Saurashtra University Re – Accredited Grade ‘B’ by NAAC (CGPA 2.93)

Total Page:16

File Type:pdf, Size:1020Kb

Saurashtra University Re – Accredited Grade ‘B’ by NAAC (CGPA 2.93) Saurashtra University Re – Accredited Grade ‘B’ by NAAC (CGPA 2.93) Maharshi, Anjisha R., 2012, “Studies on Phytohormone Producing Plant Pathogenic Fungi”, thesis PhD, Saurashtra University http://etheses.saurashtrauniversity.edu/id/eprint/575 Copyright and moral rights for this thesis are retained by the author A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the Author. The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the Author When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given. Saurashtra University Theses Service http://etheses.saurashtrauniversity.edu [email protected] © The Author Acknowledgments This thesis arose in part out of years of research that has been done since I came to PPMB Lab. By that time, I have worked with a great number of people whose contribution in assorted ways to the research and the making of the thesis deserved special mention. It is a pleasure to convey my gratitude to them all in my humble acknowledgment. In the first place I would like to record my gratitude to Prof. Vrinda. S. Thaker for her supervision, advice, and guidance from the very early stage of this research as well as giving me extraordinary experiences throughout the work. Above all and the most needed, she provided me unflinching encouragement and support in various ways which made her a backbone of this research and so to this thesis. Her involvement with her originality has triggered and nourished my intellectual maturity that I will benefit from, for a long time to come. Her truly scientist intuition has made her as a constant oasis of ideas and passions in science, which exceptionally inspire and enrich my growth as a student, a researcher and a scientist want to be. I am indebted to her more than she knows. I gratefully thank to head of the Department of Biosciences Prof. S. P. Singh for providing me all the necessary laboratory facilities. I am also very indebted to other faculty members and nonteaching staff of Department of Biosciences for their help in direct or indirect manner. It is a pleasure to pay tribute also to the sample collaborators. I would like to thank to the Institute of Microbial Technology (IMTECH), Chandigarh, India, for providing me the fungal samples. I would also acknowledge to Vimal Research Society for Agro-biotech and Cosmic Powers (VIRSACO), Rajkot, Gujarat, India, for providing me the samples of essential oils. I convey special acknowledgement to Dr. Manish L. Vekaria (Managing Director, VIRSACO) and Dr. Virendra J. Patel (Director, VIRSACO) for endowing me with all the necessary laboratory facilities and instrument facilities at VIRSACO. I wish to acknowledge University Grant Commission (UGC), New Delhi, India for financial support as meritorious scholar, also thanks to Centre For advanced Studies in Plant Biotechnology & Genetic Engineering (CPBGE), state Government of Gujarat for providing lab facility. I convey special thanks to my rabbits who might have suffered a bit to accomplish my work; I also thank Jivanbhai for taking care of my rabbits. I thank Satyendarbhai, Govindbhai and Joshibhai for their help. I am also thankful to Saurabhbhai, Nitheshbhai and Purohitbhai for their all-time helping hand. Collective and individual acknowledgments are also owed to my colleagues Mr. Lalit Chariya whose present somehow perpetually refreshed, helpful, and memorable. I am also thankful to Ms. Kiran Chudasama for her company and the kind help. My special thanks go to my senior colleagues Dr. Snehal Bhagtaria, Dr. Vaishali Pawar, Dr. Rita Chudasama, Dr. Kunjal Bhatt, Dr. Madhavi Joshi, Dr. Rohan Pandya and Mr. Anil Nakum for their guidance and support. I am also grateful to all my junior colleagues especially Mr. Viral Mandaliya for all his skilful assistance and carefully reading my thesis script. I thank to Ms. Vibhuti Jhala and Ms. Dipika Kalariya for managing bioinformatics software for my work. I also thank to Bhavisha Sheth, Khyati Bhatt, Pooja Patel, Purvi Rakhasiya, Kausal Yadav and Smita Girnari for their assistant and help. It is a pleasure to express my gratitude wholeheartedly to my friends Jalpa and her family, Sarita, Shreya, Dr. Vivek, Ravi, Dhawal, Jahnavi and Dr. Rajan. They have helped me stay sane through these years. Their support, understanding and care helped me to stay focused on my work. I greatly value their friendship and I deeply appreciate their belief in me. I am also grateful to all the research scholar‘s of Department of Biosciences, who had helped me during my research period. Where would I be without my family? My parents deserve special mention for their inseparable support and prayers. It was not possible to complete this work without their support. My Father, R.B. Maharshi, in the first place is the person who put the fundament my learning character, showing me the joy of intellectual pursuit ever since I was a child. Words fail me to express my gratitude towards my Mother, Bhagyawanti Maharshi is the one who sincerely raised me with her caring and gently love. She always gives me strength, courage and managed my time. I am thankful to Ashish Maharshi and Avdhendra Maharshi for being supportive and caring siblings. I also thankful to my cousin Manoj Prabhakar for his kind support at each and every step of my life. Finally, I would like to thank everybody who was important to the successful realization of thesis, as well as expressing my apology that I could not mention personally one by one. Anjisha Maharshi Index No. Chapter Page No. 1 General Introduction 1-13 Isolation, Growth and Identification of 2 Plant Pathogenic Fungi 14-33 3 Phytohormone Production by Plant Pathogenic Fungi 3A Indole Acetic Acid Production 34-51 Abscisic Acid and Gibberellic Acid 3B Production 52-62 4 Biocontrol Approach Biological approach by Plant extract 4A and Essential Oils 63-77 Immunological Approach Against Cell 4B Wall Degrading Enzymes 78-90 5 Summary 91-102 References 103-173 Fungi form a large and heterogeneous eukaryotic group of living organisms characterized by their lack of photosynthetic pigment and their chitinous cell wall. It has been estimated that the fungal kingdom contains more than 1.5 million species, but only around 100,000 have so far been described, with yeast, mold, and mushroom being the most familiar (Hawksworth, 1991). Although the majority of fungal species are saprophytes, a number of them are parasitics, in order to complete their biological cycle in animals or plants. With around 15,000 of fungi, the majority was belonging to the Ascomycetes and Basidiomycetes, causing disease in plants (Reddy, 2001). Fungal diseases are, in nature, more the exception than the rule. Thus, only a limited number of fungal species are able to penetrate and invade host tissues, avoiding recognition and plant defense responses, in order to obtain nutrients from them, causing disease and sometimes host death. In agriculture, annual crop losses due to pre- and post harvest fungal diseases exceed 200 billion euros, and in the United Stated alone, over $600 million are annually spent on fungicides (Gonzalez-Fernandez et al., 2010). Fungal pathogens have complicated life cycles, with both asexual and sexual reproduction and stages involving the formation of different infective, vegetative, and reproductive structures (Glawe, 2008). Current taxonomic identification of filamentous fungi is based on micro- and macro-morphological characteristics, such as cultural morphologies including colony and color characteristics on specific culture media, the size, shape, and development of sexual and asexual spores and spore-forming structures, and/or physiological characteristics such as the ability to utilize various compounds as nitrogen and carbon sources. The advent of molecular methods has supplemented traditional taxonomic methods with DNA-based tools with which to examine phylogenetics and systematics of fungi (Bowman et al., 1992; Bruns et al., 1992; Guerra-García et al., 2008). Accurate identification and early detection of pathogens is a crucial step in health care, agriculture and environmental monitoring including the fight against bioterrorism (Schaad and Frederick, 2002; Ivnitski et al., 2003; 1║ P a g e Schaad et al., 2003) plant disease management. The failure to adequately identify and detect plant pathogens using conventional, culture based morphological techniques has led to the development of nucleic acid based molecular approaches (López et al., 2003a; Lievens et al., 2005). Molecular diagnostic began to develop a real momentum after the introduction of polymerase chain reaction (PCR) in the mid 1980s and the first PCR based detection of a pathogen in diseased plants was published in the beginning of 1990s (Rasmussen and Wulff, 1991). In the last two decades, DNA marker technologies have been revolutionized the plant pathogen genomic analysis and have been extensively employed in many fields of molecular plant pathology (Bridge et al., 2003). Molecular markers offer also the possibility of faster and accurate identification and early detection of plant pathogen (Schaad et al., 2003; Michailides et al., 2005; Ma and Michailides, 2007). On the other hand, with the advances of molecular biology many complex questions could be answered such as the sources of inoculum, changes in their population‟s structures and the population dynamics of the disease they cause. Currently, numerous diagnostics laboratories are adopting molecular methods for plant pathogen detection (Lopez et al., 2003b; Schaad et al., 2003; Hernandez-Delgado, 2009). Among others important applications of these technologies which are increasingly developed as resourceful tools for quickly and sometimes cheaply assessing diverse aspects of plant pathogen genomes. These include genetic variation characterization, genome fingerprinting, gene mapping and tagging, genome evolution analysis, population genetic diversity, taxonomy and phylogeny of plant pathogen taxa.
Recommended publications
  • A New Species of Antrodia (Basidiomycota, Polypores) from China
    Mycosphere 8(7): 878–885 (2017) www.mycosphere.org ISSN 2077 7019 Article Doi 10.5943/mycosphere/8/7/4 Copyright © Guizhou Academy of Agricultural Sciences A new species of Antrodia (Basidiomycota, Polypores) from China Chen YY, Wu F* Institute of Microbiology, Beijing Forestry University, Beijing 100083, China Chen YY, Wu F 2017 –A new species of Antrodia (Basidiomycota, Polypores) from China. Mycosphere 8(7), 878–885, Doi 10.5943/mycosphere/8/7/4 Abstract A new species, Antrodia monomitica sp. nov., is described and illustrated from China based on morphological characters and molecular evidence. It is characterized by producing annual, fragile and nodulose basidiomata, a monomitic hyphal system with clamp connections on generative hyphae, hyaline, thin-walled and fusiform to mango-shaped basidiospores (6–7.5 × 2.3– 3 µm), and causing a typical brown rot. In phylogenetic analysis inferred from ITS and nLSU rDNA sequences, the new species forms a distinct lineage in the Antrodia s. l., and has a close relationship with A. oleracea. Key words – Fomitopsidaceae – phylogenetic analysis – taxonomy – wood-decaying fungi Introduction Antrodia P. Karst., typified with Polyporus serpens Fr. (=Antrodia albida (Fr.) Donk (Donk 1960, Ryvarden 1991), is characterized by a resupinate to effused-reflexed growth habit, white or pale colour of the context, a dimitic hyphal system with clamp connections on generative hyphae, hyaline, thin-walled, cylindrical to very narrow ellipsoid basidiospores which are negative in Melzer’s reagent and Cotton Blue, and causing a brown rot (Ryvarden & Melo 2014). Antrodia is a highly heterogeneous genus which is closely related to Fomitopsis P.
    [Show full text]
  • A Phylogenetic Overview of the Antrodia Clade (Basidiomycota, Polyporales)
    Mycologia, 105(6), 2013, pp. 1391–1411. DOI: 10.3852/13-051 # 2013 by The Mycological Society of America, Lawrence, KS 66044-8897 A phylogenetic overview of the antrodia clade (Basidiomycota, Polyporales) Beatriz Ortiz-Santana1 phylogenetic studies also have recognized the genera Daniel L. Lindner Amylocystis, Dacryobolus, Melanoporia, Pycnoporellus, US Forest Service, Northern Research Station, Center for Sarcoporia and Wolfiporia as part of the antrodia clade Forest Mycology Research, One Gifford Pinchot Drive, (SY Kim and Jung 2000, 2001; Binder and Hibbett Madison, Wisconsin 53726 2002; Hibbett and Binder 2002; SY Kim et al. 2003; Otto Miettinen Binder et al. 2005), while the genera Antrodia, Botanical Museum, University of Helsinki, PO Box 7, Daedalea, Fomitopsis, Laetiporus and Sparassis have 00014, Helsinki, Finland received attention in regard to species delimitation (SY Kim et al. 2001, 2003; KM Kim et al. 2005, 2007; Alfredo Justo Desjardin et al. 2004; Wang et al. 2004; Wu et al. 2004; David S. Hibbett Dai et al. 2006; Blanco-Dios et al. 2006; Chiu 2007; Clark University, Biology Department, 950 Main Street, Worcester, Massachusetts 01610 Lindner and Banik 2008; Yu et al. 2010; Banik et al. 2010, 2012; Garcia-Sandoval et al. 2011; Lindner et al. 2011; Rajchenberg et al. 2011; Zhou and Wei 2012; Abstract: Phylogenetic relationships among mem- Bernicchia et al. 2012; Spirin et al. 2012, 2013). These bers of the antrodia clade were investigated with studies also established that some of the genera are molecular data from two nuclear ribosomal DNA not monophyletic and several modifications have regions, LSU and ITS. A total of 123 species been proposed: the segregation of Antrodia s.l.
    [Show full text]
  • Molecular Phylogeny and Taxonomic Position of Trametes Cervina and Description of a New Genus Trametopsis
    CZECH MYCOL. 60(1): 1–11, 2008 Molecular phylogeny and taxonomic position of Trametes cervina and description of a new genus Trametopsis MICHAL TOMŠOVSKÝ Faculty of Forestry and Wood Technology, Mendel University of Agriculture and Forestry in Brno, Zemědělská 3, CZ-613 00, Brno, Czech Republic [email protected] Tomšovský M. (2008): Molecular phylogeny and taxonomic position of Trametes cervina and description of a new genus Trametopsis. – Czech Mycol. 60(1): 1–11. Trametes cervina (Schwein.) Bres. differs from other species of the genus by remarkable morpho- logical characters (shape of pores, hyphal system). Moreover, an earlier published comparison of the DNA sequences within the genus revealed considerable differences between this species and the re- maining European members of the genus Trametes. These results were now confirmed using se- quences of nuclear LSU and mitochondrial SSU regions of ribosomal DNA. The most related species of Trametes cervina are Ceriporiopsis aneirina and C. resinascens. According to these facts, the new genus Trametopsis Tomšovský is described and the new combination Trametopsis cervina (Schwein.) Tomšovský is proposed. Key words: Trametopsis, Trametes, ribosomal DNA, polypore, taxonomy. Tomšovský M. (2008): Molekulární fylogenetika a taxonomické zařazení outkovky jelení, Trametes cervina, a popis nového rodu Trametopsis. – Czech Mycol. 60(1): 1–11. Outkovka jelení, Trametes cervina (Schwein.) Bres., se liší od ostatních zástupců rodu nápadnými morfologickými znaky (tvar rourek, hyfový systém). Také dříve uveřejněné srovnání sekvencí DNA v rámci rodu Trametes odhalilo významné rozdíly mezi tímto druhem a ostatními evropskými zástupci rodu. Uvedené výsledky byly nyní potvrzeny za použití sekvencí jaderné LSU a mitochondriální SSU oblasti ribozomální DNA, přičemž nejpříbuznějšími druhu Trametes cervina jsou Ceriporiopsis anei- rina a C.
    [Show full text]
  • A Preliminary Checklist of Arizona Macrofungi
    A PRELIMINARY CHECKLIST OF ARIZONA MACROFUNGI Scott T. Bates School of Life Sciences Arizona State University PO Box 874601 Tempe, AZ 85287-4601 ABSTRACT A checklist of 1290 species of nonlichenized ascomycetaceous, basidiomycetaceous, and zygomycetaceous macrofungi is presented for the state of Arizona. The checklist was compiled from records of Arizona fungi in scientific publications or herbarium databases. Additional records were obtained from a physical search of herbarium specimens in the University of Arizona’s Robert L. Gilbertson Mycological Herbarium and of the author’s personal herbarium. This publication represents the first comprehensive checklist of macrofungi for Arizona. In all probability, the checklist is far from complete as new species await discovery and some of the species listed are in need of taxonomic revision. The data presented here serve as a baseline for future studies related to fungal biodiversity in Arizona and can contribute to state or national inventories of biota. INTRODUCTION Arizona is a state noted for the diversity of its biotic communities (Brown 1994). Boreal forests found at high altitudes, the ‘Sky Islands’ prevalent in the southern parts of the state, and ponderosa pine (Pinus ponderosa P.& C. Lawson) forests that are widespread in Arizona, all provide rich habitats that sustain numerous species of macrofungi. Even xeric biomes, such as desertscrub and semidesert- grasslands, support a unique mycota, which include rare species such as Itajahya galericulata A. Møller (Long & Stouffer 1943b, Fig. 2c). Although checklists for some groups of fungi present in the state have been published previously (e.g., Gilbertson & Budington 1970, Gilbertson et al. 1974, Gilbertson & Bigelow 1998, Fogel & States 2002), this checklist represents the first comprehensive listing of all macrofungi in the kingdom Eumycota (Fungi) that are known from Arizona.
    [Show full text]
  • Polypore Diversity in North America with an Annotated Checklist
    Mycol Progress (2016) 15:771–790 DOI 10.1007/s11557-016-1207-7 ORIGINAL ARTICLE Polypore diversity in North America with an annotated checklist Li-Wei Zhou1 & Karen K. Nakasone2 & Harold H. Burdsall Jr.2 & James Ginns3 & Josef Vlasák4 & Otto Miettinen5 & Viacheslav Spirin5 & Tuomo Niemelä 5 & Hai-Sheng Yuan1 & Shuang-Hui He6 & Bao-Kai Cui6 & Jia-Hui Xing6 & Yu-Cheng Dai6 Received: 20 May 2016 /Accepted: 9 June 2016 /Published online: 30 June 2016 # German Mycological Society and Springer-Verlag Berlin Heidelberg 2016 Abstract Profound changes to the taxonomy and classifica- 11 orders, while six other species from three genera have tion of polypores have occurred since the advent of molecular uncertain taxonomic position at the order level. Three orders, phylogenetics in the 1990s. The last major monograph of viz. Polyporales, Hymenochaetales and Russulales, accom- North American polypores was published by Gilbertson and modate most of polypore species (93.7 %) and genera Ryvarden in 1986–1987. In the intervening 30 years, new (88.8 %). We hope that this updated checklist will inspire species, new combinations, and new records of polypores future studies in the polypore mycota of North America and were reported from North America. As a result, an updated contribute to the diversity and systematics of polypores checklist of North American polypores is needed to reflect the worldwide. polypore diversity in there. We recognize 492 species of polypores from 146 genera in North America. Of these, 232 Keywords Basidiomycota . Phylogeny . Taxonomy . species are unchanged from Gilbertson and Ryvarden’smono- Wood-decaying fungus graph, and 175 species required name or authority changes.
    [Show full text]
  • Polypore Fungi As a Flagship Group to Indicate Changes in Biodiversity – a Test Case from Estonia Kadri Runnel1* , Otto Miettinen2 and Asko Lõhmus1
    Runnel et al. IMA Fungus (2021) 12:2 https://doi.org/10.1186/s43008-020-00050-y IMA Fungus RESEARCH Open Access Polypore fungi as a flagship group to indicate changes in biodiversity – a test case from Estonia Kadri Runnel1* , Otto Miettinen2 and Asko Lõhmus1 Abstract Polyporous fungi, a morphologically delineated group of Agaricomycetes (Basidiomycota), are considered well studied in Europe and used as model group in ecological studies and for conservation. Such broad interest, including widespread sampling and DNA based taxonomic revisions, is rapidly transforming our basic understanding of polypore diversity and natural history. We integrated over 40,000 historical and modern records of polypores in Estonia (hemiboreal Europe), revealing 227 species, and including Polyporus submelanopus and P. ulleungus as novelties for Europe. Taxonomic and conservation problems were distinguished for 13 unresolved subgroups. The estimated species pool exceeds 260 species in Estonia, including at least 20 likely undescribed species (here documented as distinct DNA lineages related to accepted species in, e.g., Ceriporia, Coltricia, Physisporinus, Sidera and Sistotrema). Four broad ecological patterns are described: (1) polypore assemblage organization in natural forests follows major soil and tree-composition gradients; (2) landscape-scale polypore diversity homogenizes due to draining of peatland forests and reduction of nemoral broad-leaved trees (wooded meadows and parks buffer the latter); (3) species having parasitic or brown-rot life-strategies are more substrate- specific; and (4) assemblage differences among woody substrates reveal habitat management priorities. Our update reveals extensive overlap of polypore biota throughout North Europe. We estimate that in Estonia, the biota experienced ca. 3–5% species turnover during the twentieth century, but exotic species remain rare and have not attained key functions in natural ecosystems.
    [Show full text]
  • Universidade Federal De Santa Catarina Para a Obtenção Do Grau De Mestre Em Biologia De Fungos, Algas E Plantas
    0 Gesieli Kaipper Figueiró ASPECTOS TAXONÔMICOS E FILOGENÉTICOS DE Antrodia s.l. COM A INCLUSÃO DE ESPÉCIMES DA REGIÃO NEOTROPICAL Dissertação submetida ao Programa de Pós Graduação em Biologia de Fungos, Algas e Plantas da Universidade Federal de Santa Catarina para a obtenção do Grau de mestre em Biologia de Fungos, Algas e Plantas. Orientador: Prof. Dr. Elisandro Ricardo Drechsler dos Santos. Coorientador: Dr. Gerardo Lucio Robledo. Florianópolis 2015 1 2 3 AGRADECIMENTOS Aos meus orientadores Ricardo e Gerardo, pelo aprendizado, confiança e disponibilidade durante esses dois anos, não tenho palavras para agradecê-los; Aos professores do programa de Pós-Graduação em Biologia de Fungos, Algas e Plantas pelo conhecimento transmitido durante a realização das disciplinas; Agradeço aos curadores dos Herbários CORD, FLOR, IBOT e URM, pelos empréstimos de materiais; Agradeço à Prof.ª Maria Alice pelo conhecimento transmitido e por todas as conversas e experiências no micolab; Ao Mateus Arduvino Reck pela amizade, aprendizado e disponibilidade para me ajudar sempre; Ao Dr. Aristóteles Góes Neto, que por meio do projeto “FungiBrBol” forneceu subsídios indispensáveis para a execução das análises moleculares deste trabalho; Agradeço imensamente a Val, Diogo e Carlos que tiveram toda a paciência do mundo me ensinando as coisas mais básicas e lindas sobre o mundo dos Fungos; Também sou grata aos colegas do Micolab pela amizade e carinho de sempre, compartilhando momentos de alegrias e tristezas, almoços de domingos e todas as datas comemorativas
    [Show full text]
  • Parkinsonia Aculeata
    Investigating the cause of dieback in the invasive plant, Parkinsonia aculeata BY TRACEY VIVIEN STEINRUCKEN A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy at Western Sydney University in 2017 This page has been intentionally left blank “Watch with glittering eyes the whole world around you because the greatest secrets are always hidden in the most unlikely places. Those who don't believe in magic will never find it” -- Roald Dahl This page has been intentionally left blank Acknowledgements I would like to thank my advisors Rieks van Klinken (CSIRO Health & Biosecurity), Andrew Bissett (CISRO Oceans & Atmosphere) and Jeff Powell (Hawkesbury Institute for the Enivronment, Western Sydney University) for their excellent mentoring, patient communication across borders and constant support. This research project was supported by Meat and Livestock Australia via a technical assistance grant (B.STU.0271). My PhD was supported by the Australian Government via an Australian Postgraduate Award and Western Sydney University via a top-up stipend. The Hawkesbury Institute for the Environment also supported my work with an annual research allocation and conference attendance funding. Thanks to Patricia Hellier, David Harland, Ian Anderson and Lisa Davison at HIE for administrative support. Thank-you to Kelli Pukallus (Biosecurity Queensland), Andrew White (CSIRO), Eva Pôtet (Agro Campus Oest, Paris), Marcus Klein (HIE at WSU), Donald Gardiner (CSIRO), Shamsul Hoque (CSIRO), Ryan O’Dell (DAFF) and Dylan Smith (UC Berkeley) for field and technical support in various chapters throughout this thesis. Huge thanks to my CSIRO Biosecurity team: Gio Fichera, Ryan Zonneveld, Brad Brown, Andrew White and Jeff Makinson for technical support in Chapter 3.
    [Show full text]
  • Phylogenetic Position and Taxonomy of Kusaghiporia Usambarensis Gen
    Mycology An International Journal on Fungal Biology ISSN: 2150-1203 (Print) 2150-1211 (Online) Journal homepage: http://www.tandfonline.com/loi/tmyc20 Phylogenetic position and taxonomy of Kusaghiporia usambarensis gen. et sp. nov. (Polyporales) Juma Mahmud Hussein, Donatha Damian Tibuhwa & Sanja Tibell To cite this article: Juma Mahmud Hussein, Donatha Damian Tibuhwa & Sanja Tibell (2018): Phylogenetic position and taxonomy of Kusaghiporia usambarensis gen. et sp. nov. (Polyporales), Mycology, DOI: 10.1080/21501203.2018.1461142 To link to this article: https://doi.org/10.1080/21501203.2018.1461142 © 2018 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. Published online: 15 Apr 2018. Submit your article to this journal View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=tmyc20 MYCOLOGY, 2018 https://doi.org/10.1080/21501203.2018.1461142 Phylogenetic position and taxonomy of Kusaghiporia usambarensis gen. et sp. nov. (Polyporales) Juma Mahmud Husseina,b, Donatha Damian Tibuhwab and Sanja Tibella aInstitute of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden; bDepartment of Molecular Biology and Biotechnology, College of Natural & Applied Sciences, University of Dar es Salaam, Dar es Salaam, Tanzania ABSTRACT ARTICLE HISTORY A large polyporoid mushroom from the West Usambara Mountains in North-eastern Tanzania Received 17 November 2017 produces dark brown, up to 60-cm large fruiting bodies that at maturity may weigh more than Accepted 2 April 2018 10 kg. It has a high rate of mycelial growth and regeneration and was found growing on both dry KEYWORDS and green leaves of shrubs; attached to the base of living trees, and it was also observed to Kusaghiporia; molecular degrade dead snakes and insects accidentally coming into contact with it.
    [Show full text]
  • Phylogenetic Analysis and Development of Molecular Tool for Detection of Diaporthe Citri Causing Melanose Disease of Citrus
    plants Article Phylogenetic Analysis and Development of Molecular Tool for Detection of Diaporthe citri Causing Melanose Disease of Citrus Chingchai Chaisiri 1,2 , Xiang-Yu Liu 1,2, Yang Lin 1, Jiang-Bo Li 3, Bin Xiong 3 and Chao-Xi Luo 1,2,* 1 Key Lab of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; [email protected] (C.C.); [email protected] (X.-Y.L.); [email protected] (Y.L.) 2 Department of Plant Pathology, College of Plant Science & Technology, and Key Lab of Crop Disease Monitoring & Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan 430070, China 3 Nanfeng Citrus Research Institute, Nanfeng 344500, China; [email protected] (J.-B.L.); [email protected] (B.X.) * Correspondence: [email protected] Received: 16 February 2020; Accepted: 27 February 2020; Published: 4 March 2020 Abstract: Melanose disease caused by Diaporthe citri is considered as one of the most important and destructive diseases of citrus worldwide. In this study, isolates from melanose samples were obtained and analyzed. Firstly, the internal transcribed spacer (ITS) sequences were used to measure Diaporthe-like boundary species. Then, a subset of thirty-eight representatives were selected to perform the phylogenetic analysis with combined sequences of ITS, beta-tubulin gene (TUB), translation elongation factor 1-α gene (TEF), calmodulin gene (CAL), and histone-3 gene (HIS). As a result, these representative isolates were identified belonging to D. citri, D. citriasiana, D. discoidispora, D. eres, D. sojae, and D. unshiuensis. Among these species, the D. citri was the predominant species that could be isolated at highest rate from different melanose diseased tissues.
    [Show full text]
  • Referências Bibliográficas 43
    1 UNIVERSIDADE FEDERAL DE SANTA CATARINA - UFSC CENTRO DE CIÊNCIAS BIOLÓGICAS - CCB DEPARTAMENTO DE BOTÂNICA PÓS-GRADUAÇÃO EM BIOLOGIA VEGETAL - PPGBVE INVENTÁRIO DE BASIDIOMYCETES LIGNOLÍTICOS EM SANTA CATARINA: GUIA ELETRÔNICO Biólogo Elisandro Ricardo Drechsler-Santos Orientadora: Profª. Dra. Clarice Loguercio Leite Dissertação apresentada ao Programa de Pós- Graduação em Biologia Vegetal da Universidade Federal de Santa Catarina como requisito parcial para a obtenção do título de Mestre em Biologia Vegetal. Florianópolis 2005 ii Agradecimentos - À minha orientadora, Profª. Drª. Clarice Loguercio Leite, por me acolher e oportunizar tal trabalho, assim como por me mostrar a importância do sentido das palavras, inclusive da palavra “Orientar”. - A Claudia Groposo, minha fiel colega e grande amiga, por estar presente nos momentos mais importantes destes anos. - Aos professores da PPGBVE e colegas do mestrado, pelos ensinamentos e companheirismo. - Profª. Drª. Gislene Silva, do Departamento de Jornalismo da UFSC, pela disponibilização de tempo e bibliografia para confecção do projeto. - Prof. Dr. Luiz Antonio Paulino, Profª. Drª. Rosemy da Silva Nascimento, Profª. Drª. Ruth Emilia Nogueira Loch e seu orientado Dirceu de Menezes Machado, pelo auxílio na parte de SIG - Sistema de Informação Geográfica (geoprocessamento e cartografia). - Aos amigos do laboratório, Josué, Juliano, Lia e Larissa, pela ajuda em todos os momentos. - Em especial a minha família, pela confiança e coragem de apostar em mim, assim como compreensão, carinho e amor nos momentos importantes. - Também especialmente a minha noiva, Daniela Werner Ribeiro, pela cumplicidade do nosso amor e por me mostrar que as coisas mais importantes nem sempre estão no primeiro plano. - Por fim, ao fascinante mundo dos fungos.
    [Show full text]
  • An Overview of Aphyllophorales (Wood Rotting Fungi) from India
    Int.J.Curr.Microbiol.App.Sci (2013) 2(12): 112-139 ISSN: 2319-7706 Volume 2 Number 12 (2013) pp. 112-139 http://www.ijcmas.com Review Article An overview of Aphyllophorales (wood rotting fungi) from India Kiran Ramchandra Ranadive* Waghire College, Saswad, Tal-Purandar, Dist. Pune, Maharashtra (India) *Corresponding author A B S T R A C T K e y w o r d s During field and literature surveys, a rich mycobiota was observed in the vegetation of India. The heavy rainfall and high humidity favours the growth of Fungi; Aphyllophoraceous fungi. The present work materially adds to our knowledge of Aphyllophorales; Poroid and Non-Poroid Aphyllophorales from all over India. A total of more than Basidiomycetes; 190 genera of 52 families and total 1175 species of from poroid and non-poroid semi-evergreen Aphyllophorales fungi were reported from Indian literature till 2012.The checklist gives the total count of aphyllophoraceous fungal diversity from India which is also forest.. a valued addition for comparing aphyllophoraceous diversity in the world. Introduction Aphyllophorales order was proposed by in culture are recognized by Stalper. Rea, after Patouillard, for Basidiomycetes (Stalper,1978). having macroscopic basidiocarps in which the hymenophore is flattened Much of the literature of the order is based (Thelephoraceae), club-like on the traditional family groupings and as (Clavariaceae), tooth-like (Hydnaceae) or under the current re-arrangements, one has the hymenium lining tubes family may exhibit several different types (Polyporaceae) or some times on lamellae, of hymenophore (e.g. Gomphaceae has the poroid or lamellate hymenophores effuse, clavarioid, hydnoid and being tough and not fleshy as in the cantharelloid hymenophores).
    [Show full text]