Abstracts 2010 Pacific Branch Entomological Society Of

Total Page:16

File Type:pdf, Size:1020Kb

Abstracts 2010 Pacific Branch Entomological Society Of ABSTRACTS from the 2010 PACIFIC BRANCH ENTOMOLOGICAL SOCIETY OF AMERICA MEETING APRIL 11-14, 2010 BOISE, IDAHO, U.S.A. CONTACTS: Douglas B. Walsh, 2009-2010 PBESA Branch President [email protected] Sally D. O’Neal, 2010 PBESA Meeting Program Chair [email protected] PACIFIC BRANCH ENTOMOLOGICAL SOCIETY OF AMERICA 2010 MEETING ABSTRACTS PAGE 1 of 117 SECTION I: PAPER PRESENTATIONS SYMPOSIUM: SPOTTED WING DROSOPHILA IN THE PACIFIC STATES 1 INSECTICIDE MANAGEMENT OF THE SPOTTED WING DROSOPHILA ON SMALL FRUITS IN WASHINGTON Lynell Tanigoshi1 and Doug Walsh2 Department of Entomology 1Mount Vernon Northwestern Washington Research and Extension Center Mount Vernon, WA 982273 2Irrigated Agriculture Research and Extension Center Prosser, WA 98350 Drosophila suzukii (Matsumura) (SWD) is a direct pest of maturing small fruits in the Pacific Northwest. The presence of SWD larvae in the fruit accelerates softening and promotes premature fruit rot, rendering machine harvesting impossible for fragile fruits. Processors will reject maggot infested juice grapes, caneberries and blueberries. Consumer appeal towards other fruits including caneberries, blueberries, and cherries will be reduced if fruit is maggot infested. Wine grape quality may suffer from infestation and wine makers will react negatively. Chemical controls for SWD in Washington State cropping systems are in development due to the recent invasion of the pest in late season 2009. It was detected in strawberry and red raspberry in mid- August at the WSU Puyallup REC and since that time, found infesting blueberry, raspberry, blackberry, strawberry and wild blackberry in northwestern Washington. With a rapid generation time, a lengthy list of alternative host fruits, and the fruiting season falling well within the anticipated active period of D. suzukii, Pacific Northwest small fruit growers could experience widespread reduction in yield by this potential key pest in 2010. The $210 million dollar small fruit industry in the Pacific Northwest could suffer devastating losses in the coming 2010 season without early intervention. How well SWD will persist in the hotter drier climates of Eastern Washington is as of yet undetermined. At risk are the $300 million cherry, $51 million juice grape, and $150 million wine grape crops. A list of effective chemicals, including new chemistries and rotation partners addressing insect resistance management and pollinator conservation, is necessary for the upcoming 2010 season in order to prevent economic losses by these industries. Extension research on first appearance, phenology between fruit ripeness and SWD oviposition and the bloom period will provide the impacted industries of Washington optimum timing for cover sprays. We will report on contact and residual efficacy of labeled compounds on red raspberry, blueberry and strawberry to adult SWD and determine rotational partners to minimize IRM while providing coverage on these fruits during their respective maturation and harvest periods. PACIFIC BRANCH ENTOMOLOGICAL SOCIETY OF AMERICA 2010 MEETING ABSTRACTS PAGE 2 of 117 2 DROSOPHILA SUZUKII: IN-LAB OVERWINTERING DATA AND REAL-TIME AREA-WIDE MANAGEMENT TOOLS Vaughn M. Walton1, Daniel T. Dalton1, Wei Yang2, Tom Peerbolt3 1Department of Horticulture, Oregon State University, 4017 Ag and Life Sciences Building, Oregon State University, Corvallis, OR 97331-7304 2North Willamette Research and Extension Center, Oregon State University, 15210 Miley Rd., Aurora, OR 97002 3Peerbolt Incorporated, 5261 N. Princeton St, Portland, OR 97203-5263 Spotted Wing Drosophila (SWD), Drosophila suzukii, is a recently identified invasive pest in Pacific United States and Western Canada with the first recordings made in California during 2008. Subsequent recordings were made on a widespread basis in Oregon, Washington and British Columbia during 2009. This pest attacks a wide range of small and stone fruits and damage has resulted in significant financial losses during 2008 and 2009. Understanding the success of overwintering rates and temperature tolerance limits for local strains of SWD need to be evaluated. These data, together with data on developmental parameters, will be used to develop and validate a degree-day model for SWD, which is needed to time prescribed management options. In the present study, adults and pupae were first acclimated to 10°C and then subjected to five temperature regimes: 1°C, 3°C, 5°C, 7°C, and 10°C, and 8:16h, L:D for 42 days. Following 19 days of low temperature, a subset of individuals from each temperature regime was selected and subjected to -5°C for one week. Freeze-treated insects were replaced at their respective temperature treatments for 16 days. A mild 42-day period was then provided to represent early spring conditions (10°C at 12:12h, L:D). Insect survival rates will be discussed. In order to have a comprehensive picture of SWD infestation levels in specific locations, field scouts in all regions will enter data using a protocol designed by OSU and private consulting personnel. An online-available database will allow researchers, cooperating personnel and growers to view field-specific data for different regions and time periods. The database will provide area-specific information for control measures in order to minimize the pool of SWD that may infect adjacent production areas. These databases and their use will be discussed. PACIFIC BRANCH ENTOMOLOGICAL SOCIETY OF AMERICA 2010 MEETING ABSTRACTS PAGE 3 of 117 3 ON-THE-FLY APPROACHES TO TACKLING D. SUZUKII Amy J. Dreves Oregon State University, Crop and Soil Science Department 3017 ALS Bldg., Corvallis, OR 97331 [email protected]; office (541) 737-5576 Infestations of the Spotted Wing Drosophila fly, Drosophila suzukii (Diptera: Drosophilidae; SWD), an exotic and invasive pest, were found in Oregon fruits in late fall 2009. These flies are native to SE Asia --China, Japan, Thailand, and Korea. The SWD can infest and has caused a great deal of damage to ripening to ripe fruit in its first year of discovery (20-80% loss). We have confirmed findings of SWD in 15 Oregon counties and over 15 fruits including, but not limited to, blueberries, raspberries, blackberries, strawberries, Asian pears, cherries, peaches, plum, fig, and grape. Oregon's Willamette Valley peach growers were also affected during late summer after SWD was found in August, 2009; losses ranged from 20-80% in some fruits. Crop losses from 20-40% were seen in Oregon’s late season blueberries and raspberries. There is concern about SWD spread as the sheer variety of fruit crops and ornamental and native plant species with fruit that ripen at different times throughout the year may exacerbate persistence throughout the west coast. Thus, as the season progresses SWD densities may increase and disperse among numerous cropping systems, urban/rural habitats, and wildland plant communities (e.g., wild blackberries). The biggest concern expressed by growers is not having a solid plan for SWD control for the upcoming 2010 season. Presently, there are no established management guidelines for this new pest in Oregon. A team of Oregon, California, Washington, and Canadian researchers is addressing questions of overwintering capability, spring emergence, timing of oviposition, fruit preference and susceptibility to better understand SWD phenology and effectively control SWD. Our ‘best guesses’ at identifying a management strategy and control recommendations for 2010 are being developed as questions are being answered, including seasonal monitoring, damage assessment methods, biological control, mass trapping, effective chemical pesticides, and sanitation techniques for conventional, IPM, and organic fruit systems. We will also present data on overwintering and timing of oviposition in the field. Our preliminary observations indicate that larvae, pupae and adults can survive fluctuating winter temperatures in Oregon. Extension activities are in place to provide a network of outreach programs including backyard participation, laminated educational cards and ID mounts, SWD newsletter, demonstration tours, You-Tube videos, and training workshops. PACIFIC BRANCH ENTOMOLOGICAL SOCIETY OF AMERICA 2010 MEETING ABSTRACTS PAGE 4 of 117 4 LABORATORY DATA ON SPOTTED WING DROSOPHILA OVIPOSITION, OLFACTION, AND CONTROL Denny J. Bruck and Jana Lee USDA-ARS Horticultural Crops Research Laboratory, 3420 NW Orchard Ave., Corvallis OR, 97330, (541) 738-4026, [email protected] The spotted wing Drosophila, Drosophila suzukii, is a serious threat to small fruit production all along the west coast of the United States. The objectives of our research efforts are to begin to understand the biology of this insect in our region and develop IPM programs for its effective control. Laboratory studies were initiated in the fall of 2009 to determine the oviposition potential, olfactory cues, and control with pesticides currently registered for use on small fruit crops. Females are being monitored for ovipoisition daily on artificial diet over their lifespan. Olfactory response to commercially available semiochemicals is being screened in a four-arm olfactometer. Several pesticides applied directly to adult flies in the laboratory provided 100% control within 24hrs. The residual activity of the most efficacious products will be determined in the laboratory at 0, 1, 3, 7, and 14 days after application. 5 SPOTTED WING DROSOPHILA: POTENTIAL ECONOMIC IMPACT OF A NEWLY ESTABLISHED PEST Mark P. Bolda1, Rachael E. Goodhue2 and Frank G. Zalom3 1UCCE,
Recommended publications
  • Nitrogen Containing Volatile Organic Compounds
    DIPLOMARBEIT Titel der Diplomarbeit Nitrogen containing Volatile Organic Compounds Verfasserin Olena Bigler angestrebter akademischer Grad Magistra der Pharmazie (Mag.pharm.) Wien, 2012 Studienkennzahl lt. Studienblatt: A 996 Studienrichtung lt. Studienblatt: Pharmazie Betreuer: Univ. Prof. Mag. Dr. Gerhard Buchbauer Danksagung Vor allem lieben herzlichen Dank an meinen gütigen, optimistischen, nicht-aus-der-Ruhe-zu-bringenden Betreuer Herrn Univ. Prof. Mag. Dr. Gerhard Buchbauer ohne dessen freundlichen, fundierten Hinweisen und Ratschlägen diese Arbeit wohl niemals in der vorliegenden Form zustande gekommen wäre. Nochmals Danke, Danke, Danke. Weiteres danke ich meinen Eltern, die sich alles vom Munde abgespart haben, um mir dieses Studium der Pharmazie erst zu ermöglichen, und deren unerschütterlicher Glaube an die Fähigkeiten ihrer Tochter, mich auch dann weitermachen ließ, wenn ich mal alles hinschmeissen wollte. Auch meiner Schwester Ira gebührt Dank, auch sie war mir immer eine Stütze und Hilfe, und immer war sie da, für einen guten Rat und ein offenes Ohr. Dank auch an meinen Sohn Igor, der mit viel Verständnis akzeptierte, dass in dieser Zeit meine Prioritäten an meiner Diplomarbeit waren, und mein Zeitbudget auch für ihn eingeschränkt war. Schliesslich last, but not least - Dank auch an meinen Mann Joseph, der mich auch dann ertragen hat, wenn ich eigentlich unerträglich war. 2 Abstract This review presents a general analysis of the scienthr information about nitrogen containing volatile organic compounds (N-VOC’s) in plants.
    [Show full text]
  • Coleoptera: Carabidae) Assemblages in a North American Sub-Boreal Forest
    Forest Ecology and Management 256 (2008) 1104–1123 Contents lists available at ScienceDirect Forest Ecology and Management journal homepage: www.elsevier.com/locate/foreco Catastrophic windstorm and fuel-reduction treatments alter ground beetle (Coleoptera: Carabidae) assemblages in a North American sub-boreal forest Kamal J.K. Gandhi a,b,1, Daniel W. Gilmore b,2, Steven A. Katovich c, William J. Mattson d, John C. Zasada e,3, Steven J. Seybold a,b,* a Department of Entomology, 219 Hodson Hall, 1980 Folwell Avenue, University of Minnesota, St. Paul, MN 55108, USA b Department of Forest Resources, 115 Green Hall, University of Minnesota, St. Paul, MN 55108, USA c USDA Forest Service, State and Private Forestry, 1992 Folwell Avenue, St. Paul, MN 55108, USA d USDA Forest Service, Northern Research Station, Forestry Sciences Laboratory, 5985 Hwy K, Rhinelander, WI 54501, USA e USDA Forest Service, Northern Research Station, 1831 Hwy 169E, Grand Rapids, MN 55744, USA ARTICLE INFO ABSTRACT Article history: We studied the short-term effects of a catastrophic windstorm and subsequent salvage-logging and Received 9 September 2007 prescribed-burning fuel-reduction treatments on ground beetle (Coleoptera: Carabidae) assemblages in a Received in revised form 8 June 2008 sub-borealforestinnortheasternMinnesota,USA. During2000–2003, 29,873groundbeetlesrepresentedby Accepted 9 June 2008 71 species were caught in unbaited and baited pitfall traps in aspen/birch/conifer (ABC) and jack pine (JP) cover types. At the family level, both land-area treatment and cover type had significant effects on ground Keywords: beetle trap catches, but there were no effects of pinenes and ethanol as baits.
    [Show full text]
  • Histoires Naturelles N°16 Histoires Naturelles N°16
    Histoires Naturelles n°16 Histoires Naturelles n°16 Essai de liste des Coléoptères de France Cyrille Deliry - Avril 2011 ! - 1 - Histoires Naturelles n°16 Essai de liste des Coléoptères de France Les Coléoptères forment l"ordre de plus diversifié de la Faune avec près de 400000 espèces indiquées dans le Monde. On en compte près de 20000 en Europe et pus de 9600 en France. Classification des Coléoptères Lawrence J.F. & Newton A.F. 1995 - Families and subfamilies of Coleoptera (with selected genera, notes, references and data on family-group names) In : Biology, Phylogeny, and Classification of Coleoptera. - éd. J.Pakaluk & S.A Slipinski, Varsovie : 779-1006. Ordre Coleoptera Sous-ordre Archostemata - Fam. Ommatidae, Crowsoniellidae, Micromathidae, Cupedidae Sous-ordre Myxophaga - Fam. Lepiceridae, Torridincolidae, Hydroscaphidae, Microsporidae Sous-ordre Adephaga - Fam. Gyrinidae, Halipidae, Trachypachidae, Noteridae, Amphizoidae, Hygrobiidae, Dytiscidae, Rhysodidae, Carabidae (Carabinae, Cicindelinae, Trechinae...) Sous-ordre Polyphaga Série Staphyliniformia - Superfam. Hydrophyloidea, Staphylinoidea Série Scarabaeiformia - Fam. Lucanidae, Passalidae, Trogidae, Glaresidae, Pleocmidae, Diphyllostomatidae, Geotrupidae, Belohinidae, Ochodaeidae, Ceratocanthidae, Hybrosoridae, Glaphyridae, Scarabaridea (Scarabaeinae, Melolonthinae, Cetoniinae...) Série Elateriformia - Superfam. Scirtoidea, Dascilloidea, Buprestoidea (Buprestidae), Byrrhoidea, Elateroidea (Elateridae, Lampyridae, Cantharidae...) + Incertae sedis - Fam. Podabrocephalidae, Rhinophipidae
    [Show full text]
  • Biological-Control-Programmes-In
    Biological Control Programmes in Canada 2001–2012 This page intentionally left blank Biological Control Programmes in Canada 2001–2012 Edited by P.G. Mason1 and D.R. Gillespie2 1Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada; 2Agriculture and Agri-Food Canada, Agassiz, British Columbia, Canada iii CABI is a trading name of CAB International CABI Head Offi ce CABI Nosworthy Way 38 Chauncey Street Wallingford Suite 1002 Oxfordshire OX10 8DE Boston, MA 02111 UK USA Tel: +44 (0)1491 832111 T: +1 800 552 3083 (toll free) Fax: +44 (0)1491 833508 T: +1 (0)617 395 4051 E-mail: [email protected] E-mail: [email protected] Website: www.cabi.org Chapters 1–4, 6–11, 15–17, 19, 21, 23, 25–28, 30–32, 34–36, 39–42, 44, 46–48, 52–56, 60–61, 64–71 © Crown Copyright 2013. Reproduced with the permission of the Controller of Her Majesty’s Stationery. Remaining chapters © CAB International 2013. All rights reserved. No part of this publication may be reproduced in any form or by any means, electroni- cally, mechanically, by photocopying, recording or otherwise, without the prior permission of the copyright owners. A catalogue record for this book is available from the British Library, London, UK. Library of Congress Cataloging-in-Publication Data Biological control programmes in Canada, 2001-2012 / [edited by] P.G. Mason and D.R. Gillespie. p. cm. Includes bibliographical references and index. ISBN 978-1-78064-257-4 (alk. paper) 1. Insect pests--Biological control--Canada. 2. Weeds--Biological con- trol--Canada. 3. Phytopathogenic microorganisms--Biological control- -Canada.
    [Show full text]
  • Diptera) of Finland 311 Doi: 10.3897/Zookeys.441.7505 CHECKLIST Launched to Accelerate Biodiversity Research
    A peer-reviewed open-access journal ZooKeys 441: 311–318 (2014)Checklist of the family Chloropidae (Diptera) of Finland 311 doi: 10.3897/zookeys.441.7505 CHECKLIST www.zookeys.org Launched to accelerate biodiversity research Checklist of the family Chloropidae (Diptera) of Finland Emilia Nartshuk1, Jere Kahanpää2 1 Zoological Institute of the Russian Academy of Sciences, Universitetskaya nab. 1 St.-Petersburg 199034 Russia 2 Finnish Museum of Natural History, Zoology Unit, P.O. Box 17, FI-00014 University of Helsinki, Finland Corresponding author: Emilia Nartshuk ([email protected]) Academic editor: J. Salmela | Received 24 March 2014 | Accepted 10 June 2014 | Published 19 September 2014 http://zoobank.org/782B4E3D-E88F-46E7-BB77-1A51666A4DD5 Citation: Nartshuk E, Kahanpää J (2014) Checklist of the family Chloropidae (Diptera) of Finland. In: Kahanpää J, Salmela J (Eds) Checklist of the Diptera of Finland. ZooKeys 441: 311–318. doi: 10.3897/zookeys.441.7505 Abstract A checklist of 147 species the Chloropidae (Diptera) recorded from Finland. Centorisoma elegantulum Becker is recorded for the first time from Finland. Keywords Finland, Chloropidae, species list, biodiversity, faunistics Introduction The Chloropidae is a large family of acalyptrate Diptera. It belongs to superfamily Carnoidea with Milichiidae as the closest relative. The classification of the family used follows Andersson (1977) and Nartshuk (1983). The North European chloropid fauna has recently been revised by Nartshuk and Andersson (2013). Details of Finnish chloropid literature, species distribution and ecology, and other details can be found in their book. In comparison with the neigh- bouring countries, Finland ranks second in the number of chloropid species after Swe- den (189 species) but well ahead of Denmark (119 species) and Norway (97 species).
    [Show full text]
  • Arthropods of Canadian Grasslands
    Arthropods of Canadian Grasslands Number 11 2005 Contents Contributions welcome . inside front cover Grasslands project action Grassland Project Key Site 2005: Waterton Lakes National Park . 1 Aweme Bioblitz 2004 . 3 Restoration project for the Criddle laboratory . 4 Long term research: Norman Criddle, John Merton Aldrich and the grass fl ies of Aweme . 5 Immigrant insects help restore Canada’s grassland communities . 14 Ants of the South Okanagan grasslands, British Columbia. 17 Web watch: Ants of the tallgrass prairie . 23 Some recent publications . 24 Mailing list for the Grasslands Newsletter . 25 Arthropods of Canadian Grasslands supports the grasslands project of the Biological Survey of Canada (Terrestrial Arthropods) by providing information relevant to the study of grassland arthropods in Canada. Chloropid fl ies are common in grasslands, and historical records from early in the 20th century, available because of careful recording and preservation of specimens and documents, allow interesting present- day comparisons in the same places, as explained on page 5. 1 Contributions welcome Please consider submitting items to Arthropods of Canadian Grasslands Grassland site Current research – descriptions project reports Short news items Feature articles Grassland species Selected accounts publications Contributions such as these, as well as other items of interest to students of grasslands and their arthropods, are welcomed by the editor. This publication (formerly Newsletter, Arthropods of Canadian Grasslands) appears annually in March; final copy deadline for the next issue is January 31, 2006. Editor: H.V. Danks Biological Survey of Canada (Terrestrial Arthropods) Canadian Museum of Nature P.O. Box 3443, Station “D” Ottawa, ON K1P 6P4 613-566-4787 (tel.) 613-364-4022 (fax) [email protected] Articles without other accreditation are prepared by the Editor.
    [Show full text]
  • Species Index
    505 NOMINA INSECTA NEARCTICA SPECIES INDEX abdominalis Fabricius Oxyporus (Staphylinidae) Tachyporus abdominalis Haldeman Stenura (Cerambycidae) Leptura a abdominalis Hopkins Hypothenemus (Scolytidae) Hypothenemus columbi aabaaba Erwin Brachinus (Carabidae) Brachinus abdominalis Kirby Thanasimus (Cleridae) Thanasimus undatulus abadona Skinner Epicauta (Meloidae) Epicauta abdominalis LeConte Atelestus (Melyridae) Endeodes basalis abbreviata Casey Asidopsis (Tenebrionidae) Asidopsis abdominalis LeConte Coniontis (Tenebrionidae) Coniontis abbreviata Casey Cinyra (Buprestidae) Spectralia gracilipes abdominalis LeConte Feronia (Carabidae) Cyclotrachelus incisa abbreviata Casey Pinacodera (Carabidae) Cymindis abdominalis LeConte Malthinus (Cantharidae) Belotus abbreviata Gentner Glyptina (Chrysomelidae) Glyptina abdominalis LeConte Tanaops (Melyridae) Tanaops abbreviata Germar Leptura (Cerambycidae) Strangalepta abdominalis Olivier Altica (Chrysomelidae) Kuschelina vians abbreviata Herman Pseudopsis (Staphylinidae) Pseudopsis abdominalis Say Coccinella (Coccinellidae) Olla v-nigrum abbreviata Melsheimer Disonycha (Chrysomelidae) Disonycha abdominalis Say Cryptocephalus (Chrysomelidae) Pachybrachis discoidea abdominalis Schaeffer Silis (Cantharidae) Silis abbreviatus Bates Dicaelus (Carabidae) Dicaelus laevipennis abdominalis Voss Eugnamptus (Attelabidae) Eugnamptus angustatus abbreviatus Blanchard Cardiophorus (Elateridae) Cardiophorus abdominalis White Tricorynus (Anobiidae) Tricorynus abbreviatus Casey Oropus (Staphylinidae) Oropus abducens
    [Show full text]
  • The Coleopteran Fauna of Sultan Creek-Molas Lake Area with Special Emphasis on Carabidae and How the Geological Bedrock Influenc
    THE COLEOPTERAN FAUNA OF SULTAN CREEK-MOLAS LAKE AREA WITH SPECIAL EMPHASIS ON CARABIDAE AND HOW THE GEOLOGICAL BEDROCK INFLUENCES BIODIVERSITY AND COMMUNITY STRUCTURE IN THE SAN JUAN MOUNTAINS, SAN JUAN COUNTY, COLORADO Melanie L. Bergolc A Dissertation Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY August 2009 Committee: Daniel Pavuk, Advisor Kurt Panter Graduate Faculty Representative Jeff Holland Rex Lowe Moira van Staaden © 2009 Melanie L. Bergolc All Rights Reserved iii ABSTRACT Daniel Pavuk, Advisor Few studies have been performed on coleopteran (beetle) biodiversity in mountain ecosystems and relating them to multiple environmental factors. None of the studies have examined geologic influences on beetle communities. Little coleopteran research has been performed in the Colorado Rocky Mountains. The main objectives of this study were to catalog the coleopteran fauna of a subalpine meadow in the San Juan Mountains of Colorado and investigate the role geology had in the community structure of the Carabidae (ground beetles). The study site, a 160,000 m2 plot, was located near Sultan Creek and Molas Lake in San Juan County, Colorado. Five sites were in each bedrock formation: Molas, Elbert, and Ouray-Leadville. Insects were collected via pitfall trapping in 2006 and 2007, and identified by comparison with museum specimens, museum and insect identification websites, and by taxonomic experts. Biological and physical factors were recorded for each site: detritus cover and weight, plant cover and height, plant species richness, aspect, elevation, slope, soil temperature, pH, moisture, and compressive strength, and sediment size distribution.
    [Show full text]
  • Catalogue of Palaearctic Coleoptera I. Löbl & A. S
    CATALOGUE OF PALAEARCTIC COLEOPTERA I. LÖBL & A. SMETANA ERRATA ERRATA for VOLUME 1 Sphaeriusidae p. 26: Sphaerius acaroides: add AB under E: Trachypachidae p. 33: Trachypachus zetterstedti: add CT under E: Gyrinidae p. 27: add guernei Méquignon, 1942: 9 in synonymy with Gyrinus distinctus Aubé, 1838 Hygrobiidae p. 35: Hygrobia hermanni Fabricius: add SZ under E: Noteridae p. 33: Canthydrus diophthalmus (Reiche & Saulcy, 1855): add N: TU AFR p. 34: Canthydrus laetabilis (Walker, 1858): delete AFR p. 34: Canthydrus luctuosus (Aubé, 1838): add A: IQ SA SY p. 34: Canthydrus nitidulus Sharp, 1882: add ORR; add synonym bifasciatus Régimbart, 1889b: 148 p. 34: Canthydrus notula (Erichson, 1843): add AFR p. 34: Neohydrocoptus angolensis (Peschet, 1925): delete, Palaearctic records represent N. jaechi p. 34: Neohydrocoptus jaechi (Wewalka, 1989): add: N: EG A: SI Dytiscidae p. 37: Agabus labiatus (Brahm, 1791): change year to 1790 p. 40: Agabus nebulosus (Forter, 1771): add synonym humeralis Audinet-Serville, 1821: 96 (Dytiscus) p. 41: Ilybius balkei (Fery & Nilsson, 1993): add original genus (Agabus) p. 42: Ilybius erichsoni (Gemminger & Harold, 1868): add original genus (Agabus) p. 43: Ilybius subtilis (Erichson, 1837): add original genus (Agabus) p. 45: Meladema lanio (Fabricius, 1775), synonym Colymbetes lowei Gray, 1832: change year to 1831 p. 48: Acilius canaliculatus (Nicolai, 1822), synonym Dytiscus sulcipennis Zetterstedt, 1824: change author to C. R. Sahlberg, 1824: 157 p. 51: Dytiscus circumflexus Fabricius, 1801, synonym Dytiscus dubius Audinet-Serville, 1830: 90: change year to 1821 p. 52: Dytiscus marginalis Linnaeus, 1758, synonym Dytiscus circumductus Audinet-Serville, 1830: 90: change year to 1821 p. 55: Bidessus complicatus Sharp, 1904: add: AFR p.
    [Show full text]
  • Sugar Beet Root Aphids: Identification, Biology, & Management by Erik J
    CIS 1176 Sugar beet root aphids: identification, biology, & management by Erik J. Wenninger The sugar beet root aphid 1 is a pest of This publication will help you design an sugar beets that occurs throughout the major integrated pest management (IPM) program for sugar beet-growing regions of North America. As management of the sugar beet root aphid. The the common name suggests, sugar beet root IPM approach combines cultural and biological aphids feed on the roots of sugar beet plants. controls with field scouting in order to reduce the Infestations may be sporadic, but in severe cases need for chemical controls. Beet growers who use may reduce tonnage and sucrose levels by more IPM can increase profits while encouraging than 30 percent and may reduce recoverable natural enemies of pests and reducing potential sucrose per acre by more than 50 percent. harmful environmental effects associated with pesticides. Aphids in this group have complex life cycles and typically use cottonwood or poplar trees (in the genus Populus ) as their primary hosts and annual or biennial plants as their secondary hosts. Over the summer, sugar beet root aphids produce several generations on beets and other secondary hosts; some individuals overwinter in the soil within beet fields whereas others return to Populus trees during late summer to fall. Few insecticides are registered against sugar beet root aphids, and no insecticides are avail - able for rescue treatments; therefore, manage - ment of this pest in sugar beets relies primarily on the use of resistant varieties and cultural control practices. 1The species name of the sugar beet root aphid has been variously Figure 1.
    [Show full text]
  • 1 the RESTRUCTURING of ARTHROPOD TROPHIC RELATIONSHIPS in RESPONSE to PLANT INVASION by Adam B. Mitchell a Dissertation Submitt
    THE RESTRUCTURING OF ARTHROPOD TROPHIC RELATIONSHIPS IN RESPONSE TO PLANT INVASION by Adam B. Mitchell 1 A dissertation submitted to the Faculty of the University of Delaware in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Entomology and Wildlife Ecology Winter 2019 © Adam B. Mitchell All Rights Reserved THE RESTRUCTURING OF ARTHROPOD TROPHIC RELATIONSHIPS IN RESPONSE TO PLANT INVASION by Adam B. Mitchell Approved: ______________________________________________________ Jacob L. Bowman, Ph.D. Chair of the Department of Entomology and Wildlife Ecology Approved: ______________________________________________________ Mark W. Rieger, Ph.D. Dean of the College of Agriculture and Natural Resources Approved: ______________________________________________________ Douglas J. Doren, Ph.D. Interim Vice Provost for Graduate and Professional Education I certify that I have read this dissertation and that in my opinion it meets the academic and professional standard required by the University as a dissertation for the degree of Doctor of Philosophy. Signed: ______________________________________________________ Douglas W. Tallamy, Ph.D. Professor in charge of dissertation I certify that I have read this dissertation and that in my opinion it meets the academic and professional standard required by the University as a dissertation for the degree of Doctor of Philosophy. Signed: ______________________________________________________ Charles R. Bartlett, Ph.D. Member of dissertation committee I certify that I have read this dissertation and that in my opinion it meets the academic and professional standard required by the University as a dissertation for the degree of Doctor of Philosophy. Signed: ______________________________________________________ Jeffery J. Buler, Ph.D. Member of dissertation committee I certify that I have read this dissertation and that in my opinion it meets the academic and professional standard required by the University as a dissertation for the degree of Doctor of Philosophy.
    [Show full text]
  • THESIS a SURVEY of the ARTHROPOD FAUNA ASSOCIATED with HEMP (CANNABIS SATIVA L.) GROWN in EASTERN COLORADO Submitted by Melissa
    THESIS A SURVEY OF THE ARTHROPOD FAUNA ASSOCIATED WITH HEMP (CANNABIS SATIVA L.) GROWN IN EASTERN COLORADO Submitted by Melissa Schreiner Department of Bioagricultural Sciences and Pest Management In partial fulfillment of the requirements For the Degree of Master of Science Colorado State University Fort Collins, Colorado Fall 2019 Master’s Committee: Advisor: Whitney Cranshaw Frank Peairs Mark Uchanski Copyright by Melissa Schreiner 2019 All Rights Reserved ABSTRACT A SURVEY OF THE ARTHROPOD FAUNA ASSOCIATED WITH HEMP (CANNABIS SATIVA L.) GROWN IN EASTERN COLORADO Industrial hemp was found to support a diverse complex of arthropods in the surveys of hemp fields in eastern Colorado. Seventy-three families of arthropods were collected from hemp grown in eight counties in Colorado in 2016, 2017, and 2018. Other important groups found in collections were of the order Diptera, Coleoptera, and Hemiptera. The arthropods present in fields had a range of association with the crop and included herbivores, natural enemies, pollen feeders, and incidental species. Hemp cultivars grown for seed and fiber had higher insect species richness compared to hemp grown for cannabidiol (CBD). This observational field survey of hemp serves as the first checklist of arthropods associated with the crop in eastern Colorado. Emerging key pests of the crop that are described include: corn earworm (Helicoverpa zea (Boddie)), hemp russet mite (Aculops cannibicola (Farkas)), cannabis aphid (Phorodon cannabis (Passerini)), and Eurasian hemp borer (Grapholita delineana (Walker)). Local outbreaks of several species of grasshoppers were observed and produced significant crop injury, particularly twostriped grasshopper (Melanoplus bivittatus (Say)). Approximately half (46%) of the arthropods collected in sweep net samples during the three year sampling period were categorized as predators, natural enemies of arthropods.
    [Show full text]