The Coleopteran Fauna of Sultan Creek-Molas Lake Area with Special Emphasis on Carabidae and How the Geological Bedrock Influenc

Total Page:16

File Type:pdf, Size:1020Kb

The Coleopteran Fauna of Sultan Creek-Molas Lake Area with Special Emphasis on Carabidae and How the Geological Bedrock Influenc THE COLEOPTERAN FAUNA OF SULTAN CREEK-MOLAS LAKE AREA WITH SPECIAL EMPHASIS ON CARABIDAE AND HOW THE GEOLOGICAL BEDROCK INFLUENCES BIODIVERSITY AND COMMUNITY STRUCTURE IN THE SAN JUAN MOUNTAINS, SAN JUAN COUNTY, COLORADO Melanie L. Bergolc A Dissertation Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY August 2009 Committee: Daniel Pavuk, Advisor Kurt Panter Graduate Faculty Representative Jeff Holland Rex Lowe Moira van Staaden © 2009 Melanie L. Bergolc All Rights Reserved iii ABSTRACT Daniel Pavuk, Advisor Few studies have been performed on coleopteran (beetle) biodiversity in mountain ecosystems and relating them to multiple environmental factors. None of the studies have examined geologic influences on beetle communities. Little coleopteran research has been performed in the Colorado Rocky Mountains. The main objectives of this study were to catalog the coleopteran fauna of a subalpine meadow in the San Juan Mountains of Colorado and investigate the role geology had in the community structure of the Carabidae (ground beetles). The study site, a 160,000 m2 plot, was located near Sultan Creek and Molas Lake in San Juan County, Colorado. Five sites were in each bedrock formation: Molas, Elbert, and Ouray-Leadville. Insects were collected via pitfall trapping in 2006 and 2007, and identified by comparison with museum specimens, museum and insect identification websites, and by taxonomic experts. Biological and physical factors were recorded for each site: detritus cover and weight, plant cover and height, plant species richness, aspect, elevation, slope, soil temperature, pH, moisture, and compressive strength, and sediment size distribution. Quantitative analyses were performed on the Carabidae community and its relationship to bedrock formations and environmental factors measured, and on the entire coleopteran abundance and its relationship to the environmental factors. I sampled 7,316 coleopteran individuals in 27 families and nearly 100 species (61 completely identified). Coleopteran abundance was influenced by plant cover, plant height, soil moisture, aspect, slope, collection site, and week collecting took place. A total of 1,236 carabid individuals representing 30 species were collected. Elevation, detritus cover, and soil temperature were significantly distinct iv between formations. Species richness and abundance of several species (Agonum placidum, Bembidion mutatum, Carabus taedatus, Cymindis cribricollis, Harpalus animosus, and Harpalus laticeps) differed significantly between formations, but overall there were no distinct carabid communities associated with the three formations. Carabid species richness, abundance, and biodiversity were significantly influenced by plant factors, and frequency was significantly influenced by sediment sorting. The carabid species composition was influenced (not significantly) by compressive strength, pH, plant cover, soil moisture, slope, and aspect. In conclusion, geology had less of an effect on carabidae then other environmental factors. v ACKNOWLEDGMENTS This project was partially funded by The Explorers Club Exploration Fund (2006; $1,149), Mountain Studies Institute and their Mini-Grant Program (2006; $500 and 2008; $1,000), Geological Society of America Student Research Grant (2007; $2,800), Bowling Green State University Graduate College’s Katzner Award (2008; $960), and Bowling Green State University Biological Sciences Department’s Oman Graduate Scholarship (2008; $750). Permits were provided by the San Juan National Forest (2006 and 2007) to allow me to trap insects at the Molas Lake region in San Juan County, Colorado. I would like to thank the following people for field and lab assistance: Candace Brendler, Minna Swanson-Theisen, Mike Carey, Matt Territ, and Imtiaz Rangwala. Joanna Lemly and Kerry Cutler identified several of my plant species. The following people helped identify my beetles: Daniel Duran (Cicindelidae; Ph.D. student currently at Vanderbilt University), Bill Warner (Scarabaeidae; Farnam Companies, INC), Dan Pavuk (Michigan State University-The Ohio State University Extension), Donald E. Bright (Curculionidae and Scolytidae; Colorado State University), Boris Kondratieff (Colorado State University), Virginia Scott (The University of Colorado), Shawn M. Clark (Chrysomelidae and several uncommon families; Brigham Young University), Paul J. Johnson (Byrrhidae; South Dakota State University), Stewart Peck (Leiodidae; Carleton University, Canada), Sam Wells (Elateridae; Bayer CropScience LP, Fresno, CA), Bob Davidson (Carabidae; Carnegie Museum of Natural History), and Foster Purrington (Carabidae; The Ohio State University). I would like to thank Boris Kondratieff for access to the Colorado State University’s Entomology Collections and Virginia Scott for access to the University of Colorado’s Entomology Collections, and for allowing me to work in the collections to identify my beetle specimens. Peg Yacobucci and Jeff Holland vi helped with a few of the statistical tests, CCA and ANISOM, respectively. Helen Michaels lab allowed me to use their oven to dry my detritus samples. I’d also like to thank the Department of Geology at Bowling Green State University (geological maps, access to Sedimentary Lab for sieving my soils, and borrowing a Brunton compass), The Mountain Studies Institute (low cost lodging and lab space), my good friends in Silverton (especially Mike Geryak), and my Mayflower Mill (Jim Cole and Bob Boeder) and Avon Hotel buddies (too many to list here). Finally, I would especially like to thank my advisor Dan Pavuk for all his encouragement, advice, and friendship, and allowing me to create my very own interdisciplinary project to combine my love of geology and ecology. vii TABLE OF CONTENTS Page INTRODUCTION ................................................................................................................. 1 CHAPTER I. The Influence of Geology on the Environmental Factors Related to Carabidae Distribution………….. .......................................................................................................... 18 Introduction…………. ............................................................................................... 18 Materials and Methods ............................................................................................... 19 Results………. ........................................................................................................... 23 Discussion……. ......................................................................................................... 25 Conclusion…………… ............................................................................................. 30 References….. ............................................................................................................ 32 Tables and Figures….. ............................................................................................... 39 CHAPTER II. The Impact of Bedrock Formations on Carabidae (Coleoptera) Community Structure ….………….. ......................................................................................................... 53 Introduction…………. ............................................................................................... 53 Materials and Methods ............................................................................................... 54 Results………. ........................................................................................................... 59 Discussion……. ......................................................................................................... 62 Conclusion…………… ............................................................................................. 66 References….. ............................................................................................................ 67 Tables and Figures….. ............................................................................................... 75 CHAPTER III. Influences of Environmental Factors on a Carabidae Community in a Subalpine Meadow ..……………........................................................................................................... 91 viii Introduction…………. ............................................................................................... 91 Materials and Methods ............................................................................................... 92 Results………. ........................................................................................................... 95 Discussion……. ......................................................................................................... 97 Conclusion…………… ............................................................................................. 100 References….. ............................................................................................................ 101 Tables and Figures….. ............................................................................................... 106 CHAPTER IV. Coleopteran Biodiversity within the Sultan Creek-Molas Lake Study Area in the San Juan Mountains, San Juan County, Colorado ………….. .............................................. 120 Introduction…………. ............................................................................................... 120 Materials and Methods ..............................................................................................
Recommended publications
  • Checklist of the Coleoptera of New Brunswick, Canada
    A peer-reviewed open-access journal ZooKeys 573: 387–512 (2016)Checklist of the Coleoptera of New Brunswick, Canada 387 doi: 10.3897/zookeys.573.8022 CHECKLIST http://zookeys.pensoft.net Launched to accelerate biodiversity research Checklist of the Coleoptera of New Brunswick, Canada Reginald P. Webster1 1 24 Mill Stream Drive, Charters Settlement, NB, Canada E3C 1X1 Corresponding author: Reginald P. Webster ([email protected]) Academic editor: P. Bouchard | Received 3 February 2016 | Accepted 29 February 2016 | Published 24 March 2016 http://zoobank.org/34473062-17C2-4122-8109-3F4D47BB5699 Citation: Webster RP (2016) Checklist of the Coleoptera of New Brunswick, Canada. In: Webster RP, Bouchard P, Klimaszewski J (Eds) The Coleoptera of New Brunswick and Canada: providing baseline biodiversity and natural history data. ZooKeys 573: 387–512. doi: 10.3897/zookeys.573.8022 Abstract All 3,062 species of Coleoptera from 92 families known to occur in New Brunswick, Canada, are re- corded, along with their author(s) and year of publication using the most recent classification framework. Adventive and Holarctic species are indicated. There are 366 adventive species in the province, 12.0% of the total fauna. Keywords Checklist, Coleoptera, New Brunswick, Canada Introduction The first checklist of the beetles of Canada by Bousquet (1991) listed 1,365 species from the province of New Brunswick, Canada. Since that publication, many species have been added to the faunal list of the province, primarily from increased collection efforts and
    [Show full text]
  • Coleoptera: Carabidae) Assemblages in a North American Sub-Boreal Forest
    Forest Ecology and Management 256 (2008) 1104–1123 Contents lists available at ScienceDirect Forest Ecology and Management journal homepage: www.elsevier.com/locate/foreco Catastrophic windstorm and fuel-reduction treatments alter ground beetle (Coleoptera: Carabidae) assemblages in a North American sub-boreal forest Kamal J.K. Gandhi a,b,1, Daniel W. Gilmore b,2, Steven A. Katovich c, William J. Mattson d, John C. Zasada e,3, Steven J. Seybold a,b,* a Department of Entomology, 219 Hodson Hall, 1980 Folwell Avenue, University of Minnesota, St. Paul, MN 55108, USA b Department of Forest Resources, 115 Green Hall, University of Minnesota, St. Paul, MN 55108, USA c USDA Forest Service, State and Private Forestry, 1992 Folwell Avenue, St. Paul, MN 55108, USA d USDA Forest Service, Northern Research Station, Forestry Sciences Laboratory, 5985 Hwy K, Rhinelander, WI 54501, USA e USDA Forest Service, Northern Research Station, 1831 Hwy 169E, Grand Rapids, MN 55744, USA ARTICLE INFO ABSTRACT Article history: We studied the short-term effects of a catastrophic windstorm and subsequent salvage-logging and Received 9 September 2007 prescribed-burning fuel-reduction treatments on ground beetle (Coleoptera: Carabidae) assemblages in a Received in revised form 8 June 2008 sub-borealforestinnortheasternMinnesota,USA. During2000–2003, 29,873groundbeetlesrepresentedby Accepted 9 June 2008 71 species were caught in unbaited and baited pitfall traps in aspen/birch/conifer (ABC) and jack pine (JP) cover types. At the family level, both land-area treatment and cover type had significant effects on ground Keywords: beetle trap catches, but there were no effects of pinenes and ethanol as baits.
    [Show full text]
  • Newsletter of the Biological Survey of Canada
    Newsletter of the Biological Survey of Canada Vol. 40(1) Summer 2021 The Newsletter of the BSC is published twice a year by the In this issue Biological Survey of Canada, an incorporated not-for-profit From the editor’s desk............2 group devoted to promoting biodiversity science in Canada. Membership..........................3 President’s report...................4 BSC Facebook & Twitter...........5 Reminder: 2021 AGM Contributing to the BSC The Annual General Meeting will be held on June 23, 2021 Newsletter............................5 Reminder: 2021 AGM..............6 Request for specimens: ........6 Feature Articles: Student Corner 1. City Nature Challenge Bioblitz Shawn Abraham: New Student 2021-The view from 53.5 °N, Liaison for the BSC..........................7 by Greg Pohl......................14 Mayflies (mainlyHexagenia sp., Ephemeroptera: Ephemeridae): an 2. Arthropod Survey at Fort Ellice, MB important food source for adult by Robert E. Wrigley & colleagues walleye in NW Ontario lakes, by A. ................................................18 Ricker-Held & D.Beresford................8 Project Updates New book on Staphylinids published Student Corner by J. Klimaszewski & colleagues......11 New Student Liaison: Assessment of Chironomidae (Dip- Shawn Abraham .............................7 tera) of Far Northern Ontario by A. Namayandeh & D. Beresford.......11 Mayflies (mainlyHexagenia sp., Ephemerop- New Project tera: Ephemeridae): an important food source Help GloWorm document the distribu- for adult walleye in NW Ontario lakes, tion & status of native earthworms in by A. Ricker-Held & D.Beresford................8 Canada, by H.Proctor & colleagues...12 Feature Articles 1. City Nature Challenge Bioblitz Tales from the Field: Take me to the River, by Todd Lawton ............................26 2021-The view from 53.5 °N, by Greg Pohl..............................14 2.
    [Show full text]
  • Historical Range of Variability and Current Landscape Condition Analysis: South Central Highlands Section, Southwestern Colorado & Northwestern New Mexico
    Historical Range of Variability and Current Landscape Condition Analysis: South Central Highlands Section, Southwestern Colorado & Northwestern New Mexico William H. Romme, M. Lisa Floyd, David Hanna with contributions by Elisabeth J. Bartlett, Michele Crist, Dan Green, Henri D. Grissino-Mayer, J. Page Lindsey, Kevin McGarigal, & Jeffery S.Redders Produced by the Colorado Forest Restoration Institute at Colorado State University, and Region 2 of the U.S. Forest Service May 12, 2009 Table of Contents EXECUTIVE SUMMARY … p 5 AUTHORS’ AFFILIATIONS … p 16 ACKNOWLEDGEMENTS … p 16 CHAPTER I. INTRODUCTION A. Objectives and Organization of This Report … p 17 B. Overview of Physical Geography and Vegetation … p 19 C. Climate Variability in Space and Time … p 21 1. Geographic Patterns in Climate 2. Long-Term Variability in Climate D. Reference Conditions: Concept and Application … p 25 1. Historical Range of Variability (HRV) Concept 2. The Reference Period for this Analysis 3. Human Residents and Influences during the Reference Period E. Overview of Integrated Ecosystem Management … p 30 F. Literature Cited … p 34 CHAPTER II. PONDEROSA PINE FORESTS A. Vegetation Structure and Composition … p 39 B. Reference Conditions … p 40 1. Reference Period Fire Regimes 2. Other agents of disturbance 3. Pre-1870 stand structures C. Legacies of Euro-American Settlement and Current Conditions … p 67 1. Logging (“High-Grading”) in the Late 1800s and Early 1900s 2. Excessive Livestock Grazing in the Late 1800s and Early 1900s 3. Fire Exclusion Since the Late 1800s 4. Interactions: Logging, Grazing, Fire, Climate, and the Forests of Today D. Summary … p 83 E. Literature Cited … p 84 CHAPTER III.
    [Show full text]
  • Boreal Ground-Beetle (Coleoptera: Carabidae) Assemblages of the Mainland and Islands in Lac La Ronge, Saskatchewan, Canada
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/316781970 Boreal ground-beetle (Coleoptera: Carabidae) assemblages of the mainland and islands in Lac la Ronge, Saskatchewan, Canada Article in The Canadian Entomologist · May 2017 DOI: 10.4039/tce.2017.12 CITATIONS READS 2 164 4 authors, including: Aaron J. Bell Iain David Phillips University of Saskatchewan Saskatchewan Water Security Agency 18 PUBLICATIONS 23 CITATIONS 57 PUBLICATIONS 333 CITATIONS SEE PROFILE SEE PROFILE Scott Nielsen University of Alberta 188 PUBLICATIONS 6,015 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Grizzly bear response to disturbance View project Grizzly bear population dynamics in a changing world View project All content following this page was uploaded by Aaron J. Bell on 07 November 2017. The user has requested enhancement of the downloaded file. 1 Boreal ground-beetle (Coleoptera: Carabidae) assemblages of the mainland and islands in Lac la Ronge, Saskatchewan, Canada Aaron J. Bell,1 Iain D. Phillips, Scott E. Nielsen, John R. Spence Abstract—We tested the applicability of the “passive sampling” hypothesis and theory of island biogeography (TIB) for explaining the diversity of forest-dwelling carabid assemblages (Carabidae: Coleoptera) on 30 forested islands (0.2–980.7 ha) in Lac la Ronge and the adjacent mainland in Saskatchewan, Canada. Species richness per unit area increased with distance to mainland with diversity being highest on the most isolated islands. We detected neither a positive species-area relationship, nor significant differences in species richness among island size classes, or between islands and the mainland.
    [Show full text]
  • Our Treasured San Juan Skyway Turns 25
    Our Treasured San Juan Skyway Turns 25 ~~~ Ideas & Opportunities for the Future December 2014 Table of Contents Topic Page(s) Background 3 History, Successes and Past Collaboration 4-6 Public Engagement 6-8 Needs, Issues, Ideas for Action, and Opportunities 8-15 -Scenery and Visual Resources Management 8 -Preservation of Cultural and Historic Resources 9 -Infrastructure Improvements and Safety 10 -Opportunities for Joint Marketing and Promotion 12 -Way-Showing, Signage and Interpretation 14 -Other Comments and Ideas 15 Where to go from here? 16-18 Attachments A Sample Meeting Agenda B Meeting Notes from Mancos, Ridgway and Durango Meetings C Goals and “Take Aways” from the 2/26/13 Meeting in Ridgway for the San Juan Skyway Hosted by the Colorado Scenic and Historic Byways Program D Executive Summary of “A Framework for Way-Showing” – San Juan Skyway, June 2013 Accompanying this report is a progress report towards completion of projects identified in the San Juan Skyway Corridor Management Plan, completed in the mid-1990s. 1 | Page This report is being released by the San Juan Public Lands (USFS) and Montezuma Land Conservancy. These two organizations are currently serving as interim contacts for Skyway planning. The author is Marsha Porter-Norton, a regional consultant, who was hired to engage the communities along the Skyway at its 25th anniversary. This report follows and accompanies several plans that were done in the 1990s and 2000s related to the San Juan Skyway. Thanks go out to the Colorado Scenic and Historic Byways Program and to all the stakeholders and participants who gave input and time.
    [Show full text]
  • Relative and Seasonal Abundance of Beneficial Arthropods in Centipedegrass As Influenced by Management Practices
    HORTICULTURAL ENTOMOLOGY Relative and Seasonal Abundance of Beneficial Arthropods in Centipedegrass as Influenced by Management Practices S. KRISTINE BRAMAN AND ANDREW F. PENDLEY Department of Entomology, University of Georgia, College of Agriculture Experiment Stations, Georgia Station, Griffin, GA 30223 J. Econ. Entomol. 86(2): 494-504 (1993) ABSTRACT Pitfall traps were used to monitor the seasonal activity of arthropod preda­ tors, parasitoids, and decomposers in replicated plots of centipedegrass turf for 3 yr (1989-1991) at two locations. During 1990 and 1991, the influence of single or combined herbicide, insecticide, and fertilizer applications on these beneficials was assessed. In total, 21 species of carabids in 13 genera and 17 species of staphylinids in 14 genera were represented in pitfall-trap collections. Nonsminthurid collembolans, ants, spiders, and parasitic Hymenoptera were adversely affected in the short term by insecticide applica­ tions targeting the twolined spittlebug, Prosapia bicincta (Say). Other taxa, notably orib­ atid Acari, increased over time in response to pesticide or fertilizer applications. Although various taxa were reduced by pesticide application during three of four sample intervals, a lack ofoverall differences in season totals suggests that the disruptive influence ofcertain chemical management practices may be less severe than expected in the landscape. KEY WORDS Arthropoda, centipedegrass, nontarget effects CENTIPEDEGRASS, Eremochloa ophiuroides Potter 1983, Arnold & Potter 1987, Potter et al. (Munro) Hack, a native of China and Southeast 1990b, Vavrek & Niemczyk 1990). Asia introduced into the United States in 1916, Studies characterizing the beneficial arthropod has become widely grown from South Carolina community and assessing effects of management to Florida and westward along the Gulf Coast practices on those invertebrates are especially states to Texas (DubIe 1989).
    [Show full text]
  • Coleoptera: Carabidae) Diversity
    VEGETATIVE COMMUNITIES AS INDICATORS OF GROUND BEETLE (COLEOPTERA: CARABIDAE) DIVERSITY BY ALAN D. YANAHAN THESIS Submitted in partial fulfillment of the requirements for the degree of Master of Science in Entomology in the Graduate College of the University of Illinois at Urbana-Champaign, 2013 Urbana, Illinois Master’s Committee: Dr. Steven J. Taylor, Chair, Director of Research Adjunct Assistant Professor Sam W. Heads Associate Professor Andrew V. Suarez ABSTRACT Formally assessing biodiversity can be a daunting if not impossible task. Subsequently, specific taxa are often chosen as indicators of patterns of diversity as a whole. Mapping the locations of indicator taxa can inform conservation planning by identifying land units for management strategies. For this approach to be successful, though, land units must be effective spatial representations of the species assemblages present on the landscape. In this study, I determined whether land units classified by vegetative communities predicted the community structure of a diverse group of invertebrates—the ground beetles (Coleoptera: Carabidae). Specifically, that (1) land units of the same classification contained similar carabid species assemblages and that (2) differences in species structure were correlated with variation in land unit characteristics, including canopy and ground cover, vegetation structure, tree density, leaf litter depth, and soil moisture. The study site, the Braidwood Dunes and Savanna Nature Preserve in Will County, Illinois is a mosaic of differing land units. Beetles were sampled continuously via pitfall trapping across an entire active season from 2011–2012. Land unit characteristics were measured in July 2012. Nonmetric multidimensional scaling (NMDS) ordinated the land units by their carabid assemblages into five ecologically meaningful clusters: disturbed, marsh, prairie, restoration, and savanna.
    [Show full text]
  • AKES Newsletter 2016
    Newsletter of the Alaska Entomological Society Volume 9, Issue 1, April 2016 In this issue: A history and update of the Kenelm W. Philip Col- lection, currently housed at the University of Alaska Museum ................... 23 Announcing the UAF Entomology Club ...... 1 The Blackberry Skeletonizer, Schreckensteinia fes- Bombus occidentalis in Alaska and the need for fu- taliella (Hübner) (Lepidoptera: Schreckensteini- ture study (Hymenoptera: Apidae) ........ 2 idae) in Alaska ................... 26 New findings of twisted-wing parasites (Strep- Northern spruce engraver monitoring in wind- siptera) in Alaska .................. 6 damaged forests in the Tanana River Valley of Asian gypsy moths and Alaska ........... 9 Interior Alaska ................... 28 Non-marine invertebrates of the St. Matthew Is- An overview of ongoing research: Arthropod lands, Bering Sea, Alaska ............. 11 abundance and diversity at Olive-sided Fly- Food review: Urocerus flavicornis (Fabricius) (Hy- catcher nest sites in interior Alaska ........ 29 menoptera: Siricidae) ............... 20 Glocianus punctiger (Sahlberg, 1835) (Coleoptera: The spruce aphid, a non-native species, is increas- Curculionidae) common in Soldotna ....... 32 ing in range and activity throughout coastal Review of the ninth annual meeting ........ 34 Alaska ........................ 21 Upcoming Events ................... 37 Announcing the UAF Entomology Club by Adam Haberski nights featuring classic “B-movie” horror films. Future plans include an entomophagy bake sale, summer collect- I am pleased to announce the formation of the Univer- ing trips, and sending representatives to the International sity of Alaska Fairbanks Entomology Club. The club was Congress of Entomology in Orlando Florida this Septem- conceived by students from the fall semester entomology ber. course to bring together undergraduate and graduate stu- The Entomology Club would like to collaborate with dents with an interest in entomology.
    [Show full text]
  • Quick Guide for the Identification Of
    Quick Guide for the Identification of Maryland Scarabaeoidea Mallory Hagadorn Dr. Dana L. Price Department of Biological Sciences Salisbury University This document is a pictorial reference of Maryland Scarabaeoidea genera (and sometimes species) that was created to expedite the identification of Maryland Scarabs. Our current understanding of Maryland Scarabs comes from “An Annotated Checklist of the Scarabaeoidea (Coleoptera) of Maryland” (Staines 1984). Staines reported 266 species and subspecies using literature and review of several Maryland Museums. Dr. Price and her research students are currently conducting a bioinventory of Maryland Scarabs that will be used to create a “Taxonomic Guide to the Scarabaeoidea of Maryland”. This will include dichotomous keys to family and species based on historical reports and collections from all 23 counties in Maryland. This document should be cited as: Hagadorn, M.A. and D.L. Price. 2012. Quick Guide for the Identification of Maryland Scarabaeoidea. Salisbury University. Pp. 54. Questions regarding this document should be sent to: Dr. Dana L. Price - [email protected] **All pictures within are linked to their copyright holder. Table of Contents Families of Scarabaeoidea of Maryland……………………………………... 6 Geotrupidae……………………………………………………………………. 7 Subfamily Bolboceratinae……………………………………………… 7 Genus Bolbocerosoma………………………………………… 7 Genus Eucanthus………………………………………………. 7 Subfamily Geotrupinae………………………………………………… 8 Genus Geotrupes………………………………………………. 8 Genus Odonteus...……………………………………………… 9 Glaphyridae..............................................................................................
    [Show full text]
  • The Biodiversity of Flying Coleoptera Associated With
    THE BIODIVERSITY OF FLYING COLEOPTERA ASSOCIATED WITH INTEGRATED PEST MANAGEMENT OF THE DOUGLAS-FIR BEETLE (Dendroctonus pseudotsugae Hopkins) IN INTERIOR DOUGLAS-FIR (Pseudotsuga menziesii Franco). By Susanna Lynn Carson B. Sc., The University of Victoria, 1994 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE in THE FACULTY OF GRADUATE STUDIES (Department of Zoology) We accept this thesis as conforming To t(p^-feguired standard THE UNIVERSITY OF BRITISH COLUMBIA 2002 © Susanna Lynn Carson, 2002 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. 1 further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Department The University of British Columbia Vancouver, Canada DE-6 (2/88) Abstract Increasing forest management resulting from bark beetle attack in British Columbia's forests has created a need to assess the impact of single species management on local insect biodiversity. In the Fort St James Forest District, in central British Columbia, Douglas-fir (Pseudotsuga menziesii Franco) (Fd) grows at the northern limit of its North American range. At the district level the species is rare (representing 1% of timber stands), and in the early 1990's growing populations of the Douglas-fir beetle (Dendroctonus pseudotsuage Hopkins) threatened the loss of all mature Douglas-fir habitat in the district.
    [Show full text]
  • Initial Responses of Rove and Ground Beetles
    A peer-reviewed open-access journal ZooKeys 258:Initial 31–52 responses(2013) of rove and ground beetles (Coleoptera, Staphylinidae, Carabidae)... 31 doi: 10.3897/zookeys.258.4174 RESEARCH ARTICLE www.zookeys.org Launched to accelerate biodiversity research Initial responses of rove and ground beetles (Coleoptera, Staphylinidae, Carabidae) to removal of logging residues following clearcut harvesting in the boreal forest of Quebec, Canada Timothy T. Work1, Jan Klimaszewski2, Evelyne Thiffault2, Caroline Bourdon2, David Paré2, Yves Bousquet3, Lisa Venier4, Brian Titus5 1 Département des sciences biologiques, Université du Québec à Montréal, CP 8888, succursale Centre- ville, Montréal, Quebec, Canada H3C 3P8 2 Natural Resources Canada, Canadian Forest Service, Lau- rentian Forestry Centre, 1055 du P.E.P.S., P.O. Box 10380, Stn. Sainte-Foy, Québec, Quebec, Canada G1V 4C7 3 Agriculture and Agri-Food Canada, Canadian National Collection of Insects, Arachnids and Nematodes, Ottawa, Ontario, Canada K1A 0C6 4 Natural Resources Canada, Canadian Forest Service, Great Lakes Forestry Centre, 1219 Queen Street East, Sault Ste. Marie, Ontario, Canada P6A 2E5 5 Natu- ral Resources Canada, Canadian Forest Service, Pacific Forestry Centre, 506 Burnside Road West, Victoria, British Columbia, Canada V8Z 1M5 Corresponding author: Jan Klimaszewski ([email protected]) Academic editor: L. Penev | Received 24 October 2012 | Accepted 18 December 2012 | Published 15 January 2013 Citation: Work TT, Klimaszewski J, Thiffault E, Bourdon C, Paré D, Bousquet Y, Venier L, Titus B (2013) Initial responses of rove and ground beetles (Coleoptera, Staphylinidae, Carabidae) to removal of logging residues following clearcut harvesting in the boreal forest of Quebec, Canada.
    [Show full text]