Retrofitting by Base Isolation of Existing Buildings in Armenia and in Romania and Comparative Analysis of Innovative Vs. Conventional Retrofitting

Total Page:16

File Type:pdf, Size:1020Kb

Retrofitting by Base Isolation of Existing Buildings in Armenia and in Romania and Comparative Analysis of Innovative Vs. Conventional Retrofitting COMPDYN 2011 III ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering M. Papadrakakis, M. Fragiadakis, V. Plevris (eds.) Corfu, Greece, 25–28 May 2011 RETROFITTING BY BASE ISOLATION OF EXISTING BUILDINGS IN ARMENIA AND IN ROMANIA AND COMPARATIVE ANALYSIS OF INNOVATIVE VS. CONVENTIONAL RETROFITTING Mikayel Melkumyan1*, Valentin Mihul2, Emma Gevorgyan3 1 Armenian Association for Earthquake Engineering (AAEE) 1st lane of Nansen str. 6, 0056, Yerevan, Armenia e-mail: [email protected] 2 MIHUL S.R.L. Stroici str. 8B, 700373 Iasi, Iasi county, Romania e-mail: [email protected] 3 Armenian Association for Earthquake Engineering (AAEE) 1st lane of Nansen str. 6, 0056, Yerevan, Armenia e-mail: [email protected] Keywords: Base Isolation, Innovative Retrofitting, Existing Building, Conventional Retrofit- ting, Comparative Analysis, Cost Effectiveness Abstract. In recent years seismic isolation technologies in Armenia were extensively applied in construction of new buildings, as well as in retrofitting of existing buildings. Three re- markable projects on retrofitting by base isolation are described in the paper. One of them is retrofitting of a 5-story stone apartment building. The operation was made without resettle- ment of the occupants. World practice provides no similar precedent in retrofitting of apart- ment buildings. The other project is retrofitting of the 60 years old non-engineered 3-story stone school building. This building has historical and architectural value. Unique operations which were carried out in order to install the isolation system within the basement of this building and to preserve its architectural appearance are described. Accumulated experience created a good basis for participation in the international competition announced by the Government of Romania for development of the design on retrofitting by base isolation of the 178 years old historical building of the Iasi City Hall. The structural concept, including the new approach on installation of seismic isolation rubber bearings in this building, is de- scribed and detailed results of the earthquake response analysis for two cases, i.e. when the building is base isolated and when it has a fixed base, are given. For all three buildings com- parative analyses of innovative vs. conventional retrofitting are carried out. Different meth- ods of conventional retrofitting are considered and their costs are compared with the cost of innovative retrofitting by base isolation. Mikayel Melkumyan, Valentin Mihul, Emma Gevorgyan 1 APPLICATION OF BASE ISOLATION FOR RETROFITTING OF BUILDINGS WITH STONE BEARING WALLS Isolation of structures from horizontal ground motions is gradually becoming a more com- mon method of providing protection from earthquake damage. By reducing the seismic forces transmitted, isolation protects the contents and secondary structural features as well as the main structure; the safety of occupants and passers-by is thus also enhanced. Moreover, it is practicable to design the isolation system so that the structure responds elastically to the de- sign level earthquake. Thus repair coast should be greatly reduced and continued serviceabil- ity of the structure assured [1]. The rehabilitation of existing structures by the insertion of isolators at foundation level has been carried out on historic buildings in California such as the Oakland City Hall, San Francisco City Hall [2, 3], Salt Lake City and County Building [4, 5]. For these, isolation may provide the only viable means that is not unduly intrusive and damaging for the appearance of the building. Together with that the retrofitting technique us- ing base isolation has great potential for rehabilitation of ordinary civil structures such as apartment blocks. The first retrofit of stone apartment building of series 1A-450 has been car- ried out in Armenia [6, 7]. 1.1 Retrofitting of the Existing Fife-Story Stone Apartment Building Buildings on typical design of series 1A-450 have been erected in all regions of Armenia. They have the plan dimensions 52x15 m, symmetrical about the center of the long side and the bearing walls with 45-50 cm of thickness located mainly in transverse direction. The hori- zontal stiffness in the longitudinal direction is provided partly by the R/C frames with strong beams and columns, made inside the body of walls, and by longitudinal walls at the edge parts of the buildings. The analysis of consequences of the 1988 Spitak earthquake has shown that the most vulnerable zones in these buildings are the edge parts where the direction of bearing walls had been changed. It is in these very zones that intensive plastic deformations resulting in failure of the buildings have been developed due to the weak connections between longitu- dinal and transverse walls. The developed structural concept aims at retrofitting an existing building by means of seismic isolators using simple working technology [8]. This is a unique pioneering seismic isolation project introduced for an existing 5-story stone building (Fig.1). a. b. Figure 1: General view of the retrofitted by base isolation existing 5-story stone apartment building (a) and a fragments of its isolation system (b) 2 Mikayel Melkumyan, Valentin Mihul, Emma Gevorgyan The idea is to supply this building with seismic isolation in the foundation by gradually cutting the isolators into the walls at the level of foundation upper edge by means of a two- stage system of R/C beams. Base isolation method for existing buildings with bearing walls that envisions placing of seismic isolators at the level of the foundation or the basement solves the problem as shown on Figure 2. According to the innovative technology developed by the first author of this paper (Patent of the Republic of Armenia #579), in the basement bearing walls openings with certain spacing are made to accommodate reinforcement frames of lower and upper pedestals with seismic isolators. Then reinforcement frames are placed between pedestals thus forming lower and upper continuous beams along all bearing walls of the build- ing. The parts of existing walls between seismic isolators are removed creating gaps and the building appears separated from its foundation and linked to it only by seismic isolators. It is very important that openings in walls are made so that two adjacent openings are not made simultaneously; parts of walls existing between seismic isolators should be cut off beginning from the middle of building plan. The above described operation was made without re-settlement of the dwellers. The world practice has had no similar precedent in retrofitting of apartment buildings. The project was implemented in 1995-1996, was financed by the World Bank and co financed by UNIDO. The high damping rubber bearings (HDRB) for this retrofit project were designed with sig- nificant help and support of the UK based Malaysian Rubber Producers’ Research Associa- tion (MRPRA), particularly of Dr. K.N.G. Fuller. To implement the project 60 HDRBs were used, 28 bearings have been manufactured in MRPRA and 32 in Malaysia by Min Rubber Products Sdn. Bhd. and Sime Engineering Rubber Products Sdn. Bhd. 1.1.1 Design of Isolation System High damping rubber bearings are a simple economical means of providing isolation. They have the low horizontal stiffness required to give a long vibration period (typically 2 s) to the structure when mounted on the bearings. Their vertical stiffness is high, thus minimizing any rocking of the structure during an earthquake. The damping needed to limit the displacement of the structure and reduce the response at the isolation frequency is incorporated into the rubber compound so that there are generally no needed auxiliary dissipation devices. The bearings can be designed to withstand safely the large horizontal displacements imposed dur- ing an earthquake. The service life of the bearings is expected to be several decades [9], and they should require no maintenance. There has been much emphasis on the suitability of base isolation for critically important structures such as hospitals and emergency centers. The pro- tection of both structure and contents, however, would be advantageous for civil structures such as apartment blocks. The isolators are located by upper and lower recesses provided by annular steel rings bolted to outer steel plates which are connected to the reinforcement in the upper continuous and lower foundation beams; the isolators themselves are not bolted to the structure. This method of connection helps to minimize the cost of the isolators themselves and simplifies their installation on site. Because the bearing is simply located in a recess, no tapped holes for bolted connections are needed in the end-plate. The side, top and bottom rubber cover layers ensure the steel plates are protected from corrosion. In the considered existing building the bearings were not be located in an enclosed, heated basement, but would be exposed to the outside environment. The severe winter weather at the site meant that particular attention had to be paid to the low temperature crystallization resistance of the rubber compound. The plan of foundation is given in Figure 3, along with the location of the HDRBs and the total static load on each. The range of the vertical loads on bearings is quite high so it was de- cided to have two types of bearing, but differing only in the shear modulus of the rubber. 3 Mikayel Melkumyan, Valentin Mihul, Emma Gevorgyan Figure 2: Stages of installation of seismic isolation system in the existing building with stone bearing walls One type (designated Hard) would support loads in the range 740-900 kN and the other (Soft) loads in the range 500-680 kN. This strategy would lead to a somewhat more uniform 4 Mikayel Melkumyan, Valentin Mihul, Emma Gevorgyan distribution of the horizontal seismic forces, and help ensure that the centre of stiffness of the isolation system is close to the projection of the centre of mass of the building on to the ground plan.
Recommended publications
  • Strengthening Moldova's Disaster Risk Management and Climate Resilience
    June 2020 STRENGTHENING MOLDOVA’S Public Disclosure Authorized DISASTER RISK MANAGEMENT AND CLIMATE RESILIENCE Facing Current Issues and Future Challenges Public Disclosure Authorized Public Disclosure Authorized Public Disclosure Authorized © 2020 International Bank for Reconstruction Rights and Permissions and Development / International Development Association or The material in this work is subject to copyright. The World Bank Because The World Bank encourages dissemination 1818 H Street NW of its knowledge, this work may be reproduced, in Washington DC 20433 whole or in part, for noncommercial purposes as Telephone: 202-473-1000 long as full attribution to this work is given. Internet: www.worldbank.org Any queries on rights and licenses, including subsidiary rights, should be addressed to the Office This work is a product of the staff of The World of the Publisher, The World Bank, 1818 H Street Bank with external contributions. The findings, NW, Washington, DC 20433, USA; fax: 202-522- interpretations, and conclusions expressed in this 2422; e-mail: [email protected]. work do not necessarily reflect the views of The World Bank, its Board of Executive Directors, or the Cover images: governments they represent. Gheorghe Popa / Shutterstock.com Serghei Starus / Shutterstock.com The World Bank does not guarantee the accuracy Shirmanov Aleksey / Shutterstock.com of the data included in this work. The boundaries, FrimuFilms / Shutterstock.com colors, denominations, and other information shown on any map in this work do not imply any judgment Inside images: on the part of The World Bank concerning the Bernd Zillich / Shutterstock.com legal status of any territory or the endorsement or acceptance of such boundaries.
    [Show full text]
  • Integrated Transnational Macroseismic Data Set for the Strongest Earthquakes of Vrancea (Romania)
    Tectonophysics 590 (2013) 1–23 Contents lists available at SciVerse ScienceDirect Tectonophysics journal homepage: www.elsevier.com/locate/tecto Review Article Integrated transnational macroseismic data set for the strongest earthquakes of Vrancea (Romania) Tatiana Kronrod a,⁎, Mircea Radulian b,1, Giuliano Panza c,d, Mihaela Popa b,2, Ivanka Paskaleva e,2, Slavica Radovanovich f,2, Katalin Gribovszki g,2, Ilie Sandu h,2, Lazo Pekevski i,2 a International Institute of Earthquake Prediction Theory and Mathematical Geophysics (IIEPT RAS), Profsoyuznaya str. 84/32, Moscow 117997, Russia b National Institute for Earth Physics, 12 Calugareni str., Magurele, 76900 Bucharest-Magurele, Romania c Dipartimento di Matematica e Geoscienze, Università di Trieste, Via Weiss 2, 34127 Trieste, Italy d The Abdus Salam International Centre for theoretical Physics, strada Costeria, 11, 34014 Trieste, Italy e Central Laboratory for Seismic Mechanics and Earthquake Engineering, (CLSMEE, BAS), “Acad.G.Bonchev” str., Block 3, 1113 Sofia, Bulgaria f Seismological Survey of Serbia, Tasmajdan park bb p.fah 16, 11216 Belgrade, Serbia g Geodetic and Geophysical Research Institute, Hungarian Academy of Sciences, Csatkai u. 6-8, Sopron H-9400, Hungary h Institute of Geology and Seismology, Academy of Science of Moldova, str. Academiei, 3, Chisinau, Republic of Moldova i Seismological Observatory, P.O. Box 422, 1000 Skopje, Macedonia article info abstract Article history: A unique macroseismic data set for the strongest earthquakes occurring since 1940 in the Vrancea region Received 29 January 2012 is constructed by a thorough review of all available sources. Inconsistencies and errors in the reported data Received in revised form 22 January 2013 and in their use are also analysed.
    [Show full text]
  • Intensity Seismic Hazard Map of Romania by Probabilistic and (Neo)Deterministic Approaches, Linear and Nonlinear Analyses*
    Romanian Reports in Physics, Vol. 63, No. 1, P. 226–239, 2011 EARTH PHYSICS INTENSITY SEISMIC HAZARD MAP OF ROMANIA BY PROBABILISTIC AND (NEO)DETERMINISTIC APPROACHES, LINEAR AND NONLINEAR ANALYSES* GHEORGHE MĂRMUREANU, CARMEN ORTANZA CIOFLAN, ALEXANDRU MĂRMUREANU National Institute for Earth Physics P.O.Box MG-2, RO-077125 Bucharest-Magurele, Romania, E-mail:[email protected] Received September 27, 2010 Abstract. The last zonation seismic map has areas where seismic intensities are under- evaluated (e.g. Dobrogea, Banat etc.), and other areas are over-evaluated. The fundamental unacceptable point of view is that this design code is in peak ground accelerations which generates a lot of drawbacks to civil structural designers and to insurance companies which are paying all damages and causalities in function of earthquake intensity. The mapping is carried out using probabilistic approach and a complex hybrid waveform modeling method which combines the modal summation technique with finite-difference one to describe the seismic waves propagation through an inelastic space from source to free field surface. The result is a new seismic map in intensities by using probabilistic and deterministic approaches, linear and nonlinear seismology and developing the concept of control earthquake to obtain the banana shape of the attenuations curves of the macroseismic intensity along the directions defined by azimuths. Key words: Seismic hazard, probabilistic analysis, (neo)deterministic approach, etalon earthquake, seismic intensity. 1. INTRODUCTION The strong seismic events originating from Vrancea area can generate the most destructive effects experienced in Romania, and may seriously affect high risk man-made structures such as nuclear power plants (Cernavoda, Kosloduj, etc.), chemical plants, large dams and pipelines located within a wide area from Central * Paper nr.581 presented at 14th European Conference on Earthquake Engineering and Engineering Seismology, Ohrid, August 30–September 3, 2010, Macedonia.
    [Show full text]
  • Long Term Earthquake Prediction in Vrancea Region , Romania , Based on a Time Predictable Model
    LONG TERM EARTHQUAΚE PREDICTION ΙΝ VRANCEA REGION,ROMANIA,BASED ΟΝ Α ΤΙΜΕ PREDICTABLE MODEL Panagiotopoulos,D.G. Geophysical Laboratory,Aristotle University of Thessaloniki,GR­ 54006 Thessaloniki,Macedonia,GREECE Α Β S Τ R Α C Τ Οη the basis of instrumental and historical information οη strong intermediate-deptll main shocks which occurred in the Vrancea region of the Romanian territory, four repeat times (five main shocks) have been determined. ΒΥ using these repeat tirnes, the following relation was obtained: 10gTt=0. 10M +0. 31Μ +a m1n ρ where Τ is the repeat time, measured in years, Μ is the magnitude of the preceding rnain shock, Μ is the maghitude of the srnallest earthquake considered and ,,~'.~ is a constant which corresponds to the source and equals to -1.45. Οη the basis of this relation the probability of occurrence of a new strong earthquake in Vrancea region during the next decades has been calculated. It was found that this probability,for the occurrence of a main shock with magnitude M~7.0, is less than 0.40 for the next two decades and more than 0.70 for the next three decades or so. ΜΑΚΡΟΠΡΟΘΕΣΜΗ ΠΡΟΓΝΩΣΗ ΣΕΙΣΜΏΝ ΣΤΗΝ ΠΕΡΙΟΧΗ VRANCEA ΤΗΣ ΡΟΥΜΑΝΙΑΣ ΒΑΣΙΣΜΕΝΗ ΣΤΟ ΜΟΝΤΕΛΟ ΠΡΟΓΝΩΣΗΣ ΤΟΥ ΧΡΟΝΟΥ ΤΩΝ ΙΣΧΥΡΩΝ ΣΕΙΣΜΏΝ παναγιωτόπουλος,Δ.Γ. Π Ε Ρ Ι Λ Η Ψ Η Ιστορικά και ενόργανα δεδομένα ιοχυρών ενδιαμέσου βάθους σεισμών στην περιοχή Vrancea της Ρουμανί.ας χρησημοποιήθηκαν για να δειχθεί ότι ο χρόνος ΤΙ (σε έτη) μεταξό δόο ισχυρών σειομών δίνεται από τη σχέση: LogT = 0.10M + 0.31Μ + a t min ρ όπου MjJI;n ε ί να ι το επ ι φανε ι ακό μέγε θος του μ ι κρότερου κόρ ι ου σε ι σμου που θεωροόμε, Μ το μέγε θος του κόρ ι ου σε ι σμοό που προηγήθηκε και "α" μια &ταθερά που αντιστοιχεί στη πηγή και υπολογίσθηκε ιση με -1.45.
    [Show full text]
  • Behavior of Dwellings During Strong Earthquakes in Romania
    th The 14 World Conference on Earthquake Engineering October 12-17, 2008, Beijing, China BEHAVIOR OF DWELLINGS DURING STRONG EARTHQUAKES IN ROMANIA 1 2 I. Vlad and M. Vlad 1 Professor, Director of the Romanian National Center for Earthquake Engineering and Vibrations, Technical University of Civil Engineering, Bucharest, Romania 2 Engineer, Savian Design Company, Bucharest, Romania Emails: [email protected], [email protected] ABSTRACT : The paper presents a short description of the seismotectonics and seismicity of Romania, together with the main features of the strong earthquakes that had affected its territory, in order to understand the behavior of different residential buildings from several parts of the country. The behavior of dwellings during the November 10, 1940 and March 4, 1977 earthquakes is briefly presented. Some other three seismic events occurred in Romania after 1977 (August 30/31, 1986, May 30 and 31, 1990). The frequent occurrence of strong earthquakes in Romania led to a situation in which an important part of the building stock was overloaded and/or damaged several times and, in the absence of appropriate rehabilitation works, it has become more vulnerable than initially. Brief information on the evolution of the seismic legislation and final remarks complete the paper. KEYWORDS: dwelling, damage, soft and weak story, earthquake, Bucharest, Romania 1.SEISMOTECTONICS AND SEISMICITY OF ROMANIA Romania is one of Europe's most seismically active regions, together with other Balkan and Mediterranean countries (Bulgaria, Turkey, Greece, former Yugoslavia and Italy). A short description of the seismotectonics and seismicity of Romania is as follows (Pomonis and others, 1990). Romania has a surface area of 237,500 km2.
    [Show full text]
  • Seismic Hazard, Vulnerability and Risk for Vrancea Events
    International Symposium on Strong Vrancea Earthquakes and Risk Mitigation Oct. 4-6, 2007, Bucharest, Romania SEISMIC HAZARD, VULNERABILITY AND RISK FOR VRANCEA EVENTS Dan Lungu 1, Cristian Arion 1, Alexandru Aldea 1, Radu Vacareanu 1 ABSTRACT The paper presents the probabilistic seismic hazard analysis used for constructing the actual seismic hazard map of Romania. The new edition of the code for design of earthquake-resistant buildings and structures in Romania P100 was just issued in 2006 and follows the format and contents of Eurocode 8. Based on the available data obtained from more than 400 boreholes and using the GIS techniques, significant soil parameters were mapped for the territory of city of Bucharest and will allow seismic microzonation of Bucharest to be used as a tool for urban planning and earthquake risk reduction. The paper also explains the synergy between national programs and international projects as: JICA Project “Seismic Risk Reduction for Building and Structures in Romania” (2002-2008), World Bank Hazard Risk Mitigation and Emergency Preparedness Project in Romania (2004-2009) - Component B: Earthquake Risk Reduction, RISK-UE Project “An advanced approach to earthquake risk scenarios with application to 7 European towns” (2001-2004) and European Project PROHITECH “Earthquake Protection of Historical Buildings by Reversible Mixed Technologies” (2004 -2008). INTRODUCTION With about 2 millions inhabitants and 110,000 buildings Bucharest can be ranked as the megacity having the highest seismic risk in Europe due to (i) soft soil condition in Bucharest characterized by long predominant period (1.4 ÷ 1.6s) of ground vibration during strong Vrancea earthquakes and (ii) high fragility of tall reinforced concrete buildings built in Bucharest before 1940 and even before the 1977 big Vrancea earthquake.
    [Show full text]
  • Experience Database of Romanian Facilities Subjected to the Last Three Vrancea Earthquakes
    XA9952878 Title: Experience Database of Romanian Facilities Subjected to the Last Three Vrancea Earthquakes Contributor: Stevenson & Associates Date: March 1995 STEVENSON & ASSOCIATES Faurei # 1, Bloc P11, Ap.80, Sector 1 Bucharest, Phone/Fax: (401) 211-3783 Registration no. J 40/27689/1993, Fiscal cod: 5042040 Account (lei): 4104085154538. Account ($): 4154085154538. Dacia Felix-Sa Bank, Sue. Bucuresti Research Report for the International Atomic Energy Agency Vienna, Austria Contract No. 8223/EN EXPERIENCE DATABASE OF ROMANIAN FACILITIES SUBJECTED TO THE LAST THREE VRANCEA EARTHQUAKES Parti Probabilisitic hazard analysis to the Vrancea earthquakes in Romania. by Dan Lungu1} and Ovidiu Coman2) with cooperation of: Alexandru Aldea !) Tiberiu Cornea ^ lolanda Craifaleanu 5) Traian Moldoveanu4) Mihaela Rizescu3) 1) Technical University of Civil Engineering, Bucharest 2) Stevenson & Associates, Bucharest Office 3) National Institute for Earth Physics, INFP 4) Institute for Geotechnical and Geophysical Studies, GEOTEC 5) lPCT-SA This page is intentionally left blank. Contents: 1. Introduction 2. The Vrancea source References 3. Probabilistic seismic hazard evaluation 3.1 Magnitude-recurrence relationship 3.2 Ground motion attenuation References 4. Site-dependent response spectra for design 4.1 Site dependent frequency content of the accelerograms 4.2 Bucharest narrow frequency band motions of long predominant period and design spectra for soft soil condition 4.3 Moldavia and Republic of Moldavia response spectra 4.4 Response spectra for motions recorded in Dobrogea References 5. Appendix 1: Characteristics of free-field accelerograms recorded in the last three Vrancea earthquakes by the seismic networks of INFP and GEOTEC 6. Acknowledgment This page is intentionally left blank. 1. INTRODUCTION The scope of this research project is to use the past seismic experience of similar components from power and industrial facilities to establish the generic seismic resistance of nuclear power plant safe shutdown equipment.
    [Show full text]
  • Improving the Structural Performance of Heritage Buildings. a Comprehensive Romanian Experience
    Missouri University of Science and Technology Scholars' Mine International Conference on Case Histories in (2013) - Seventh International Conference on Geotechnical Engineering Case Histories in Geotechnical Engineering 03 May 2013, 11:10 am - 11:40 am Improving the Structural Performance of Heritage Buildings. A Comprehensive Romanian Experience. Ion Vlad Technical University of Civil Engineering, Romania Follow this and additional works at: https://scholarsmine.mst.edu/icchge Part of the Geotechnical Engineering Commons Recommended Citation Vlad, Ion, "Improving the Structural Performance of Heritage Buildings. A Comprehensive Romanian Experience." (2013). International Conference on Case Histories in Geotechnical Engineering. 8. https://scholarsmine.mst.edu/icchge/7icchge/session14/8 This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License. This Article - Conference proceedings is brought to you for free and open access by Scholars' Mine. It has been accepted for inclusion in International Conference on Case Histories in Geotechnical Engineering by an authorized administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact [email protected]. IMPROVING THE STRUCTURAL PERFORMANCE OF HERITAGE BUILDINGS. A COMPREHENSIVE ROMANIAN EXPERIENCE. Ion Vlad Technical University of Civil Engineering Bucharest, 124 Lacul Tei, 020396, Romania ABSTRACT The paper is devoted to historical masonry buildings’ protection against the destructive influence of earthquakes. Experimental and analytical investigations were performed to verify an original methodology that was developed for improving the structural performance of such a building. The seismic retrofitting of the cultural heritage requires compliance with the severe restrictions of the Romanian legislation related to the preservation of the original artistic and structural features.
    [Show full text]
  • D 03.01 Vol 1 Seismic Hazard Assessment-Pilot Implementations
    Pilot Implementation of Seismic Hazard Assessment at Regional and Local Scales Deliverable No.: D.03.01, Vol. 1 GA3. Earthquake, Landslide and Flood Hazard Assessment: Implementation at Regional and Local scales, Activities A.3.3 & A.3.6 OVERALL RESPONSIBLE for GA.3: Democritus University of Thrace (P.1) RESPONSIBLE for A.3.3 & A.3.6: P2 (EPPO –ITSAK) INVOLVED PARTNERS: ALL Project Details Programme Black Sea JOP Priority and Measure Priority 2 (Sharing resources and competencies for environmental protection and conservation), Measure 2.1. (Strengthening the joint knowledge and information base needed to address common challenges in the environmental protection of river and maritime systems) Objective Development of a Scientific Network A Scientific Network for Earthquake, Project Title Landslide and Flood Hazard Prevention Project Acronym SCInet NatHaz Contract No MIS-ETC 2614 Lead Partner TEI OF KENTRIKI MAKEDONIA, GREECE Total Budget 700.000,00 Euro (€) Time Frame Start Date – End Date 01/05/2013 – 30/11/2015 Book Captain: K. PAPATHEODOROU (TEI KENTRIKI MAKEDONIA) Contributing Authors: Deliverable-No. D.03.01 – Vol 1 Final version Issue: I.01 Date: 04 February 2016 Page: 2 of 222 Document Release Sheet Book captain: K. PAPATHEODOROU (TEI KENTRIKIS Sign Date MAKEDONIAS) 04.02.2016 Approval K. PAPATHEODOROU (TEI KENTRIKIS Sign Date MAKEDONIAS) 04.02.2016 Approval ATTILA ANSAL (KOERI/BOGAZICI Sign Date UNIVERSI) UNIVERSITY) 04.02.2016 Approval N. KLIMIS (DEMOCRITUS UNIVERSITY Sign Date of THRAKI) 04.02.2016 Approval B. MARGARIS (EPPO/ITSAK) Sign Date 04.02.2016 Approval V. NENOV (“ASSEN ZLATAROV” Sign Date UNIVERSITY) 04.02.2016 Approval L.
    [Show full text]
  • Romanian Seismology – Historical, Scientific and Human Landmarks
    In memory of past seismologist generations which contributed at Romanian science progress ROMANIAN SEISMOLOGY – HISTORICAL, SCIENTIFIC AND HUMAN LANDMARKS FLORIN RĂDULESCU National Institute for Earth Physics Bucharest-Măgurele Séismologie roumaine – repères historiques, scientifiques et humains. L’auteur a essayé de reconstituer l’évolution de la séismologie roumaine depuis le début (fin du XIXe siècle) jusqu’à nos jours. On présente les contributions des personnalités de marque dans le domaine: Ştefan Hepites, Mathei M. Drăghiceanu, Gheorghe Demetrescu, Ion Atanasiu, Gheorghe Petrescu, Liviu Constantinescu, Ion Cornea, Cornelius Radu et d’autres. On mentionne des éléments liés au developpement des appareils utilisés, les résultats des études des tremblements de terre, de la séismicité dans la croûte et dans le manteau supérieur sur le territoire roumain, ainsi que les résultats des études de microzonation et de séismologie. Key words: seismicity, seismology, earthquake, seismic focus, active seismic area. Remarks on damages and human victims produced in Romania were mentioned in the medieval chronicles of the XVIIIth century of Grigore Ureche and Ion Neculce in Moldavia and Radu Popescu and Chesarie Daponte in Wallachia. Also, in Transylvania such observations appear in Ostermayer and Thomas Tartler chronicles from Braşov, or Hannes Hutter work from Mediaş, paper of Andreas Oltard and György Cserei of Aita Mare and the book of Jacob Schnitzler from Sibiu (Cernovodeanu, Binder, 1993). So, we read from these documents about the Vrancea
    [Show full text]
  • Full Page Photo
    C O N T E N T S Preface 4 Part I. Seminar “Methodology of complex researches” T. Chelidze, N. Zhukova, T. Matcharashvili Local seismic activity in Georgia dynamically triggered of by the great 2011 Japan earthquake 5 T. Matcharashvili, T. Chelidze, Z. Javakhishvili, N. Jorjiashvili, N. Zhukova, D. Tepnadze a Variation in the scaling characteristics of ambient noise at the increased local seismic activity 15 E. Alparslan, S. ønan, Ö..Sarkaya Processing Russan and European Earth ObservatIons for Earthquake Precursors Studes (pre-earthquakes) and TUBITAK MRC’s Role In the Project 36 V. Ediger, S. Ergintav Investigation of possible active faults in Istanbul land area and development of landslide determination and monitoring methodologies in Istanbul metropolitan area by multidiscipline researches 42 M. Ergin SISMOKUL - School Seismology 50 N. Kapanadze, G. Melikadze, Z. Machaidze, S. Kimotidze, K Bedianishvili Evolution of Methodology Multi-parametrical Observation on the Territory of Georgia 54 G. Kobzev, G. Melikadze, T. Jimsheladze New method of hydrodynamical data analyse 65 1 M. Chamati, P. Nenovski, M. Vellante, U.Villante, K. Schwingenscuh, M. Boudjada, V. Wesztergom Application of DFA method to magnetic field data 72 C. Tsabaris, D. L. Patiris, G. Eleftheriou, A. Prospathopoulos Marine Radioactivity measurements using in-situ HCMR installations 80 D. l. Patiris, C. Tsabaris, K. Ioannides, K. Stamoulis, K. Blekas Track image analysis code TRIAC II: A tool for fast and reliable counting of tracks recorded by SSNTD APPLICATION for spatial extensive radon surveys 90 A. Gregoriþ, B. Zmazek, J. Vaupotiþ. Methods for long-term radon time-series evaluation 100 N. Kilifarska Statistical methods for analysis of climatic time series and factors controlling their variability 111 Part II.
    [Show full text]
  • Working Material
    INIS-XA-197 XA9952729 WORKING MATERIAL CO-ORDINATED RESEARCH PROGRAMME ON BENCHMARK STUDY FOR THE SEISMIC ANALYSIS AND TESTING OF WWER-TYPE NUCLEAR POWER PLANTS VOLUME 5A EXPERIENCE DATA Reproduced by the IAEA Vienna, Austria, 1996 /? NOTE The material in this document has been supplied by the authors and has not been edited by the IAEA. The views expressed remain the responsibility of the named authors and do not necessarily reflect those of the govemment(s) of the designating Member State(s). In particular, neither the IAEA nor any other organization or body sponsoring this meeting can be held responsible for any material reproduced in this document 30-45 DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document. Title: Experience database of Romanian facilities subjected to the last three Vrancea earthquakes Contributor: O. Coman and J.D. Stevenson Date: November 1995 PREFACE The Co-ordinated Research Programme on the Benchmark Study for Seismic Analysis and Testing of WWER-Type NPPs was initiated subsequent to the request from representatives of Member States at the Technical Committee Meeting on Seismic Safety Issues Relating to Existing NPPs held in Tokyo, August 1991. The conclusions of this meeting called for the harmonization of methods and criteria used in Member States in issues related to seismic safety. With this objective in mind a Consultants' Meeting was convened in April 1992 to produce a working document for a CRP. The meeting was attended by twenty specialists coming from Eastern Europe, Western Europe, USA as well as Japan.
    [Show full text]