Phlebopus Bruchii (Boletacw~
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
How Many Fungi Make Sclerotia?
fungal ecology xxx (2014) 1e10 available at www.sciencedirect.com ScienceDirect journal homepage: www.elsevier.com/locate/funeco Short Communication How many fungi make sclerotia? Matthew E. SMITHa,*, Terry W. HENKELb, Jeffrey A. ROLLINSa aUniversity of Florida, Department of Plant Pathology, Gainesville, FL 32611-0680, USA bHumboldt State University of Florida, Department of Biological Sciences, Arcata, CA 95521, USA article info abstract Article history: Most fungi produce some type of durable microscopic structure such as a spore that is Received 25 April 2014 important for dispersal and/or survival under adverse conditions, but many species also Revision received 23 July 2014 produce dense aggregations of tissue called sclerotia. These structures help fungi to survive Accepted 28 July 2014 challenging conditions such as freezing, desiccation, microbial attack, or the absence of a Available online - host. During studies of hypogeous fungi we encountered morphologically distinct sclerotia Corresponding editor: in nature that were not linked with a known fungus. These observations suggested that Dr. Jean Lodge many unrelated fungi with diverse trophic modes may form sclerotia, but that these structures have been overlooked. To identify the phylogenetic affiliations and trophic Keywords: modes of sclerotium-forming fungi, we conducted a literature review and sequenced DNA Chemical defense from fresh sclerotium collections. We found that sclerotium-forming fungi are ecologically Ectomycorrhizal diverse and phylogenetically dispersed among 85 genera in 20 orders of Dikarya, suggesting Plant pathogens that the ability to form sclerotia probably evolved 14 different times in fungi. Saprotrophic ª 2014 Elsevier Ltd and The British Mycological Society. All rights reserved. Sclerotium Fungi are among the most diverse lineages of eukaryotes with features such as a hyphal thallus, non-flagellated cells, and an estimated 5.1 million species (Blackwell, 2011). -
AR TICLE New Sequestrate Fungi from Guyana: Jimtrappea Guyanensis
IMA FUNGUS · 6(2): 297–317 (2015) doi:10.5598/imafungus.2015.06.02.03 New sequestrate fungi from Guyana: Jimtrappea guyanensis gen. sp. nov., ARTICLE Castellanea pakaraimophila gen. sp. nov., and Costatisporus cyanescens gen. sp. nov. (Boletaceae, Boletales) Matthew E. Smith1, Kevin R. Amses2, Todd F. Elliott3, Keisuke Obase1, M. Catherine Aime4, and Terry W. Henkel2 1Department of Plant Pathology, University of Florida, Gainesville, FL 32611, USA 2Department of Biological Sciences, Humboldt State University, Arcata, CA 95521, USA; corresponding author email: Terry.Henkel@humboldt. edu 3Department of Integrative Studies, Warren Wilson College, Asheville, NC 28815, USA 4Department of Botany & Plant Pathology, Purdue University, West Lafayette, IN 47907, USA Abstract: Jimtrappea guyanensis gen. sp. nov., Castellanea pakaraimophila gen. sp. nov., and Costatisporus Key words: cyanescens gen. sp. nov. are described as new to science. These sequestrate, hypogeous fungi were collected Boletineae in Guyana under closed canopy tropical forests in association with ectomycorrhizal (ECM) host tree genera Caesalpinioideae Dicymbe (Fabaceae subfam. Caesalpinioideae), Aldina (Fabaceae subfam. Papilionoideae), and Pakaraimaea Dipterocarpaceae (Dipterocarpaceae). Molecular data place these fungi in Boletaceae (Boletales, Agaricomycetes, Basidiomycota) ectomycorrhizal fungi and inform their relationships to other known epigeous and sequestrate taxa within that family. Macro- and gasteroid fungi micromorphological characters, habitat, and multi-locus DNA sequence data are provided for each new taxon. Guiana Shield Unique morphological features and a molecular phylogenetic analysis of 185 taxa across the order Boletales justify the recognition of the three new genera. Article info: Submitted: 31 May 2015; Accepted: 19 September 2015; Published: 2 October 2015. INTRODUCTION 2010, Gube & Dorfelt 2012, Lebel & Syme 2012, Ge & Smith 2013). -
Universidad De San Carlos De Guatemala Facultad De Ciencias Químicas Y Farmacia
UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE CIENCIAS QUÍMICAS Y FARMACIA Descripción microscópica y determinación de 8 especies del orden Boletales recolectadas como primer registro en Guatemala LYS MARIELA HERNÁNDEZ MONTUFAR QUÍMICA BIÓLOGA GUATEMALA, AGOSTO 2013 UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE CIENCIAS QUÍMICAS Y FARMACIA Descripción microscópica y determinación de 8 especies del orden Boletales recolectadas como primer registro en Guatemala Informe de Tesis Presentado por LYS MARIELA HERNÁNDEZ MONTUFAR Para optar al título de QUÍMICA BIÓLOGA GUATEMALA, AGOSTO 2013 JUNTA DIRECTIVA Oscar Cóbar Pinto, Ph.D. Decano Lic. Pablo Ernesto Oliva Soto, M.A. Secretario Licda. Liliana Vides de Urizar Vocal I Dr. Sergio Alejandro Melgar Valladares Vocal II Lic. José Rodrigo Vargas Vocal III Br. Fayver Manuel de león Mayorga Vocal IV Br. Maidy Graciela Córdova Audón Vocal V ACTO QUE DEDICO A DIOS: Por darme fe, salud, fortaleza, sabiduría y sobre todo una maravillosa familia que me ayudó a alcanzar esta meta. A MIS PADRES: Marco Antonio Hernández y Sandra Montufar, quienes con su esfuerzo, sacrificio, amor y apoyo incondicional me han acompañado en todo momento, sin ustedes no hubiera alcanzado esta meta. Gracias por todo. A MI ESPOSO: Julio Matías, por el amor y apoyo incondicional, porque siempre me has animado a seguir adelante y a no darme por vencida, gracias por todo,te amo. A MI HIJO: Sergio Antonio, porque eres mi motivación para seguir adelante y ser un buen ejemplo, gracias por el amor y alegrías que me das a cada instante. Te amo. A MIS HERMANAS: Patty y Kari, gracias por todos los buenos momentos que hemos compartido, por el cariño, paciencia y apoyo que me han brindado siempre, las quiero mucho y sin ustedes no estaría aquí hoy. -
MUSHROOMS of the OTTAWA NATIONAL FOREST Compiled By
MUSHROOMS OF THE OTTAWA NATIONAL FOREST Compiled by Dana L. Richter, School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI for Ottawa National Forest, Ironwood, MI March, 2011 Introduction There are many thousands of fungi in the Ottawa National Forest filling every possible niche imaginable. A remarkable feature of the fungi is that they are ubiquitous! The mushroom is the large spore-producing structure made by certain fungi. Only a relatively small number of all the fungi in the Ottawa forest ecosystem make mushrooms. Some are distinctive and easily identifiable, while others are cryptic and require microscopic and chemical analyses to accurately name. This is a list of some of the most common and obvious mushrooms that can be found in the Ottawa National Forest, including a few that are uncommon or relatively rare. The mushrooms considered here are within the phyla Ascomycetes – the morel and cup fungi, and Basidiomycetes – the toadstool and shelf-like fungi. There are perhaps 2000 to 3000 mushrooms in the Ottawa, and this is simply a guess, since many species have yet to be discovered or named. This number is based on lists of fungi compiled in areas such as the Huron Mountains of northern Michigan (Richter 2008) and in the state of Wisconsin (Parker 2006). The list contains 227 species from several authoritative sources and from the author’s experience teaching, studying and collecting mushrooms in the northern Great Lakes States for the past thirty years. Although comments on edibility of certain species are given, the author neither endorses nor encourages the eating of wild mushrooms except with extreme caution and with the awareness that some mushrooms may cause life-threatening illness or even death. -
Ectomycorrhizal Fungi from Southern Brazil – a Literature-Based Review, Their Origin and Potential Hosts
Mycosphere Doi 10.5943/mycosphere/4/1/5 Ectomycorrhizal fungi from southern Brazil – a literature-based review, their origin and potential hosts Sulzbacher MA1*, Grebenc, T2, Jacques RJS3 and Antoniolli ZI3 1Universidade Federal de Pernambuco, Departamento de Micologia/CCB, Av. Prof. Nelson Chaves, s/n, CEP: 50670- 901, Recife, PE, Brazil 2Slovenian Forestry Institute Vecna pot 2, SI-1000 Ljubljana, Slovenia 3Universidade Federal de Santa Maria, Departamento de Solos, CCR Campus Universitário, 971050-900, Santa Maria, RS, Brazil Sulzbacher MA, Grebenc T, Jacques RJS, Antoniolli ZI 2013 – Ectomycorrhizal fungi from southern Brazil – a literature-based review, their origin and potential hosts. Mycosphere 4(1), 61– 95, Doi 10.5943 /mycosphere/4/1/5 A first list of ectomycorrhizal and putative ectomycorrhizal fungi from southern Brazil (the states of Rio Grande do Sul, Santa Catarina and Paraná), their potential hosts and origin is presented. The list is based on literature and authors observations. Ectomycorrhizal status and putative origin of listed species was assessed based on worldwide published data and, for some genera, deduced from taxonomic position of otherwise locally distributed species. A total of 144 species (including 18 doubtfull species) in 49 genera were recorded for this region, all accompanied with a brief distribution, habitat and substrate data. At least 30 collections were published only to the genus level and require further taxonomic review. Key words – distribution – habitat – mycorrhiza – neotropics – regional list Article Information Received 28 November 2012 Accepted 20 December 2012 Published online 10 February 2013 *Corresponding author: MA Sulzbacher – e-mail – [email protected] Introduction work of Singer & Araújo (1979), Singer et al. -
A New Species of Phlebopus (Boletales, Basidiomycota) from Mexico
North American Fungi Volume 10, Number 7, Pages 1-13 Published November 2, 2015 A new species of Phlebopus (Boletales, Basidiomycota) from Mexico Timothy J. Baroni1, Joaquin Cifuentes2, Beatriz Ortiz Santana3, and Silvia Cappello4 1 Department of Biological Sciences, State University of New York – College at Cortland, Cortland, NY 13045 USA, 2 Herbario FCME (Hongos), Facultad de Ciencias, Universidad Nacional Autónoma de México, Av. Universidad 3000, Circuito Exterior S/N Delegación Coyoacán, C.P. 04510 Ciudad Universitaria, D.F. MÉXICO, 3 Center for Forest Mycology Research, Northern Research Station and Forest Products Laboratory, Forest Service, One Gifford Pinchot Drive, Madison, WI 53726 USA, 4 División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, México, Km 0.5 desviación a Saloya, Carretera Villahermosa-Cárdenas, Villahermosa, Tabasco, MÉXICO Baroni, T. J., J. Cifuentes, B. O. Santana, and S. Cappello. 2015. A new species of Phlebopus (Boletales, Basidiomycota) from Mexico North American Fungi 10(7): 1-13. http://dx.doi.org/10.2509/naf2015.010.007 Corresponding author: Timothy J. Baroni [email protected]. Accepted for publication August 20, 2015. http://pnwfungi.org Copyright © 2015 Pacific Northwest Fungi Project. All rights reserved. Abstract: A new species, Phlebopus mexicanus, is described from southern tropical rainforests of Mexico based on morphological and molecular characters. Several features distinguish this species from others of Phlebopus including the medium to small basidiomata with olivaceous brown tomentose pileus that becomes finely areolate cracked with age, the dark yellow brown pruina covering most of the stipe, the pale yellow flesh of pileus and stipe that slowly turns blue when exposed, and the lack of hymenial cystidia. -
Sutorius: a New Genus for Boletus Eximius
Mycologia, 104(4), 2012, pp. 951–961. DOI: 10.3852/11-376 # 2012 by The Mycological Society of America, Lawrence, KS 66044-8897 Sutorius: a new genus for Boletus eximius Roy E. Halling1 Zambia and Thailand represent independent lineag- Institute of Systematic Botany, The New York Botanical es, but sampling is insufficient to describe new species Garden, Bronx, New York 10458-5126 for these entities. Mitchell Nuhn Key words: biogeography, boletes, Boletineae, Department of Biology, Clark University, Worcester, phylogeny, ribosomal DNA Massachusetts 01610-1477 Nigel A. Fechner INTRODUCTION Queensland Herbarium, Mount Coot-tha Road, Boletus eximius Peck was proposed as a new name by Toowong, Brisbane, Queensland 4066, Australia Peck (1887) for Boletus robustus Frost (1874) non Todd W. Osmundson Fries (1851). Since then, this idiosyncratic bolete Berkeley Natural History Museums and Department of from northeastern North America has been placed in Environmental Science, Policy & Management, Ceriomyces (Murrill 1909), Tylopilus (Singer 1947) and University of California, Berkeley, California 94702 Leccinum (Singer 1973). Because Murrill’s concept of Kasem Soytong Ceriomyces can be discounted as a mixture of several Faculty of Agricultural Technology, King Mongkut’s modern genera, placement of B. eximius has been Institute of Technology, Ladkrabang, Bangkok, based primarily on either color of the spore deposit Thailand or the type of surface ornamentation of the stipe. Thus, Smith and Thiers (1971) were inclined to con- David Arora sider the spore color (reddish brown) more nearly P.O. Box 672, Gualala, California 95445 like that of a Tylopilus whereas Singer (1973, 1986) David S. Hibbett judged that the stipe ornamentation was of a scabrous Manfred Binder nature as in a Leccinum. -
Boletales – Boletaceae S.L. (26 October 2020, © R. E. Halling)
Boletales – Boletaceae s.l. (26 October 2020, © R. E. Halling) NOTE: 104 genera listed here are conceived in a broad, classical sense (generally the fleshy stipitate mushrooms with pores) including sequestrate morphologies. Phylogenetic inferences from DNA sequences suggest alignment in suborders: Boletineae, Suillineae, Sclerodermatineae, or in the Paxillaceae. Not all genera are well known, equally circumscribed or robustly inferred phylogenetically. Mycorrhizal associations may be confirmed, but many are presumed or suspected. Recent phylogenetic analyses based on DNA sequences infer some true gasteroid (truffle-like, sequestrate) taxa (aside from those in Sclerodermatineae, Suillineae) belong here. Some of the diagnoses are from protologues. Year of publication follows authority (-ies). Afroboletus Pegler & Young (1981) Pileus dry, coarsely fibrillose to squamose, black, often with appendiculate veil remnants, microscopically a trichodermium. Context white, staining red then black. Hymenophore adnexed, white then black, staining red then black. Peronate veil present. Stipe dry, squamose, sometimes annulate, white to gray to black. Spores black, short ellipsoid, longitudinally ridged or winged, sometimes with intercostal veins; a basal thickened rim around sterigmal appendage, lacking a plage. Hymenial cystidia present. Clamp connections absent. Apparently restricted to the African tropics. One sequestrate species known. Ectomycorrhizae presumed with caesalpinoid legumes. Afrocastellanoa M.E. Smith & Orihara (2017) From the protologue: Basidiomata sequestrate, gasteroid, firm, rubbery, with one or a few rhizomorphs at the base. Similar to Octaviania in the morphology of the basidiome and basidiospores, but different from Octaviania in the multilayered peridium and in basidia that are irregularly distributed within the solid gleba, resulting in the absence of a distinct hymenium and subhymenium. -
Back-Yard Fungi1
88 WM. BRIDGE COOKE Vol. 73 BACK-YARD FUNGI1 WM. BRIDGE COOKE 1135 Wilshire Court, Cincinnati, Ohio 45230 ABSTRACT For a number of years, while caring for flower beds, lawn, and shrubbery at his home, the writer has collected fruit bodies of those fungi which have been observed. The result- ing list includes representatives of 138 species in most groups of fungi. While none of these is new to science, several records present interesting range extensions. In a search for fungi, any habitat in which a fungus will grow is a potential source of records. The most intimate set of habitats is that found on one's own property. In routine work on flower beds, lawn, shrubbery, and trees, macroscopic fruit bodies of many kinds of fungi have been readily observed and collected. Soil samples were tested for molds when laboratory facilities were available, and certain mold-type fungi were noted occasionally. Within the limits of the com- munity in which this property occurs, a number of types of fungi may be expectable on the basis of past records for the occurrence of fungi in Ohio. A few of these species require less distributed locations or locations disturbed infrequently. If it is true that there is at least one fungus to form a saprobic, parasitic, or mycor- rhizal relation with each vascular plant, this list is very incomplete. However, it gives an indication of the variety of fungi which can be found in a small area, and it gives an idea of the complexity of the artificial ecosystem put together by the small householder in his search for serendipity in modern suburbia. -
A New Representative of Star-Shaped Fungi: Astraeus Sirindhorniae Sp
A New Representative of Star-Shaped Fungi: Astraeus sirindhorniae sp. nov. from Thailand Cherdchai Phosri1*, Roy Watling2, Nuttika Suwannasai3, Andrew Wilson4, Marı´a P. Martı´n5 1 Department of Biology, Faculty of Science, Nakhon Phanom University, Nakhon Phanom, Thailand, 2 Caledonian Mycological Enterprises, Edinburgh, Scotland, United Kingdom, 3 Department of Biology, Faculty of Science, Srinakharinwirot University, Bangkok, Thailand, 4 Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, United States of America, 5 Departamento de Micologı´a, Real Jardı´n Bota´nico, RJB-CSIC, Madrid, Spain Abstract Phu Khieo Wildlife Sanctuary (PKWS) is a major hotspot of biological diversity in Thailand but its fungal diversity has not been thouroughly explored. A two-year macrofungal study of this remote locality has resulted in the recognition of a new species of a star-shaped gasteroid fungus in the genus Astraeus. This fungus has been identified based on a morphological approach and the molecular study of five loci (LSU nrDNA, 5.8S nrDNA, RPB1, RPB2 and EF1-a). Multigene phylogenetic analysis of this new species places it basal relative to other Astraeus, providing additional evidence for the SE Asian orgin of the genus. The fungus is named in honour of Her Majesty Princess Sirindhorn on the occasion the 84th birthday of her father, who have both been supportive of natural heritage studies in Thailand. Citation: Phosri C, Watling R, Suwannasai N, Wilson A, Martı´n MP (2014) A New Representative of Star-Shaped Fungi: Astraeus sirindhorniae sp. nov. from Thailand. PLoS ONE 9(5): e71160. doi:10.1371/journal.pone.0071160 Editor: Alfredo Herrera-Estrella, Cinvestav, Mexico Received April 2, 2012; Accepted February 26, 2014; Published May 7, 2014 Copyright: ß 2014 Phosri et al. -
Chapter 6 Suborder Sclerodermatineae
CHAPTER 6 SUBORDER SCLERODERMATINEAE Suborder Sclerodermatineae was established by Binder and Bresinsky (2002a) based on morphological characters and phylogenetic relationship studied. This group is a major lineage within the Boletales which are including 6 families of Astraeacea (Astraeus), Boletinellaceae (Boletinellus and Phlebopus), Calostomataceae (Calostoma), Gyroporaceae (Gyroporus), Pisolithaceae (Pisolithus), and Sclerodermataceae (Scleroderma, Tremellogaster and Veligaster) (Figure 6.1). The species of boletes belong to this suborder discussed in this chapter with descriptions and illustrations are focus on the stipitate hymenopore boletes of 2 families included Boletinellaceae and Gyroporaceae. An appreciated edible species of local people in northern Thailand as Phlebopus portentosus and P. siamensis sp. nov. which are the common species found in this study were also discussed based on morphological characters and sequences analyses of 28S rDNA and ITS region. 99 a. b. c. d. e. f. Figure 6.1. Basidiocarps of genera in 6 families belong to suborder Sclerodermatineae. a. Astraeus (Astraeacea). b. Boletinellus (Boletinellaceae). c. Calostoma (Calostomataceae). d. Gyroporus (Gyroporaceae). e. Pisolithus (Pisolithaceae). f. Scleroderma (Sclerodermataceae). DESCRIPTION, PHOTOGRAPHIC FIGURES OF BOLETES IN SUBORDER SCLERODERMATINEAE 6.1 BOLETINELLACEAE Binder & Bresinsky Type genus: Boletinellus Murrill References: Binder and Bresinsky (2002a). Basidiocarps stipitate-pileate. Pileus glabrous to subtomentose, olive brown to yellow -
Universidade Federal De Santa Catarina Para a Obtenção Do Grau De Mestre Em Biologia Vegetal
ALTIELYS CASALE MAGNAGO TAXONOMIA E SISTEMÁTICA DE BOLETACEAE (BOLETALES) PARA O BRASIL Dissertação submetida ao Programa de Pós-Graduação em Biologia de Fungos, Algas e Plantas da Universidade Federal de Santa Catarina para a obtenção do Grau de Mestre em Biologia Vegetal. Orientador: Prof. Dra. Maria Alice Neves FLORIANÓPOLIS 2014 ALTIELYS CASALE MAGNAGO TAXONOMIA E SISTEMÁTICA DE BOLETACEAE (BOLETALES) PARA O BRASIL Esta Dissertação foi julgada adequada para obtenção do Título de Mestre, e aprovada em sua forma final pelo Programa de Pós-Graduação em Biologia de Fungos, Algas e Plantas. Florianópolis, 10 de março de 2014. ________________________ Profa. Dra. Maria Alice Neves Coordenadora do Curso Banca Examinadora: ________________________ Profa. Dra. Maria Alice Neves (Orientadora) Universidade Federal de Santa Catarina ________________________ Prof. Dr. Elisandro Ricardo Drechsler dos Santos Universidade Federal de Santa Catarina ________________________ Profa. Dra. Rosa Mara Borges da Silveira Universidade Federal do Rio Grande do Sul ________________________ Dr. Mateus Arduvino Reck Universidade Federal de Santa Catarina Austroboletus festivus (Singer) Wolfe Dedico este trabalho à minha família, aos meus amigos, ao meu companheiro, e em especial à turma MICOLAB! AGRADECIMENTOS Primeiramente agradeço minha amiga e orientadora Maria Alice Neves por todos os desafios, ensinamentos, conversas, companherismo, amizade e paciência, e acima de tudo pela confiança. À Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) pelo auxílio financeiro sob a forma de bolsa. À Universidade Federal de Santa Catarina, ao Departamento de Botânica e ao Programa de Pós-Graduação em Biologia de Fungos, Algas e Plantas por todo suporte oferecido para a execussão do projeto. Aos docentes e pesquisadores do Programa de Pós-Graduação em Biologia de Fungos, Algas e Plantas que de várias formas contribuíram para o meu crescimento e para o desenvolvimento da pesquisa.