pr T TV i t T r ! IT i; TT| Ti i I • i-_ —- 1 ! n • '; 1 i * i 1 ! 1 -

• i 1 . : i ID t ;: t • . i i 1 I"" t hi 1 I 1 i i • 1 1 i ! - • \ . i I i * - » - LL I." : \ ill i i i . • i \ \ i i 1 i • . i t t i' • |H

; i ; • .; \ i ; : , ', • ; i i 1 ; i: i • i i 1 i n > i \\ I i \ : 1 \ 1 1 . 1 i • 1 : ; ; 1 ' 1 • M h i; ; j • • . I ; i • 1

• • • ; j • . • • : !. • '• ' '• \ \ i I __ Ii V ''I i . i . . ! '. . i 1 • • I ; 1 ' [1-1 1 i : ' 1 V . i i : m Mr-- - - .li.i. , "/s I \ • i t ; . — I \ t ,* 1 \ w j /: \ ' * 5 i I ; — N I ' - t : 1 '; V • 1 1 1 i H |Z » • • \ Hi ••v- t T • t if i' i i S i - 20' i \J ;V - ...... \ i i i ; ! » 1 i \ N i ! 2C — - i j ! • ti _ / li! - i l : i i i € - 7 A —

Ti . • .. —<,. -.- i 1 i p. i i . i j 1 • t i _ J. I i • i \ iL 8 rig. 2

f {'A. Verifiint Trrrr • "" LOHPARAnt" h\'7Rb' SFEC7RX fi* AM>7%;.\V> >7 SPZCTRll Cc &\Si-V.XS DZ .'XLI'.^VARL -TR< '

.'Vnctc^ _^.,^^-.r.-.

r._//^vi//'//y [email protected]. FS10

I FORM ID V00I 2 GENERIC CLASS Relief Valve 3 GENERAL EQ. TYPE Gate Valve 4 SPECIFIC EQ. TYPE - maximum working pressure: 0.6 MPa - working pressure: 0.12 MPa - size: 500 mm - body width: 680 mm - maximum working temperature: 120° C - actuator: hand wheel 5 MANUFACTURER — STANDARDS 6 MANUFACTURER/MODEL STAFSJO BRUK MV-A-500-E-TY-HW-PN10 7 SIZE (mm) 680 x 120 x 1675 8 WEIGHT(kg) 320 9 ELEVATION (G.C.)(ram) 200(est.) 10 SOURCE OF INF. Seismic Test 11 TEST ORGANISATION EUROTEST SA 12 TEST PLAN P 276/95 13 TEST REPORT 159/30.01.1996 14 ENVIRONMENT — QUALIFICATION 15 TEST DATE January 1996 16 INPUT DIRECTION triaxial, simultaneous independent inputs 17 TEST TYPE random 1 DBE frequency range: 1 - 33 Hz maximum peak value of input acceleration 0,6 g efective duration of test 30 s 18 FUNCTION MONITORED Before seismic test: functional checking of tightening After seismic test: functional checking of tightening 19 ACCEPT CRITERIA During seismic test: - no abnormal noises; - no strong oscillations of components; - no relative motions in bolted assemblings; - no impacts of assembly components; - no separation of structural parts. After seismic test: - no changing of the tested assembly position and structural integrity degradation of valve and fixture; - the functional accept criteria is the tightening. 20 RESONANT SEARCH - frequency range: 0,5-33 Hz - (maximum peak acceleration: 0.1 g) for horizontal B-D direction a resonant frequency was found: - before seismic test: 24.61 Hz - after seismic test: 25 Hz 21 TEST MOUNTING wall, on L-shaped support 22 ANCHORAGE Support on table:2Q bolts M24xl00, 14 bolts M24x80, Specimen on support:^ through bolts M24x205, nuts, washers and Grower washers 23 DAMAGE none 24 COMMENTS • RRS is identical with EWS Pumphouse FRS (Elevation 100.0 m, Cernavoda 1) required by F.C.N.E. - AECL Ansaldo Consortium • the TRS envelopes the RRS shaped for a percentage of critical damping of 2% EUROTEST S.X Auexa CERCXTAZE, INCEBCAKIECIECPAMENTE, XHCINEJUZ INDDrTKIALA SI SEEVICH SmjmnCZ nr.2

4 0 •

5

co

U-

Buletin de Incercarc nrJtfdln3C.0l% pagina 13/31 EUROTEST S.A. Ancx. CEKCETAEX. iKfTBritt ECHtPAMEKTK, DJCINEKIE CTOU5TKIALA SI SERVICE STOTTinCZ nr. 2

O Lateral f vertical

Buletin de incercare nr.^&in 30. Ok. % pagina 15/1 EUROTEST S.A. Aucxa CEECETXJZE, WCEECASJ ECHIPAMEOTE. XXCXSZ21Z iyDUSTEULA SI SERVICE SriLVIUlCI nr.2

EEC TRS 2.00CO01 OJRQTEST S.A. Incercare la seism 1.50000 \.

i I l.OOOCC

oi»ortiror* 2X

.50X00

0.00MO 1.00000 10.0CC0 •. 5J.OX0 v'":-.--:-;. Hz

RRS 9:0* TRS orizontal directia ft-C IO-JAN-96 2.00000 EURQTEST S.A. Incercare la seisn \\

LOXO0

anortizare 21

.50O3C0

o.oocco 50.00CO 1.00000 Hz 10.0000

RRS • TRS vertical 2.00000 EUROTEST S.A.

Incercar* [a leis M

-^ A ;S»000 V TTT—a. \ .aaortizare 2X

0.00000 50.0000 i.OOOCO Hz 10.0000 r.C.H.E.-MC Vana de iiolart HV-A-5OO-C-TY-HV-PKtO/aSI-34610 Fig. 16 Spectrele de raspuns ale testului DBE ( SSE ) pt Vana de izolare RRS - Spectral de raspuns impus ; TRS - Spectral de raspuns de test

Buletih de ihcercare nr.^din 30.01% pagina 27731 kEUR@TEST S.A. FS11

1 FORM ID PUMP 001 2 GENERIC CLASS Vertical Pump 3 GENERAL EQ. TYPE Submerged Pump Type FLYGT 4 SPECIFIC EQ. TYPE - nominal power: 4.4 kW - nominal rpm: 2855 - nominal voltage: 380/220 V - nominal current: 9.1/15 A

5 MANUFACTURER — STANDARDS 6 MANUFACTURER/MODEL ITT-Canada FLYGT CP 3102.180-4735 7 SIZE (mm) h=680 ; d=370 8 WEIGHT(kg) 130 9 ELEVATION (G.C.)(mm) 200(est) 10 SOURCE OF INFO Seismic Test 11 TEST ORGANISATION EUROTEST SA 12 TEST PLAN P275/95 13 TEST REPORT 158/29.01.1996 14 ENVIRON. QUALIFICATION 15 TEST DATE December 1995 16 INPUT DIRECTION . triaxial. simultaneous independent inputs 17 TEST TYPE random 1 DBE frequency range: 0.5 - 33 Hz maximum peak value of input acceleration 0.2 g efective duration of test 30 s 18 FUNCTION MONITORED Before seismic test : functional checking in order to obtain the performance curves After seismic test : functional checking in order to obtain the performance curves

19 ACCEPT CRITERIA During seismic test: . - no abnormal noises; - no strong oscillations of components; - no relative motions in bolted assemblings; - no impacts of assembly components; - no separation of structural parts. After seismic test: -no changing of the tested assembly position and stnictural integrity degradation of pump and fixture; - the differences between pump performance curves obtain before and after seismic test shall be less than +5%, entirely range 20 RESONANT SEARCH no resonant frequency in frequecy range 1 - 35 Hz (maximum peak acceleration was 0.08 g) 21 TEST MOUNTING floor, on rigid support 22 AxNCHORAGE 4 bolts M 16x55, 8 bolts M20xl00, nuts, washers and Grower washers 23 DAMAGE None 24 COMMENTS • RRS is identical with N.P.P. FRS for service building elevation 93.9 m (Cernavoda Unit 1), required by F.C.N.E.-AECL Ansaldo Consortium • the TRS envelopes the RRS for a percentage of critical damping of 2%

A« L

<

VO

\\

V

1 •

11 to

-2 c*

-to. TTCT nor TRS> orizontal direclia B-3

EUROTEST Incercare la seisw .750000

.5O0CCO

.250000

i.COCCO lQ.QVX) HJ.COCO Hz

TRS1 orizontal directia A-C 12-£_C-95 1.00000 i t EURO-TEST : Incercare la seisn

.750000 -—• P

h y C [ ^^ anortizar e 2X

V. |-

i.CCCOD 50.00OD

DDq, TRS vertical i.00000

: EUROTEST •

• . Incercare la seis* .7500CC

.5COCO0 h —-- awortizare 2X \ .250CXX)

• — !

^

i.00000 Hz EUROTEST - S.A. Incercare seism pompa submersibila 3432 - P04 AAC Cemavoda 2.0-

1.5

1.0

0.5 ?

0.0

-0.5 0 1.

-1.0 2. 3.

-1.5- . 4. 5.

-2.0-- , 6. 7.

-2.5- 15.0 17.5 20.0 22.5 25.0 27.5 30.0 32.5 35.0 37.5 40.0 42.5 45.0 47.5 50.0 52.5 55.0 57.5 60.0 62.5 66.0 socunde A'cceleratii, m/sA2, can.2 : vert. nr. EUROTEST - S.A. Incercare seism pompa submersibila 3432 - P04 AAC Cernavoda 2.0-

1.5-

1.0

0.5

•2 5" 15.0 17.5 20.0 22.5 25.0 27.5 30.0 32.5 35.0 37.5 40.0 42.5 45.0 47.5 50.0 52.5 55.0 57.5 60.0 62.5 66.0 socunde Acceleratii, m/s*2, can.1: lat.

AH EUROTEST - S.A. Incercare seism pompa submersibila 3432 - P04 AAC Cernavoda 2.0- m/s

1.5-

1.0 —

0.5

0.0

-0.5

-1.0

-1.5-

-2.0-

.0 K- t i 15.0 17.5 20.0 22.5 25.0 27.5 30.0 32.5 35.0 37.5 40.0 42.5 45.0 47.5 50.0 52.5 55.0 57.5 60.0 62.5 66.0 A

1.5-

•2.5-, i i i i 16.0 20.0 22.5 25.0 27.5 30.0 32.5 35.0 37.5 40.0 42.5 45.0 47.5 50.0 52.5 55.0 57.5 60.0 62.5 65.0 Ffqurcx {7- secunde Acceleratii, m/s*2, can.0:long., can. 1: lat., can.2: vertical A

EUROTEST -S.A. dO Magnitudine

0.0- •08-, 1.0 2.0 " 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0 22.0 24.0 26.0 28.0 30.0 32.0 35.0 mO:x 4.30 y -0.10 m1:x 33.20 y 2.99 dx 28.91 dy 3.09 .Hz grade 23.9- 20 0-- J 150-- u 10.0-- f) 5.0-:

00-- n

•6 6- i i i j i i i i i i i i i i i i i 1.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0 22.0 24.0 26.0 28.0 30.0 32.0 35.0 K):x 5.08 y 2.42 11:x 33.20 y 7.24 dx 28.12 dy 4.81 Incercare explorativa vertical. AftS/m 09 Dec. 1995

. 6-J Front Panel

EUROTEST- S.A. dD Magnitudine 5.6-

4.0-- -fTI 1—

2.0- -Jl i v Ln— J "' ,1 V*, 0.0 -•

:i1: 1 1 1 1 1 1 1 1 j 1 i 1 1 1 1 1.0 2.0 4.0, 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20 0 22.0 24.0 26.0 28.0 30.0 32.0 35 0 m0:x 4.30 y -0.56 m1:x 33.20 y 3.00 dx 20 91 dy 3.57 Hz

IP) 174.9 -, i > 1.0 2.0 4.0 . 6.0 10.0 12.0 14.0 16.0 18.0 20 0 22.0 24.0 26.0 28.0 30.0 32.0 35 0 K):x 5.08 y 181.98 I1:x 33.20 y 180.42 dx 28.12 dy -1.56 Hz Incercare explorativa lateral.

Axa B-D 09 Dec. 1995 fo do. 13 Fiont Panel

Ponffi EUROTEST-S.A. tsz dB Magnitudine 2.9- 25--

I ' 2.0 -•

1.5--

1.0 - •

0.5- rO 0.0 ** *" f~

•0.3 -.J f i i i i i i i i 1.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 160 18.0 20.0 22.0 ?4.0 26.0 28.0 30.0 32.0 35.0 mO:x 4.30 y -0.08 m1:x 33.20 y 2.93 dx 28.91 dy 3.02 Hz grado 10.0-

7.5-: 5 0--- f) 2.5-- i 00- ir r 1 •2 5- J

•57-, i i i i i i i i t i i i i i i i i 1.0 2.0 4.0 . 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0 22.0 24.0 26.0 28.0 30.0 32.0 35.0 W:x 5.08 y 2.21 11: x 33.20 y -0.10 dx 28.12 dy -2.31 Hz Incercare explorative longitudinal.

AxaA-C09 Dec. 1995 (* ek no Ji tV V!

~P It :3 ^_.-_^ J>.

^ i •«. h=-4- •--."T ?i

-4! ^

T

a 4- ^F r>

V*

i* —*

1 •

tP • — ;NJ;(»« !tJ\ -^UJ »£O C^:

^4^-^^ M !*£8£k 3t. C:.^*K ft ,N,-: N •5> r',' h^: j i.t; | --j,^s^o Ota'si . : f -1! i4i-

r — !'

ii

i tt ^ *. I- t !

O

I •

o

1 n (A e I. ?

N, ront Panel

EUROTEST-S.A. dB Magnitudine 0.4-

0.2-f- rr 0.0 ••- J n\. rr r v. '• •02-- V xt -04-

-0.6-, 1.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 100.0 mO:x 4.30 y 0.05 m1:x 33.20 y -0.20 dx 28.91 dy -0.24 grade Faza 0.7- 0.0-

.2.0 "-^

-4.0-

•6.4- 100.0 »O:x 508 y -1.45 H:x 33.20 y 0.40 Fundie de transfer dispozitivmontej nr. 2 pe masavibranta. vertical, poz. 3. AxaB-D08Dec. 1995 a

O l\> Ul O —» o In —» i i i m i m a c r o n F 0 i Ui3 H I rn i r c/> T en

3 5— t

2-

: J 1?' ! 1 Front Panel

EUROTEST-S.A. dB Magnitudine

•1.0-

i 1.0 10.0 20 0 30.0 40.0 50.0 60.0 70.0 100 0 mO:x 4.30 y 0.09 m1:x 33.20 y -0.46 dx 28.91 dy -0.55 grade Fa7a 4.1-

100 0 K):x 5.08 y 0.67 M:x 33.20 Fundie de transfer dispozitivmontaj nr. 2 pe masavibranta longitudinal, poz. 1 AxoA-C.08 Dec. 1995 RokUv . Af? o 3 Font Panel

EUROTEST- S.A. 7401. 612 34 3.3 Po<, dB Magnitudine 1.8- 1.5- —

1.0--

0.5-•

.0.0-

•0.4-, 1 I 1 i i i I i I 1.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 1000 mO: X 4.30 y 0.06 m1:x 33 20 y 0.59 dx 28.91 dy 0.52 Hz Faza

1.0 10.0 20.0 100 0 fO:x 5.08 y 1.42 f 1: x 33.20 Functie de liansfer dispozitiv montaj nr. 1 pe mesa vibranla vertical, poz. 3 Axa B-D 08 Dec. 1995 Hont Panel

EUROTEST- S.A. dB Magnitudine 11.1-

7.5-- S i 50--

2 5-- rr1 rrO 0.0-- •t:: -VH •25--

•5 6", 1.0 10.0 20.0 30.0 40.0 500 60.0 70.0 80.0 90.0 100 0 mO:x 4.30 y 0.13 m1:x 33.20 y 0.42 . dx 28.91 dy 0.29 Hz grade 81.0

60 0- IU w \

1 . in 40.0-• I

20 0 nil) A, f) u 'fci • .2 9-, 1.0 10.0 20.0 30.0 40.0 50 0 60.0 70.0 80.0 90.0 1000 K):x 5 08 y 2.56 M:x 33.20 y 4 86 dx 28.12 dy 2.30 Hz Functie de transfer dispozitivmontaj nr. 1 pe masavibranta lateral. RVut"A S" poz. 2 ** AxoB-D08Dec. 1995 Fcnl Panel

EUROTEST -S.A. f^x. 2*,yz. dB Magnitudine 1.1-

05-- rrO 0.0-.

•0.5-

-1.0-, i i i i 1.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100 0 mO:x 4.30 y 0.07 m1:x 33.20 y -0.36 dx 28.91 dy .rj.42 Hz grade Fa7a 4.2-- 2.5 •• V 1

0.0

c 2 j .. -

•5.0

•7.5

i i 1.0 10.0 20.0 30.0 40.0 500 60.0 100 0 fOx 508 y 0.80 fi.x 33.20 y -2 86 • dx 28.12 dy -3 65 Funclie de transfer dispozitiv montaj pe masa vibranta nr. 1, longitudinal, poz. 1 AxoA-C03Dec. 1995 AT. Att* /.9^ O - (3 ------i) C)

OlbO

—{I)

i 5=0'

UiiO

O f*. EUR©TESTS.A. FS12

1 FORM ID MOT 005 2 GENERIC CLASS Electric Motor 3 GENERAL EQ. TYPE Electric Motor Type ASCEN 4 SPECIFIC EQ. TYPE - nominal power: 2.5kW - nominal rpm: 1425 - nominal voltage: 3 80Vac - nominal frequency: 50Hz - insulation class: F 5 MANUFACTURER STRMIE-N2171/89 STANDARDS 6 MANUFACTURER/MODEL IME- Bucuresti / 20G -4U - 4F IM 2001 7 SIZE (mm) 503 x 250 x 300 8 WEIGHT(kg) 40 9 ELEVATION (G.C.)(mm) 100(est.) 10 SOURCE OF INF. Seismic Test 11 TEST ORGANISATION ICPE - LCCNE (nowadays EUROTEST SA) 12 TEST PLAN — 13 TEST REPORT B.I. 5365/22.11.1989 14 ENVIRONMENT Vibration ageing: frequency 50Hz QUALIFICATION acceleration... 1.5g (vertical direction) duration I h Functional ageing: the motors were coupled to an independent excitation generator voltage 380 V frequency....50Hz duration 40h at a frequency of 10 starting / h Thermic ageing: equivalent of a thermic life of about 30 years at 100°C Radiation ageing: equivalent of 30 years of life at 4x 107Rad 15 TEST DATE November 1989 16 INPUT DIRECTION triaxial, simultaneous independent inputs 17 TEST TYPE 1 DBE sine sweep frequency range: 1 - 44Hz critical damping: 2% 18 FUNCTION MONITORED During and after test: idle running current insulation resistance noise level vibration level After test: load running characteristics: - r\ -coscp -rpm 19 ACCEPT CRITERIA no abnormal voltage or spurious operation no structural damages noise level < 75dB 20 RESONANT SEARCH no resonant frequency was found within the frequency range of 1 -44 Hz 21 TEST MOUNTING floor on 2 plate shaped support 22 ANCHORAGE 4 bolts M20 x 200, nuts, washers and Grower washers 23 DAMAGE none 24 COMMENTS • RRS as required by STR MLE - N2171/89 • the TRS envelops the RRS shaped for a percentage of critical damping of 1% re aainoruiie tniazate •nsiime, cu STR-MIEt-N '2171- 89 rotor in. scurtcircuit, dest inate ac^ior•arii cchi- holor din centrals nno Fila 32 dia €5 imensiuni-forma (:oristi~uch\£ I!^i 3001

s i T —s — \ c I />— t (h. -] j I 0- 21 •j t

• \ .<• Dimensiuni -rnm Codul ^< N D F Hrrasei M D c T ' Af. AD R 1 f GA d i i nom. ol. r o i ML i_ nom. ol. u nom. tot.

11b - - iicf 12U 242 282 - 252 292 - -12E 160 160 200 3,5 163 160 19 •6 40 6 h9 21,5 M6 12F 262 302 12G 272 312 t KP 274 324 1^E 284 334 200 180 Q 225 4x12 3.5 1B3 170 » 50 .8 h9 27 14F 294 344 KG 304 354

315 375 •••• F 327 387 225 200 t Q 250 4x15 4 206 182 28 60 8 h9 3t M10 16G 340 400 16H 352 412 18E 354 414 j 366 426 250 225 |Q 280 4x15 4 226 200 28 60 8 h9 31 M10 i£G 379 439 394 454 ?CE. 393 473 408 488 280 250 315 6x15 4 255 220 38 k6 80 10 h9 M12 423 503 « 90H 443 523 '2E • 440 520 460 540 22 f 315 260 355 4 280 250 3S k6 80 10 h9 41 M12 J 480 560 ?H 500 580 503 613 25f 523 633 355 315 6x19 5 280 42 u 110 12 h9 45 M16 5C w 543 653 SH 563 673 )bE 566 676 586 696 400 355 450 5 312 48 110 14 ' h9 SU H16 8G" "" 606 716 611 741

In . .M;\ cu i—SS1 eohi- din

Codul :arcosGi A B|C 0 ' l4-jK,AB L jnom. J J^[~ GA H pom. ffoL n^7rKrfiNrT-~-J <^ I CSJ nom.

^00 -SLSLSi 225 ^25 M [250 5_60_ 580_ « m M12 613 x^> 1250 ftiJj100 MM isU _653l no

280 j _676_| 325 696 i ^I6_ k6 HO 14 u± H5 jHi6 [740

355_ 2801 M20

415 516 KM.. LJ : 55 60 I I [899j m6 1110 59 OS gf | I 1 n'T°H HN2o 160 &) J250(-8.5|

1355] 5 H086J ^ °PJi80|280(:f 560 J5O£ [45£ M20

f ^0.. f—-—-4200 600 740 ra701 I lH20j °|90| m6 wo] 124 n7oj H^hH~'h^ |66o|82O ifl££j lonf Inn! STR-MlEt-N 2171-85 P 23

Fig.i-Dimensiuni-fornm constructive IM 1001

M-M

Codul Dimensiuni- mm carcase) A B c H K AB AD HD L 1 F nom. E nom. GA d 11D 80 tot. nom. tol. 11E , 90 1^ 100 71 142

90 282 100" 50 80 10 160 145 2,5 m 19 40 302 6 h9 21.5 M6 312 324 334 180' 160 245 :24 50 344 8 h9 27 M8 354

200 185 2B 60

224 200 285 28 31 Motoare asincrone trifazate de ;0oasa tensiune, cu rotor in sourtcircuit, destinate ac^ionarii echi- : STR-MlEt.-N 2171-8? pamentelor din. oenbrale nuclearo-electrice Pila 30 din 6

T T" •~T •n Amortizare p>=1%

Amortizare J3 = 2%

Amortizare P> -5% r •H

10 20 30 A0 V 50 60 Hz a. DirecHe verticala / '>X

T' '1

I AmortizQre ft = 2% "t Amortizare P>=5%

' 4 A

10 20 . 30 A0 50 60 Hz b. Directie orizontala A-C T T" T 1 I I I I I I 11 1~1 1 1 ,Amortizare (b I Amorfizare fa = 2% Amortizare fb =5% __!. ^_; 1

fcO Hz t. Directie orizonfala B-0

Fig.9 Spectrele de raspuns pe tele trei directii principale.

Spectrete de raspuns smf impuse de Tendering Documents 79RN 34322-002(R)- ^lisJ Add. N-2-App.I si 79RN-3A612-001-Add. N^ 2-App. II-Seismic Requirements. EUROTEST S.A. FS13

1 FORM ID SDA 2 GENERIC CLASS Sensors 3 GENERAL EQ. TYPE ANNUBAR Flow-meter Probe 4 SPECIFIC EQ. TYPE - nominal diameter: Dn= 1500mm - total height: H = 1800mm - working pressure: PL= 105±30kPa - nominal flow: Qn= 84 24 im'Vh -working temperature: Ti = 5 to 50°C 5 MANUFACTURER STR 1747/89 STANDARDS 6 MANUFACTURER/MODEL 1TRD Pascani / SDP 01 NO IV 7 SIZE (mm) $1500x 1800 8 WElGHT(kg) 9 ELEVATION (G.C.)(mm) 1000(est. on support) 10 SOURCE OF INF. Seismic Test 11 TEST ORGANISATION ICPE - LCCNE (nowadays EUROTEST SA) 12 TEST PLAN — 13 TEST REPORT B.I. 5169/24.05.1989 14 ENVIRONMENT — QUALIFICATION 15 TEST DATE May 1989 16 INPUT DIRECTION triaxial 17 TEST TYPE Vibration: sine sweep frequency range: 10 - 55Hz 10 cycles at a sweep speed of 1 octave / min critical damping: 2% 4000 shocks - 96 shattering peak acceleration lOg pulse duration: 10 ms 18 FUNCTION MONITORED During and after test: functional checking of tightening 19 ACCEPT CRITERIA - no relative motions in bolted assembling; - no impacts of assembly components; - no separation of structural parts. After seismic test: - no changing of the tested assembly position and structural integrity - the functional accept criteria is the tightening. 20 RESONANT SEARCH no resonant frequency was found within the frequency range of 1 - 44 Hz " 21 TEST MOUNTING floor on 2 rigid support (see Appendix) 22 ANCHORAGE Support on table: 4 bolts M20 x 150, nuts, washers and Grower washers Specimen on support: 4 bolts M12 x 70, nuts, washers and Grower washers 23 DAMAGE none 24 COMMENTS • RRS as required by STR 1747 / 1989 • the TRS envelops the RRS Hc/Ze/Zn or •/'

ICPE - LCCNE Inceroars la SOISR

Axa veriicala. Intrare la aasat iapusa realizata

0.5 i 2 5 10 20 33 40 50HZ ITRD PASCAKI - SOKLA BEBITSTTRICA ft^K seria 002

7

L i ICPE - Incercare la

Axa longitudinals. Intrare la Rasa: p realizata

0.5 10 20 33 40 50HZ rnun* *rpTTurTnTAA * tun in An ICPE - Inoeroare la

Axa laterals. Intrare la masa

i 2 5 33 40 50HZ MNI — SCKDM CcBITnETRICA Ann

f/a. 5

L. f//} /?/-

ICPE - LCCNE Incercare la sexsn

Axa verticals. Intrare la Rasa: iftpusa reaiizata

0.5 1 . 2 6 10 20 33 40 50HZ ITRD PASCANI - SONDA DEBITUETRICA ANJJUBAR ssria 0G1 —

I CPE - Incercare la

Axa longitudinals Intrare la nasa:

0.5 1 2 5 20 33 40 50HZ ITRD PASCAHI - SOHDA DEBITKETRICA AKMUBAR seria 001 ICPE - LCCNE Incercare la seism

Axa laterala. Intrare la nasa: mpusa realizata

20 33 +0 50HZ ITRD PASCAHI - BOHDA DEBITMETRICA ANNUSAR EUROTEST S.A. FS14

1 FORM ID CILF 002 2 GENERIC CLASS Instrument Racks 3 GENERAL EQ. TYPE Illumination group with incandescent lamp 4 SPECIFIC EQ. TYPE nominal voltage: 220V nominal frequency: 50 Hz nominal power: 25 W source type: incandescent lamp lightning efficiency: 70% electric insulation class: I protection degree: IP 43 5 MANUFACTURER STRNO 66-85 STANDARDS STRNO 59-85 6 MANUFACTURER/MODEL ELBA Timisoara/ AEI lx25W 7 SIZE (mm) see Appendix 8 WElGHT(kg) 3.5 kg 9 ELEVATION (G.C.)(mm) — 10 SOURCE OF INF. Seismic Test 11 TEST ORGANISATION ICPE - LCCNE (nowadays EUROTEST SA) 12 TEST PLAN — 13 TEST REPORT Bl 79/ 14.02.1987 14 ENVIRONMENT — QUALIFICATION 15 TEST DATE Feb. 1987 16 INPUT DIRECTION monoaxial 17 TEST TYPE I DBE-OX -OY -OZ continuous sine 5 sine on each test frequency frequency range 1 - 33 Hz testing frequencies spaced at 1/2 octave critical damping: 4% 18 FUNCTION MONITORED During and after test: structural integrity spurious operation micro-interruptions 19 ACCEPT CRITERIA no micro-interruptions no spurious operation no structural damages 20 RESONANT SEARCH OX axis: 19.875 Hz; 21.65 Hz; OY axis: 20Hz; 22.27 Hz OZ axis: 22.125 Hz; 21.65 Hz 21 TEST MOUNTING haimcd ; 22 ANCHORAGE 4 chains 23 DAMAGE none 24 COMMENTS • RRS as required by STRNO 59-85 • the TRS envelops the RRS shaped for a percentage of critical damping of 4% IL-Ht LCCNE- CIS . . ' . Anexa.^..[Pc.g.$M. C0HPARAT1E INTRE SPCCTRUL DE RASPUNS CERUT'MS S! SPEC TRUL-DE PASPUNS DE hCERCARE' TRS

rbanr. ]„%'**[ , Ji^^cc^'i f^/rf/rar \Filfrnf j^^ ^r\^-ocfava Vmortizare .L L AEI 1-Zowm nr.tttx . re£err... t>.

v.tp

r •• . .- . . ^-. .-.4 •/;£

;ETUP I.H.F.-TERHOSTflT CU SO.HDfl DE CfiHERR G.924.21.31.04-OOIH-DfiTfi -01.07.91 1ERSUREHEHT: DURL SPECTRUH RVERRGIHG * . J [RIGGER: FREE RUM )ELfiV: CH.R-JB: .0.0ms * WERfiGIHG: EXP 100 OVERLRP: MRX '.; : REQ SPRH: lOOHz ••.AF:125KIHZ T = 8s". iT:7.81MS ••• )EHTER FREQ: ZOOM 60Hz . WEIGHTING: HHHHIHG •• . • CH.R: 20V 4 DC-DIRECT FILT:BOTH " lOOmV/UHIT CH. B = 20V 4 DC-DIRECT FILT'BOTH IOOBV/UHIT GEHERRTOR: DISRBLED • * • * * ] y- -i.3dB 40.OdB 80dB 55.000Hz .iO.COOHz + lOOHz LIH ijr 0? vH: 100

-

• •

... •'.- • ... ^-»j, .i.' [UP H9 I.H.F .-TERHOSTfiT CU SOHDR DE CfiHERfl G.924 .21.31.04.OOlN-DBTfl 27.06.91. . • 1SUSEHEHT' DUBL i5PECTRUH RVERRGIHG IGGER: FREE 1jUH;-

•RflGING* EKP ''lOfl' 'OVERLRP- HflX • iQ SPRH- IQOHz !l25 Hz T:8s :7.81ms ITER FREQ: L l -^

•. . . - . _ IGHTIIIG: HRKHING ' - • — -• • - • -

.ft: 20V + DC-DIRECT FILT=BOTH IOOBV/UHIT 20V DC-DIRECT FILT=BOTH IOOOV/UHIT rn

fj*. (

U Art H; FREQ"RESP K2 flhb KfilH V: -0.8dB 4C.0dB 80dB •X: 55.000H2 lO.OOOHz • IOOHZ LIB' §fia : 100 ' [ 3 all

SETUP U9 I.H.F.-TERilOSTfiT CU SOHDfi OE CfiHERfi G.924.21.31.04.OOlH-DfiTB 27.06.91 HERSUREHEHT-. DUfiL SPECTRUM fiVERfiGIHG • TRIGGER: FREE RUH • . • '• DELfiY: CH.fHB: 0;0as '• ••-' \:- •fiVERfiGIHG: EXP 100 . OVERLfiP: \m'\ - •FREQ'SPRH iOOHz - T*8$ CEIITEF: FREQ: ZOOH 60Hz KE1GHTIKG-- KfiHKiHG """"'•

PU ft: 20V DC-DIRECT FILT^BOTH JOOnV/U tn.o • • A A u T FILT^BOTH lOOaV/U f rtirnnmn. rn 100a

(J • i ; 1 : : i ICPE LCCNE i i • : : : i • Inc;ercare la seisn j j i i i e j Ana lateral a. ] Intrare la *asa: j 1 i ; i i realizata s 4 1 l_l I i f T j t i ! t i i I./-/' \ : : 5 i / / i t i c \ \ J / !| f! i ;,,„, ,l < i i— ' i : { 0.5 10 20 33 40 50HZ

• 1 t 1

ICPE SCCNE Incercare la selsn

Axa longitudinala. Intrare la inpusa realizata

0.5 10 20 33 40 50HZ

G i i ; ] t e ICPE SCCNE i j Inc:ercare la seisn i

6 I Axa vertic;ala. 1 [ Intrare 1;i nasat I i»pusa realizatc 4 L~~~~~ ; V

; ^v

\ 1 :— — i 0.5 1 2 10 20 33 40 50HZ IHf-tERMOSTAT CU SONDA »E CAHERA seriile 034.035.037 /1989