SDAS 2001 Vol 80
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cumulative Index North Dakota Historical Quarterly Volumes 1-11 1926 - 1944
CUMULATIVE INDEX NORTH DAKOTA HISTORICAL QUARTERLY VOLUMES 1-11 1926 - 1944 A Aiton, Arthur S., review by, 6:245 Alaska, purchase of, 6:6, 7, 15 A’Rafting on the Mississipp’ (Russell), rev. of, 3:220- 222 Albanel, Father Charles, 5:200 A-wach-ha-wa village, of the Hidatsas, 2:5, 6 Albert Lea, Minn., 1.3:25 Abandonment of the military posts, question of, Albrecht, Fred, 2:143 5:248, 249 Alderman, John, 1.1:72 Abbey Lake, 1.3:38 Aldrich, Bess Streeter, rev. of, 3:152-153; Richard, Abbott, Johnston, rev. of, 3:218-219; Lawrence, speaker, 1.1:52 speaker, 1.1:50 Aldrich, Vernice M., articles by, 1.1:49-54, 1.4:41- Abe Collins Ranch, 8:298 45; 2:30-52, 217-219; reviews by, 1.1:69-70, Abell, E. R, 2:109, 111, 113; 3:176; 9:74 1.1:70-71, 1.2:76-77, 1.2:77, 1.3:78, 1.3:78-79, Abercrombie, N.Dak., 1.3: 34, 39; 1.4:6, 7, 71; 2:54, 1.3:79, 1.3:80, 1.4:77, 1.4:77-78; 2:230, 230- 106, 251, 255; 3:173 231, 231, 231-232, 232-233, 274; 3:77, 150, Abercrombie State Park, 4:57 150-151, 151-152, 152, 152-153, 220-222, 223, Aberdeen, D.T., 1.3:57, 4:94, 96 223-224; 4:66, 66-67, 67, 148, 200, 200, 201, Abraham Lincoln, the Prairie Years (Sandburg), rev. of, 201, 202, 202, 274, 275, 275-276, 276, 277-278; 1.2:77 8:220-221; 10:208; 11:221, 221-222 Abstracts in History from Dissertations for the Degree of Alexander, Dr. -
Alien Dominance of the Parasitoid Wasp Community Along an Elevation Gradient on Hawai’I Island
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln USGS Staff -- Published Research US Geological Survey 2008 Alien dominance of the parasitoid wasp community along an elevation gradient on Hawai’i Island Robert W. Peck U.S. Geological Survey, [email protected] Paul C. Banko U.S. Geological Survey Marla Schwarzfeld U.S. Geological Survey Melody Euaparadorn U.S. Geological Survey Kevin W. Brinck U.S. Geological Survey Follow this and additional works at: https://digitalcommons.unl.edu/usgsstaffpub Peck, Robert W.; Banko, Paul C.; Schwarzfeld, Marla; Euaparadorn, Melody; and Brinck, Kevin W., "Alien dominance of the parasitoid wasp community along an elevation gradient on Hawai’i Island" (2008). USGS Staff -- Published Research. 652. https://digitalcommons.unl.edu/usgsstaffpub/652 This Article is brought to you for free and open access by the US Geological Survey at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in USGS Staff -- Published Research by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Biol Invasions (2008) 10:1441–1455 DOI 10.1007/s10530-008-9218-1 ORIGINAL PAPER Alien dominance of the parasitoid wasp community along an elevation gradient on Hawai’i Island Robert W. Peck Æ Paul C. Banko Æ Marla Schwarzfeld Æ Melody Euaparadorn Æ Kevin W. Brinck Received: 7 December 2007 / Accepted: 21 January 2008 / Published online: 6 February 2008 Ó Springer Science+Business Media B.V. 2008 Abstract Through intentional and accidental increased with increasing elevation, with all three introduction, more than 100 species of alien Ichneu- elevations differing significantly from each other. monidae and Braconidae (Hymenoptera) have Nine species purposely introduced to control pest become established in the Hawaiian Islands. -
Stratigraphy, Age and Correlation of the Upper Cretaceous Tohatchi Formation, Western New Mexico Spencer G
New Mexico Geological Society Downloaded from: http://nmgs.nmt.edu/publications/guidebooks/54 Stratigraphy, age and correlation of the Upper Cretaceous Tohatchi Formation, western New Mexico Spencer G. Lucas, Dennis R. Braman, and Justin A. Spielmann, 2003, pp. 359-368 in: Geology of the Zuni Plateau, Lucas, Spencer G.; Semken, Steven C.; Berglof, William; Ulmer-Scholle, Dana; [eds.], New Mexico Geological Society 54th Annual Fall Field Conference Guidebook, 425 p. This is one of many related papers that were included in the 2003 NMGS Fall Field Conference Guidebook. Annual NMGS Fall Field Conference Guidebooks Every fall since 1950, the New Mexico Geological Society (NMGS) has held an annual Fall Field Conference that explores some region of New Mexico (or surrounding states). Always well attended, these conferences provide a guidebook to participants. Besides detailed road logs, the guidebooks contain many well written, edited, and peer-reviewed geoscience papers. These books have set the national standard for geologic guidebooks and are an essential geologic reference for anyone working in or around New Mexico. Free Downloads NMGS has decided to make peer-reviewed papers from our Fall Field Conference guidebooks available for free download. Non-members will have access to guidebook papers two years after publication. Members have access to all papers. This is in keeping with our mission of promoting interest, research, and cooperation regarding geology in New Mexico. However, guidebook sales represent a significant proportion of our operating budget. Therefore, only research papers are available for download. Road logs, mini-papers, maps, stratigraphic charts, and other selected content are available only in the printed guidebooks. -
Coleoptera: Carabidae) Assemblages in a North American Sub-Boreal Forest
Forest Ecology and Management 256 (2008) 1104–1123 Contents lists available at ScienceDirect Forest Ecology and Management journal homepage: www.elsevier.com/locate/foreco Catastrophic windstorm and fuel-reduction treatments alter ground beetle (Coleoptera: Carabidae) assemblages in a North American sub-boreal forest Kamal J.K. Gandhi a,b,1, Daniel W. Gilmore b,2, Steven A. Katovich c, William J. Mattson d, John C. Zasada e,3, Steven J. Seybold a,b,* a Department of Entomology, 219 Hodson Hall, 1980 Folwell Avenue, University of Minnesota, St. Paul, MN 55108, USA b Department of Forest Resources, 115 Green Hall, University of Minnesota, St. Paul, MN 55108, USA c USDA Forest Service, State and Private Forestry, 1992 Folwell Avenue, St. Paul, MN 55108, USA d USDA Forest Service, Northern Research Station, Forestry Sciences Laboratory, 5985 Hwy K, Rhinelander, WI 54501, USA e USDA Forest Service, Northern Research Station, 1831 Hwy 169E, Grand Rapids, MN 55744, USA ARTICLE INFO ABSTRACT Article history: We studied the short-term effects of a catastrophic windstorm and subsequent salvage-logging and Received 9 September 2007 prescribed-burning fuel-reduction treatments on ground beetle (Coleoptera: Carabidae) assemblages in a Received in revised form 8 June 2008 sub-borealforestinnortheasternMinnesota,USA. During2000–2003, 29,873groundbeetlesrepresentedby Accepted 9 June 2008 71 species were caught in unbaited and baited pitfall traps in aspen/birch/conifer (ABC) and jack pine (JP) cover types. At the family level, both land-area treatment and cover type had significant effects on ground Keywords: beetle trap catches, but there were no effects of pinenes and ethanol as baits. -
Updating Boundaries for Large Water Bodies of the Coteau Des Prairies Using Landsat 8
UPDATING BOUNDARIES FOR LARGE WATER BODIES OF THE COTEAU DES PRAIRIES USING LANDSAT 8 South Dakota State University Landsat 8 drawing. Credit: NASA Department of Geography – Bruce V. Millett A BSTRACT M ETHODS R E S U L T S / C ONCLUSIONS Large lakes and wetland boundaries of the Coteau des Prairies and There were three main data elements used to create this map. The assembly of the map components began with coordinate system. surrounding region have changed since the National Wetlands 1. Digital Elevation Model All map coverages were projected to USA Contiguous Albers Equal Inventory (NWI) dataset was developed approximately 30 years ago. 2. National Wetlands Inventory Area Conic USGS version. This was further customized adjusting the Landsat 8, a NASA and USGS collaboration, acquires global moderate- 3. Landsat 8 data. Central Meridian to: -97.5°, Standard Parallel 1 to 29.5°, Standard resolution measurements in the visible, near-infrared, short wave, and Parallel 2 to 45.5°, and the Latitude of Origin to 23.0°. thermal infrared. Boundary limits for large water bodies were updated using 2016 Landsat 8 imagery with less than ten percent cloud cover. The mosaicked 1/3 arc-second DEM resulted in a cell resolution 10 Unsupervised and supervised classification methods were used to 1. Digital Elevation Model meters. extract water features from Landsat 8 imagery using ArcGIS Pro Imagery tools. Extracted polygon features were manually edited and • 30 National Elevation Dataset Clipped NWI data provided a total of 1,652,089 basins within the study overlaid with the NWI dataset. A final map was created by overlaying (NED) 1/3 arc-second DEMs area. -
Hymenoptera: Ichneumonidae
INSECTA MUNDI, Vol. 11, Nos. 3-4, September-December, 1997 247 Gambrus wileyi (Hymenoptera: Ichneumonidae), a new Cryptine wasp from Florida Julieta Brambila University of Florida, Department of Entomology and Nematology Tropical Research and Education Cen ter 18905 S.W. 280th Street, Homestead, Florida :3:30:31 Abstract: Gambrus wileyi is described from north Florida. Additional distributional data are provided for three other Florida species, G. bituminosus, G. polyphemi and G. ultimus. Gambrus extrematis is included in this work, even though its presence in Florida is questionable. Introduction lb. Propodeum entirely black; scutellum and post scutel- lum black 2 Gambrus Foerster 1868 (Cryptinae: Cryptini) is 2a. Met.asoma l tergites 2-4 black; middle coxa black .. a genus of Holarctic distribution with twenty-six .. .. G. bituminosue species described worldwide and nine described 2b. Metasomal tergites 2-4 reddish or yellowish brown; species in the American continent and Cuba, in middle coxa not black 3 cluding three in Florida. Gambrus is a potentially 3a. Fore, middle, and hind coxae of same color (reddish important genus in agriculture since the following brown); flagellum without a median white band; are some of the Lepidoptera families that have been first metasomal tergite not black basally ...... recorded as hosts: Coleophoridae, Ge·lechiidae, Hes ....................................................... G. uliimus periidae, Lasiocampidae, Lymantriidae, Noctuidae, 3b. Fore, middle, and hind coxae not of same color; Oecophoridae, Psychidae, Pyralidae, Saturniidae, flagellum with a median white band; first meta- somal tergite black basally 4 and Tortricidae. It has also been reared from Hy menoptera (Cephidae, Cimbicidae, and Tenthre 4a. Flagellum with subapical tyloids linear (Fig. -
Concluding Remarks
Concluding Remarks The bulk of secretory material necessary for the encapsulation of spermatozoa into a spermatophore is commonly derived from the male accessory organs of re production. Not surprisingly, the extraordinary diversity in size, shape, and struc ture of the spermatophores in different phyla is frequently a reflection of the equally spectacular variations in the anatomy and secretory performance of male reproductive tracts. Less obvious are the reasons why even within a given class or order of animals, only some species employ spermatophores, while others de pend on liquid semen as the vehicle for spermatozoa. The most plausible expla nation is that the development of methods for sperm transfer must have been in fluenced by the environment in which the animals breed, and that adaptation to habitat, rather than phylogeny, has played a decisive role. Reproduction in the giant octopus of the North Pacific, on which our attention has been focussed, pro vides an interesting example. During copulation in seawater, which may last 2 h, the sperm mass has to be pushed over the distance of 1 m separating the male and female genital orifices. The metre-long tubular spermatophore inside which the spermatozoa are conveyed offers an obvious advantage over liquid semen, which could hardly be hauled over such a long distance. Apart from acting as a convenient transport vehicle, the spermatophore serves other purposes. Its gustatory and aphrodisiac attributes, the provision of an ef fective barrier to reinsemination, and stimulation of oogenesis and oviposition are all of great importance. Absolutely essential is its function as storage organ for spermatozoa, at least as effective as that of the epididymis for mammalian spermatozoa. -
The Dinosaur Park - Bearpaw Formation Transition in the Cypress Hills Region of Southwestern Saskatchewan, Canada Meagan M
The Dinosaur Park - Bearpaw Formation Transition in the Cypress Hills Region of Southwestern Saskatchewan, Canada Meagan M. Gilbert Department of Geological Sciences, University of Saskatchewan; [email protected] Summary The Upper Cretaceous Dinosaur Park Formation (DPF) is a south- and eastward-thinning fluvial to marginal marine clastic-wedge in the Western Canadian Sedimentary Basin. The DPF is overlain by the Bearpaw Formation (BF), a fully marine clastic succession representing the final major transgression of the epicontinental Western Interior Seaway (WIS) across western North America. In southwestern Saskatchewan, the DPF is comprised of marginal marine coal, carbonaceous shale, and heterolithic siltstone and sandstone grading vertically into marine sandstone and shale of the Bearpaw Formation. Due to Saskatchewan’s proximity to the paleocoastline, 5th order transgressive cycles resulted in the deposition of multiple coal seams (Lethbridge Coal Zone; LCZ) in the upper two-thirds of the DPF in the study area. The estimated total volume of coal is 48109 m3, with a gas potential of 46109 m3 (Frank, 2005). The focus of this study is to characterize the facies and facies associations of the DPF, the newly erected Manâtakâw Member, and the lower BF in the Cypress Hills region of southwestern Saskatchewan utilizing core, outcrop, and geophysical well log data. This study provides a comprehensive sequence stratigraphic overview of the DPF-BF transition in Saskatchewan and the potential for coalbed methane exploration. Introduction The Dinosaur Park and Bearpaw Formations in Alberta, and its equivalents in Montana, have been the focus of several sedimentologic and stratigraphic studies due to exceptional outcrop exposure and extensive subsurface data (e.g., McLean, 1971; Wood, 1985, 1989; Eberth and Hamblin, 1993; Tsujita, 1995; Catuneanu et al., 1997; Hamblin, 1997; Rogers et al., 2016). -
VINEYARD BIODIVERSITY and INSECT INTERACTIONS! ! - Establishing and Monitoring Insectariums! !
! VINEYARD BIODIVERSITY AND INSECT INTERACTIONS! ! - Establishing and monitoring insectariums! ! Prepared for : GWRDC Regional - SA Central (Adelaide Hills, Currency Creek, Kangaroo Island, Langhorne Creek, McLaren Vale and Southern Fleurieu Wine Regions) By : Mary Retallack Date : August 2011 ! ! ! !"#$%&'(&)'*!%*!+& ,- .*!/'01)!.'*&----------------------------------------------------------------------------------------------------------------&2 3-! "&(')1+&'*&4.*%5"/0&#.'0.4%/+.!5&-----------------------------------------------------------------------------&6! ! &ABA <%5%+3!C0-72D0E2!AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA!F! &A&A! ;D,!*2!G*0.*1%-2*3,!*HE0-3#+3I!AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA!J! &AKA! ;#,2!0L!%+D#+5*+$!G*0.*1%-2*3,!*+!3D%!1*+%,#-.!AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA!B&! 7- .*+%)!"/.18+&--------------------------------------------------------------------------------------------------------------&,2! ! ! KABA ;D#3!#-%!*+2%53#-*MH2I!AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA!BN! KA&A! O3D%-!C#,2!0L!L0-H*+$!#!2M*3#G8%!D#G*3#3!L0-!G%+%L*5*#82!AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA!&P! KAKA! ?%8%53*+$!3D%!-*$D3!2E%5*%2!30!E8#+3!AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA!&B! 9- :$"*!.*;&5'1/&.*+%)!"/.18&-------------------------------------------------------------------------------------&3<! -
The Fauna from the Tyrannosaurus Rex Excavation, Frenchman Formation (Late Maastrichtian), Saskatchewan
The Fauna from the Tyrannosaurus rex Excavation, Frenchman Formation (Late Maastrichtian), Saskatchewan Tim T. Tokaryk 1 and Harold N. Bryant 2 Tokaryk, T.T. and Bryant, H.N. (2004): The fauna from the Tyrannosaurus rex excavation, Frenchman Formation (Late Maastrichtian), Saskatchewan; in Summary of Investigations 2004, Volume 1, Saskatchewan Geological Survey, Sask. Industry Resources, Misc. Rep. 2004-4.1, CD-ROM, Paper A-18, 12p. Abstract The quarry that contained the partial skeleton of the Tyrannosaurus rex, familiarly known as “Scotty,” has yielded a diverse faunal and floral assemblage. The site is located in the Frenchman River valley in southwestern Saskatchewan and dates from approximately 65 million years, at the end of the Cretaceous Period. The faunal assemblage from the quarry is reviewed and the floral assemblage is summarized. Together, these assemblages provide some insight into the biological community that lived in southwestern Saskatchewan during the latest Cretaceous. Keywords: Frenchman Formation, Maastrichtian, Late Cretaceous, southwestern Saskatchewan, Tyrannosaurus rex. 1. Introduction a) Geological Setting The Frenchman Formation, of latest Maastrichtian age, is extensively exposed in southwestern Saskatchewan (Figure 1; Fraser et al., 1935; Furnival, 1950). The lithostratigraphic units in the formation consist largely of fluvial sandstones and greenish grey to green claystones. Outcrops of the Frenchman Formation are widely distributed in the Frenchman River valley, southeast of Eastend. Chambery Coulee, on the north side of the valley, includes Royal Saskatchewan Museum (RSM) locality 72F07-0022 (precise locality data on file with the RSM), the site that contained the disarticulated skeleton of a Tyrannosaurus rex. McIver (2002) subdivided the stratigraphic sequence at this locality into “lower” and “upper” beds. -
Pierce County, North Dakota. a So\Ivenir History
Pierce County, North Dakota. A So\ivenir History. Pierce County North Dakota A SouVenir History Written by J. W. Bingham Published By J 905 The Pierce County Tribune flugby, N. D. DEDICATION. This Souvenir History is dedicated to the early settlers of Pierce County. Those who followed the star of empire in its V westward course and built themselves homes on the undeveloped prairies of Pierce County, that those who should come after them might live in a land of plenty and modern conveniences. It is written that the record of their hardships and achievements might be preserved and the results better exemplified. THE AUTHOR. BRIEF STATE HISTORY. **.^k AKOTA is an Indian name and signifies "confederated" or ''leagued together," and applied .Jr" originally to the Sioux confederation of Indians. The present state of North Dakota, together with that of South Dakota, was a part of the territory purchased in 1803 from France by President Thomas Jefferson, for the sum of fifteen million dollars and the assumption of certain claims held by citizens of the United States against France, which m.ide the purchase amount to twenty-seven million, two hundred and sixty-seven thousand, six hundred and twenty-one dollars and ninety- eight cents ($27,207,021.98), and was known as the Louisiana purchase. The bill incorporating the present States of North and South Dakota as Dakota Territory was signed by President Buchanan on March 2d, 1801. On May 27th, thereafter, President Lincoln appointed Dr. William Jayne, of Springfield, 111., as the first governor of Dakota Territory. The employes of various fur companies were the first white settlers of the Territory of Dakota. -
Pleistocene Geology of Eastern South Dakota
Pleistocene Geology of Eastern South Dakota GEOLOGICAL SURVEY PROFESSIONAL PAPER 262 Pleistocene Geology of Eastern South Dakota By RICHARD FOSTER FLINT GEOLOGICAL SURVEY PROFESSIONAL PAPER 262 Prepared as part of the program of the Department of the Interior *Jfor the development-L of*J the Missouri River basin UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1955 UNITED STATES DEPARTMENT OF THE INTERIOR Douglas McKay, Secretary GEOLOGICAL SURVEY W. E. Wrather, Director For sale by the Superintendent of Documents, U. S. Government Printing Office Washington 25, D. C. - Price $3 (paper cover) CONTENTS Page Page Abstract_ _ _____-_-_________________--_--____---__ 1 Pre- Wisconsin nonglacial deposits, ______________ 41 Scope and purpose of study._________________________ 2 Stratigraphic sequence in Nebraska and Iowa_ 42 Field work and acknowledgments._______-_____-_----_ 3 Stream deposits. _____________________ 42 Earlier studies____________________________________ 4 Loess sheets _ _ ______________________ 43 Geography.________________________________________ 5 Weathering profiles. __________________ 44 Topography and drainage______________________ 5 Stream deposits in South Dakota ___________ 45 Minnesota River-Red River lowland. _________ 5 Sand and gravel- _____________________ 45 Coteau des Prairies.________________________ 6 Distribution and thickness. ________ 45 Surface expression._____________________ 6 Physical character. _______________ 45 General geology._______________________ 7 Description by localities ___________ 46 Subdivisions. ________-___--_-_-_-______ 9 Conditions of deposition ___________ 50 James River lowland.__________-__-___-_--__ 9 Age and correlation_______________ 51 General features._________-____--_-__-__ 9 Clayey silt. __________________________ 52 Lake Dakota plain____________________ 10 Loveland loess in South Dakota. ___________ 52 James River highlands...-------.-.---.- 11 Weathering profiles and buried soils. ________ 53 Coteau du Missouri..___________--_-_-__-___ 12 Synthesis of pre- Wisconsin stratigraphy.