Safety Data Sheet

Total Page:16

File Type:pdf, Size:1020Kb

Safety Data Sheet SAFETY DATA SHEET Creation Date 09-Feb-2010 Revision Date 18-Jan-2018 Revision Number 3 1. Identification Product Name Benzine (Petroleum Naphtha) Cat No. : B264-20 Synonyms Naphtha; Naphtha solvent; Petroleum distillates Recommended Use Laboratory chemicals. Uses advised against Not for food, drug, pesticide or biocidal product use Details of the supplier of the safety data sheet Company Fisher Scientific One Reagent Lane Fair Lawn, NJ 07410 Tel: (201) 796-7100 Emergency Telephone Number CHEMTRECÒ, Inside the USA: 800-424-9300 CHEMTRECÒ, Outside the USA: 001-703-527-3887 2. Hazard(s) identification Classification This chemical is considered hazardous by the 2012 OSHA Hazard Communication Standard (29 CFR 1910.1200) Flammable liquids Category 2 Germ Cell Mutagenicity Category 1B Carcinogenicity Category 1B Specific target organ toxicity (single exposure) Category 3 Target Organs - Central nervous system (CNS). Aspiration Toxicity Category 1 Label Elements Signal Word Danger Hazard Statements Highly flammable liquid and vapor May be fatal if swallowed and enters airways May cause drowsiness or dizziness May cause genetic defects May cause cancer ______________________________________________________________________________________________ Page 1 / 11 Benzine (Petroleum Naphtha) Revision Date 18-Jan-2018 ______________________________________________________________________________________________ Precautionary Statements Prevention Obtain special instructions before use Do not handle until all safety precautions have been read and understood Use personal protective equipment as required Avoid breathing dust/fume/gas/mist/vapors/spray Use only outdoors or in a well-ventilated area Keep away from heat/sparks/open flames/hot surfaces. - No smoking Keep container tightly closed Ground/bond container and receiving equipment Use explosion-proof electrical/ventilating/lighting/equipment Use only non-sparking tools Take precautionary measures against static discharge Keep cool Response IF exposed or concerned: Get medical attention/advice Inhalation IF INHALED: Remove victim to fresh air and keep at rest in a position comfortable for breathing Skin IF ON SKIN (or hair): Take off immediately all contaminated clothing. Rinse skin with water/shower Ingestion IF SWALLOWED: Immediately call a POISON CENTER or doctor/physician Do NOT induce vomiting Fire In case of fire: Use CO2, dry chemical, or foam for extinction Storage Store locked up Store in a well-ventilated place. Keep container tightly closed Disposal Dispose of contents/container to an approved waste disposal plant Hazards not otherwise classified (HNOC) Harmful to aquatic life with long lasting effects WARNING. Cancer - https://www.p65warnings.ca.gov/. 3. Composition/Information on Ingredients Component CAS-No Weight % Solvent naphtha (petroleum), light aliphatic 64742-89-8 100 Octane 111-65-9 1.5 n-Heptane 142-82-5 1.16 Xylenes (o-, m-, p- isomers) 1330-20-7 0.13 m-Xylene 108-38-3 0.05 Ethylbenzene 100-41-4 0.03 Benzene 71-43-2 0.015 Toluene 108-88-3 0.0118 4. First-aid measures Eye Contact Rinse immediately with plenty of water, also under the eyelids, for at least 15 minutes. Get ______________________________________________________________________________________________ Page 2 / 11 Benzine (Petroleum Naphtha) Revision Date 18-Jan-2018 ______________________________________________________________________________________________ medical attention. Skin Contact Wash off immediately with plenty of water for at least 15 minutes. Get medical attention immediately if symptoms occur. Inhalation Move to fresh air. If breathing is difficult, give oxygen. Do not use mouth-to-mouth method if victim ingested or inhaled the substance; give artificial respiration with the aid of a pocket mask equipped with a one-way valve or other proper respiratory medical device. Get medical attention immediately if symptoms occur. Ingestion Do not induce vomiting. Call a physician or Poison Control Centre immediately. Most important symptoms and Breathing difficulties. Inhalation of high vapor concentrations may cause symptoms like effects headache, dizziness, tiredness, nausea and vomiting Notes to Physician Treat symptomatically 5. Fire-fighting measures Suitable Extinguishing Media CO 2, dry chemical, dry sand, alcohol-resistant foam. Unsuitable Extinguishing Media This material is lighter than water and insoluble in water. The fire could easily be spread by the use of water in an area where the water cannot be contained Flash Point 14 - 18 °C / 57.2 - 64.4 °F Method - No information available Autoignition Temperature 232 °C / 449.6 °F Explosion Limits Upper 7.0 vol % Lower 0.9 vol % Sensitivity to Mechanical Impact No information available Sensitivity to Static Discharge No information available Specific Hazards Arising from the Chemical Flammable. Risk of ignition. Vapors may form explosive mixtures with air. Vapors may travel to source of ignition and flash back. Containers may explode when heated. Hazardous Combustion Products Carbon monoxide (CO) Carbon dioxide (CO2) Hydrocarbons Aldehydes Protective Equipment and Precautions for Firefighters As in any fire, wear self-contained breathing apparatus pressure-demand, MSHA/NIOSH (approved or equivalent) and full protective gear. Thermal decomposition can lead to release of irritating gases and vapors. NFPA Health Flammability Instability Physical hazards 1 3 0 N/A 6. Accidental release measures Personal Precautions Use personal protective equipment. Remove all sources of ignition. Take precautionary measures against static discharges. Avoid contact with skin, eyes and clothing. Environmental Precautions See Section 12 for additional ecological information. Avoid release to the environment. Collect spillage. Methods for Containment and Clean Remove all sources of ignition. Soak up with inert absorbent material. Take precautionary Up measures against static discharges. Keep in suitable, closed containers for disposal. 7. Handling and storage Handling Use only under a chemical fume hood. Use explosion-proof equipment. Keep away from ______________________________________________________________________________________________ Page 3 / 11 Benzine (Petroleum Naphtha) Revision Date 18-Jan-2018 ______________________________________________________________________________________________ open flames, hot surfaces and sources of ignition. Wear personal protective equipment. Do not breathe vapors or spray mist. Do not get in eyes, on skin, or on clothing. Take precautionary measures against static discharges. Storage Keep containers tightly closed in a dry, cool and well-ventilated place. Keep away from heat and sources of ignition. Flammables area. 8. Exposure controls / personal protection Exposure Guidelines Component ACGIH TLV OSHA PEL NIOSH IDLH Mexico OEL (TWA) Octane TWA: 300 ppm (Vacated) TWA: 300 ppm IDLH: 1000 ppm TWA: 300 ppm (Vacated) TWA: 1450 mg/m3 TWA: 75 ppm TWA: 1450 mg/m3 (Vacated) STEL: 375 ppm TWA: 350 mg/m3 STEL: 375 ppm (Vacated) STEL: 1800 Ceiling: 385 ppm STEL: 1800 mg/m3 mg/m3 Ceiling: 1800 mg/m3 TWA: 500 ppm TWA: 2350 mg/m3 n-Heptane TWA: 400 ppm (Vacated) TWA: 400 ppm IDLH: 750 ppm TWA: 400 ppm STEL: 500 ppm (Vacated) TWA: 1600 mg/m3 TWA: 85 ppm TWA: 1600 mg/m3 (Vacated) STEL: 500 ppm TWA: 350 mg/m3 STEL: 500 ppm (Vacated) STEL: 2000 Ceiling: 440 ppm STEL: 2000 mg/m3 mg/m3 Ceiling: 1800 mg/m3 TWA: 500 ppm TWA: 2000 mg/m3 Xylenes (o-, m-, p- isomers) TWA: 100 ppm (Vacated) TWA: 100 ppm TWA: 100 ppm STEL: 150 ppm (Vacated) TWA: 435 mg/m3 TWA: 435 mg/m3 (Vacated) STEL: 150 ppm STEL: 150 ppm (Vacated) STEL: 655 mg/m3 STEL: 655 mg/m3 TWA: 100 ppm TWA: 435 mg/m3 m-Xylene TWA: 100 ppm IDLH: 900 ppm TWA: 100 ppm STEL: 150 ppm TWA: 100 ppm TWA: 435 mg/m3 TWA: 435 mg/m3 STEL: 150 ppm STEL: 150 ppm STEL: 655 mg/m3 STEL: 655 mg/m3 Ethylbenzene TWA: 20 ppm (Vacated) TWA: 100 ppm IDLH: 800 ppm TWA: 100 ppm (Vacated) TWA: 435 mg/m3 TWA: 100 ppm TWA: 435 mg/m3 (Vacated) STEL: 125 ppm TWA: 435 mg/m3 STEL: 125 ppm (Vacated) STEL: 545 mg/m3 STEL: 125 ppm STEL: 545 mg/m3 TWA: 100 ppm STEL: 545 mg/m3 TWA: 435 mg/m3 Benzene TWA: 0.5 ppm (Vacated) TWA: 10 ppm IDLH: 500 ppm TWA: 1 ppm STEL: 2.5 ppm Ceiling: 25 ppm TWA: 0.1 ppm TWA: 3.2 mg/m3 Skin (Vacated) STEL: 50 ppm STEL: 1 ppm STEL: 5 ppm (Vacated) Ceiling: 25 ppm STEL: 16 mg/m3 TWA: 10 ppm TWA: 1 ppm STEL: 5 ppm Toluene TWA: 20 ppm (Vacated) TWA: 100 ppm IDLH: 500 ppm TWA: 50 ppm (Vacated) TWA: 375 mg/m3 TWA: 100 ppm TWA: 188 mg/m3 Ceiling: 300 ppm TWA: 375 mg/m3 (Vacated) STEL: 150 ppm STEL: 150 ppm (Vacated) STEL: 560 mg/m3 STEL: 560 mg/m3 TWA: 200 ppm Legend ACGIH - American Conference of Governmental Industrial Hygienists OSHA - Occupational Safety and Health Administration NIOSH IDLH: The National Institute for Occupational Safety and Health Immediately Dangerous to Life or Health Engineering Measures Use only under a chemical fume hood. Use explosion-proof ______________________________________________________________________________________________ Page 4 / 11 Benzine (Petroleum Naphtha) Revision Date 18-Jan-2018 ______________________________________________________________________________________________ electrical/ventilating/lighting/equipment. Ensure that eyewash stations and safety showers are close to the workstation location. Personal Protective Equipment Eye/face Protection Wear appropriate protective eyeglasses or chemical safety goggles as described by OSHA's eye and face protection regulations in 29 CFR 1910.133 or European Standard EN166. Skin and body protection Wear
Recommended publications
  • (HDS) Unit for Petroleum Naphtha at 3500 Barrels Per Day
    Available online at www.worldscientificnews.com WSN 9 (2015) 88-100 EISSN 2392-2192 Design Parameters for a Hydro desulfurization (HDS) Unit for Petroleum Naphtha at 3500 Barrels per Day Debajyoti Bose University of Petroleum & Energy Studies, College of Engineering Studies, P.O. Bidholi via- Prem Nagar, Dehradun 248007, India E-mail address: [email protected] ABSTRACT The present work reviews the setting up of a hydrodesulphurization unit for petroleum naphtha. Estimating all the properties of the given petroleum fraction including its density, viscosity and other parameters. The process flow sheet which gives the idea of necessary equipment to be installed, then performing all material and energy balance calculations along with chemical and mechanical design for the entire setup taking into account every instrument considered. The purpose of this review paper takes involves an industrial process, a catalytic chemical process widely used to remove sulfur (S) from naphtha. Keywords: hydro desulfurization, naphtha, petroleum, sulfur Relevance to Design Practice - The purpose of removing the sulfur is to reduce the sulfur dioxide emissions that result from using those fuels in automotive vehicles, aircraft, railroad locomotives, gas or oil burning power plants, residential and industrial furnaces, and other forms of fuel combustion. World Scientific News 9 (2015) 88-100 1. INTRODUCTION Hydrodesulphurization (HDS) is a catalytic chemical process widely used to remove sulfur (S) from natural gas and from refined petroleum products such as gasoline or petrol, jet fuel, kerosene, diesel fuel, and fuel oils. The purpose of removing the sulfur is to reduce the sulfur dioxide (SO2) emissions that result from various combustion practices.
    [Show full text]
  • Material Safety Data Sheet
    MATERIAL NAME: Heavy Straight MSDS # EPL-13 Run Naphtha MATERIAL SAFETY DATA SHEET SECTION 1 X PRODUCT AND COMPANY IDENTIFICATION FOR EMERGENCY SOURCE INFORMATION CONTACT: Explorer Pipeline Company ¾ (918) 493 - 5100 6846 South Canton ¾ CHEMTREC: (800) 424-9300 (24 hour contact) P.O. Box 2650 ¾ CANUTEC: (613) 996-6666 Tulsa, Oklahoma 74101 ¾ SETIQ: 91-800-00214 TRADE NAMES/SYNONYMS: Penex CHEMICAL FAMILY: Mixture of C - 4 EPL Code: 10 Raffinate C6, Hydrocarbons This material safety data sheet represents the composite characteristics and properties of fungible petroleum hydrocarbons and other related substances transported by explorer pipeline company. The information presented was compiled from one or more product shipper sources and is intended to provide health and safety guidance for these fungible products. Individual shipper and manufacturer MSDSs are available at Explorer Pipeline Company’s, Tulsa, Oklahoma, offices. SECTION 2 ; HAZARDS IDENTIFICATION )))))))))))))))))EMERGENCY OVERVIEW))))))))))))))))) Flammable Liquid!! ¾ Clear liquid with petroleum odor; ¾ Harmful or fatal if swallowed, inhaled or absorbed through skin. ¾ May cause CNS depression. ¾ Can produce skin irritation upon prolonged or repeated contact. ¾ Keep away from heat, sparks and open flame; ¾ Wash thoroughly after handling; ¾ Contains petroleum distillates! If swallowed, do not induce vomiting since aspiration into the lungs will cause chemical pneumonia; ¾ Avoid breathing vapors or mist; ¾ Use only with adequate ventilation; and ¾ Obtain prompt medical attention. Keep Out of Reach of Children! )))))))))))))))))))))))))))))))))))))))))))))) SECTION 3 W COMPOSITION/INFORMATION OF INGREDIENTS INGREDIENT CAS NUMBER PERCENTAGE (%) Mixture of C4-C6 hydrocarbons 64741-70-4 100% ACUTE SUMMARY OF ACUTE HAZARDS: Harmful or fatal if swallowed, inhaled or absorbed through the skin. May cause CNS depression.
    [Show full text]
  • Platinum Catalysts in Petroleum Refining
    Platinum Catalysts in Petroleum Refining By S. W. Curry, B.s., M.B.A. Universal Oil Products Company, Des Plnines, Illinois Rejbriiiirig processes using platinunz catalysts have beconie oj- major importance in petroleum rejining during the past seven years. The?. enable the octane rating of naphthas to be greatly increased, am1 cue more economicnl than any other rejiningyrocess for the production of high octane gasoline. In this article the general nature of the processes is described and the Platforniing process is considwed iti iiiore rletnil. Platinum in any form was virtually unused years. The end is by no means in sight, in the petroleum industry until 1949. Then since the trend in octane number requirement, Universal Oil Products Company introduced particularly for automobiles, has continued it on an unprecedented scale as the active to creep upward year by year. catalytic agent in its Platforming process for To have advocated the use of 400 ounces catalytically upgrading low octane petroleum of a noble metal, selling at about $70 per naphthas to high quality products. ounce at that time, in a catalyst charge for a Prior to the installation of the first UOP single small commercial refinery unit, would Platforming unit, platinum was found chiefly doubtless have been branded prior to 1949 in laboratories in the oil industry. In sharp as the impractical idea of a dreamer. UOP's contrast with 1949, platinum today may be announcement surprised many in the oil regarded as a most essential item in the pro- industry for that matter. duction of high octane gasoline for automo- Even after the first Platformer had been biles and piston-engine aircraft.
    [Show full text]
  • Sds – Safety Data Sheet
    Effective Date: 08/29/16 Replaces Revision: 07/01/13, 06/29/09 NON-EMERGENCY TELEPHONE 24-HOUR CHEMTREC EMERGENCY TELEPHONE 610-866-4225 800-424-9300 SDS – SAFETY DATA SHEET 1. Identification Product Identifier: PETROLEUM ETHER Synonyms: Ligroin, VM&P Naphtha, Benzin, Petroleum Naphtha, Naphtha ASTM, Petroleum Spirits, Petroleum Ether of varying boiling point ranges from 20 to 75C (68 to 167F) Chemical Formula: Not applicable Recommended Use of the Chemical and Restrictions On Use: Laboratory Reagent Manufacturer / Supplier: Puritan Products; 2290 Avenue A, Bethlehem, PA 18017 Phone: 610-866-4225 Emergency Phone Number: 24-Hour Chemtrec Emergency Telephone 800-424-9300 2. Hazard(s) Identification Classification of the Substance or Mixture: Flammable liquids (Category 2) Germ cell mutagenicity (Category 1B) Carcinogenicity (Category 1A) Aspiration hazard (Category 1) Risk Phrases: R11: Highly flammable. R20: Harmful by inhalation. R22: Harmful if swallowed. R45: May cause cancer. R65: Harmful: may cause lung damage if swallowed. Label Elements: Trade Name: PETROLEUM ETHER Signal Word: Danger Hazard Statements: H225: Highly flammable liquid and vapor. H304: May be fatal if swallowed and enters airways. H340: May cause genetic defects. H350: May cause cancer. PETROLEUM ETHER Page 1 of 6 Precautionary Statements: P201: Obtain special instructions before use. P210: Keep away from heat / sparks / open flames / hot surfaces. No smoking. P301 + P310: IF SWALLOWED: Immediately call a POISON CENTER or doctor / physician. P308 + P313: If exposed or concerned: Get medical advice / attention. P331: DO NOT induce vomiting. 3. Composition / Information on Ingredients CAS Number: 8032-32-4 EC Number: 232-453-7 Index Number: 649-263-00-9 Molecular Weight: 87-114 g/mol Chemical Ingredient CAS Number EC Number Percent Hazardous Characterization Naphtha, VM & P 8032-32-4 232-453-7 90 - 100% Yes Substance 4.
    [Show full text]
  • Marathon Petroleum Naphtha Straight Run Light
    SAFETY DATA SHEET SDS ID NO.: 0133MAR020 Revision Date 05/21/2015 1. IDENTIFICATION Product Name: Marathon Petroleum Naphtha, Straight Run Light Synonym: BTX Naphtha; Light Splitter Overhead Naphtha; Light Straight Run Naphtha; Naphtha Light Straight Run Product Code: 0133MAR020 Chemical Family: Aliphatic Naphtha Recommended Use: Feedstock. Restrictions on Use: All others. Manufacturer, Importer, or Responsible Party Name and Address: MARATHON PETROLEUM COMPANY LP 539 South Main Street Findlay, OH 45840 SDS information: 1-419-421-3070 Emergency Telephone: 1-877-627-5463 2. HAZARD IDENTIFICATION Classification OSHA Regulatory Status This chemical is considered hazardous by the 2012 OSHA Hazard Communication Standard (29 CFR 1910.1200) Flammable liquids Category 1 Skin corrosion/irritation Category 2 Germ cell mutagenicity Category 1B Carcinogenicity Category 1A Reproductive toxicity Category 2 Specific target organ toxicity (single exposure) Category 3 Specific target organ toxicity (repeated exposure) Category 1 Category 2 Aspiration toxicity Category 1 Acute aquatic toxicity Category 2 Chronic aquatic toxicity Category 2 Hazards Not Otherwise Classified (HNOC) Static accumulating flammable liquid Label elements EMERGENCY OVERVIEW SDS ID NO.: 0133MAR020 Product name: Marathon Petroleum Naphtha, Straight Run Light Page 1 of 19 0133MAR020 Marathon Petroleum Naphtha, Straight Revision Date 05/21/2015 Run Light _____________________________________________________________________________________________ Danger EXTREMELY FLAMMABLE LIQUID AND
    [Show full text]
  • Rhea Van Gijzel
    Eindhoven University of Technology MASTER Energy analysis and plant design for ethylene production from naphtha and natural gas van Gijzel, R.A. Award date: 2017 Link to publication Disclaimer This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required minimum study period may vary in duration. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain Process Engineering Multiphase Reactors group (SMR) Department of Chemical Engineering and Chemistry Den Dolech 2, 5612 AZ Eindhoven P.O. Box 513, 5600 MB Eindhoven The Netherlands www.tue.nl Graduation committee Prof. Dr. Ir. M. van Sint Annaland Dr. F. Gallucci Dr. V. Spallina (supervisor) Energy analysis and plant design for ethylene production Dr. T. Noël (external member) I. Campos Velarde from naphtha and natural gas Author R.A. van Gijzel MSc.
    [Show full text]
  • Steam Cracking: Chemical Engineering
    Steam Cracking: Kinetics and Feed Characterisation João Pedro Vilhena de Freitas Moreira Thesis to obtain the Master of Science Degree in Chemical Engineering Supervisors: Professor Doctor Henrique Aníbal Santos de Matos Doctor Štepánˇ Špatenka Examination Committee Chairperson: Professor Doctor Carlos Manuel Faria de Barros Henriques Supervisor: Professor Doctor Henrique Aníbal Santos de Matos Member of the Committee: Specialist Engineer André Alexandre Bravo Ferreira Vilelas November 2015 ii The roots of education are bitter, but the fruit is sweet. – Aristotle All I am I owe to my mother. – George Washington iii iv Acknowledgments To begin with, my deepest thanks to Professor Carla Pinheiro, Professor Henrique Matos and Pro- fessor Costas Pantelides for allowing me to take this internship at Process Systems Enterprise Ltd., London, a seven-month truly worthy experience for both my professional and personal life which I will certainly never forget. I would also like to thank my PSE and IST supervisors, who help me to go through this final journey as a Chemical Engineering student. To Stˇ epˇ an´ and Sreekumar from PSE, thank you so much for your patience, for helping and encouraging me to always keep a positive attitude, even when harder problems arose. To Prof. Henrique who always showed availability to answer my questions and to meet in person whenever possible. Gostaria tambem´ de agradecer aos meus colegas de casa e de curso Andre,´ Frederico, Joana e Miguel, com quem partilhei casa. Foi uma experienciaˆ inesquec´ıvel que atravessamos´ juntos e cer- tamente que a vossa presenc¸a diaria´ apos´ cada dia de trabalho ajudou imenso a aliviar as saudades de casa.
    [Show full text]
  • Ammonia Production
    Ammonia production Ammonia production facilities provide the base anhydrous liquid ammonia used predominantly in fertilizers supplying usable nitrogen for agricultural productivity. Ammonia is one of the most abundantly-produced inorganic chemicals. There are literally dozens of large- scale ammonia production plants throughout the industrial world, some of which produce as much as 2000 to 3000 tons per day of anhydrous ammonia in liquid form. The worldwide production in 2006 was 122,000,000 metric tons. China produced 32.0% of the worldwide production followed by India with 8.9%, Russia with 8.2%, and the USA with 6.5%. Without such massive production, our agriculturally-dependent civilization would face serious challenges. History Before the start of World War I, most ammonia was obtained by the dry distillation of nitrogenous vegetable and animal products; the reduction of nitrous acid and nitrites with hydrogen; and the decomposition of ammonium saltFs by alkaline hydroxides or by quicklime, the salt most generally used being the ammonium chloride (sal-ammoniac). The Haber process, which is the production of ammonia by combining hydrogen and nitrogen, was first patented by Fritz Haber in 1908. In 1910, Carl Bosch, while working for the German chemical company BASF, successfully commercialized the process and secured further patents. It was first used on an industrial scale by the Germans during World War I. Since then, the process has often been referred to as the "Haber-Bosch process". Modern production process A typical modern ammonia-producing plant first converts natural gas (i.e., methane) or LPG (liquified petroleum gases such as propane and butane) or petroleum naphtha into gaseoushydrogen.
    [Show full text]
  • 2002-00238-01-E.Pdf (Pdf)
    report no. 01/54 environmental classification of petroleum substances - summary data and rationale Prepared by CONCAWE Petroleum Products Ecology Group D. King (Chairman) M. Bradfield P. Falkenback T. Parkerton D. Peterson E. Remy R. Toy M. Wright B. Dmytrasz D. Short Reproduction permitted with due acknowledgement CONCAWE Brussels October 2001 I report no. 01/54 ABSTRACT Environmental data on the fate and effects of petroleum substances are summarised. Technical issues relating to the choice of test methodology for the evaluation of environmental impacts of petroleum substances are discussed. Proposals for self-classification according to EU criteria, as defined in the Dangerous Substances Directive, are presented for individual petroleum substance groups, on the basis of available test data and structure activity relationships (based on composition). KEYWORDS Hazard, environment, petroleum substances, classification, aquatic toxicity, biodegradation, bioaccumulation, QSAR, dangerous substances directive. INTERNET This report is available as an Adobe pdf file on the CONCAWE website (www.concawe.be). NOTE Considerable efforts have been made to assure the accuracy and reliability of the information contained in this publication. However, neither CONCAWE nor any company participating in CONCAWE can accept liability for any loss, damage or injury whatsoever resulting from the use of this information. This report does not necessarily represent the views of any company participating in CONCAWE. II report no. 01/54 CONTENTS Page SUMMARY V 1. REGULATORY FRAMEWORK AND GENERAL INTRODUCTION 1 2. DATA SELECTION FOR CLASSIFICATION 2 2.1. WATER "SOLUBILITY" OF PETROLEUM SUBSTANCES AND TEST "CONCENTRATIONS" 2 2.2. ACUTE AND CHRONIC TOXICITY AND SOLUBILITY LIMITS 2 2.3. PERSISTENCE AND FATE PROCESSES FOR PETROLEUM SUBSTANCES 3 2.4.
    [Show full text]
  • Top 100 Chemicals List
    CAS No. Chemical Name Trade or Common Name Synonyms & Notes Fire Code Haz Class 71556 1,1,1-TRICHLOROETHANE TRICHLOR 111 DEGRS COLD/V BRAKLEEN #5090 IRR,OHH 71556 1,1,1-TRICHLOROETHANE TRI - ETHANE (R) 377 LO VOC SATIN LACQUER IRR,OHH 71556 1,1,1-TRICHLOROETHANE SAFETY KLEEN 105 SOLVENT METHYL CHLOROFORM IRR,OHH 71556 1,1,1-TRICHLOROETHANE YELLOW LO VOC -TRAFFIC PAINT LACQUER THINNER IRR,OHH 127184 1,1,2,2,TETRACHLOROETHYLENE WASTE PERCHLOROETHYLENE BRAKE CLEAN CAR,IRR,OHH,SENS 127184 1,1,2,2,TETRACHLOROETHYLENE PERC CHLORINATED HYDROCARBON CAR,IRR,OHH,SENS 107062 1,2-DICHLOROETHANE ETHYLENE DICHLORIDE CAR,FLIB,IRR,OHH 57556 1,2-PROPANEDIOL RUBIGAN A.S. FUNGICIDE MURPHY OIL SOAP CLIIIB,IRR,OHH 57556 1,2-PROPANEDIOL HD HEAT TRANSFER FLUID PROPYLENE GLYCOL CLIIIB,IRR,OHH 57556 1,2-PROPANEDIOL DOW FROST GLYCOL LATEX COATINGS- WATERBORNE CLIIIB,IRR,OHH 78933 2-BUTANONE METHYL ETHYL KETONE WASTE PAINT FILTERS & DEBRIS FLIB,IRR,OHH 78933 2-BUTANONE LACQUER THINNER MEK FLIB,IRR,OHH 78933 2-BUTANONE BURKE 3203 PART A PRIMER PART B FLIB,IRR,OHH 64197 ACETIC ACID VINEGAR ACETIC ACID, <10% IRR,OHH 64197 ACETIC ACID FIXER, REPLENISHER, DEVELOPER ACETIC ACID, >12% COR,OHH 64197 ACETIC ACID FIXER, REPLENISHER, DEVELOPER ACETIC ACID, 99-100% CLII,COR,OHH 67641 ACETONE THINNER WASTE ACETONE/HEXANE FLIB,IRR,OHH 67641 ACETONE BRAKE CLEANER 2-PROPANONE, LIQUID FLIB,IRR,OHH 67641 ACETONE DIMETHYL KETONE FLIB,IRR,OHH 74862 ACETYLENE ACETYLEN, GAS WELDING GAS FLG,UR1 74862 ACETYLENE ACETYLENE - ETHYNE FLG,UR1 79061 ACRYLAMIDE ACRYLAMIDE, CRYSTALS P - 4 CAR,IRR,OHH,TOX,UR2 7664417 AMMONIA ANHYDROUS AMMONIA ANHYDROUS AMMONIA COR 7664417 AMMONIA LESS THAN 1% AQUA AMMONIA NON HAZ 7664417 AMMONIA 50% AQUA AMMONIA COR,TOX 7664417 AMMONIA GREATER THAN 30% AQUA AMMONIA TOX, IRR CAS No.
    [Show full text]
  • Section 1 - PRODUCT and COMPANY IDENTIFICATION
    Safety Data Sheet Material Name: SAFETY-KLEEN MIL-PD-680-TYPE II SOLVENT SDS ID: 82889 Section 1 - PRODUCT AND COMPANY IDENTIFICATION Material Name SAFETY-KLEEN MIL- PD-680-TYPE II SOLVENT Product Code 6638 Synonyms Parts Washer Solvent; High Flash Degreasing Solvent; Petroleum Distillates; Petroleum Naphtha; Naphtha Solvent; Mineral Spirits Product Use Cleaning and degreasing metal parts. This product meets Federal Commercial Item Description A-A-59601A for Dry Cleaning and Degreasing Solvent, PD680, Type II. If this product is used in combination with other products, refer to the Safety Data Sheet for those products. Restrictions on Use None known. MANUFACTURER SUPPLIER, Canada Safety-Kleen Systems, Inc. Safety-Kleen Canada, Inc. 42 Longwater Drive 25 Regan Road Norwell, MA 02061-9149 Brampton, Ontario L7A 1B2 U.S.A. Canada www.safety-kleen.com Phone: 1-800-669-5740 Emergency Phone #: 1-800-468-1760 Issue Date January 7, 2020 Supersedes Issue Date November 8, 2016 Original Issue Date May 9, 2002 Section 2 - HAZARDS IDENTIFICATION Classification in accordance with Schedule 1 of Hazardous Products Regulations (HPR) (SOR/2015-17) and paragraph (d) of 29 CFR 1910.1200 Flammable Liquids - Category 4 Aspiration Hazard - Category 1 Specific target organ toxicity - Single exposure - Category 3 GHS Label Elements Symbol(s) Signal Word Danger Safety Data Sheet Material Name: SAFETY-KLEEN MIL-PD-680-TYPE II SOLVENT SDS ID: 82889 Hazard Statement(s) Combustible liquid. May cause drowsiness or dizziness. May be fatal if swallowed and enters airways. Precautionary Statement(s) Prevention Keep away from heat, hot surfaces, sparks, open flames and other ignition sources.
    [Show full text]
  • Chemical Compatibility Chart
    Chemical Compatibility Chart 1 Inorganic Acids 1 2 Organic acids X 2 3 Caustics X X 3 4 Amines & Alkanolamines X X 4 5 Halogenated Compounds X X X 5 6 Alcohols, Glycols & Glycol Ethers X 6 7 Aldehydes X X X X X 7 8 Ketone X X X X 8 9 Saturated Hydrocarbons 9 10 Aromatic Hydrocarbons X 10 11 Olefins X X 11 12 Petrolum Oils 12 13 Esters X X X 13 14 Monomers & Polymerizable Esters X X X X X X 14 15 Phenols X X X X 15 16 Alkylene Oxides X X X X X X X X 16 17 Cyanohydrins X X X X X X X 17 18 Nitriles X X X X X 18 19 Ammonia X X X X X X X X X 19 20 Halogens X X X X X X X X X X X X 20 21 Ethers X X X 21 22 Phosphorus, Elemental X X X X 22 23 Sulfur, Molten X X X X X X 23 24 Acid Anhydrides X X X X X X X X X X 24 X Represents Unsafe Combinations Represents Safe Combinations Group 1: Inorganic Acids Dichloropropane Chlorosulfonic acid Dichloropropene Hydrochloric acid (aqueous) Ethyl chloride Hydrofluoric acid (aqueous) Ethylene dibromide Hydrogen chloride (anhydrous) Ethylene dichloride Hydrogen fluoride (anhydrous) Methyl bromide Nitric acid Methyl chloride Oleum Methylene chloride Phosphoric acid Monochlorodifluoromethane Sulfuric acid Perchloroethylene Propylene dichloride Group 2: Organic Acids 1,2,4-Trichlorobenzene Acetic acid 1,1,1-Trichloroethane Butyric acid (n-) Trichloroethylene Formic acid Trichlorofluoromethane Propionic acid Rosin Oil Group 6: Alcohols, Glycols and Glycol Ethers Tall oil Allyl alcohol Amyl alcohol Group 3: Caustics 1,4-Butanediol Caustic potash solution Butyl alcohol (iso, n, sec, tert) Caustic soda solution Butylene
    [Show full text]