Breakthrough: the Scanning Tunneling Microscope

Total Page:16

File Type:pdf, Size:1020Kb

Breakthrough: the Scanning Tunneling Microscope Breakthrough: The Scanning Tunneling Microscope In 1981, Gerd Binnig and Heinrich Rohrer at the IBM Zurich Research Laboratory in Switzerland developed a significantly superior tool for observing surfaces atom by atom: the scanning tunneling microscope (STM). (Binnig and Rohrer would share the 1986 Nobel Prize in Physics with Ernst Ruska, designer of the electron microscope.) Here’s the basic concept: The STM has a metal needle that scans a sample by moving back and forth over it, gathering information about the details of the surface. Imagine closing your eyes and running your finger along the top of a row of books—you could easily identify the changes in height. Now imagine replacing your finger with a needle that has a tip tapering down to a single atom, and you can understand how the tip can follow the smallest changes in the contours of a sample. 1 The needle doesn’t touch the sample, however, but stays about the width of two atoms above it. The STM takes advantage of what’s called the tunnel effect: If a voltage is applied to the tiny distance between the needle and the sample, electrons are able to tunnel, or jump, between the needle and the sample, creating an electric current. A computer receives the electrical signal and directs the needle to move up or down to keep the current constant—which keeps the distance between needle and sample constant. The path of the needle is recorded, and the computer can display that information as a grayscale image or topographical map. Scientists can add color to make the image easier to interpret. (See the Quantum Corral for more about creating images.) IBM in Xenon Atoms: In 1989, Eigler and Schweizer spelled “IBM” by positioning thirty-five xenon atoms on a nickel surface. The result is a visual way to learn about the sample—but it’s not a picture, in the traditional sense, of the atoms on the surface. For example, the atoms appear to have solid surfaces in STM images, but in reality they don’t. The nucleus of an atom is surrounded by electrons that are in constant motion. What appears to be a solid surface is actually a haze of electrons. The STM shows the positions of atoms—or more precisely, the positions of some of the electrons. It doesn’t show the atoms themselves. 2 .
Recommended publications
  • Famous Physicists Himansu Sekhar Fatesingh
    Fun Quiz FAMOUS PHYSICISTS HIMANSU SEKHAR FATESINGH 1. The first woman to 6. He first succeeded in receive the Nobel Prize in producing the nuclear physics was chain reaction. a. Maria G. Mayer a. Otto Hahn b. Irene Curie b. Fritz Strassmann c. Marie Curie c. Robert Oppenheimer d. Lise Meitner d. Enrico Fermi 2. Who first suggested electron 7. The credit for discovering shells around the nucleus? electron microscope is often a. Ernest Rutherford attributed to b. Neils Bohr a. H. Germer c. Erwin Schrödinger b. Ernst Ruska d. Wolfgang Pauli c. George P. Thomson d. Clinton J. Davisson 8. The wave theory of light was 3. He first measured negative first proposed by charge on an electron. a. Christiaan Huygens a. J. J. Thomson b. Isaac Newton b. Clinton Davisson c. Hermann Helmholtz c. Louis de Broglie d. Augustin Fresnel d. Robert A. Millikan 9. He was the first scientist 4. The existence of quarks was to find proof of Einstein’s first suggested by theory of relativity a. Max Planck a. Edwin Hubble b. Sheldon Glasgow b. George Gamow c. Murray Gell-Mann c. S. Chandrasekhar d. Albert Einstein d. Arthur Eddington 10. The credit for development of the cyclotron 5. The phenomenon of goes to: superconductivity was a. Carl Anderson b. Donald Glaser discovered by c. Ernest O. Lawrence d. Charles Wilson a. Heike Kamerlingh Onnes b. Alex Muller c. Brian D. Josephson 11. Who first proposed the use of absolute scale d. John Bardeen of Temperature? a. Anders Celsius b. Lord Kelvin c. Rudolf Clausius d.
    [Show full text]
  • Ernest Rutherford and the Accelerator: “A Million Volts in a Soapbox”
    Ernest Rutherford and the Accelerator: “A Million Volts in a Soapbox” AAPT 2011 Winter Meeting Jacksonville, FL January 10, 2011 H. Frederick Dylla American Institute of Physics Steven T. Corneliussen Jefferson Lab Outline • Rutherford's call for inventing accelerators ("million volts in a soap box") • Newton, Franklin and Jefferson: Notable prefiguring of Rutherford's call • Rutherfords's discovery: The atomic nucleus and a new experimental method (scattering) • A century of particle accelerators AAPT Winter Meeting January 10, 2011 Rutherford’s call for inventing accelerators 1911 – Rutherford discovered the atom’s nucleus • Revolutionized study of the submicroscopic realm • Established method of making inferences from particle scattering 1927 – Anniversary Address of the President of the Royal Society • Expressed a long-standing “ambition to have available for study a copious supply of atoms and electrons which have an individual energy far transcending that of the alpha and beta particles” available from natural sources so as to “open up an extraordinarily interesting field of investigation.” AAPT Winter Meeting January 10, 2011 Rutherford’s wish: “A million volts in a soapbox” Spurred the invention of the particle accelerator, leading to: • Rich fundamental understanding of matter • Rich understanding of astrophysical phenomena • Extraordinary range of particle-accelerator technologies and applications AAPT Winter Meeting January 10, 2011 From Newton, Jefferson & Franklin to Rutherford’s call for inventing accelerators Isaac Newton, 1717, foreseeing something like quarks and the nuclear strong force: “There are agents in Nature able to make the particles of bodies stick together by very strong attractions. And it is the business of Experimental Philosophy to find them out.
    [Show full text]
  • Twenty Five Hundred Years of Small Science What’S Next?
    Twenty Five Hundred Years of Small Science What’s Next? Lloyd Whitman Assistant Director for Nanotechnology White House Office of Science and Technology Policy Workshop on Integrated Nanosystems for Atomically Precise Manufacturing Berkeley, CA, August 5, 2015 Democritus (ca. 460 – 370 BC) Everything is composed of “atoms” Atomos (ἄτομος): that which can not be cut www.phil-fak.uni- duesseldorf.de/philo/galerie/antike/ demokrit.html Quantum Mechanics (1920s) Max Planck 1918* Albert Einstein 1921 Niels Bohr 1922 Louis de Broglie 1929 Max Born 1954 Paul Dirac 1933 On the Theory of Quanta Louis-Victor de Broglie Werner Heisenberg 1932 Wolfgang Pauli 1945 Erwin Schrödinger 1933 *Nobel Prizes in Physics https://tel.archives-ouvertes.fr/tel- 00006807 Ernst Ruska (1906 – 1988) Electron Microscopy Magnifying higher than the light microscope - 1933 Nobel Prize in Physics 1986 www.nobelprize.org/nobel_prizes/physics/laureates /1986/ruska-lecture.pdf Richard Feynman (1918-1988) There's Plenty of Room at the Bottom, An Invitation to Enter a New Field of Physics What would happen if we could arrange the atoms one by one the way we want them…? December 29, 1959 richard-feynman.net Heinrich Rohrer (1933 – 2013) Gerd Binnig Atomic resolution Scanning Tunneling Microscopy - 1981 1983 I could not stop looking at the images. It was like entering a new world. Gerd Binnig, Nobel lecture Binnig, et al., PRL 50, 120 (1983) Nobel Prize in Physics 1986 C60: Buckminsterfullerene Kroto, Heath, O‘Brien, Curl and September 1985 Smalley - 1985 …a remarkably stable cluster consisting of 60 carbon atoms…a truncated icosahedron. Nature 318, 162 (1985) http://www.acs.org/content/acs/en/education/whatis chemistry/landmarks/fullerenes.html Nobel Prize in Chemistry 1996 Curl, Kroto, and Smalley Positioning Single Atoms with a Scanning Tunnelling Microscope Eigler and Schweizer - 1990 …fabricate rudimentary structures of our own design, atom by atom.
    [Show full text]
  • ERNST RUSKA Max-Eyth-Strasse 20, D-1000 BERLIN 33
    THE DEVELOPMENT OF THE ELECTRON MICROSCOPE AND OF ELECTRON MICROSCOPY Nobel lecture, December 8, 1986 by ERNST RUSKA Max-Eyth-Strasse 20, D-1000 BERLIN 33 A. Parents’ house, family A month ago, the Nobel Foundation sent me its yearbook of 1985. From it I learnt that many Nobel lectures are downright scientific lectures, interspersed with curves, synoptic tables and quotations. I am somewhat reluctant to give here such a lecture on something that can be looked up in any modern schoolbook on physics. I will therefore not so much report here on physical and technical details and their connections but rather on the human experiences - some joyful events and many disappointments which had not been spared me and my colleagues on our way to the final breakthrough. This is not meant to be a complaint though; I rather feel that such experiences of scientists in quest of new approaches are absolutely understandable, or even normal. In such a representation I must, of course, consider the influence of my environment, in particular of my family. There have already been some scien- tists in my family: My father, Julius Ruska, was a historian of sciences in Heidelberg and Berlin; my uncle, Max Wolf, astronomer in Heidelberg; his assistant, a former pupil of my father and my godfather, August Kopff, Direc- tor of the Institute for astronomical calculation of the former Friedrich-Wil- helm University in Berlin. A cousin of my mother, Alfred Hoche, was Professor for Psychiatry in Freiburg/Breisgau; my grandfather from my mother’s side, Adalbert Merx, theologian in and Heidelberg.
    [Show full text]
  • The Story of the Invention of the Scanning Tunnelling Microscope (STM)
    ANNALS OF SCIENCE, Vol. 65, No. 1, January 2008, 101Á125 Searching for Asses, Finding a Kingdom: The Story of the Invention of the Scanning Tunnelling Microscope (STM) GALINA GRANEK and GIORA HON Department of Philosophy, University of Haifa, Haifa 31905, Israel. Email: [email protected]; [email protected] Received 25 October 2006. Revised paper accepted 17 May 2007 Summary We offer a novel historical-philosophical framework for discussing experimental practice which we call ‘Generating Experimental Knowledge’. It combines three different perspectives: experimental systems, concept formation, and the pivotal role of error. We then present an historical account of the invention of the Scanning Tunnelling Microscope (STM), or Raster-Tunnelmikroskop,and interpret it within the proposed framework. We show that at the outset of the STM project, Binnig and Rohrer*the inventors of the machine*filed two patent disclosures; the first is dated 22 December 1978 (Switzerland), and the second, two years later, 12 September 1980 (US). By studying closely these patent disclosures, the attempts to realize them, and the subsequent development of the machine, we present, within the framework of generating experimental knowledge, a new account of the invention of the STM. While the realization of the STM was still a long way off, the patent disclosures served as blueprints, marking the changes that had to be introduced on the way from the initial idea to its realization. Contents 1. Introduction: accounts of the invention of STM ..................102 2. A novel methodological framework: ‘Generating Experimental Knowledge’ . .........................................104 3. A new account: the three phases .............................106 3.1 Phase one: the blueprint*patent disclosures of STM.
    [Show full text]
  • Discovery of the Cell and Mitosis
    Discovery of the Cell and Mitosis While some scientists argued over spontaneous generation, others were using the first microscopes to examine and describe cells. The discovery of cells was only possible after the compound microscope was invented by a Dutch lens maker, Zacharias Janssen, in 1590. English physicist Robert Hooke first described cells in 1665. He made thin slices of cork (a type of tree) and observed many small boxes that reminded him of cells (small rooms) in a monastery. So, he called what he saw under the microscope “cells”. Because the cork was already dead and dried, the cells were empty. At the time Hooke thought they had only contained water when the cork was alive. In 1670, Antony van Leeuwenhoek, built a simple microscope that would magnify at 250x. He was the first person to observe bacteria and protozoa. He studied Protists, plant cells, various types of algae, and was the first person to view bacteria, which he termed "animalcules". Leeuwenhoek discovered these bacteria while viewing scrapings from his teeth and the teeth of others. He also discovered blood cells and was the first to see living sperm cells in animals. For the next 150 years, numerous scientists used both the simple and compound microscopes to look at many types of living and non-living materials. Barthelemy Dumortier was a botanist who was the first scientist to observe reproduction by cell division in plants. In 1832, he published his findings and called the process he saw “binary fission”. In 1838, Matthias Schleiden, a German botanist, concluded that all plant tissues are composed of cells and that an embryonic plant arose from a single cell.
    [Show full text]
  • The First Awarding of the Heinrich Rohrer Medals
    The First Awarding of The Heinrich Rohrer Medals June 2014, The Surface Science Society of Japan Masaharu Oshima, President It is our great pleasure to announce the winners of the first awarding of The Heinrich Rohrer Medals. The Medal has been established after the name of Late Dr. Heinrich Rohrer, one of the Laureates of Nobel Prize in Physics in 1986, for recognizing researchers who have made the world-top level achievements in the fields of nanoscience and nanotechnology. The Heinrich Rohrer Medal –Grand Medal– - Roland Wiesendanger (born in 1961) Professor in University of Hamburg, Germany "For his pioneering and ground-breaking achievements on spin-resolved scanning tunneling microscopy and spectroscopy, bringing about very deep insights in spin-related properties of materials at atomic scale" The Heinrich Rohrer Medal –Rising Medal– - Yoshiaki Sugimoto (born in 1978) Associate Professor in Osaka University, Japan "For his outstanding contributions to manipulation and chemical identification of individual atoms using atomic force microscopy" The Heinrich Rohrer Medal –Rising Medal– - Jan Hugo Dil (born in 1977) SNSF Professor in Ecole Polytechnique Fédérale de Lausanne, Switzerland "For his leading and creative roles in identifying novel spin structures using synchrotron radiation-based spin- and angle-resolved photoemission spectroscopy" Award Committee Members - Masaru Tsukada (Tohoku University, Japan, Committee Chair,) - Heike E. Riel (IBM Zurich, Switzerland) - Wolf-Dieter Schneider (EPFL, Switzerland) - Patrick Soukiassian (University of Paris-Sud/Orsay, France) - Flemming Besenbacher (Aarhus University, Denmark) - Michel A. Van Hove (Hong Kong Baptist University, Hong Kong), - Matthias Scheffler (Fritz Haber Institute, Germany) - Kunio Takayanagi (Tokyo Institute of Technology, Japan) Award Ceremony The award ceremony will be held at The 7th International Symposium on Surface Science, ISSS-7 (http://www.sssj.org/isss7/), on 2-6 November, 2014, at Kunibiki Messe, Shimane, Japan, which is organized by The Surface Science Society of Japan.
    [Show full text]
  • INMUNOTERAPIA CONTRA EL CÁNCER ESPECIAL Inmunoterapia Contra El Cáncer
    ESPECIAL INMUNOTERAPIA CONTRA EL CÁNCER ESPECIAL Inmunoterapia contra el cáncer CONTENIDO Una selección de nuestros mejores artículos sobre las distintas estrategias de inmunoterapia contra el cáncer. Las defensas contra el cáncer El científico paciente Karen Weintraub Katherine Harmon Investigación y Ciencia, junio 2016 Investigación y Ciencia, octubre 2012 Desactivar el cáncer Un interruptor Jedd D. Wolchok Investigación y Ciencia, julio 2014 para la terapia génica Jim Kozubek Investigación y Ciencia, mayo 2016 Una nueva arma contra el cáncer Viroterapia contra el cáncer Avery D. Posey Jr., Carl H. June y Bruce L. Levine Douglas J. Mahoney, David F. Stojdl y Gordon Laird Investigación y Ciencia, mayo 2017 Investigación y Ciencia, enero 2015 Vacunas contra el cáncer Inmunoterapia contra el cáncer Eric Von Hofe Lloyd J. Old Investigación y Ciencia, diciembre 2011 Investigación y Ciencia, noviembre 1996 EDITA Prensa Científica, S.A. Muntaner, 339 pral. 1a, 08021 Barcelona (España) [email protected] www.investigacionyciencia.es Copyright © Prensa Científica, S.A. y Scientific American, una división de Nature America, Inc. ESPECIAL n.o 36 ISSN: 2385-5657 En portada: iStock/royaltystockphoto | Imagen superior: iStock/man_at_mouse Takaaki Kajita Angus Deaton Paul Modrich Arthur B. McDonald Shuji Nakamura May-Britt Moser Edvard I. Moser Michael Levitt James E. Rothman Martin KarplusMÁS David DE J. 100 Wineland PREMIOS Serge Haroche NÓBEL J. B. Gurdon Adam G.han Riess explicado André K. Geim sus hallazgos Carol W. Greider en Jack W. Szostak E. H. Blackburn W. S. Boyle Yoichiro Nambu Luc MontagnierInvestigación Mario R. Capecchi y Ciencia Eric Maskin Roger D. Kornberg John Hall Theodor W.
    [Show full text]
  • Heinrich Rohrer (1933–2013) Co-Inventor of the Scanning Tunnelling Microscope
    COMMENT OBITUARY Heinrich Rohrer (1933–2013) Co-inventor of the scanning tunnelling microscope. einrich Rohrer, Heini to those who contemplate a new device. By 1981, the eventually verified by other groups and knew him, helped to open the door pair had designed the world’s first scanning presented at a workshop on the STM in the to nanotechnology. With Gerd tunnelling microscope (STM). Austrian Alps in 1985. Devices such as the HBinnig, he produced a device that allowed Unlike conventional microscopes, the atomic force microscope (AFM) — a very researchers to image and measure atoms STM did not use lenses. Instead, a probe high resolution type of scanning microscope and molecules, and to manipulate them. sharpened to a single atom at the tip was that measures the atomic forces between the Rohrer, who died on 16 May, tip of a probe and the surface being three weeks before his 80th scanned — have their roots in this birthday, was born in 1933, half meeting. During the last night of an hour after his twin sister. He the workshop, the mountains were grew up in the village of Buchs in abuzz with crazy ideas about how eastern Switzerland. Rohrer stud- such microscopes might be used ied physics at the Swiss Federal in applications in all sorts of fields, Institute of Technology (ETH) from fundamental physics and — ZURICH IBM RESEARCH in Zurich, where he remained to chemistry to information tech- pursue a PhD. It was during his nology, quantum computing and PhD years that he first came into molecular electronics, as well as in contact with the nanometre scale, the life sciences.
    [Show full text]
  • Super Resolution Light Microscopy
    Super Resolution Light Microscopy Wladimir Schaufler Nobel Prizes for Microscopy Developments Richard Zsigmondy invented the ultramicroscope. Nobel Price 1925 Frits Zernike invented the phase-contrast microscope. Nobel Price 1953 Maria Goeppert-Mayer described the two-photon excitation fluorescence. Nobel Price 1963 Ernst Ruska build the first electron microscope. Nobel Price 1986 Gerd Binnig designed the scanning tunneling microscope (STM). Nobel Price 1986 Nobel Prizes for using Microscopy as a Primary Scientific Instrument More than 10 Nobel Prizes, especially in the last 10 years including Harald zur Hausen, Nobel Prize for Physiology or Medicine, 2008 (1983 to 2003 DKFZ chairman). 11/20/2013 | Page 2 Wladimir Schaufler Super Resolution Light Microscopy Scale Issue 11/20/2013 | Page 3 Wladimir Schaufler Super Resolution Light Microscopy Optical Resolution (lateral) for Light Microscopy: Abbe Limit Numerical Aperture = n ·sin α Today best available objective: NA = 1.49 Source: Olympus Source: Abbe School of Photonics, Jena d 0,34 21,49 λ(Red Light) = 600nm ~210 nm Resolution Limit 11/20/2013 | Page 4 Wladimir Schaufler Super Resolution Light Microscopy Spatial Resolution of Biological Imaging Techniques http://zeiss-campus.magnet.fsu.edu/articles/superresolution/palm/practicalaspects.html 11/20/2013 | Page 5 Wladimir Schaufler Super Resolution Light Microscopy Localization Microscopy 11/20/2013 | Page 6 Wladimir Schaufler Super Resolution Light Microscopy Significantly Simplified Optical Setup for Localization Microscopy High Laser Power Density in Sample UV 405nm Blue 491nm Green 561nm Red 642nm DKFZ Super Resolution Laboratory (was established by W. Schaufler) at Central Microscopy Facility (Head: Dr. Felix Bestvater) 11/20/2013 | Page 7 Wladimir Schaufler Super Resolution Light Microscopy Localization Microscopy (SPDM) (developed and patented in the Prof.
    [Show full text]
  • K. Alex Müller Nobel Prize in Physics 1987
    K. Alex Müller Nobel Prize in Physics 1987 is convinced that he at last has a water- no one took him seriously. “Exactly tight explanation for the phenomenon that motivated me. I wanted to swim that he and J. Georg Bednorz discovered against the current.” 28 years ago: High-temperature super- He says that he owes his persistence conductivity in copper oxides. This and his desire to think outside the box should bring a decades-long dispute to his childhood, which was not easy, to a happy end, at least from Müller’s as Müller explains. The son of a sales- perspective. With his explanation, how- man and grandson of a chocolate man- ever, Müller has launched a new debate ufacturer, Karl Alex spent part of his on the distribution of matter in the uni- childhood in Lugano. After the early verse. But more of that later. death of his mother, when he was just Erice, Sicily, summer 1983: K. Alex eleven, he went to boarding school in Müller is sitting on a bench in the cas- Schiers. Holidays were spent with his Nobel Prize in Physics 1987 “for the tle grounds and enjoying the view. As pioneering discovery of super- he gazes into the distance, his mind K. Alex Müller was 56 when conductivity in ceramic materials” buzzes with ideas. He had just listened he decided to take on a new to a lecture by Harry Thomas which * 20 April 1927 in Basel challenge – researching dealt with the possible existence of superconductors. 1962–1970 Privatdozent Jahn-Teller polarons – “quasi-parti- 1970–1987 Adjunct Professor cles” that occur when electrons move 1987–1994 Professor of Solid-State Physics through a crystal lattice.
    [Show full text]
  • Vacuum Science & Technology Timeline
    1972 – 1975 First oil-free piston Johan K. Fremerey vacuum pump Spinning rotor John L. Farrant vacuum gauge 1974 1972 Low-Pressure Chemical Vapor Deposition of Silicon Dioxide from Tetraethoxysilane Dan L. Burt, Richard F. Taraci and John E. Zavion U.S. Patent 3934060 (1976), filed 1973 Altair 8800 Computer 1975 Structure Zone Model for sputter-deposited films John A. Thornton 1974 R. C. Merrill G.J. Egan, B.W. Paszek and A.J. Aronson Roll coater for deposition on Ferrofluidic™ rotary shaft seal plastic film Reactive ion etching Ferrofluidics Corp. 1972 Horuhiko Abe, Japan Steven Yoneo Muto 1974 Plasma etching of semiconductors U.S. Patent 3971684 (1976) U.S. Patent 3880684 (1975) filed 1973 filed 1973 Kalrez ® perfluorocarbon elastomers E. I. du Pont de Nemours & Co. c. 1975 Last Apollo Mission Cryo-pumps for The Earth in the vacuum Space Simulation and of space – from Apollo-17 semiconductor fabrication (NASA - 1972) John S. Chapin 1975 Planar magnetron sputter Low-Pressure Chemical Deposition deposition source Special Report: Vacuum of Polysilicon U.S. Patent 4166018 (1979 ) Zenith shuts down Physics Today Jerry L. Kruma and Paul G. Hilton filed 1974 Lansdale, PA unit August 1972 U.S. Patent 3900597 (1975) 1975 filed 1973 1972 1975 Vacuum Science & Technology Timeline Kai Manne Börje Siegbahn Nicolaas Bloembergen Ernst August Friedrich Ruska 1976 – 1989 (1919–1981) and Arthur L. Schawlow (1906-1988) Nobel Prize in Physics Nobel Prize in Physics Nobel Prize for transmission for high resolution for laser spectroscopy electron microscope electron spectroscopy 1981 1981 1986 Wolfgang Paul Gerd Binnig and Heinrich Rohrer Nobel Prize in Physics Nobel Prize in Physics for for Paul Trap for scanning tunneling microscopy Intel 8086 charged particles 1986 Viking I and II 16-bit microprocessor.
    [Show full text]