Seed Fate and Density of Soil Seedbanks of Four Acacia Species In

Total Page:16

File Type:pdf, Size:1020Kb

Seed Fate and Density of Soil Seedbanks of Four Acacia Species In Seed fate and density of soil seed banks of four Acacia species in the Kruger National Park, South Africa Samanta Adele Stelli A thesis submitted to the Faculty of Science, University of the Witwatersrand, Johannesburg, in fulfillment of the requirements for the degree of Masters of Science. Johannesburg 2011 DECLARATION I declare that this thesis is my own, unaided work, unless specifically acknowledged in the text. It has not been submitted in any form for another degree or diploma award at any other university or institution of tertiary education. This thesis is being submitted for the Degree of Masters of Science at the University of the Witwatersrand, Johannesburg. Supervisor: Professor E.T.F. Witkowski University of the Witwatersrand, Johannesburg, South Africa. Signed: Date: 07 October 2011 xxi ABSTRACT Observations of the changes in woody plant density in the Kruger National Park (KNP) over 58 years have shown an increase in large woody plant density on granite substrates, which is attributed to fire and herbivore density. Woody plants persist in areas with frequent fires, herbivory and drought by resprouting or protecting seeds in the ground. Soil seed banks, which are stores of seeds below ground or in leaf litter, provide 'insurance' for trees and allow populations to persist in unfavourable environments. No comprehensive studies have been conducted on soil seed bank ecology of Acacia species in the Kruger National Park, a research gap which this study aimed to fill. The spatial distribution and density of in situ soil seed banks for four Acacia species, A. grandicornuta, A. nilotica, A. senegal and A. tortilis was assessed in the Skukuza land system of the KNP, South Africa. In situ soil seed banks were quantified for eight mature trees per species during 2005/2006. Greenhouse and field seed burial trials were carried out for one year and 16 months respectively, between 2005 and 2007, to investigate the persistence of Acacia seeds over an extended period of time. Post-dispersal seed predation of Acacia seeds was investigated during July 2006 in six demarcated grids within 15 km of Skukuza. Overall soil seed bank density differed significantly among species, being highest for A. tortilis (19.5 ± 6.4 seeds m-2), followed by A. grandicornuta (12.1 ± 6.9 seeds m-2), A. nilotica (4.9 ±1.8 seeds m-2) and lowest for A. senegal (0.6 seeds ± 0.4 seeds m-2). Generally, seed bank density decreased with depth in the soil and distance from the centre of the tree canopy. Seed bank density increased significantly with a decrease in soil compaction for A. senegal only, while it was not related to over-storey canopy shading or herbaceous biomass for any of the species. No significant relationship was found between seed bank density and tree characteristics such as stem diameter, bark thickness or tree canopy area for any of the species. Viability of seeds from the seed bank decreased between species as follows: A. tortilis (77% of 142 seeds), A. nilotica (61% of 39 seeds), A. grandicornuta (58% of 87 seeds), and A. senegal (0% of 4 seeds). For all species with viable seeds, viability decreased with distance from the centre of the tree canopy. Bruchid beetle predation (assessed on 100 newly produced seeds) was low for all four species. Fifty seeds each of A. grandicornuta, A. senegal and A. tortilis and 100 A. nilotica seeds were destroyed by fire during the field seed burial trial, of which four hundred seeds/species were used. Of the remaining seeds, 15% of A. senegal, 19% of A. grandicornuta, 34% of A. nilotica and 66% of A. tortilis remained intact after 16 months xxi in the field. Of these, 65% of A. tortilis, 27% of A. nilotica, 5% of A. grandicornuta and no A. senegal seeds were still viable. The percentage of remaining intact, viable seeds was highest under tree canopy cover and buried for A. tortilis (86%), A. nilotica (39%) and A. grandicornuta (6%), but the micro-site placement of seeds had a significant effect on viability for A. nilotica only (d.f. = l; χ2 = 7.5; P = 0.006). In the greenhouse seed burial trial (150 seeds/species/treatment), one percent of the total seed lot germinated, which was 2.9% of A. grandicornuta, 0.7% of A. senegal and 0.2% of both A. nilotica and A. tortilis. A. tortilis had the highest percentage of remaining intact, viable seeds (92.2%), followed by A. nilotica (58.3%), A. grandicornuta (57.6%) and A. senegal (0%). The number of remaining intact, viable seeds was highest when watered with the average rainfall (327 seeds), followed by the highest (314 seeds) and lowest rainfall (296 seeds). There was no association between rainfall treatments and the number of remaining intact, viable seeds for any of the species, except for A. grandicornuta where the number of remaining intact, viable seeds increased significantly with the average rainfall. Across six grids in the Skukuza land system, A. grandicornuta was the most dominant woody plant of six study species, followed by Dichrostachys cinerea, A. tortilis, A. nilotica, A. senegal and A. nigrescens. Woody plant density in grids varied between 226 plants ha-1 (Grid 3) to 1618 plants ha-1 (Grid 5), with a mean density of 862 ± 195 plants ha-1. Overall, woody plant species diversity was low (Shannon Wiener Index, 1.8 ± 2.8; Evenness Index, 0.7 ± 0.02; Simpson's Reciprocal Index, 4.5 ± 0.6). The dung of nine species of large herbivore was recorded across all six grids. Large herbivores favoured seeds of indehiscent (55 A. tortilis seeds and 11 A. nilotica seeds) over dehiscent pods (1 A. grandicornuta seed). Only 9% (five A. tortilis seeds and one A. grandicornuta seed) of the 67 seeds extracted from dung germinated after a six-week germination trial. Less than half the remaining ungerminated A. nilotica seeds (46%) and A. tortilis seeds (40%) tested viable. There was no correlation between the number of termitaria recorded and the number of Acacia trees growing on them (r = 0.07). Termite mounds occupied 0.0009 ± 0.0003 ha per grid matrix (0.8%). Only four rodent species were recorded across all six grids, Mastomys coucha (multimammate mouse), Rhabdomys pumilio (striped mouse), Aethomys chrysophilus (red veld rat) and Tatera leucogaster (highveld gerbil). Rodent species diversity was low (Shannon Wiener Index, 0.6 ± 0.2; Evenness Index, 0.6 ± 0.2; Simpson's Reciprocal Index, 1.9 ± 0.3). In the field cafeteria trial there was a significant difference in the percentage of seeds removed between seed species (P < 0.05; F = 2.8; d.f. = 3, 236). There was a xxi significant difference in the percentage of seeds removed from trays placed under vegetation cover compared with trays placed in the open (P = 0.034). This study suggests that A. grandicornuta, A. nilotica and A. tortilis seeds form short-term persistent seed banks, while A. senegal seeds are transient and do not form seed banks. Seeds of several woody plants were ingested by large herbivores and selected by rodents. The relevance of soil seed banks to regeneration of Acacia trees needs to be evaluated by investigating whether these species rely more on seed production or resprouting for individual recruitment into tree populations. Once this issue is clarified the effect of certain factors on seed fate and consequently, recruitment of individuals into plant populations, can be more clearly understood. This will assist in managing and understanding these potentially encroaching species in the Kruger National Park, South Africa. KEYWORDS: in situ soil seed banks, persistence, germination, post-dispersal seed predation. ABBREVIATIONS: KNP (Kruger National Park), NPNR (Nylsvley Provincial Nature Reserve), CSF (Corey Shape Factor), GI (Germination Index), PCQ (Point-Centred Quarter), GUD (Giving-Up Density), GPS (Global Positioning System), SE (Standard Error). xxi DEDICATION I would like to dedicate this dissertation to my supervisor, my parents, my sister and my partner for all their patience, support and advice. Also to all my friends who assisted me in completing my field work. xxi ACKNOWLEDGMENTS I would like to acknowledge my supervisor, Prof. Ed Witkowski, for all his support, advice, generosity and patience during my years as an MSc student. His openness, willingness to help and great sense of humour made it all that much easier to get through. My great appreciation goes to both Prof. Neville Pillay and Prof. David Mycock at the University of the Witwatersrand for their advice and assistance during my study. I would like to thank Dr. Holger Eckhardt for his role as my Kruger National Park supervisor and both Guin and Nick Zambatis at Scientific Services at Kruger for their knowledge contribution and assistance with certain aspects of my project. My heartfelt thanks goes to Dr Anouska Kinahan for giving me the opportunity to assist her in and use data from her post-graduate research project, as well as for her time in editing the fourth chapter of my draft thesis. Many thanks to Brad Wilson for his assistance in the field and his advice and sense of humour, which kept me going in the long hours of seed bank sampling! I would also like to thank Dr. Chantal Helm for her temperature data from the Wits Greenhouse. My wholehearted thanks goes to all the Kruger game guards and field assistants who spent many sweltering hours assisting me with fieldwork and keeping me safe in the bush, specifically Velly, Sam and Chris. The South African National Parks Fellowship (funded by the Andrew Mellon Foundation) in Plant Ecology is thanked profoundly for its generous bursary awarded for achievement of this study, as well the South African National Research Foundation for the bursary (NRF 2069152) and the University of the Witwatersrand for the Postgraduate Merit Award.
Recommended publications
  • Appendix 1 Vernacular Names
    Appendix 1 Vernacular Names The vernacular names listed below have been collected from the literature. Few have phonetic spellings. Spelling is not helped by the difficulties of transcribing unwritten languages into European syllables and Roman script. Some languages have several names for the same species. Further complications arise from the various dialects and corruptions within a language, and use of names borrowed from other languages. Where the people are bilingual the person recording the name may fail to check which language it comes from. For example, in northern Sahel where Arabic is the lingua franca, the recorded names, supposedly Arabic, include a number from local languages. Sometimes the same name may be used for several species. For example, kiri is the Susu name for both Adansonia digitata and Drypetes afzelii. There is nothing unusual about such complications. For example, Grigson (1955) cites 52 English synonyms for the common dandelion (Taraxacum officinale) in the British Isles, and also mentions several examples of the same vernacular name applying to different species. Even Theophrastus in c. 300 BC complained that there were three plants called strykhnos, which were edible, soporific or hallucinogenic (Hort 1916). Languages and history are linked and it is hoped that understanding how lan- guages spread will lead to the discovery of the historical origins of some of the vernacular names for the baobab. The classification followed here is that of Gordon (2005) updated and edited by Blench (2005, personal communication). Alternative family names are shown in square brackets, dialects in parenthesis. Superscript Arabic numbers refer to references to the vernacular names; Roman numbers refer to further information in Section 4.
    [Show full text]
  • SABONET Report No 18
    ii Quick Guide This book is divided into two sections: the first part provides descriptions of some common trees and shrubs of Botswana, and the second is the complete checklist. The scientific names of the families, genera, and species are arranged alphabetically. Vernacular names are also arranged alphabetically, starting with Setswana and followed by English. Setswana names are separated by a semi-colon from English names. A glossary at the end of the book defines botanical terms used in the text. Species that are listed in the Red Data List for Botswana are indicated by an ® preceding the name. The letters N, SW, and SE indicate the distribution of the species within Botswana according to the Flora zambesiaca geographical regions. Flora zambesiaca regions used in the checklist. Administrative District FZ geographical region Central District SE & N Chobe District N Ghanzi District SW Kgalagadi District SW Kgatleng District SE Kweneng District SW & SE Ngamiland District N North East District N South East District SE Southern District SW & SE N CHOBE DISTRICT NGAMILAND DISTRICT ZIMBABWE NAMIBIA NORTH EAST DISTRICT CENTRAL DISTRICT GHANZI DISTRICT KWENENG DISTRICT KGATLENG KGALAGADI DISTRICT DISTRICT SOUTHERN SOUTH EAST DISTRICT DISTRICT SOUTH AFRICA 0 Kilometres 400 i ii Trees of Botswana: names and distribution Moffat P. Setshogo & Fanie Venter iii Recommended citation format SETSHOGO, M.P. & VENTER, F. 2003. Trees of Botswana: names and distribution. Southern African Botanical Diversity Network Report No. 18. Pretoria. Produced by University of Botswana Herbarium Private Bag UB00704 Gaborone Tel: (267) 355 2602 Fax: (267) 318 5097 E-mail: [email protected] Published by Southern African Botanical Diversity Network (SABONET), c/o National Botanical Institute, Private Bag X101, 0001 Pretoria and University of Botswana Herbarium, Private Bag UB00704, Gaborone.
    [Show full text]
  • Patterns of Forest Use and Its Influence on Degraded Dry Forests: a Case
    TECHNISCHE UNIVERSITÄT MÜNCHEN Department für Ökosystem-und Landschaftsmanagement Lehrstuhl für Waldbau und Forsteinrichtung Patterns of forest use and its influence on degraded dry forests: A case study in Tamil Nadu, South India Joachim Schmerbeck Vollständiger Abdruck der von dem Promotionsausschuss der Studienfakultät für Forstwissenschaft und Ressourcenmanagement an der Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt der Technischen Universität München zur Erlangung des akademischen Grades eines Doktors der Forstwissenschaft (Dr. rer. silv.) genehmigten Dissertation Freising-Weihenstephan, November 2003 Gedruckt mit der Unterstützung von Dr. Berthold Schmerbeck Erstkorrektor: Prof. Dr. R. Mosandl Zweitkorrektor: PD Dr. K. Seeland Tag der mündlichen Prüfung: 18.12.02 Copyright Shaker Verlag 2003 Printed in Germany ISBN 3-8322-2214-6 ISSN 1615-1674 „IN THE FIRST PLACE WE HAVE TO FIND SOLUTIONS FOR MAN; NOT FOR THE FOREST” Anonymus For my parents Acknowledgement As I started this study I was not aware of the dimensions of the work I had chosen to undertake. To make it a success, was not just a matter of raising funds and going to India. Struggle in the German and Indian administrative jungle, slow progress of simple things, stressful fieldwork, broken computers, dealing with new software as well as deep valleys of frustration and loneliness were my companions. Without the assistance of so many good people, I would not have been able to conduct this study. To rank these persons according to their importance is impossible. So many would hold the first position. Therefore I wish to mention them in the order, in which they became involved in my project.
    [Show full text]
  • An Annotated Checklist of the Vascular Flora of Guinea-Bissau (West Africa)
    BLUMEA 53: 1– 222 Published on 29 May 2008 http://dx.doi.org/10.3767/000651908X608179 AN ANNOTATED CHECKLIST OF THE VASCULAR FLORA OF GUINEA-BISSAU (WEST AFRICA) L. CATARINO, E.S. MARTINS, M.F. PINTO BASTO & M.A. DINIZ IICT – Instituto de Investigação Científica Tropical, Trav. Conde da Ribeira 9, 1300-142 Lisboa, Portugal; e-mail: [email protected] CONTENTS Summary . 1 Résumé . 1 Resumo . 2 Introduction – The country’s main features . 2 Vegetation . 5 Botanic collections in Guinea-Bissau . 9 Material and Methods . 13 Checklist of the vascular flora of Guinea-Bissau . 19 Pteridophyta . 19 Magnoliophyta (Angiospermae) . 21 Magnoliopsida (Dicotyledones) . 21 Liliopsida (Monocotyledones) . 119 References . 151 Taxonomic Index . 191 SUMMARY A Checklist of Guinea-Bissau’s vascular flora is presented, based on the inventory of herbarium material and on recent collections. In addition to the name, we cite for each taxon the basionym and synonyms, the life form and habitat, as well as the chorology, Raunkiaer’s biological type, phenology and vernacular names if known. 1507 specific and infra-specific taxa were recorded, of which 1459 are autochthonous, belonging to 696 genera. This shows a higher diversity than the 1000 species estimated so far. In the autoch- thonous flora there are 22 species of Pteridophyta from 14 families; 1041 taxa of Dicotyledons from 107 families, and 396 taxa of Monocotyledons belonging to 33 families. Three taxa are probably endemic to the country. Key words: flora, phytogeography, ecology, chorology, vernacular names, Guinea-Bissau. RÉSUMÉ Ayant pour base l’inventaire des matériaux d’herbier et les récoltes récentes, une Checklist est présenté sur la flore vasculaire de la Guinée-Bissau.
    [Show full text]
  • Assessment of Plant Diversity and Utilization of Wild Medicinal Species by Households Proximate to Arabuko Sokoke Forest in Kilifi County of Kenya
    Assessment of Plant Diversity and Utilization of Wild Medicinal Species by Households Proximate to Arabuko Sokoke Forest in Kilifi County of Kenya BY Ahmed, Bakari Maunguja (B.Sc. Range Management, University of Nairobi) A thesis submitted to the Board of Postgraduate Studies in partial fulfilment of the requirements for the degree of Master of Science in Range Management in the Department of Land Resource Management and Agricultural Technology, Faculty of Agriculture, University of Nairobi © August, 2016 DECLARATION THIS THESIS IS MY ORIGINAL WORK AND HAS NOT BEEN PRESENTED FOR THE AWARD OF A DEGREE IN ANY OTHER UNIVERSITY. SIGNATURE: ……………………………………DATE: ……………………………………….. MAUNGUJA BAKARI AHMED Department of Land Resource and Agricultural Technology, Faculty of Agriculture, University of Nairobi. THIS THESIS HAS BEEN SUBMITTED FOR EXAMINATION WITH OUR APPROVAL AS THE SUPERVISORS: SIGNATURE: …………………………………... DATE: ……………………………………….. DR. OLIVER V. WASONGA Department of Land Resource and Agricultural Technology, Faculty of Agriculture, University of Nairobi. SIGNATURE: ………………………………….. DATE: ……………………………………….. DR. OSCAR K. KOECH Department of Land Resource and Agricultural Technology, Faculty of Agriculture, University of Nairobi. SIGNATURE: ………………………………….. DATE: ………………………………………. DR. MELCKZEDECK K. OSORE Kenya Marine and Fisheries Research Institute, Mombasa, Kenya. i DEDICATION To my parents, Abubakar Maunguja and Rehema Wandaa; who are my source of inspiration and encouragement throughout my life, may God bestow His Mercy on you. ii ACKNOWLEDGEMENT First and above all, I thank God for His blessings and for giving me the strength to proceed successfully with my studies. I would like to express my gratitude to my supervisors Dr. Oliver V. Wasonga, Dr. Oscar K. Koech and Dr. Melckzedeck K. Osore for their continuous guidance throughout my study.
    [Show full text]
  • Dichrostachys Spicata
    Dichrostachys spicata LC Taxonomic Authority: (F.Muell.) Domin Global Assessment Regional Assessment Region: Global Endemic to region Synonyms Common Names Acacia shirleyana Domin CHINESE LANTERN English (Primary) Dichrostachys muelle Benth. PIED PIPER BUSH English Neptunia spicata F.Muell. PRICKLY BUSH English Upper Level Taxonomy Kingdom: PLANTAE Phylum: TRACHEOPHYTA Class: MAGNOLIOPSIDA Order: FABALES Family: LEGUMINOSAE Lower Level Taxonomy Rank: Infra- rank name: Plant Hybrid Subpopulation: Authority: Differs from D. cinerea in numerous respects but most conspicuously in the number of pairs of pinnae and the size of the leaflets. General Information Distribution Dichrostachya spicata is endemic to Australia, distributed in the states of Western Australia and Queensland and also in the Northern Territory. It is frequent and widespread in northern Australia, from near Mount Stuart Stn through the Northern Territory (mainly between 16°S and 20°S) with a few scattered occurrences in northern Queensland as far east as Chillagoe. Range Size Elevation Biogeographic Realm Area of Occupancy: Upper limit: 560 Afrotropical Extent of Occurrence: Lower limit: Antarctic Map Status: Depth Australasian Upper limit: Neotropical Lower limit: Oceanian Depth Zones Palearctic Shallow photic Bathyl Hadal Indomalayan Photic Abyssal Nearctic Population Total population size is not known but a recent survey suggests six individuals from a population in the Northern Territory (MSBP 2010). It has also been reported as frequent. Total Population Size Minimum Population Size: Maximum Population Size: Habitat and Ecology Shrub or tree 1–3 m tall that grows along streams and bordering swamps in sand, sandy loam, loam, clay and stony clay soils. In the Kimberley Region cattle readily eat he dry pods and leaves.
    [Show full text]
  • Preliminary Qualitative Analysis of Phytoconstituents of Dichrostachys Cinerea L
    Journal of Pharmacognosy and Phytochemistry 2016; 5(3): 86-88 E-ISSN: 2278-4136 P-ISSN: 2349-8234 JPP 2016; 5(3): 86-88 Preliminary Qualitative Analysis of Phytoconstituents Received: 12-03-20116 Accepted: 14-04-2016 of Dichrostachys cinerea L. A Lavanya Research Scholar Dept. Of A Lavanya, V Ambikapathy Botany & Microbiology, A.V.V.M Sri Pushpam College Abstract (Autonomous), Poondi-613503. Medicinal plants have bioactive compounds which are used for curing of various human diseases like and also play an important role in healing. The aim of the present study was to investigate the presence of phytochemicals in the medicinal plant Dichrostachys cinerea L. The bark is used to treat dysentry, tooth- V Ambikapathy aches and elephantiasis. The leaves are laxative and used to treat gonorrhoea and piles. It is also a remedy Assistant Professor Dept. Of for stomach problems and can remove poison from snake-bites. Phytochemical screening reveals the Botany & Microbiology, A.V.V.M Sri Pushpam College presence of terpenoids, coumarins, flavonoids, and alkaloids. It is expected that the important (Autonomous), Poondi-613503. phytochemical properties have been recognized by our study in the indigenous medicinal plant Dichrostachys cinerea. Keywords: Bioactive compounds, phytochemicals, Dichrostachys cinerea Introduction Medicinal plants constitute the main source of new pharmaceuticals and healthcare products. Dichrostachys cinerea is a thorny, fast-growing woody bush or treelet which invades fields, wasteland, road sides and other disturbed areas. Originally from Africa, it has been introduced to the West Indies during the 19th century. Description of the plant: Bush or treelet 1.5-6m high.
    [Show full text]
  • Download/Book of Abstracts.Pdf Dhileepan, K., Taylor, D
    Received: 6 August 2018 Accepted: 22 November 2018 DOI: 10.1111/aab.12499 RESEARCH ARTICLE Implications of the changing phylogenetic relationships of Acacia s.l. on the biological control of Vachellia nilotica ssp. indica in Australia Dianne B.J. Taylor | Kunjithapatham Dhileepan Department of Agriculture and Fisheries, Biosecurity Queensland, Brisbane, Plant relationships have implications for many fields including weed biological control. The use of Queensland, Australia DNA sequencing and new tree building algorithms since the late 1980s and early 1990s have Correspondence revolutionised plant classification and has resulted in many changes to previously accepted taxo- Dianne B. J. Taylor, Department of Agriculture nomic relationships. It is critical that biological control researchers stay abreast of changes to plant and Fisheries, Biosecurity Queensland, Ecosciences Precinct, GPO Box 267, Brisbane, phylogenies. One of the largest plant genera, Acacia, has undergone great change over the past QLD 4001, Australia. 20 years and these changes have ramifications for weed biological control projects in a number of Email: [email protected] countries. Vachellia nilotica (prickly acacia) is a major weed in Australia, originating from the Indian Funding information subcontinent and Asia, and it has been a target for biological control since 1980. Once a member Meat and Livestock Australia of Acacia, a large (>1,000 spp.) and iconic group in Australia, prickly acacia is now part of the genus Vachellia. Current knowledge suggests that Vachellia is more closely related to mimosoid genera than it is to Acacia s.s. There has also been a recent reclassification of legume subfamilies with sub- family Mimosoideae now part of subfamily Caesalpinioideae, and four new subfamilies.
    [Show full text]
  • A Survey of Anther Glands in the Mimosoid Legume Tribes Parkieae and Mimoseae1
    American Journal of Botany 84(3): 285±297. 1997. A SURVEY OF ANTHER GLANDS IN THE MIMOSOID LEGUME TRIBES PARKIEAE AND MIMOSEAE1 MELISSA LUCKOW2 AND JAMES GRIMES L. H. Bailey Hortorium, Cornell University, 462 Mann Library, Ithaca, New York 14853; and New York Botanical Garden, Bronx, New York 14058 In a broad survey of anther glands in the mimosoid legume tribes Mimoseae and Parkieae, representatives from 30 genera with anther glands were studied using scanning electron microscopy. Four kinds of anther glands could be distinguished. The Piptadenia-type gland, found in all but four of the genera surveyed, is usually spherical to ellipsoid in shape and often borne on a stipe. The cells making up the gland vary in size among species and are often sculptured. Six different kinds of sculpturing can be recognized: smooth, reticulate, striate, rugulate, scabrate, and papillate. The Gagnebina-type gland is the least specialized, consisting of a simple extension of the connective with irregularly projecting cells. The Prosopis africana- type gland is borne ventrally between the thecae, the connective extending hump-like over the apex of the anther. The Pentaclethra-type gland, found only in the genus Pentaclethra, is distinguished by a median dorsal furrow and a ventral conical structure similar to a food body or osmophore. Anatomical sections revealed two different subtypes within the Piptadenia-type gland. Some glands are composed of a homogeneous matrix of isodiametric cells, whereas others have two layers: a peripheral layer of large radially elongated cells, and a central sphere of smaller isodiametric cells and large air spaces. Some characters of anther glands have clear taxonomic signi®cance, and more detailed surveys within genera will undoubtedly provide additional taxonomic markers.
    [Show full text]
  • Dichrostachys Cinerea Global Invasive Species Database (GISD)
    FULL ACCOUNT FOR: Dichrostachys cinerea Dichrostachys cinerea System: Terrestrial Kingdom Phylum Class Order Family Plantae Magnoliophyta Magnoliopsida Fabales Fabaceae Common name sickle bush (English, South Africa), Kalahari-Weihnachtsbaum (German), el marabu (English, Cuba) Synonym Similar species Summary Dichrostachys cinerea is a thorny, fast-growing woody bush or treelet which invades fields, wasteland, road sides and other disturbed areas. Originaly from from Africa, it has been introduced to the West Indies during the 19th century. Adult plants live a very long time, producing seeds which survive for a long time in the soil almost all year long. D. cinerea causes losses in agricultural production and its management involves frequent, heavy and expensive work. view this species on IUCN Red List Species Description Bush or treelet 1.5-6m high. Branches bearing short, thorn-ended twigs. Leaves bipinnate, 3-10cm long, with 5-10 pairs of pinnae, each one with 10-30 pairs of folioles 3-6mm long. Spikes 3-8cm long, upper florets sulphur-yellox or yellow, the basal ones neutral, with long lilac-pink staminodes. Pods crowded, glomerate, ondulate and contorted, dark brown. Seeds obovate, dark brown, 4mm long. Lifecycle Stages Seeds survive long in the soil. The growth of the plants is very fast. Young plants may produce seeds. Adult plants can survive a very long time, producing seeds almost all year long. Reproduction Seeds, root cuttings, root suckering. Each plant produces a large number of seeds per year, almost all year long. General Impacts Causes losses in agricultural production. Management involves frequent, heavy and expensive work. Global Invasive Species Database (GISD) 2021.
    [Show full text]
  • Ethnobotanical Study of Plants Used in the Management of HIV/AIDS-Related Diseases in Livingstone, Southern Province, Zambia
    Hindawi Publishing Corporation Evidence-Based Complementary and Alternative Medicine Volume 2016, Article ID 4238625, 14 pages http://dx.doi.org/10.1155/2016/4238625 Research Article Ethnobotanical Study of Plants Used in the Management of HIV/AIDS-Related Diseases in Livingstone, Southern Province, Zambia Kazhila C. Chinsembu Faculty of Science, Department of Biological Sciences, University of Namibia, Private Bag 13301, Windhoek, Namibia Correspondence should be addressed to Kazhila C. Chinsembu; [email protected] Received 25 September 2015; Accepted 11 February 2016 Academic Editor: Rahmatullah Qureshi Copyright © 2016 Kazhila C. Chinsembu. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Faced with critical shortages of staff, long queues, and stigma at public health facilities in Livingstone, Zambia, persons who suffer from HIV/AIDS-related diseases use medicinal plants to manage skin infections, diarrhoea, sexually transmitted infections, tuberculosis, cough, malaria, and oral infections. In all, 94 medicinal plant species were used to manage HIV/AIDS-related diseases. Most remedies are prepared from plants of various families such as Combretaceae, Euphorbiaceae, Fabaceae, and Lamiaceae. More than two-thirds of the plants (mostly leaves and roots) are utilized to treat two or more diseases related to HIV infection. Eighteen plants, namely, Achyranthes aspera L., Lannea
    [Show full text]
  • Fruits and Seeds of Genera in the Subfamily Mimosoideae (Fabaceae)
    2 8 1:4 1 . n'~ll I• 0 I~ ~ ~ = -- m I~ 2.2 I~ 113.6 I~ lIo:'1J1 :E I~ 1.1 .........::~ -- 111111.8 111111.25 111111.4 111111.6 United States :.:e;'. ~ ~ .Department of \ Agriculture , Fruits and Seeds " Agricultural Research Service of G,enerain the Technical Bulletin Number 1681 Subfamily Mimosoideae (Fabaceae) ,,;,: ';. ~.. , .;.~;' ," .. ~. , ... .} ~ - l' I'<~'.: . ~ •-iT t .. , Abstract Gunn, Charles R. 1984. Fruits and seeds of genera in An updated explanation and discussion of fruit and the subfamily Mimosoideae (Fabaceae). U.S. Depart­ seed characters precede the generic descriptions. The in­ ment of Agriculture, Technical Bulletin No. 1681, 194 pp. formation on fruit characters extends and corrects that presently in the literature. Nearly all descriptive data on Technical identification of fruits and seds of the eco­ seeds are new. nomically important legume plant family (Fabaceae or , Leguminosae) is often required of U.S. Department of The lens, a seed topographic feature adjacent to the hi­ Agriculture personnel and other agricultural scienti.sts. lum, previously thought to be diagnostic of the faboid This bulletin provides relevant information on the legumes, occurs also among the mimosoids. The pres­ mimosoid legumes. New data presented also increase ence or absence of endosperm; previously misunder­ our knowledge of relationships of concern in germplasm stood, is documented; numerous r•• imosoid legumes search. have endosperm. An unrecorded character relating to the positional relationship of the cotyledons and the Data are derived from extensive sampling of the species embryonic axis has been found useful in the generic of all 64 genera of mimosoid leg!lmes. Three keys pro­ identification ·of seeds.
    [Show full text]