INFORMATION TO USERS

This reproduction was made from a copy of a document sent to us for microfilming. While the most advanced technology has been used to photograph and reproduce this document, the quality of the reproduction is heavily dependent upon the quality of the material submitted.

The following explanation of techniques is provided to help clarify markings or notations which may appear on this reproduction.

1.The sign or “target” for pages apparently lacking from the document photographed is “Missing Page(s)”. If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure complete continuity.

2. When an image on the film is obliterated with a round black mark, it is an indication of either blurred copy because of movement during exposure, duplicate copy, or copyrighted materials that should not have been filmed. For blurred pages, a good image of the page can be found in the adjacent frame. If copyrighted materials were deleted, a target note will appear listing the pages in the adjacent frame.

3. When a map, drawing or chart, etc., is part of the material being photographed, a definite method of “sectioning” the material has been followed. It is customary to begin filming at the upper left hand comer of a large sheet and to continue from left to right in equal sections with small overlaps. If necessary, sectioning is continued again-beginning below the first row and continuing on until complete.

4. For illustrations that cannot be satisfactorily reproduced by xerographic means, photographic prints can be purchased at additional cost and inserted into your xerographic copy. These prints are available upon request from the Dissertations Customer Services Department.

5. Some pages in any document may have indistinct print. In all cases the best available copy has been filmed.

University Morifilms International 300N.Zeeb Road Ann Arbor, Ml 48106 8305402

Urbanek, Richard Paul

ARTHROPOD COMMUNITY STRUCTURE ON STRIP-MINED LANDS IN OHIO

The Ohio Stale University PH.D. 1982

University Microfilms International300 N. Zeeb Road, Ann Arbor, MI 48106 PLEASE NOTE:

In all cases this material has been filmed in the best possible way from the available copy. Problems encountered with this document have been identified here with a check mark V .

1. Glossy photographs or pages______

2. Colored illustrations, paper or print______

3. Photographs with dark background ______

4. Illustrations are poor copy______

5. Pages with black marks, not original copy ______

6. Print shows through as there is text on both sides of page ______

7. Indistinct, broken or small print on several pages

8. Print exceeds margin requirements ______

9. Tightly bound copy with print lost in spine______

10. Computer printout pages with indistinct print i-—

11. P a g e (s)______lacking when material received, and not available from school or author.

12. Page(s)______seem to be missing in numbering only as text follows.

13. Two p ag es n u m b e re d ______. Text follows.

14. Curling and wrinkled p a g e s ______

15. O ther______

University Microfilms International

ARTHROPOD COMMUNITY STRUCTURE ON

STRIP-MINED LANDS IN OHIO

DISSERTATION

Presented in Partial Fulfillment of the Requirements for

the Degree Doctor of Philosophy in the Graduate

School of The Ohio State University

By

Richard Paul Urbanek, B.S., M.A.

The Ohio State University

1982

Reading Committee: Approved By

Theodore A. Bookhout

Tony J. Peterle

Gordon R. Stairs Advisor Charles A. Triplehorn Department of Zoology ACKNOWLEDGMENTS

I thank my advisor, Dr. T. A. Bookhout, for his constant patience and support throughout the study. I also thank my other committee members, Drs. C. A. Triplehorn, D. J. Horn, T. J. Peterle, and G. R. Stairs, for their valuable comments and suggestions.

I wish to thank Consolidation Coal Company, Cadiz, Ohio, for allowing me to work on company property. G. Cybulski, J. Smith,

A. Wallace, N. P. Neumann, T. Michael, H. Myers, and C. Cullen were especially helpful. I am grateful to the late C. V. Riley, Kent State

University, for his assistance in locating suitable study areas. I thank W. Sagrilla for allowing me to use his old field as a control area. I am grateful to M. Piccin for allowing me to use laboratory facilities at Belmont Technical College, St. Clairsville, Ohio. I also thank J. George of the same institution for his assistance and advice.

This project would not have been possible without the many hours of tedious labor performed by numerous assistants. Special thanks are due to M. J. Young and C. M. Lackney. The help of the following persons is also appreciated: J. Angerer, M. E. Bankiewicz,

D. Bevill, B. Boehm, J. Bolitho, S. F. Borgwald, J. L. Brown, B.

Butterfield, J. Chittenden, D. Coffman, G. Coffman, C. Colvin, M. S.

Crowley, G. A. Dahlem, J. Dowdle, J. Eickleberry, K. S. Gilliland,

ii C. J. Hafke, N. A. Heaslip, S. M. Hof, N. J. Houston, S. Howes, E.

Karr, H. King, J. A. Kinnee, D. Lallathin, M. Lanchman, K. J.

McGowan, S. Moreland, D. Morawetz, S. W. Nichols, B. Niemczura,

R. Phillips, A. Pollack, D. Reed, D. Romsliak, R. L. Smith, J. R.

Stenzel, D. M. Urbanek, D. P. Urbanek, Margaret M. Urbanek, Mary M.

Urbanek, M. P. Urbanek, P. M. Urbanek, D. A. Wagner, and L. A. Young.

Thanks are due the Ohio Young Adult Conservation Corps for

supplying many of the field and laboratory assistants. J. D. Bittner

and R. Ward deserve specific recognition.

I wish to thank J. R. Stenzel, S. Teraguchi, S. B. White, L. E.

Watrous, 0. Wheeler, R. Mitchell, G. Hardy, L. E. Rogers, J. W.

Leetham, and the late M. J. Glorioso for their suggestions dealing

with methodology.

I thank J. R. Schrock and B. A. Hawkins for their comments

concerning strip-mine .

I am grateful to D. Fairley, F. S. Ruland, L. D. Vangilder,

J. R. Bart, N. Reichenbach, and S. Dynin for statistical consultation.

Thanks are due to the Instructional Research and Computer Center, The

Ohio State University, for providing computer time and services, and

to the Statistics Laboratory, OSU, for supplying consultation.

I thank R. L. Stuckey and W. Carr for identification of

plant specimens.

Most importantly, I wish to thank the specialists who provided

arthropod identifications and feeding habits information. Without

the contributions of these authorities, whose names follow, this study could not have been accurately conducted: R. T. Allen, D. M. Anderson,

F. G. Andrews, G. E. Ball, J. A. Beatty, E. C. Becker, M. W. Boesel,

G. W. Byers, D. S. Chandler, J. B. Chapin, K. A. Christiansen, W. E.

Clark, G. A. Coovert, J. F. Cornell, Jr., R. E. Crabill, Jr., G. A.

Dahlem, C. E. Dasch, D. M. DeLong, D. L. Deonier, the late H. S. Dybas,

G. Ekis, T. L. Erwin, F. D. Fee, R. J. Gagne, R. C. Graves, R. D. Hall,

T. J. Henry, R. L. Hoffman, P. M. Holeski, D. J. Horn, M. A. Ivie,

N. F. Johnson, P. J. Johnson, P. B. Kannowski, K. C. Kim, J. M.

Kingsolver, J. E. McPherson, R. M. Miller, R. S. Miller, E. 0. Moore,

W. B. Muchmore, L. B. O'Brien, S. B. Peck, A. J. Penniman, R. W.

Rings, W. H. Robinson, J. A. Sargent, D. Shpeley, W. E. Steiner, Jr.,

J. B. Stribling, M. C. Thomas, G. A. Triplehorn, B. D. Valentine, the late P. Vaurie, K. Valley, L. E. Watrous, A. A. Weaver, Q. Wheeler,

J. A. Wilcox, W. W. Wirth, C. P. Withrow, S. L. Wood, and R. E.

Woodruff. I also wish to acknowledge the assistance of the

Identification and Beneficial Insect Introduction Institute, L. Knutson,

Chairman, SEA, AR, USDA, Beltsville, Maryland. I am solely responsible for any missortings or inaccurate identifications that might have been made during processing.

I thank the Ohio Division of Wildlife, which, through the Ohio

Cooperative Wildlife Research Unit, provided most of the funding for this study. I also acknowledge The Ohio State University, which provided me with the following sources of personal support while I was working on the project: University Fellowship, Teaching Associateship (Department of Zoology), Research Associateship (Department of Zoology),

Mining and Mineral Resources Research Fellowship, and Presidential

Fellowship.

Finally, I thank all of the people whom I have forgotten to mention. Their support has been appreciated.

This project was a contribution of the Ohio Cooperative Wildlife

Research Unit, jointly sponsored by The Ohio State University, Ohio

Division of Wildlife, U.S. Fish and Wildlife Service, and Wildlife

Management Institute.

v VITA

25 November 1953 ...... Born - Belleville, Illinois

1974 ...... B.S., Southern Illinois Univer­ sity, Carbondale, Illinois

1974-76...... Research Assistant, Graduate Fellow, Southern Illinois Uni­ versity, Carbondale, Illinois

1976 ...... M.A., Southern Illinois University, Carbondale, Illinois

1976-82...... Graduate Fellow, Teaching Assoc­ iate, Research Associate, The Ohio State University, Columbus, Ohio

PAPERS

Urbanek, R. P. 1976. Vertebrate and floral diversity on strip-mined land in Williamson and Saline counties, Illinois. M.A. Thesis, Southern Illinois Univ., Carbondale. 146pp.

FIELDS OF STUDY

Major Field: Wildlife Ecology

Wildlife and Strip-mine Ecology ...... Dr. W. D. Klimstra

Wildlife and Strip-mine Ecology ...... Dr. T. A. Bookhout

Insect Systematics Dr. C. A. Triplehorn

Population Ecology...... Dr. T. J. Peterle

vi TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS...... ii

VITA ...... vi

LIST OF T A B L E S ...... ix

LIST OF FIGURES...... xi

INTRODUCTION ...... 1

STUDY A R E A ...... 6

Climate ...... 6 Geology ...... ? Study S i t e s ...... 1 77 Area...... 8 75 Area...... 8 CV Area...... 10 Old Field Control...... 13 78 Area...... 13

METHODS AND MATERIALS...... i5

Vegetation Sampling ...... 13 Quantitative Arthropod Sampling and Sample Processing . . . 20 Additional Arthropod Sampling and Sample Processing .... 26 Assembly and Analysis of Quantitative Arthropod Data. . . . 28 Diversity Calculation...... 29 Similarity Calculation ...... 32 Statistical Analysis ...... 34

RESULTS...... 36

Vegetation...... 36 Arthropods...... 43 Taxonomic Composition...... 43 Density...... 45 Herbaceous Layer...... 45 Litter Layer...... 33 Density Differences According to Stratum...... 35

vii Page

Biomass...... 55 Herbaceous Layer ...... 55 Litter Layer ...... 58 Biomass Differences According to Stratum...... 60 Diversity...... 60 Richness in the Herbaceous Layer ...... 60 Richness in the Litter Layer...... 65 Numerical Equitability ...... 68 Dominance Based on Biomass ...... 71 Relationship Between Diversity at Site and Quadrat Level ...... 74 Effect of Age of Site Upon Arthropod Community Structure...... 74 Community Similarity Among Sites ...... 75 Year-to-Year Community Similarity...... 75 Seasonal Trends in Community Composition ...... 79 Habitat-specific Arthropods...... 79 Trophic Structure...... 85

DISCUSSION...... 98

Productivity...... 98 Vegetation...... 98 Arthropods...... 100 Community Stability ...... 103 Succession and Community Development...... 104 Potential Indicator Groups...... 107 The Value of Reclamation to Wildlife and Environmental. Quality *.».•*••••••••••••••••••• 108 Recommendations and Research Needs...... CONCLUSIONS. 114

LITERATURE CITED ...... 116

APPENDICES

A. Berlese/Tullgren Funnel Efficiency and Contributions of Subsample Types to Total Density ...... 124

B. Representative Weights and Equations for Prediction of Arthropod Biomass ...... 127

C. Trophic Category Assignments...... 139

D. Vegetation Summary...... 153

E. Arthropod Summary ...... 174

viii LIST OF TABLES

Table Page

1 Percent vegetative cover (living and dead) and number of living vascular plant on study areas in Harrison County, Ohio, 1978-79...... 37

2 Percentage of plot/sampling period combinations in which indicated morphotypes were classified as one of the dominant morphotypes, based on biomass...... 46 2 3 Densities (number of individuals/m ) of abundant families according to habitat and year...... 49

4 Annual percentage contribution of non-acarine arthropod density and biomass in the litter layer to total non-acarine arthropod density and biomass on study areas in Harrison County, Ohio...... 56

5 Mean period-to-period similarity of dominant arthropod morphotypes (+ 1 SE), based on community correlation coefficients, amongsites in Harrison County, Ohio. . . 76

6 Similarity of non-acarine arthropod family/life form composition between 1978 and 1979 on sites in Harrison County, Ohio...... 77

7 The two most abundant family/life form groups and their percentage contribution to total non-acarine arthropod density according to site and period in Harrison County, Ohio, 1978-79...... 80

8 The two most dominant morphotypes and their percentage contribution to total estimated biomass of all dominant morphotypes according to site and period in Harrison C.ounty, Ohio, 1978-79 ...... 82

9 Seasonal shift in arthropod dominance, based on dis­ similarity values calculated from coefficients of com­ munity (CC) and community correlation coefficients (SI)...... 84

ix Table ' Page

10 Habitat specificity of arthropod taxa with restricted distributions on study sites in Harrison County, Ohio, 1978-79 ...... 86

11 Results of Berlese/Tullgren funnel extraction ef­ ficiency tests, June and August 1979......

12 Percentage contribution of component parts of samples to total non-acarine arthropod density within each area and y e a r ......

13 Representative biomass values and parameter estimates for length-weight equations ...... ^ General and specific trophic categories of non-acarine arthropods collected on study sites in Harrison County, Ohio, 1978-79 ...... 140 15 Annual summary of frequency of occurrence (%) and bio­ mass (g/m^) of plant species in quadrats sampled on study areas in Harrison County, Ohio, 1978-79 ......

16 Plant species recorded on study areas in Harrison County, Ohio, 1978-79 ...... 162

17 Identified arthropod taxa from study areas in Harrison County, Ohio, 1978-79 ...... *75 2 2 18 Estimated biomass (mg/m ) and density (individuals/m ) of dominant morphotypes according to sampling period and plot in Harrison County, Ohio, 1978-79...... 22^ 2 19 Density (individuals/m ) of family/life form groups according to sampling period and study area in Harri­ son County, Ohio, 1978-79 ...... 28^

x LIST OF FIGURES

Page

Plot A of the 77 area, Harrison County, Ohio, August 1979...... 9

2 Plot B of the 77 area, Harrison County, Ohio, August 1979...... 9

3 Plot A of the 75 area, Harrison County, Ohio, August 1979...... 11

4 Plot B of the 75 area, Harrison County, Ohio August 1979...... 11

5 Plot A of the CV area, Harrison County, Ohio, August 1979...... 12

6 Plot B of the CV area, Harrison County, Ohio, July 1978...... 12

7 The unmined old field control area, Harrison County Ohio, August 1979...... 14

8 Quantitative arthropod sampling with the D-Vac suction sampler and quick-trap ...... 16

9 Battery of Berlese/Tullgren funnels...... 22 2 10 Biomass of standing vegetation (g/m ) on study areas in Harrison County, Ohio...... 38 2 11 Estimated biomass of legumes (g/m ), excluding crown vetch, on study areas in Harrison County, Ohio ...... ^0 2 12 Estimated biomass of grasses (g/m ) on study areas in Harrison County, Ohio...... 2 13 Estimated biomass of crown vetch (g/m ) on study areas in Harrison County, Ohio ...... 2 14 Biomass of litter (g/m ) on study areas in Harrison County, Ohio ......

xi Page

Density of non-acarine arthropods in the herbaceous layer (number of individuals/m^) on study areas in Harrison County, Ohio...... 52

16 Density of non-acarine arthropods in the litter layer (number of individuals/m^) on study areas in Harrison County, O h i o ...... 54

17 Biomass of non-acarine arthropods in the herbaceous layer (mg/m^) on study areas in Harrison County, Ohio. . 57

18 Biomass of non-acarine arthropods in the litter layer (mg/rn^) on study areas in Harrison County, Ohio...... 59

19 Total richness of coarse arthropod morphotypes (number of coarse morphotypes/3 m2) on study areas in Harrison County, O h i o ...... 61

20 Total richness of non-acarine arthropod family/life form groups (number of family/life forms per 3 m ) on study areas in Harrison County, Ohio...... 62

21 Richness of coarse arthropod morphotypes in the herba-r ceous layer (number of coarse morphotypes/3 m^) on study areas in Harrison County, O h i o ...... 63

22 Richness of non-acarine arthropod family/life form groups in the herbaceous layer (number of family/life forms per 3 m^) on study areas in Harrison County, Ohio. 64

23 Richness of coarse arthropod morphotypes in the litter layer (number of coarse morphotypes/3 m^) on study areas in Harrison County, O h i o ...... 66

24 Richness of non-acarine arthropod family/life form groups in the litter layer (number of family/life forms per 3 m^) on study areas in Harrison County, Ohio. . . . 67

25 Equitability (J1) of non-acarine arthropod family/life form densities (per 3 m^) in the herbaceous layer on study areas in Harrison County, Ohio ...... 69

26 Equitability (J') of non-acarine arthropod family/life form densities (per 3 m2) in the litter layer on study areas in Harrison County, O h i o ...... ^0

27 Equitability (J1) of dominant morphotype biomass (per 3 m2) in the herbaceous layer on study areas in Harrison County, O h i o ...... ^2 xii Figure Page

28 Equitability (J') of dominant morphotype biomass (per 3 m2) in the litter layer on study areas in Harrison County, O h i o ...... 73

29 Bray-Curtis (1957) ordination of plot/year groups based on family/life form densities. Distance between any two points corresponds to the relative dissimi­ larity of the communities represented (based on com­ munity correlation coefficients). Amount of variance in dissimilarities accounted for by graphical repre­ sentation = 79.3%...... 78

30 Trophic distribution of non-acarine arthropod density (number of individuals/m^) on the 77 area, Harrison County, O h i o ...... 89

31 Trophic distribution of non-acarine arthropod density (number of individuals/m^) on the 75 area, Harrison County, O h i o ...... 90

32 Trophic distribution of non-acarine arthropod density (number of individuals/m^) on the CV area, Harrison County, O h i o ...... 91

33 Trophic distribution of non-acarine arthropod biomass (mg/m^) on the 77 area, Harrison County,.Ohio...... 92

34 Trophic distribution of non-acarine arthropod biomass (mg/m2) on thy 75 area, Harrison County, Ohio...... 93

35 Trophic distribution of non-acarine arthropod biomass (mg/m2) on the CV area, Harrison County,.Ohio...... 94

36 Trophic distribution of non-acarine richness (number of family/life form groups per 0.5 m^) on the 77 area, Harrison County, Ohio...... 95

37 Trophic distribution of non-acarine arthropod richness (number of family/life form groups per 0.5 m2) on the 75 area, Harrison County, Ohio ..... 96

38 Trophic distribution of non-acarine arthropod biomass (mg/m2) on the CV area, Harrison County,.Ohio...... 97

xiii INTRODUCTION

Improvements in procedures used for reclamation of surface-mined lands can be made only after the capacity of such areas to support

life has been examined and evaluated. Because arthropods affect vege­

tation production and soil genesis, and provide a food supply for vertebrates, their role in the development of functional communities on strip-mined lands must be investigated.

Prior to 1981, an estimated 930,000 ha were affected by bituminous coal extraction in the United States (Committee on Soil as a Resource in Relation to Surface Mining for Coal, National Research Council

1981:21). Future energy requirements, coupled with large domestic supplies of coal, will ensure the importance of coal as a fuel resource in this country. Surface mining, with its potentially severe ecologi­ cal consequences, is the most cost-effective method of mining coal and has accounted for 56.6% of all coal produced in the United States during recent years (U.S. Bureau of Mines 1976). During 1981 Ohio ranked sixth in coal production among the states, and 71.7% of the coal extracted was from surface-mining (Ohio Mining and Reclamation Associ­ ation 1981). Reclamation of surface-mined lands to an acceptable level of environmental quality has been and will continue to be an area of pressing ecological, social, and economic concern. During 1947-1972, Ohio law required only minimal reclamation of

surface-mined lands. The results were variable grading and planting

regimes of variable success. Early plantings usually consisted of

trees. Since 1972, when more strigent reclamation requirements were

enacted, non-native grass-legume plantings have become the dominant

revegetation types. Retopsoiling, grading to original contour or less,

and elimination of highwalls are also required. Enactment of the

Surface Mining Control and Reclamation Act of 1977 (PL 95-87) mandated reclamation of mined sites to previous or better (often agricultural)

land uses and to levels of productivity meeting or exceeding pre-mining conditions. Grass-legume plantings will continue to be major reclama­ tion types however, both for short-term surface stabilization and long-term uses such as mulch, pasture, or hay production.

Several investigators have studied the ecology of higher terres­ trial vertebrates on strip-mined lands (e.g., Yeager 1942, Riley

1954, Brewer 1958, Arata 1959, Verts 1959, Myers and Klimstra 1963,

Smith 1964, Jones 1967, Bookhout et al. 1968, Karr 1968, Mumford and

Bramble 1973, Yahner and Howell 1975, DeCapita and Bookhout 1975,

Kirkland 1976, Sly 1976, Urbanek 1976, Brenner 1978, Chapman et al.

1978, Curtis et al. 1978, Kimmel and Samuel 1978, Wray et al. 1978,

McGowan 1980, Krementz and Sauer 1982). Aquatic invertebrates affected by mining operations have also been investigated (e.g., Koryak et al. 1972, Tomkiewicz and Dunson 1977, Matter et al. 1978, Preston and Green 1978). However, little information dealing with the ter­ restrial arthropod fauna on strip-mined lands is available. Studies have been conducted in the brown coal mining regions of Germany (Dunger 1967, 1969, Neumann 1973, Bode 1975), in Illinois (Smith 1928,

Davidson 1932, Costley 1936), in mid-Appalachia (Holland 1973), and in

Alabama (Hawkins and Cross 1982). Importantly, density and biomass

data for both herbaceous layer and litter-inhabiting arthropod commun­

ities have rarely been collected.

Arthropods are the most important herbivores in many communities

(Price 1975:v), are important in soil genesis (Kevan 1962:177-202,

Dunger 1969), and provide a necessary food supply for many vertebrates.

Arthropods have been used to evaluate water quality of streams

(Hilsenhoff 1977), and it is reasonable to believe that arthropods can

be used as indices of habitat quality on strip-mined sites. Use of

terrestrial indicator species and communities needs development

(Tischler 1955, Duke 1974, Cornaby 1977).

A major goal of this study was to determine productivity of re­

claimed lands surface-mined for coal as expressed by arthropod biomass,

density, and diversity. Knowing the faunal character that results

from the establishment of a particular floral planting during recla­ mation is essential to selection of the most productive revegetation plan from among several plans that might be available.

Basic research questions dealing with the establishment of fauna on ecologically new areas are of biological interest and need to be addressed. What differences in arthropod biomass, densities, diversity, and trophic structure develop as these systems age? As predicted by general successional theory (Odum 1969), do species richness, equit­ ability, and community stability increase over the same time period?

Can rapid attainment of a dynamic equilibrium in species diversity and trophic structure as predicted by island biogeography theory (Wilson

1969, Simberloff and Wilson 1970, Heatwole and Levins 1972, Teraguchi et al. 1977) be ascertained? What phases of colonization and community development can be identified?

The relationship of plant species and structural diversity to arthropod diversity (Murdoch et al. 1972) and to arthropod succession

(Shure and Ragsdale 1977) has been noted. Can a similar relationship be detected and evaluated regarding reclaimed lands? Root's (1973) resource concentration hypothesis proposes that plentiful concentrated resources of low diversity tend to result in outbreaks of phytophagous . Is this hypothesis supported by information from reclaimed strip-mined areas, which may exhibit highly-concentrated legume pop­ ulations during the first year after reclamation? Larval forms, which represent all trophic classes, are extremely important contribu­ tors to community structure and function, yet they are often ignored in community studies. What is the contribution of this group to community structure on reclaimed lands?

Questions of this nature have not been sufficiently answered in the literature and have been little addressed in regard to strip-mined lands. The present study is a large and complex one, aimed at gather­ ing data dealing with systems about which we know little. This type of study is the necessary first step in determining what future ques­ tions are most appropriately asked and on what specific ecosystem components future research must be conducted. It is only after such basic information is attained that manipulative experiments on key ecosystem components can be developed and implemented and the roles of these components in community development can be assessed.

Objectives of this study were:

1) To determine taxonomic composition, density, biomass, and

diversity of above-ground, non-acarine arthropods on

recently (post-1972) mined sites, on older mined lands,

and on unmined old field (control) habitat in eastern Ohio.

2) To classify selected arthropod taxa according to their

affinities for each habitat type.

3) To determine the relationship of vegetation composition,

primary production, litter accumulation, and time since re­

clamation to arthropod biomass, density, and diversity.

4) To examine trophic structure of arthropod communities on

strip-mined lands.

5) To note seasonal changes within the arthropod communities on

strip-mined and unmined habitats.

6) To determine successional trends in arthropod and vegetation

components of the reclaimed ecosystems. STUDY AREA

All field research was conducted during May-September 1978 and

April-September 1979 in Harrison County, Ohio. Areas representing four major habitat types were sampled: a grass-legume planting reclaimed in 1977 (77 area), a grass-legume planting reclaimed in

1975 (75 area), an older mined area planted to crown vetch (Coronilla varia L.) (CV area), and an unmined old field (control) area. An additional grass-legume planting reclaimed in 1978 (78 area) was sampled during June 1979 only.

CLIMATE

The climate of Harrison County is continental. Both 1978 and

1979 were characterized by colder than normal winters and above-average rainfall (U.S. Department of Commerce, Environmental Data Service

1978, 1979). During 1978 mean annual temperature recorded at Cadiz,

Ohio, was 9.9°C (0.94°C below normal). Temperature extremes were

-20.6 and 32.2°C. The period between the last spring frost (2 May) and earliest fall frost was 169 days. Total annual precipitation was

112.6 cm (17.8 cm above normal). During 1979 mean annual temperature was 10.1°C (0.78°C below normal). Extremes were -21.7 and 31.1°C.

The period between the last spring frost (5 May) and earliest fall frost was 159 days. Annual precipitation was 109.5 cm (14.7 cm above normal). GEOLOGY

Harrison County lies in unglaciated east-central Ohio, within the

Allegheny Plateau. Topography is hilly. Elevation ranges from 300-400 m above sea level. Major soil series include Gilpin, Berks, Tilsit,

Wellston, Keene, and Westmore silt loams, and Elba-Guernsey silty clay

loam, Gilpin-Keene Complex, and Westmoreland-Guernsey Complex. Area i > strip-mining is a dominant land use, affecting up to 20% of the county

(Ohio Division of Reclamation, n.d. a^, b) . The principal coal seams mined are the Pittsburgh #8 and Meigs Creek #9. Overburden consists primarily of shale and limestone-clays (Brant and DeLong 1960), and pH is usually neutral to slightly alkaline (Consolidation Coal Company, pers. comm.). On the sites examined overburden depth averaged about

30 m and thickness of the coal seam was about 1 m.

STUDY SITES

Except on the CV area, two 16-ha replicate plots were established within each major habitat on strip-mined lands. On the CV area one

16-ha and one 14-ha plot were established. Within each 16 or 14-ha plot, one 4-ha plot, centrally-located when possible, was chosen from which to collect quantitative arthropod/vegetation data. One 4-ha plot was established on the old field control area, and one 1-ha plot was established on the reclaimed area sampled only during June

1979. As much as possible, all plots on strip-mined lands were center­ ed within larger tracts of similar habitat type so that edge effect and spillover of fauna from surrounding habitats would be minimized. 8

77 Area

This area (Figs. 1, 2) was located on Consolidation Coal Company property (T10N, R5W, S22), 3 km N of Flushing, Ohio. The area was mined in 1975-76 and retopsoiled to a depth of approximately 20 cm during fall 1976 and spring 1977. The topsoil used was primarily clay and had been stockpiled for 2 years before application. No lime and

336 kg/ha of 18-46-0 fertilizer were applied. Seeding began in fall

1976 and was completed during spring 1977, with the exception of an approximately 0.35-ha patch on replicate B which was not seeded until fall 1977. The latter patch was not sampled. Mulch was applied in spring 1977. During the first growing season, oats (Avena sativa L.) was used as a nurse crop. The dominant plant species after the first growing season were the major species planted: tall fescue (Festuca arundinacea Schreb.), orchard grass (Dactylis glomerata L.), yellow sweet clover (Melilotus officinalis (L.) Lam.), and red clover

(Trifolium pratense L.). Plant names are according to Weishaupt

(1971). This cover type is representative of current and presumably much of the future reclamation efforts within the region. Surface pH values of soil samples collected 2 years after completion of planting were 8.2 for replicate A and 7.4 for replicate B. Minor additional reclamation consisting of removing diversion ditches and replanting the resulting denuded areas was performed during September

1978.

75 Area

This area was located on Consolidation Coal Company property

(T10N, R5W, S17, 23, 24), 5 km W of New Athens, Ohio. Mining occurred 9

X^v v

Fig. 1. Plot A of the 77 area, Harrison County, Ohio, August 1979

Fig. 2. Plot B of the 77 area, Harrison County, Ohio, August 1979. 10 during 1972-73 and retopsoiling to a depth of about 15 cm was com­ pleted during spring and summer 1975. The topsoil consisted of a heavy clay-content material stockpiled for 2.5 years before application.

No lime was applied. During summer and fall of 1975 336 kg/ha of

18-46-0 fertilizer were applied, followed by 122-224 kg/ha the follow­ ing spring. Seeding and mulch application occurred during summer and fall of 1975. The dominant plant species were the same as those on the 77 area. In addition, crown vetch was a volunteer dominant.

Replicate A (Fig. 3) exhibited a variable topography, but the majority of the sampled area was flat. Replicate B was centered around a reclaimed highwall (Fig. 4). Minor additional reclamation, consisting of blading out and reseeding eroded areas, occurred in 1976 and 1977.

Surface pH, 4 years after planting, was 8.0.

CV Area

This area was located on Consolidation Coal Company property

(TUN, R5W, S31, 32; T11N, .R6W, S2), 10 km SW of Cadiz, Ohio. Mining occurred during 1964-66. The dominant plant species was crown vetch, planted in 1965-67. Scattered patches of quack grass (Agropyron repens (L). Beauv.) were also present. There had been no retopsoiling or fertilizing. A loose, gray shale comprised the surface substrate.

The plots (Figs. 5, 6) were located on extensive banks of roughly- graded spoil situated in a general area containing unfilled cuts, high- walls, and generally variable topography. This type of habitat was representative of reclamation within the region during the later years under old Ohio strip-mine laws (pre-1972). Surface pH recorded in 1979 was about 7.9. 11

Fig. 3. Plot A of the 75 area, Harrison County, Ohio, August 197 9

Fig. 4. Plot B of the 75 area, Harrison County, Ohio, August 1979. Fig. 5. Plot A of the CV area, Harrison County, Ohio, August 1979.

Fig. 6. Plot B of the CV area, Harrison County, Ohio, July 1978 Old Field Control Area

This unmined site (Fig. 7) was located on a west-facing slope of slight incline on the property of Mr. W. Sagrilla (T12N, R4W, S15),

1.5 km NW of Hopedale, Ohio. Soil was sandy loam. Major herbaceous species were brome grass (Bromus inermis Leyss), velvet grass

(Holcus lanatus L.), goldenrod (Solidago spp.), blackberry (Rubus spp.), and common cinquefoil (Potentilla simplex Michx.). Small trees, par­ ticularly wild black cherry (Prunus serotina Ehrh.) and elm (Ulmus sp.) were also common. This site had been used for hay production and pasture until 1960. From 1960 until 1970 the area was idle except for annual mowing. Subsequently, the site was undisturbed. Due to a scarcity of unmowed, ungrazed old fields (requisite to measuring vegetational biomass production) in the general area, no replicate site for the control area was available.

78 Area

This site, reclaimed in the same way as the 77 and 75 areas and adjacent to the western boundary of the 75 area, was sampled only during June of 1979. The area had been planted in 1978. This site was added to ensure that some data on areas examined 1 year after reclamation would be collected during 2 different years. Without data from the additional year, the relative effects of age of site and calendar year upon arthropod production on 1-year-old areas would have been more difficult to assess. Fig. 7. The unmined old field control area, Harrison County, Ohio, August 1979. METHODS AND MATERIALS

VEGETATION SAMPLING

A 200 x 200-m grid with a 1-m interval between each consecutive

pair of points along the axes was established upon each 4-ha plot.

Each sampling point was defined by a randomly-generated X-Y coordinate

pair within one of these grids and was located in the field by pacing. 2 Circular quadrats, each 0.5 m in size, constituted the sampling unit

at each sampling point. Because all collection of arthropod samples

was made concurrently with vegetation sampling, a quick-trap (Turnbull

and Nicholls 1966, Leetham 1975) attached to the end of a 2-m-long

aluminum pole was dropped over each sampling point to establish each

quadrat (Fig. 8). During periods when arthropod collections were not 2 made, I used a metal ring encompassing a 0.5-m area to establish

quadrats for vegetation sampling. Random quadrat locations falling on spots with less than 50% estimated vegetative ground cover were not

sampled. Instead, each such quadrat location was shifted to a new

sampling point arrived at as follows:

1) a circle with its center 5 m from the unusable sampling

point toward the point from which pacing was initiated

was established.

2) the direction from the center of the circle to the

unusable point was assigned the value 0°.

15 Fig. 8. Quantitative arthropod sampling with the D-Vac suction sampler and quick-trap. 17

3) the new sampling point was established 90° in a clockwise

direction from the old sampling point and 5 m from the

center of the circle.

4) if this new sampling point was also not usuable, an ad­

ditional 90° clockwise shift was performed to select

another point.

During 1978, when records of sampling point relocation were kept, only

3% of originally-assigned quadrat locations were changed.

Six quadrats were examined on each plot during each 2-week samp­

ling period. For the 77, 75, and CV areas, eight consecutive sampling

periods, from late May to mid-September 1978, and six sampling periods, one per month from April to September 1979, were used. Sampling

periods on the unmined old field were the same as on the major strip- mined areas during 1979, but, due to difficulties in finding undis­

turbed old field habitat at the beginning of the study, only four

consecutive periods, from late July to mid-September, were used during

1978. As previously mentioned, the 78 area was sampled only during

one period, June 1979. Quantitative sampling on replicate A, on the

CV area, was restricted to a 2-ha area during and after June 1979 because vegetation on the other 2-ha portion of the plot had been

trampled by U.S. Marines earlier that month.

Species composition and ocular estimation of percentage total

cover, percentage grass biomass, and percentage biomass of dominant non-grass species were recorded in the field for each quadrat sampled

after 18 July 1978. Before this date, percentage biomass was recorded

only for total grasses and total legumes. Legume species were, IS

however, classified according to relative dominance. These relative

dominance values were later converted to crude percentage biomass values

for yellow sweet clover, red clover, and crown vetch by substituting

mean percentages for each species from data in other samples with

comparable species combinations and dominance patterns. During the

first sampling period of 1979, vegetation data were recorded in the

field for only 9 samples. In most of the remaining samples, percentage

biomass of dominant plants was estimated in the laboratory.

During 1978 standing dead material was not recorded separately

from its species of origin. During 1979, however, percentage biomass

of standing dead material was estimated as a distinct entity. Biomass

recorded for each species during 1979 therefore included only living

standing biomass, whereas biomass recorded for each species during

1978 included both living and dead standing biomass.

Standing vegetation was clipped within 0-2 cm of the soil surface,

dried, and weighed to obtain biomass values for all quadrats sampled.

Rechargeable electric grass shears were used to clip standing vegeta­

tion prior to 19 July 1978. Subsequently manually-operated shears were

used. The electric shears were less effective at cutting the vegeta­

tion, especially along the perimeter of the quadrat. Samples collected

prior to 19 July 1978 therefore probably had slightly lower than

actual values recorded for herbaceous layer biomass. In addition,

ineffectively cut material was presumably removed along with the litter,

thus the litter layer values recorded were probably elevated above

actual values. Most herbaceous layer samples collected were air-dried.

Corrections for residual moisture content, arrived at through 19

oven-drying of previously air-dried samples, were applied to place

all samples on an oven-dry-weight basis.

Litter samples taken concurrently with herbaceous layer samples were weighed after soil removal (by flotation), washing, and oven-drying at 70°C for 48 h. Either 100% or a random 50% of each sample was weighed. Because litter samples were processed by different crews or according to different flotation procedures, corrections for inadequately-removed soil were necessary for some samples. The type of processing or correction and number of samples affected were as follows:

1) complete litter sample weighed, no corrections (N=52).

2) 50% of sample weighed, X 2, no corrections (N=289).

3) 50% of sample processed but soil inadequately removed,

other 50% of same sample processed correctly; linear

correction equation calculated for samples from each

habitat type by regressing weight of correctly-processed

halves against weights of inadequately-processed halves;

correction applied to half of sample from which soil

was inadequately removed; weights of correctly pro­

cessed 50% and corrected 50% then added (N=35).

4) 50% of sample processed but soil inadequately removed,

weight corrected according to regression equations

calculated in (3) above, X 2 (N=165).

5) 100% of sample processed but soil inadequately removed;

linear correction equation calculated by regressing mean

weight of other litter samples from same site against 20

weight of inadequately processed sample, correction

applied (N=26).

6) sample lost or destroyed (N=3). '

QUANTITATIVE ARTHROPOD SAMPLING AND SAMPLE PROCESSING

Within each plot, samples were collected from the previously de- 2 scribed 0.5-m quadrats that were established by dropping the quick-trap. Immediately after being dropped, the quick-trap was nailed to the ground to prevent escape of arthropods. All arthropods and vegetation were then removed with a Model 1A D-vac suction sampler

(D-vac Co., Riverside, CA) (Fig. 8). Sampling intensity was 6 quadrats per plot per approximately 2-week sampling period. Of the

486 samples taken, 330 from the following periods were examined: 29

May-10 June 1978, 30 June-9 July 1978, 26 July-8 August 1978, 4-14

September 1978, 14 May-4 June 1979,10-22 June 1979, 12-20 July 1979, and 1-8 September 1979.

Within a major strip-mine habitat, 6 samples were typically col­ lected on a given day, 3 from one replicate plot followed by 3 from the other plot. During the second week of the period, the order in which the replicates were sampled was normally reversed from the order used during the previous week. Collection was normally conducted between 1100 and 1645 h on days when the standing vegetation was not wet. For each quadrat sampled, material was vacuum-collected in three stages: (1) All active or loosely-attached arthropods in the standing vegetation were removed along with a small portion of plant material,

(2) standing vegetation was clipped and removed, and (3) litter 21 and bases of grass clumps were removed. Specimens taken during Stage

1 were killed in jars containing potassium cyanide and transferred to plastic bags (to be frozen upon reaching the laboratory). Vege­ tation and associated arthropods taken during Stage 2 were temporarily stored in plastic bags. Litter and associated arthropods taken during

Stage 3 were placed in muslin bags, which were then deposited in ven­ tilated ice chests for transport to the laboratory.

Arthropods in Stage 1 samples were extracted manually from the accompanying vegetation material. Arthropods in Stage 2 samples were removed from the coarse portion of the vegetation material with an electric motor/blower-powered sifting device used in conjunction with manual sorting. In the resulting fine vegetation siftings, arthropods were extracted manually from either a 10% (N=126) or a 20% (N=200) subsample of each sifting. Fine siftings consisted of material which passed through a 1.42 X 1.77-mm (windowscreen) seive. Arthropods taken during Stage 3 were extracted from debris by using Berlese/

Tullgren-type funnels (MacFadyen 1962, Leetham 1975, Southwood 1978:

185) (Fig. 9). Each funnel was 43 cm in diameter and contained a

0.635 X 0.635-cm-mesh grid. A rubber-skirted, black muslin-covered hood prevented escape of arthropods from the top of the funnel, and also prevented condensation of moisture within. In each funnel, a

250-W, red-filter, infrared bulb was used as a heat source (Fournier and Huddleston 1977); heat intensity was rheostat-controlled. During

1978 extracted arthropods were collected in 80% ethyl alcohol; during 1979 ethylene glycol, a non-evaporating preservative, was the 22

Fig. 9. Battery of Berlese/Tullgren funnels. 23

collection medium used. Prior to subsequent processing, specimens

collected in glycol were transferred twice to fresh 80% ethyl alcohol for glycol removal.

Extractions normally required 48 h. During the first day litter surface temperatures were adjusted to 37-44°C and during the second day to 50-56°C. Material extracted from the funnels (arthropods, small soil and vegetation particles) was subjected to flotation in concentrated MgSO^ solution to remove the soil. The flotation device used was modified from Salt and Hollick (1944). Features included a

5-gallon feeder tank supplied by an electric pump, a built-in air agitation system, and a No. 100 U.S. Standard Seive as a base grid.

All fluid was automatically recycled. Extraction efficiency was

95-100%. The extracted material was sifted through a windowscreen seive into coarse and fine portions. Coarse portions and adult arthropods (exclusive of pseudoscorpions, Collembola, thrips, and aphids) from fine portions were examined completely. A random sub­ sample of the remaining material was examined. I originally intended the size of this subsample to be 15%, but later tests indicated that

18.59% was the actual mean subsample size taken; this latter value was therefore used in all relevant calculations. Because extraction efficiency of Berlese/Tullgren funnels was only 64.1% in preliminary tests (Appendix A, Table 11), examination of arthropods remaining in the residual litter was considered necessary. With optimal allocation theory to arrive at estimates of total density in the most cost-effec­ tive manner, I calculated subsample sizes of 5.88% for coarse material and 1.96% for fine material and later used them for most of the samples. A variety of subsample sizes was used within several samples, especially

samples from the first sampling period. Extraction efficiency of funnels,

based on residue analysis, ranged from 62.4% on the 75 area during 1979

to 92.3% on the 77 area during the same year (Appendix A, Table 12).

Sorting the large number of morphotypes present in the samples

necessitated use of rapidly-accessible reference specimens. To

satisfy this requirement, I developed and used a reference collection

system with a 2,700-morphotype capacity. The basic features of this

collection consisted of a rotating 4-faced housing which could accomo­

date 400, 60 X 15-mm petri dishes. Each of the petri dishes could

in turn contain 7, 17 X 10-mm glycerin-filled dishes in which the

reference specimens were stored.

All arthropods from the first collection period (29 May-10 June

1978) were sorted to morphotype level. A morphotype is defined as

an apparent species. Immature forms were considered to be different morphotypes from corresponding adults. This sorting and identifica­

tion process was too time/manpower-consuming to be practical for all

samples, so a more cost-effective method was devised for use in sub­

sequent sample processing. Under this new plan only specimens from

coarse siftings were sorted to morphotypic level, and only dominant morphotypes were identified to morphotypic level. Non-dominant material was normally identified to family level. Within a sample,

dominant morphotypes were defined as the 25% of total number of mor­

photypes accounting for greatest dry-weight biomass within the coarse

siftings of a stratum (herbaceous layer or litter). Data from funnel

residues were not used in the dominant determination process because 25

of small subsample size. Dry-weight biomass was estimated from density

and representative weight data. A total of 8,685 specimens of 751

morphotypes in 159 families was oven-dried and weighed to obtain the

latter data. Equations for conversion of length to biomass were

generated by use of one of the 3 models (below) (Rogers et al. 1977) 2 which gave the greatest predictive value (highest R ) for each mor­

photype or family. (A list of representative weights andequations used

for biomass estimation of taxa encountered appears in Appendix B,

Table 13.)

1) BIOMASS = m X LENGTH + b

2) BIOMASS - e(m X lENGTH + b)

3) BIOMASS - e<" X l»Be«-ENOTH) + b) where: m = slope

b = y-intercept

e = base of natural logarithm

Dominant morphotypes were accumulated over each set of 6 samples per replicate plot per 2-week sampling period. The selection of dom­ inant morphotypes was biased in favor of morphotypes with a large number of individuals that occurred in only one or a few samples, morphotypes with large and/or non-compact body forms, morphotypes that were effectively extracted'by Berlese funnels, and morphotypes that occurred in only one stratum of a given sample. The effects of these biases were not measured but were considered to be relatively equal across all samples.

All material within each stratum or portion thereof was classified according to both specific and general trophic category for density 26 determinations. Twenty-seven different specific categories were recognized (Appendix C, Table 14). General trophic categories used con­ sisted of herbivore, predator, parasitoid, detritivore/fungivore, and non-feeder. After being sorted and identified, all material was consolidated according to general trophic category, dried at 60°C for

48 h, desiccated at room temperature for 6 h or more, and then weighed

to determine dry-weight biomass. Corrections of biomass values for specimens initially misclassified and weighed according to trophic category were made by use of equations in Appendix B, Table 13.

Compensations for specimens not weighed because of deposition to the reference collection were also made through use of these equations.

Arthropods from badly decomposed litter samples (N=6) were sorted and used in density determinations, but biomass values obtained from these specimens, with the exception of one sample, were excluded from analysis. The exception was a sample with much heavier biomass than other samples from the same site and period even though it was decomposed.

Over 60 specialists representing more than 35 institutions were consulted for identification of arthropod species collected. Arthro­ pods were assigned to trophic categories based on information supplied by these specialists and from literature accounts of feeding habits.

The primary reference used was Borror et al. (1976).

ADDITIONAL ARTHROPOD SAMPLING AND SAMPLE PROCESSING

Totals of 570 sweep-net and 935 pitfall-trap samples were col­ lected so that the presence of species being undersampled by quantitative methods would be recorded. Each sweep-net sample consisted

of 25 pendulum sweeps of a 38-cm-diameter sweep net along a randomly-

selected transect within an established 800-m sweep route at a given

site. On each strip-mined plot, the sweep route was never closer than

10 m to the 4 ha used for quantitative sampling. Specimens were killed with potassium cyanide, placed in plastic bags and frozen. Sampling

intensity per plot was the same as that for vegetation sampling (6

samples per period). Five pitfall traps, each consisting of a

1-gallon oil can buried flush with ground level and containing an

ethylene glycol-filled bottle under a plastic funnel, were placed at each study plot. Trap location was fixed and systematic. On each of the 77A, 77B, and 75B plots, one trap was located in the center of the 4 ha used for quantitative sampling, and the remaining four traps were located 10 m outside the plot boundary, each in line with the • midpoint of a different side of the 4-ha plot and the plot center.

Trap location on the other sites was more variable because each 4-ha plot used for quantitative sampling was not centrally-located within the larger (16-ha) plot on these sites (due to shape of the larger plot).

No more than one trap was located on the 4 ha used for quantitative sampling, and the other traps were located 10 m or more away from the

4-ha- plot perimeter. Each trap was checked weekly throughout the 14 vegetation sampling periods. Soil was removed from each pitfall-trap sample by flotation. Specimens were twice transferred to 80% ethyl alcohol for removal of ethylene glycol.

All material collected by sweep-netting was consolidated accord­

ing to plot and period. Pitfall-trap material was treated in a similar manner. Spot-checked specimens were identified to family or

morphotype level, sent to specialists for identification, or used in

representative biomass determinations.

ASSEMBLY AND ANALYSIS OF QUANTITATIVE ARTHROPOD DATA

Specimens taken during Stages 1 and 2 of vacuum collection were

designated herbaceous layer arthropods. Specimens collected during

Stage 3 were designated litter layer arthropods. After multiplication

by appropriate factors to adjust for scale, density and biomass values from component subsamples within each of the two strata were

summed. Rather than exclude samples with missing parts from analysis,

replacement data were added. These data were generated through

random selection of a suitable-sized subset of individual arthropod

observations from comparable non-missing sample portions from the

same period and plot. Because only 4 Stage 2 fine portions and 15

Stage 3 fine residue portions were missing, effect of corrections on

the overall data base was considered minor.

Arthropod communities were examined at two basic levels of com-

sition: dominant morphotype and family. Because associating immature

forms with adults of the same taxon was often difficult or impossible,

immatures were considered different morphotypes from adults for all and pterygote insects (excluding aphids). For other groups

(pseudoscorpions, phalangids, isopods, millipedes, centipedes,

Apterygota, aphids), difficulties in distinguishing adults from immatures precluded their separation. At the family level, all non-holometabolous arthropods were classified according to family 29 when possible. However, for ho.lometabolous forms, larval and adult insects were treated as separate entities. This distinction was necessary because, unlike most adults, larval forms could not always be identified to family level and were therefore lumped into family complexes. The functional distinctiveness of adult andlarval forms also made their separation for purposes of analysis seem reasonable.

Density and estimated biomass of each dominant morphotype, density of individuals within each family, and density and actual biomass within each general trophic category were calculated.

Diversity Calculation

Choice of appropriate indices was made after preliminary graphical analysis of ;the following indices on different segments of the arthropod communities.

(1) Richness (S):

where S = number of taxa per unit area.

(2) Shannon Index of Diversity (H*): S K' = I p. log2P . (Shannon and Weaver 1949) i=l 1

where S = number of taxa in community,

p_^ = proportion of individuals (or biomass) in

the community accounted for by taxon i.

(3) Equitability (J'):

J' = H'/log2S (Pielou 1966)

where H 1 = Shannon index,

S = number of taxa in community. 30

(4) Berger-Parker Dominance Index (D):

D = proportion of individuals (or biomass) accounted

for by the most important taxon (Berger and Parker

1970).

Indices 1 and 3 were selected as the most appropriate measures of the richness and equitability components of diversity, respectively.

Because sample sizes were equal within each period/site, simple richness was considered the most useful measure of diversity. The

Shannon index added little information once richness and equitability were known. Equitability, which is the relative evenness in importance values (density or biomass) of taxa in a community, is the inverse of dominance, which is the relative unevenness of importance values of the taxa. Therefore, J' and the inverse of the Berger-Parker index are both measures of equitability. J' was chosen over the inverse of the Berger-Parker dominance index as an evenness measure because it incorporated more information, therefore not responding quite so strongly to chance variation in abundance of the most dominant or abundant taxon.

To build a broad picture of community patterns, including both biomass and density, I selected the following parameters for analysis of herbaceous layer, litter layer, and total arthropods:

(1) Morphotypic richness of arthropods from coarse portions

of samples. Species complexes were used when accurate

sorting to specific level was not possible. Litter resi­

dues were excluded from this analysis because they were

not processed simultaneously with the other coarse 31

material (due to small subsample size) and their addi­

tional contribution to richness of coarse material was

considered negligible.

(2) Family richness. Pupae and specimens not sorted beyond

ordinal level were excluded from analysis. During calcula­

tions larvae were treated as if they were in different

families from corresponding adults. Family complexes

(groups of families containing indistinguishable family

members) were used when accurate sorting to family

level was not possible.

(3) Family equitability. The restrictions were the same as in

(2) above. In addition, litter residues were excluded

from litter layer analysis because the small subsample

sizes produced erroneous equitability patterns.

(4) Equitability of dominant arthropod biomass. Litter

residue data were excluded from litter layer analysis

because of the problems due to small subsample size.

Each parameter was calculated in two additional ways: by quadrat sampled and by site sampled in a given period. The latter method was considered the more useful because it better reflected overall com­ munity structure on a given site. The latter measure also dampened

the adverse effect of different subsample sizes within each sample on equitability values. Because each sample was composed of subsamples, richness values were considered conservative. The richness values

calculated were biased in favor of large morphotypes because the coarse 32

portions of the samples were, except in the case of litter residues,

examined completely. As noted, most fine portions were only subsampled.

In litter residues, some subsample sizes of homologous sample

parts varied among samples being compared. To prevent this discrep­

ancy from distorting comparisons of richness, I reduced all such sub­

samples larger than the standard size (1.96% for fine, 5.88% for

coarse) to an appropriately scaled down subset of randomly-selected

individuals before they were used in diversity analyses. The problem

of different-sized subsamples also occurred in regard to fine material

collected during Stage 2, but was not corrected because most (61.3%)

of subsamples were of the larger size (20% as opposed to 10%). The

information that would have been lost by reducing this data base was

considered substantial. Preliminary analyses comparing 10% to 20%

Stage 2 fine subsamples from the same site/periods indicated only 2.55%

of herbaceous layer morphotypes were missed in the samples containing

the smaller subsample sizes. Most such samples occurred in the

September 1978 period and during the June, July, and September periods

of 1979.

Similarity Calculation

The following measures were computed for community pairs with use of family density data or dominant morphotype biomass data:

(1) Coefficient of Community (CC):

CC = S /(S. + S - S ) (Jaccard 1902 in Whittaker 1972) S J K s where S = number of taxa shared between communities j and k. s S_. = number of taxa in community j .

S^ = number of taxa in community k. 33

(2) Percentage Similarity (PS): S PS = 2E min(n.., n,,)/(N. + N,) (Bray and Curtis 1957) 3 3 K

where n „ = importance value (density or biomass) of species

i in community j .

n ^ = importance value of species i in community k.

Nj = total of importance values of all taxa in com­

munity j .

= total of importance values of all taxa in com­

munity k.

S = total number of taxa in both communities.

(3) Community Correlation Index (SI):

* / 2 2 SI = E x.y.//£ x_£ I y^ (Stander 1970 _in Rotenberry 1980) i=l v

where x^ = relative importance value of taxon i in community

x.

y^ = relative importance value of taxon i in community

y-

Each of the above indices ranged from values of 0.0, indicating no sim­ ilarity, to 1.0, indicating complete similarity in composition between communities being compared. Index 1 considered only taxonomic compo­ sition and did not take into account the relative importance (density or biomass) of different taxa. Index 2 used minimum importance value of a given taxon present in one or both communities to weight taxa.

Index 3 weighted taxa by employing a product-moment correlation coef­ ficient. Dissimilarity, calculated as 1.0 minus value of index 3, was used in the ordination of family/life form data lumped by year and site and as a measure of seasonal turnover of dominant biomass. Index

3 was heavily weighted in favor of the most important taxa. Dissimi­ larity values based on Index 1 were also used as measures of turnover.

STATISTICAL ANALYSIS

One-way analysis of variance and Duncan's multiple range test were used to demonstrate differences in density, biomass, and diversity parameters among sites and habitats. Site (plot) comparisons for each 2 period were made with data from each 0.5-m quadrat as an observation.

Habitat comparisons for each period were made with pooled data from 2 2 each plot (6 quadrat samples X 0.5 m = 3 m ) as an observation. All density and biomass values were transformed to logarithms, or to log (value +1) in cases where some values equalled zero, to equalize variances. Diversity values did not require transformation. Because of the large number of multiple comparisons made, an a-level of 0.01 for rejecting the null hypothesis of no difference was established.

Pearson's product-moment correlation coefficients were computed between strip-mine arthropod parameters, transformed as noted above, and the following vegetation and physical factors: total vegetation biomass, standing vegetation biomass, litter biomass, grass biomass, legume biomass, non-crown vetch legume biomass, red clover biomass, yellow sweet clover biomass, crown vetch biomass, fescue-orchard grass biomass, plant species richness, and mean maximum temperature, mean minimum temperature, mean temperature, and total precipitation over the 15-day period preceding and including data of sample col­ lection. All vegetation biomass values were transformed to log 35

(value + 1) before analysis. Weather data, recorded at Cadiz, Ohio, were obtained from‘the U.S. Department of Commerce, Environmental Data

Service (1978, 1979). Spearman's rank correlation coefficients were also computed on untransformed data, but yielded similar results to those produced by parametric comparisons and are therefore not 2 presented. Stepwise linear regression with maximum R improvement

(Statistical Analysis System Institute, Inc. 1979) was used to further elucidate relationships between arthropod and vegetation/physical parameters. The independent variables used in this analysis were litter, grass, crown vetch, and non-crown vetch legume biomass, maximum and minimum temperature and precipitation as described above, and age of site. RESULTS

VEGETATION

Species composition, frequency of occurrence, and estimated

biomass of vegetation occurring in the quadrats sampled appear in

Appendix D, Table 15. A complete list of all species found on the

sites appears in Appendix D, Table 16. Including incidental

sightings, the following occurrences were noted: 80 species repre­

senting 25 families on the 77 area, 109 species representing 30

families on the 75 area, 113 species representing 34 families on the

CV area, and 134 species representing 44 families on the old field

control area. Most incidental records were collected during 1979.

On a per unit area basis, the old field control area was significantly

more diverse and the CV area significantly less diverse than any other

area (Table 1). Ground cover was nearly complete on all sites

(Table 1).

Overall differences in herbaceous layer biomass among habitats were significant (P<0.01) during 1979 but not during 1978 (Fig. 10).

During 1979 the 77 area was least productive, producing significantly

less biomass than the old field control or plot A of the CV area

(P<0.01). Year-to-year differences in production were significant

(P<0.01) for both 77 area plots and for plot B of the 75 area. All

other plots did not vary significantly OP<0.01) from 1978 to 1979. 37

Table 1. Percent vegetative cover (living and dead) and number of living vascular plant species on study areas in Harrison County, Ohio, 1973-79. Cover values do not include unusable sampling points (see Methods).

Mean Number of Species/ % Cover ± 1 SE 0,5 m i 1 SE______Area Plot 1978 1979 1978 1979

77 A 97.3+1.3 97.5+1.0 4.27+0.11 3.33+0.23 B 95.0+1.8 94.1+1.8 4.43+0.12 3.64+0.19

75 A 91.2+2.3 93.9+1.9 3.96+0.17 3.80+0.39 B 97.6+1.1 94.1+1.9 3.54+0.15 3.22+0.26

CV A 97.0+1.3 100.0+0.0 1.46+0.10 1.22+0.10 B 95.8+1.3 99.5+0.23 1.56+0.12 2.22+0.32

OF A 97.3+1.4 99.5+0.22 9.25+0.74 8.50+0.62

78 A 100.0+0.0 __ 4.17+0.17 900n A 77 AREA <> 75 RRER W CV RP.ER 5K OLD FIELD □ 78 RREfl 800- 00

^ 700-

& K ° 600- i— i t— CL

LU CD LU > 400- CD

*“• 300- CD

CL A •“ 200 - cn

100 J j j 1978 1979

2 Fig. 10. Biomass of standing vegetation (g/m ) on study areas in Harrison County, Ohio. Connected symbol = mean of plot values within area indicated. Unconnected symbol = mean of quadrat values within a plot.L LO CO The decline in production on the 77 area can be attributed'to a marked

decline (P<0.01) in yellow sweet clover and red clover (Fig. 11),

particularly the former during 1979. Yellow sweet clover matured dur­

ing June-July and was senescent by mid-August 1978. Immature plants

of the succeeding generation did not appear until the following

summer, and then only in small numbers. Standing biomass of grass in­

creased steadily on the 77 and 75 areas during the 1978 growing season

(Fig. 12), presumably associated with the steady decline in yellow

sweet clover and red clover biomass over the same period. Annual means

for grass biomass were not significantly different between years on recently reclaimed sites, although the apparent seasonal production during 1979 stabilized at levels lower than the 1978 end-of-season peak. During 1978 both orchard grass and fescue were prevalent on the

77 area; during 1979, fescue was clearly dominant.

During 1978, plot A of the 75 area contained less yellow sweet clover (£<0.01) and red clover (P<0.01) than did the 77 area. Plot B of the 75 area also contained less yellow sweet clover and very little red clover. Decline in total herbaceous layer biomass from 1978 to

1979 on the 75 area was buffered by the presence of crown vetch. On an annual basis, biomass of this species was relatively stable from year to year on both the 75 and CV areas (no difference .at P=0.05)

(Fig. 13). However, crown vetch biomass was apparently greater in

June 1979 than in June 1978. Crown vetch biomass was much higher on the CV area than on the 75 area (significant difference, P<0.01).

Phenology for this perennial species was different from the biennial sweet clover and red clover. Crown vetch reached peak production from 550-. A 77 RRER ❖ 75 RREfl □ 78 AREA 500- OJ

450- LD m

LlJ

ZD 350- LD LU _l 300-

CD 250-

> 200 -

o 50-

J J A S fl J fl SMJ 1978 1979

2 Fig. 11. Estimated biomass of legumes (g/m ), excluding crown vetch, on study areas in Harrison County, Ohio. Connected symbol = mean of plot values within area indicated. Unconnected symbol = mean of quadrat values within a plot. A 77 AREA ❖ 75 AREA H CV AREA BOO * OLD FIELD H 78 AREA A A 550

500

450

400

350

300

250

200

150

100

50

0 J 1978 1979

2 12 Estimated biomass of grasses (g/m ) on study areas in Harrison County, Ohio. Connected symbol = plot values within area indicated. Unconnected symbol = mean of quadrat values within a plot. 900-1 ❖ 75 AREA W CV AREA

800- CVI X 700 (_D

CO 600- c n a : ^o 500 I— I oo 400 IE (_J 300 z 200- 3 D DC (_) 100

~i------r J fl M JJ fl S 1978 1979

2 Fig. 13. Estimated biomass of crown vetch (g/m ) on study areas in Harrison County, Ohio. .Connected symbol = mean of plot values within area indicated. Unconnected symbol = mean of quadrat values within a plot. ^ N5 43

July to September. Flowering occurred primarily during July. Secon­ dary periods of flowering were observed during late August to

September.

Litter biomass appeared seasonally stable at each site, or at least no seasonal accumulation/decomposition patterns were evident

(Fig. 14). Litter biomass was also similar from year to year for all sites except the two 77A plots (P<0.01) and plot A of the CV area

(!P<0.01). The increase of litter on the 77 area after 1978 was an expected result of succession. Note, however, the apparent leveling off of litter biomass one or more years after reclamation on recently reclaimed sites. Litter accumulation was significantly lower on the

77 area than on the 75 area during 1978 (P<0.01), but there was no apparent difference during 1979 (P<0.05). Plot A of the CV area exhibited greater litter accumulation than any other site during

1978 (P<0.01). From 1978 to 1979 the litter biomass on that plot de­ clined significantly (P<0.01) but still remained higher than that on plot B of the area (P_<0.01) . During 1978 the old field control area and plot B of the CV area were approximately equal in terms of litter biomass (no significant difference, ]?=0.01). However, during 1979, the old field control was similar to plot A of the CV area (no signif­ icant difference, P=0.01).

ARTHROPODS Taxonomic Composition

A total of 178,537 specimens representing 1,883 morphotypes or family/life form groups was extracted from the quantitative samples and sorted. From these specimens 215 identified families representing Fig. 14. Biomass of litter (g/m ) on study areas in Harrison County, Ohio. Connected symbol = mean of = mean symbol Connected Ohio.County, in Harrison areas (g/mstudy ) on litter of Biomass 14.Fig. plot values within area indicated. Unconnected symbol = mean of quadrat values within a plot.a within values quadrat of = mean symbol Unconnected indicated. area within values plot LITTER BI0MRSS (G/M2) 800-1 700- 600- 500- 0 0 2 300- 400 - 100 - J J CVB CVA 1978 2 R S 8 RREfl 78 □ FIELD 0L0 * AREA CV W RREfl77 A 7 RREfl75 O 1 1 1 1 1 1 1 l J R S R J J M fl CVB CVA 1979 --- 45

28 orders were recorded. A list of identified taxa appears in Appendix

E, Table 17. Morphotypes accounting for highest dominance, in terms

of biomass, are listed in Table 2. A complete listing of dominant mor­

photypes according to collection period and habitat appears in

Appendix E, Table 18. Annual densities of the most numerous family/

life form groups appear in Table 3; a complete listing according to

period and habitat appears in Appendix E, Table 19.

Density

Herbaceous Layer. In the herbaceous layer, recently reclaimed

areas generally supported greatest arthropod numbers (Fig. 15),

especially during 1978. During late May-early June of that year, all differences between habitats were significant (P<0.01). The major contributors to arthropod density were alfalfa weevil larvae (Hypera postica Gyllenhal), which accounted for 47.4% and 18.8% of herbaceous layer arthropods on the 77 and 75 areas, respectively. The recently reclaimed plots supported larger arthropod numbers during September than did the CV plots (significant difference, P_<0.01) due to large popu­ lations of entomobryid Collembola and leafhoppers (Cicadellidae).

Together these two groups accounted for 52.5% of total individuals on the 77 area and 78.4% of total individuals on the 75 area during that period. The possibility that many of these Collembola could have been more properly associated with the litter layer must, however, be considered. The CV sites supported significantly lower (£<0.01) arthropod numbers than did the recently reclaimed sites during all periods except late July. 46

Table 2. Percentage of plot/sampling period combinations in which indicated morphotypes were classified as one of the dominant morphotypes, based on biomass (see Methods). N=2 for old field control during 1978, 4 for old field control during 1979, 1 for 78 area, and 8 for all other habitat/year groups. Only morphotypes accounting for an estimated 10% or more of total non-acarine arthropod biomass in at least one plot/sampling period combination are listed. (I) = Immatures.

______Area______Morphotype Year 77 75 CV OF 78

ISOPODA Porcellionidae Porcellio scaber 1978 0 12.5 100.0 100.0 - Latreille 1979 0 12.5 100.0 100.0 0

JULIDA Julidae Ophyiulus pilosus 1978 12.5 50.0 100.0 100.0 (Newport) 1979 0 87.5 100.0 100.0 —

Parajulidae Oriulus venustus 1978 0 12.5 12.5 0 (Wood) 1979 50.0 62.5 25.0 25.0 0

ORTHOPTERA Acrididae Melanoplus femurrubrum 1978 25.0 50.0 25.0 50.0 (DeGeer) 1979 37.5 37.5 25.0 0 0

Melanoplus sp., prim. 1978 87.5 87.5 12.5 0 — femurrubrum 1979 75.0 87.5 62.5 25.0 100.0 (DeGeer) (I)

M. differentialis 1978 12.5 12.5 0 0 __ (Thomas) 1979 25.0 0 0 0 0

Gryllidae Nemobiinae 1978 25.0 25.0 25.0 50.0 (Unident, sp.) 1979 25.0 25.0 25.0 25.0 0

Tettigoniidae Unident. sp. 1978 0 0 0 50.0 1979 0 12.5 0 25.0 0

Atlanticus testaceus 1978 0 0 0 0 _ (Scudder) (I)’ 1979 0 0 0 50.0 0 47

Table 2. (Cont'd)

Area Morphotype Year 77 75 CV OF 78

HEMIPTERA Pentatomidae Euschistus servus 1978 37.5 0 12.5 0 (Say) 1979 0 0 0 25.0 0

HOMOPTERA Acanaloniidae Acanalonia blvittata 1978 0 12.5 50.0 50.0 (Say) 1979 0 0 25.0 0 0

Aphididae Unident. sp(p). 1978 37.5 12.5 0 0 1979 25.0 0 0 0 100.0 Cercopidae Philaenus spumarius (L.) 1978 87.5 87.5 75.0 100.0 — 1979 75.0 75.0 75.0 75.0 100.0

spumarius (L.) (I) 1978 25.0 25.0 0 0 _ 1979 0 12.5 0 25.0 100.0 Cicadellidae Draculacephala mollipes 1978 87.5 87.5 50.0 100.0 — (Say) 1979 87.5 75.0 37.5 75.0 100.0

I), mollipes 1978 25.0 25.0 0 50.0 — (Say) (I) 1979 12.5 12.5 0 25.0 0

Doratura stylatus 1978 50.0 37.5 12.5 50.0 — (Boheman) 1979 50.0 62.5 25.0 50.0 0

I). stylatus 1978 0 25.0 25.0 0 — (Boheman) (I) 1979 37.5 50.0 25.0 50.0 0

COLEOPTERA Carabidae Pterostichus stygicus 1978 0 0 62.5 0 (Say) 1979 0 0 75.0 0 0

Curculionidae Hypera postica 1978 100.0 100.0 50.0 50.0 __ (Gyllenhal) 1979 87.5 37.5 12.5 50.0 100.0

1978 25.0 25.0 25.0 0 — (Gyllenhal) (I) 1979 0 0 0 0 100.0 48

Table 2. (Cont'd)

Area Morphotype Year 77 75 CV OF 78

H. postica 1978 37.5 50.0 0 0 _ (Gyllenhal) (pupae) 1979 0 0 0 0 100.0

H. punctata 1978 62.5 75.0 12.5 50.0 - (Fabricius) 1979 25.0 0 0 25.0 100.0

Hypera sp., prim. 1978 25.0 25.0 0 0 - punctata 1979 0 0 0 0 0 (Fabricius) (I)

Sitona cylindricollis 1978 75.0 100.0 0 0 - (Fabricius) 1979 37.5 37.5 25.0 25.0 100.0

S. hispidula 1978 87.5 87.5 100.0 0 - (Fabricius) 1979 50.0 50.0 100.0 0 100.0

Unident. sp. 1978 0 0 50.0 100.0 — 1979 0 12.5 62.5 75.0 0

LEPIDOPTERA Noctuidae Agrotis ipsilon 1978 0 12.5 25.0 0 - (Hufnagel) (I) 1979 12.5 0 0 0 0

Amathes c-nigrum 1978 12.5 12.5 25.0 0 - (L.) 1979 0 12.5 0 0 0

Unident. sp. 1978 12.5 0 25.0 0 - 1979 0 25.0 25.0 0 0

DIPTERA Allognosta sp., prim. 1978 75.0 75.0 87.5 0 - fuscitarsis 1979 75.0 87.5 87.5 0 100.0 (Sav) (I) 2 Table 3. Densities (number of individuals/m ) of abundant families according to habitat and year. Only families accounting for 5% or more of total non-acarine arthropod density in at least one plot/sampling period combination are included. (A) = Adults, (L) = Larvae.

Area Family or Group Year 77 75 CV OF 78

P S EUDOS CORPIONIDA Neobisiidae 1978 0.04 6.25 95.30 16.18 - 1979 0 0.42 75.04 16.26 0

ISOPODA Unident, family 1978 0 0 0 194.40 - 1979 0 0 0 28.09 0

JULIDA Julidae 1978 0.04 9.00 120.08 38.30 - 1979 0.04 16.09 116.06 75.60 0

COLLEMBOLA Entomobryidae 1978 83.84 371.44 285.11 62.20 - 1979 97.73 1125.60 440.83 217.29 7.84

Isotomidae 1978 9.87 69.30 16.44 37.65 — 1979 357.83 161.15 13.76 124.34 2.13

Hypogastruridae 1978 0.04 52.17 295.30 82.98 - 1979 51.59 135.65 344.88 104.27 0

Sminthuridae 1978 28.91 40.25 17.75 45.82 — 1979 105.00 65.23 50.18 70.23 3.13

THYSANOPTERA Phloeothripidae 1978 15.06 61.77 11.60 63.40 - 1979 38.68 36.12 23.08 39.33 0

Thripidae 1978 173.49 159.24 43.90 116.00 — 1979 214.27 151.57 66.27 121.58 305.50

HOMOPTERA Aphididae 1978 116.93 86.31 7.29 50.46 - 1979 331.44 19.24 25.87 25.31 444.98

Cercopidae 1978 94.42 66.54 2.17 4.73 0 1979 3.37 3.83 2.62 17.81 358.67 50

Table 3. (Cont'd)

Area Family or Group Year 77 75 CV OF 78

Cicadellidae 1978 198.64 235.03 78.26 218.93 1979 78.44 145.92 77.63 140.39 109.79

Coccoidea 1978 2.58 16.70 7.93 35.46 1979 39.25 47.48 11.06 151.34 5.38

COLEOPTERA Misc. Cucujoidea (L) 1978 52.58 48.83 148.79 9.57 1979 16.47 32.92 214.08 6.61 106.23

Curculionidae (A) 1978 88.58 22.46 16.29 9.67 1979 6.92 12.04 10.75 11.42 46.67

Curculionidae (A) 1978 496.16 108.95 10.85 4.13 1979 10.35 0.35 5.77 5.55 80.49

Languriidae (A) 1978 17.58 16.46 109.14 1.33 1979 3.21 5.87 103.59 6.33 21.33

Lathridiidae (A) 1978 14.00 30.79 54.46 3.50 1979 61.38 32.34 67.21 3.42 26.33

Staphylinidae (A) 1978 71.88 47.30 18.79 8.17 1979 24.04 17.54 20.71 15.92 24.67

Staphylinidae (L) 1978 74.53 54.09 20.48 6.55 1979 16.40 13.92 28.21 6.82 189.12

DIPTERA (L) 1978 245.73 544.05 123.36 69.53 1979 808.20 75.79 89.04 128.05 178.30

Chironomidae (L) 1978 52.22 151.53 22.81 2.90 1979 524.25 27.10 14.74 15.13 12.88

Drosophilidae (A) 1978 93.21 40.67 34.12 4.67 1979 5.33 15.04 44.92 1.00 211.67

Unident. 1978 93.54 51.02 55.27 15.84 Complex #1(L) 1979 5.01 26.03 96.61 6.86 222.14 51

Table 3. (Cont'd)

______Area______Family or Group Year 77 75 CV OF 78

Unident. Schizophora 1978 36.76 8.91 0 0 - Complex it2(L) 1979 0.49 0 0.22 0 19.01

Stratiomyidae (L) 1978 127.79 78.45 46.10 1.00 - 1979 6.00 8.86 26.85 0.90 241.42

HYMENOPTERA Formicidae (A) 1978 2.17 60.A2 46.58 313.69 1979 7.88 107.21 67.17 334.77 0.67 areas in Harrison County, Ohio. Connected symbol = mean of plot values within within values plot of mean = symbol Connected individuals/m*") (numberof Ohio. County, layer studyin Harrison on the areas herbaceous in arthropods ofnon-acarine Density 15.Fig. symbol = mean of quadrat values within within values quadrat of mean = symbol HERB. LRYER RRTHROPODS (N0./M2) 2700! 2100 1800- 1500- 600- 900- 300- - J S M J S A J J M A S R J J 98 1979 1978 . t o l p a □ M O A OLE RREfl CV 75 77 78 1 FIELD flRER flRER RREfl d e t c e n n o c n U . d e t a c i d n i a e r a 53

During 1979 differences in densities among the sites were less

distinct. The only significant difference that occurred was between

the 78 area and all other sites except the 75 area. Aphids

(Aphididae), meadow spittlebugs (Philaenus spumarius (L.):Cercopidae),

and drosophilid (Drosophilidae) accounted for 57.2% of herbaceous

layer arthropod numbers on the 78 site.

Densities on the CV area and old field control were similar in

1978 and 1979. However, densities on both 77 plots and one of the

75 plots were significantly lower during 1979. A 97.9% decrease in

the number of weevil larvae from 1978 to 1979 (Table 3) was the major

contributor to this overall decrease in arthropod numbers.

Arthropod density in the herbaceous layer was significantly correlated with all independent variables entered in analysis except

total legume biomass and precipitation. The highest positive cor­ relations were between herbaceous layer density and fescue-orchard grass (£=0.50, JP<0.0001), non-crown vetch legumes (£=0.50, P^<0.0001), and plant species richness (£=0.40, P<0.0001). Negative correlations occurred with crown vetch biomass (£=-0.40, P<0.0001) and one of its covariates, litter biomass (£=-0.41, P<0.0001). Non-crown vetch legume biomass, grass biomassjand minimum temperature (reflecting season)

together explained 34.5% of the variance in arthropod density in the herbaceous layer.

Litter Layer. The 77 area demonstrated greater arthropod den­ sities than did any other site during May 1979 (Fig. 16). High densities were due primarily to large numbers of nematoceran larvae

(Cecidorayiidae and Chironomidae), which accounted for 73.5% of areas in Harrison County, Ohio. Connected symbol = mean of plot values within area indicated. Unconnected Unconnected indicated. area within plot values of mean = symbol Connected study on individuals/m-) (numberof Ohio. County, layer Harrison in litter the inareas arthropods non-acarine of Density 16.Fig. symbol = mean of quadrat values within a plot.a within values quadrat of mean = symbol LITTER LRTER ARTHROPODS (N0./M2) 6500i 6000- 5500- 5000- 3500- 3000- 1500- 500- J J 1978 R S O 75 AREA AREA 75 O 7 AREA 78 □ FIELD OLD * A H CV AREA AREA CV H 7 RREfl77 j 1979 j 9 i ------r s 1— 55 litter arthropod individuals. The most abundant forms on other sites were Collembola and millipedes (Julida), and, in addition, ants

(Formicidae) on the old field control area. Except on the 77 area in early 1979, overall litter densities were relatively stable from year to year.

Arthropod density in litter was positively correlated with litter biomass (i:=0.24 P<0.0001) and negatively with precipitation (r=-0.23,

P<0.0001). Stepwise regression accounted for only 14.5% of the variation in this arthropod parameter.

Density Differences According to Stratum. Arthropods were gen­ erally more numerous in the litter than in the herbaceous layer

(Table 4). As expected, however, the litter-to-herbaceous layer density ratio on sites examined 1 year after reclamation was lower than that on other sites.

Biomass

Herbaceous Layer. During every period of 1978, the CV plots supported less biomass than any other sites and the CV area was sig­ nificantly different (P<0.01) from one or more of these sites (Fig.

17). During late May-early June, weevil larvae, and secondarily meadow spittlebug nymphs, were major contributors to biomass on the

77 area. In September, grasshoppers, particularly Melanoplus femurrubrum (DeGeer) (Acrididae), accounted for over 50% of arthropod biomass in the herbaceous layer on the 77 and 75 areas. During 1979, the 77 plots supported significantly more biomass (P<0.01) than did the CV plots and old field control, primarily due to the contribution of grasshoppers and crickets (NemobiinaerGryllidae). During June 56

Table 4. Annual percentage contribution of non-acarine arthropod density and biomass in the litter layer to total non- acarine arthropod density and biomass on study areas in Harrison County, Ohio.

Percent of Total Percent of Total Density±l SE Biomass±l SE Area Plot 1978 1979 1978 1979

77 A 50.9+2.7 73.8+4.1 36.3+3.3 42.4+5.6 B 53.0+2.8 68.9+3.8 36.9+2.8 39.7+5.1

75 A 64.6+3.7 70.5+4.0 41.4+4.3 44.3+4.9 B 57.1+3.7 64.7+3.0 33.4+3.4 44.7+4.1

CV A 82.9+2.0 86.9+1.5 76.4+2.9 82.3+1.6 B 75.9+2.7 77.5+2.5 59.7+4.2 72.6+3.1

OF A 64.7+4.3 76.7+2.2 39.5+7.3 61.0+3.3

78 A _ 55.9+6.1 __ 30.0+5.0 1800-1 A 77 RREfl ❖ 75 RREfl K CV AREA CM 5K OLD1 FIELD s; 1600- □ 78 RREfl \ CD E 1400- tn □ 1200- □ O A Q_

° 1000 - m t— CC 800- cr

£ 600- >- CE O *■

■ CD 0= 200 - LlJ □I

J JR S R M J J fl S 1978 1979

2 Fig. 17. Biomass of non-acarine arthropods in the herbaceous layer (mg/m ) on study areas in Harrison County, Ohio. Connected symbol = mean of plot values within area indicated. Unconnected symbol = mean of quadrat values within a plot. Ln -J 1979 the 78 area supported more biomass than did any other site (£<0.01) meadow spittlebugs accounted for more than 50% of the biomass.

Biomass on the 77 area and on one of the 75 plots declined signifi­ cantly from 1978 to 1979 (£<0.01). The absence of large weevil and spittlebug populations during spring 1979, as well as a decrease in grasshopper densities later in the season, were primarily responsible.

The relationships between arthropod biomass in the herbaceous layer and environmental parameters were similar to those noted for arthropod density in the herbaceous layer. Correlations with legume biomass other than crown vetch (£=0.51, £<0.0001), fescue-orchard grass

(£=0.42, £<0.0001), and minimum temperature (£=0.42, £<0.0001) were highest. Negative relationships existed with litter accumulation

(£=-0.45, £<0.0001) and crown vetch biomass (£=-0.37, £<0.0001).

Together these variables accounted for over 50% of the variance in herbaceous layer arthropod biomass.

Litter Layer. Except for markedly low arthropod biomass on the

77 area during mid-summer 1979, distinctly different patterns in litter were not discernible among habitats examined (Fig. 18). While biomass on other habitats varied little from year to year, the 77 area underwent a precipitous reduction in biomass from 1978 to 1979. This drop was due again to loss of large alfalfa weevil-spittlebug popula­ tions during spring and to loss of large populations of sweet clover weevil (Sitona cylindricollis (Fabricius)), clover root curculio

(S. hispidula (Fabricius)), and stratiomyiid larvae (Allognosta fuscitarsis (Say)). I

1100 n A 77 RRER <> 75 RRER W CV RRER OLD FIELD □ 78 RRER

CD 900-

800- cn a X o 700- o_ D a z 600- a z 500- CE c c 400- LiJ ^ 300-

0= 200 - LlJ

|Z ioo-

j j n s j j 1978 1979

2 Fig. 18. Biomass of non-acarine arthropods in the litter layer (mg/ra ) on study areas in Harrison County, Ohio. Connected symbol = mean of plot values within area indicated. Unconnected symbol = mean of quadrat values within a plot. 60

Arthropod biomass in the litter layer was positively associated with total legume biomass (r=0.48, P<0.0001) and negatively correlated with fescue-orchard grass biomass (r=-0.30, P<0.0001). Only 25.8% of total variance could be accounted for by all variables used in regres­ sion analysis.

Biomass Differences According to Stratum. On recently reclaimed sites, more arthropod biomass was generally distributed in the her­ baceous layer than in the litter layer. On the CV area, however, biomass in the litter layer was relatively greater (Table 4).

Diversity

Total richness is summarized in Figs. 19 and 20. As in the cases of density and biomass, richness patterns can best be evaluated at the stratum level.

Richness in the Herbaceous Layer. At the site level, two trends in richness were apparent, regardless of whether coarse morphotype

(Fig. 21) or family data (Fig. 22) were used in analysis. These trends were (1) greater richness on the old field area than on mined areas other than the 78 area, and (2) greater richness on recently reclaimed sites than on the CV area during 1978. Because pooling data at the site level resulted in small sample size, statistical signifi­ cance of these findings was limited. Family richness on the 75 area was significantly greater (P<0.01) than on all other mined sites during late May-early June 1978. Morphotype richness on that area was also greater (P<0.01) than on the CV area during the same period.

Differences between family richness on the old field area and rich­ ness on at least one mined site were nearly significant (0.01

LiJ P- 150

D £ 125- oc 0 A A ^ 100 - LU 01 £ 75‘ D CJ 50^ JJ HS j j 1978 1979

Fig. 19. Total richness of coarse arthropod morphotypes (number of coarse morphotypes/3 m") on study areas in Harrison County, Ohio. Connected symbol = mean of plot values within area indicated. Uncon­ nected symbol = mean of quadrat values within a plot. 125-i A 77 RRER 75 RRER X CV RRER * OLD FIELD 120 - Q 78 RRER

C\J

00 oc LU Q_ 105- 0 0 00 100 - LU

~t~ 95 - (_) i—i a z 90- >- _j 85-

cn Ll- 75 - A 70 j j 1978 1979

Figj Total richness of non—acarine arthropod family/life form groups (number of family/life forms per 3 m ) on study areas in Harrison County, Ohio. Connected symbols = mean of plot values within area indicated. Unconnected symbol = value of pooled quadrat data with a plot. j$ Fig. 21. Richness of coarse arthropod morphotypes in the herbaceous layer (number of coarse morphotypes/ morphotypes/ (numbercoarse of layer the herbaceous in morphotypes arthropod coarse of Richness 21.Fig. indicated. Unconnected symbol = value of pooled quadrat data within a plot.a within data quadrat pooled of = value symbol Unconnected area within values plot of mean = symbol indicated. Connected Ohio.County, in Harrison areas study on 3m“) HERB. LATER RICHNESS (CM/3M2) 160-1 140- 120 100 80- 60- - - J J 1978 fl S A 75 V. O 8AREA 78 m X 77 CV L FIELD OLD M J S R J J M R AREA AREA AREA i i i i i i I □ 1979 --- LO ' O A 77 RRER O 75 RRER W CV RRER * OLD FIELD 95 □ 78 RRER

90

85

80

75

70

85

60

A 55 X

50 T------1------1------1------!------j------!------!------1--- J J fl S AM J J fl S 1978 1979

22 Richness of non^acarine arthropod family/life form groups in the herbaceous layer (number of e forms per 3 m ) on study areas in Harrison County, Ohio. Connected symbol = mean of plot :hin area indicated. Unconnected symbol = value of pooled quadrat data within a plot. 65 in 4 of 6 periods in which data representing the old field area were

collected. However, during June 1979, the 78 area was comparable

in richness to the old field area. Both of these sites exceeded

and were significantly different (P<0.01) from all other areas in

family richness during that period.

During 1979 richness declined on all plots except replicate B

of the CV area (P<0.01). During the study, the CVB plot ranked con­

sistently below the CVA plot in terms of arthropod density, biomass,

and richness.

Richness of arthropod families and richness of coarse morpho­

types in the herbaceous layer were related in similar fashion to

environmental parameters. In turn, the relationships of richness to vegetation/physical factors were similar to those already noted for

arthropod density and biomass. Family richness was most highly cor­

related with biomass of legumes other than crown vetch (£=0.62,

P<0.0001), biomass of fescue-orchard grass (£=0.42, P<0.0001), and minimum temperature (£=0.42, P<0.006l). Negative correlations occurred with crown vetch (£=-0.30, P<0.0001) and its correlate, litter biomass

(r=-0.34, P<0.0001). The relationships expressed by coarse morphotype

richness were almost identical to those expressed at family level

but were slightly weaker. The independent variables noted together

accounted for 53% of variance in family richness and for 47% in coarse morphotype richness.

Richness in the Litter Layer. Richness patterns in the litter

layer were not as evident as those in the herbaceous layer (Figs.

23, 24). The old field appeared to support a richer fauna than did Fig^ 23. Richness of coarse arthropod morphotypes in the litter layer (number of coarse morphotypes/ morphotypes/ (numbercoarse of layer litter the in morphotypes arthropod coarse of Richness 23.Fig^ indicated. Unconnected symbol = value of pooled quadrat data within a plot.a within data quadrat pooled of =symbol value Unconnected area within values plot of = mean symbol indicated. Connected Ohio.County, in Harrison areas study ) on 3m LITTER LAYER RICHNESS (CM/3M2) 150- 165n 135- 105- 120 90- 60- 75- 45- - J 1978 J S R CD RRER 78 X RRER CV « RRER 77 A <> flnEfl 75 OLD FIELD FIELD OLD 1 1 1 1 1 1 1 M J R S J J AM A 1979 M --- A ' O O' 1

lOOn A 77 RRER O 75 RRER X CV RRER * OLC1 FIELD OJ □ 78 RRER cx l i ­ en 80- cn LU 2: m 1—1u 70- a z cc ^ 60- cr _i or LU 50- ❖ 1— A A 1— I—I

i------1------1------1------1--- JJ fl s AM J J fl S 1978 1979

Fig. 24. Richness of non^acarine arthropod family/life form groups in the litter layer (number of family/life forms per 3 m ) on study areas in Harrison County, Ohio. Connected symbol = mean of plot values within are indicated. Unconnected symbol = value of pooled quadrat data within a plot. 68

the mined sites during 1979. During that year differences in family

richness between the old field and two or more mined sites were

significant during May and June (P<0.01). Year-to-year differences were evident on the 75 area, where both morphotype and family

richness declined from.1978 to 1979. These differences were signifi­

cant for both replicates based on quadrat-level data (P<0.01).

Family richness and coarse morphotype richness of litter layer arthropods responded similarly to environmental factors. Again,

the stronger relationships were shown by family richness, which was most highly correlated with total vegetation biomass (r=0.57,

P^O.OOOl). Litter, crown vetch, legume biomass other than crown vetch, and maximum temperature accounted for over 40% of the variance in family richness.

Numerical Equitability. Relative evenness in numbers of indi­ viduals per family was variable for both herbaceous (Fig. 25) and litter layer faunas (Fig. 26). Generally, the old field control and CV communities were most equitable and recently reclaimed areas were least. Based on quadrat-level data, significant (P^O.Ol) and nearly significant (0.01

Large weevil larvae populations were primarily responsible. Based on data pooled at site level, equitability within the litter layer was significantly lower (P<0.01) on the 77 area than on all other sites 0. A 77 RRER ❖ 75 RRER C\J X CV RRER 2: * OLD FIELD CD □ 78 RRER \ 0. Ll_ X

G.

_! 1—1 CD CE I— 1—1 ED o 0. Ll J CD LU >- CE

CD CD LU 1 1------J j j n 1978 1979

2 Fig. 25. Equitability (J') of non-acarine arthropod family/life form densities (per 3 m ) in the herbaceous layer on study areas in Harrison County, Ohio. Connected symbol = mean of plot values within area indicated. Unconnected symbol = value of pooled quadrat data within a plot. CTN 0.8q A 77 RRER ❖ 75 RRER C\J X CV RRER s: * OLD1 FIELD □ 70 RRER CO

0.7-

0 .6 - DO CL

ZD o LU0.5-

DC LU >- CE o.u- a= LU

0.3- i i i i------1— AM J J AS 1978 1979

2 Fig. 26. Equitability (J1) of non-acarine arthropod family/life form densities (per 3 m ) in the litter layer on study areas in Harrison County, Ohio. Connected symbol = mean of plot values within area indicated. Unconnected symbol = value of pooled quadrat data within a plot. o 71

during September 1978. Large populations of larval Cecidomyiidae and

Allognosta fuscitarsis (Say) were primarily responsible, accounting for 33.1% and 15.6% of litter-inhabiting arthropods, respectively.

Based upon quadrat-level data, the 77 area was also lower in litter layer equitability during May 1979 (£<0.01). High numerical domi­ nance by cecidomyiid and chironomid larvae was responsible.

Most correlations between arthropod equitability and environ­ mental parameters were weak. Equitability of herbaceous layer arthro­ pod families was negatively correlated with fescue-orchard grass biomass (r=-0.34, P<0.0001) and positively with crown vetch (_r=0.29,

P<0.0001). Equitability within the litter layer was similarly correlated with grass biomass (ir=-0.32, P<0.0001) and crown vetch r=0.39, P0.0001). Only 16 and 22% of the variance in herbaceous layer and litter layer equitability, respectively, could be explained.

Dominance Based on Biomass. The old field control area generally possessed distributions of arthropod morphotypes equal or greater in equitability to those on the mined sites (Figs. 27, 28). However, based on data pooled according to site, differences were statistically significant only during May 1979 (litter layer) and September 1979

(herbaceous layer), when the old field area was different (P<0.01) from the habitat with lowest equitability. Year-to-year differences were significant (P<0.01) only on the 77 area, where litter equita­ bility increased during 1979. Declines in populations of larval weevils and Allognosta fuscitarsis (Say), dominant morphotypes in 1978, were responsible. 1.0- A 77 RRER ❖ 75 RRER C\J W CV RRER * OLD1 FIELD 2 : □ 78 RRER CO \ 0.9- □

0 .8 - >-

0.7- CO cr

0 . 6 - a LU

cc 0.5- LU

CL A ❖ 0.14- A

CD OC ^ 0.3-, "i------r 1 1 1 1 J J J R S 1978 1979

2 Fig. 27. Equitability (J1) of dominant morphotype biomass (per 3 m ) in the herbaceous layer on study areas in Harrison County, Ohio. Connected symbol = mean of plot values within area indicated. Uncon­ nected symbol = value of pooled quadrat data within a plot. N3 Fig. 28. Equitability (J’) of dominant morphotype biomass (per 3 m ) in the litter layer on study areas study on layer litter the in ) (per 3m biomass morphotype (J’) dominant of Equitability 28.Fig. nHrio ony Oi. once ybl=ma fpo auswti raidctd Unconnected plot.a indicated. within data area quadrat pooled within of values plotvalue =symbolof mean = symbol Connected Ohio.County, in Harrison LITTER LRTER EQUITABILITY (DM/3M2) o. o. o. o. o. o. o. o j j 1978 a s L FIELD OLD □ * w A 0 77 CV 78 5RRER 75 J l S fl J J M A RRER RRER RRER , ! , ! , , ! 1979 -- 74 All correlations between dominance based on biomass and environ­ mental parameters were weak (-0.22 < £ < 0.20). Stepwise regression 2 with all independent variables yielded R values of only 0.067 for

both herbaceous and litter layer communities.

Relationship Between Diversity at Site and Quadrat Level. The overall correlation between richness or equitability measured at site and these diversity parameters measured at quadrat level was high

(£=0.829 to 0.959, P<0.0001 for all indices). However, for the old field area correlations were poor: £=0.05 in the case of total sample dominance based on biomass. Quadrat-level diversity values were therefore not indicative of site-level diversity on the old field area. In regard to mined sites, richness on the 77 area during 1978 was slightly less at site than at quadrat level, probably due to greater homogeneity in arthropod distribution at that site. Otherwise quadrat richness corresponded well to site richness.

Effect of Age of Site upon Arthropod Community Structure

Based only on data from the recently reclaimed (78, 77, 75) areas and from quadrats that did not contain crown vetch, correlations between age of site and the following arthropod parameters were significant but low: biomass in the herbaceous layer (£=-0.39, P<0.0001), biomass in the litter layer (£=-0.40, P<0.0001), total biomass

(£=-0.45, JP<0.0001), family richness in the herbaceous layer

(£=-0.26, P=0.0027), coarse morphotype richness in the herbaceous layer (£=-0.37, P<0.0001), and equitability based on dominant biomass in the litter layer (£=0.32, P<0.0001). Age of site was negatively 75

correlated with herbivore density (£=-0.32, Pf=0.0002), herbivore

biomass (£=-0.45, P<0.0001), and coarse morphotype richness of herbi­

vores (£=-0.35, P<0.0001), and positively correlated with detritivore/

fungivore density (£=0.35, P<0.0001).

Community Similarity Among Sites

Based on dominant morphotype biomass, the 77 and 75 areas were

relatively similar to each other in composition, as expected, and

dissimilar to the other areas. These similarities were consistent

over both years (Table 5). Mean similarity between the 77 and 75 area

was 0.731 and 0.653 during 1978 and 1979, respectively. Mean similar­

ity between these sites and other areas (CV and old field) was only

0.201 and 0.181 during 1978 and 1979, respectively.

Year-to-Year Community Similarity

Year-to-year changes in family composition of arthropod communi­

ties are presented in Table 6 . Because these data are at a gross

level of sensitivity (family/life form), large changes in presence/

absence of taxa and resulting change in number of shared families were not expected and were not observed. The other two indices presented, weighted according to abundance of taxa, convey more infor­ mation. Greatest annual changes occurred on the recently reclaimed

sites and least on the CV area. The 77 area exhibited a shift in numerical dominance from weevil larvae to nematoceran larvae, whereas the 75 area shifted to a Collembola-rich community. The CV area remained stable, with Collembola retaining the position of high­ est abundance in the community. Annual similarity among sites and years is depicted graphically in Fig. 29. Table 5. Mean period-to-period similarity of dominant arthropod morphotypes (+ 1 SE), based on community correlation coefficients, among sites in Harrison County, Ohio. Above diagonal = 1978. Below diagonal = 1979.

______Area and Plot______77______75______CV______OF Area Plot A B A B A B A

77 A 0.874+0.043 0.779+0.116 0.677+0.095 0.133+0.047 0.077+0.026 0.269+0.186 B 0.802+0.077 0.774+0.113 0.693+0.078 0.137+0.035 0.057+0.013 0.242+0.171

75 A 0.692+0.161 0.645+0.161 0.710+0.136 0.278+0.091 0.176+0.113 0.283+0.247 B 0.662+0.110 0.611+0.097 0.769+0.098 0.175+0.054 0.248+0.099 0.332+0.145

CV A 0.042+0.020 0.081+0.032 0.152+0.030 0.120+0.051 0.609+0.072 0.312+0.266 B 0.158+0.058 0.149+0.050 0.249+0.081 0.212+0.065 0.876+0.045 0.398+0.350

OF A 0.225+0.113 0.216+0.133 0.248+0.149 0.316+0.144 0.398+0.111 0.352+0.127 77

Table 6 . Similarity of non-acarine arthropod family/life form composition between 1978 and 1979 on sites in Harrison County, Ohio.

Coefficient Community of Percentage Correlation Community Area Plot Community Similarity Coefficient Shift3

77 A 0.6928 0.3380 0.2913 27% CURC+31% CECI

B 0.7299 0.3974 0.4909 13% CURC, 10% CECI, 9% CICA+20% CHIR, 18% APHI, 17% CECI

75 A 0.7446 0.4753 0.4444 20% CECI-*44% ENTO

B 0.7616 0.5826 0.8091 16% ENTO, 10% CECI, 9% CICA+35% ENTO

CV A 0.7706 0.7937 0.9601 15% HYPO, 11% ENTCH- 17% HYPO, 17% ENTO

B 0.7011 0.7639 0.9470 16% ENTO+17% ENTO

OF A 0.6791 0.6893 0.8435 15% FORM, 11% CICA 9% IS0P-*14% FORM, 9% ENTO aCURC = Curculionidae, CECI = Cecidomyiidae, CICA = Cicadellidae, CHIR = Chironomidae, APHI = Aphididae, ENTO = Entomobryidae, FORM = Formicidae, HYPO = Hypogastruridae, and ISOP = Unident. Isopoda. 78

ANNUAL TURNOVER l.O-i 1978 1979

OFA 0.8-

0.6- CVB CVA 75B O °*4”

75A 0.2- 77B 77A 0.0- 0.0 0.2 0.4 0.6 1.0 FIRST ORDINATION AXIS

Fig. 29. Bray-Curtis (1957) ordination of plot/year groups based on family/life form densities. Distance between any two points cor­ responds to the relative dissimilarity of the communities represented (based on community correlation coefficients). Amount of variance in dissimilarities accounted for by graphical representation = 79.3%. 79

Seasonal Trends in Community Composition

The two most abundant family/life form groups within each site/ sampling period combination appear in Table 7. Note that the table is but a crude attempt at summarization of important families. Many other important families, with only slightly lower density values, may be found in Appendix E, Table 19.

The morphotypes accounting for greatest estimated biomass within each site/sampling period appear in Table 8. The most evident trends on recently reclaimed areas were progression of weevils in spring

(1978) to grasshoppers and crickets in late summer. The CV area, while maintaining sizeable populations of many litter forms throughout the year (e.g., the millipede Ophyiulus pilosus (Newport), the sowbug Porcellio scaber Latreille), contained herbivorous forms that were seasonal. Notable were noctuid larvae (Noctuidae), dominant during July, and planthoppers (Acanalonia bivittata

(Say)), dominant during late summer. Seasonal dominance shift, as measured by proportion of unshared morphotypes between periods, was high but revealed no clear patterns (Table 9). Dominance shift, measured as 1 .0 minus community correlation coefficient also did not reveal clear patterns (Table 9), except for low turnover during early 1979 on the CV area. This low turnover was due to dominance by the detritivorous millipedes and sowbugs mentioned above and occurred prior to most above-ground annual production of crown vetch.

Habitat-specific Arthropods

Because most arthropods collected were widely distributed, rare, or not sorted to species level, only a small list of taxa showing clear 80 Table 7. The two most abundant family/life form groups and their percentage contribution to total non-acarine arthropod density according to site and period in Harrison County, Ohio, 1978-79. (L) = Larvae. Actual sampling dates for 1978: May = 29 May - 10 June, June = 30 June - 9 July, July = 26 July - 8 August.

Sampling Period Area Plot Year May June July September

77 A 1978 CURC(L) (51) APHI (18) CECI(L) (10) ENTO (22) THRI (11) SCHA(L) ( 7) STRA(L) ( 9) CECI(L) (22) 1979 CECI(L) (47) CECI(L) (25) CECI(L) (25) ISOT (47) CHIR(L) (21) THRI (20) ISOT (13) HYPO (12)

77 B 1978 CURC(L) (36) APHI (15) CECI(L) (18) CICA (18) THRI (10) CECI(L) (11) CICA (10) STRA(L) (18) 1979 CHIR(L) (42) THRI (14) APHI (60) ISOT (16) CECI(L) (29) CECI(L) (14) CECI(L) ( 8) LATH (11)

75 A 1978 CURC(L) (17) CECI(L) (22) CECI(L) (39) ENTO (34) CERC (10) APHI (10) STRA(L) ( 6 ) CICA (12) 1979 HYPO (21) ENTO (44) ENTO (56) ENTO (48) ENTO (12) ISOT ( 9) THRI (10) HYPO ( 8)

75 B 1978 ENTO (12) CECI(L) (14) CECI(L) (25) ENTO (42) CURC(L) ( 9) CHIR(L) (11) CICA ( 7) CICA (16) 1979 ENTO (24) ENTO (43) ENTO (44) ENTO (30) ISOT (21) FORM ( 6 ) CICA ( 8) FORM ( 8)

CV A 1978 HYPO (30) HYPO (13) HYPO (20) ENTO (19) NEOB ( 8) NEOB (11) CUCJ(L) (11) LANG ( 9) 1979 HYPO (31) ENTO (19) ENTO (19) HYPO (21) ENTO (14) JULI (10) CUCJ(L) (18) ENTO (15)

CV B 1978 HYPO (17) SCHA(L) (10) CUCJ(L) (11) ENTO (36) ENTO ( 9) DROS (10) ENTO (11) CECI(L) ( 6 ) 1979 SMIN (14) HYPO (11) CUCJ(L) (12) ENTO (30) ENTO (14) THRI (10) ENTO (11) LANG (10)

OF A 1978 __ » — CICA (16) FORM (15) - - — — FORM (15) ISOP (13) 1979 FORM (19) FORM (17) FORM (14) CUCJ (18) ENTO ( 9) ISOT ( 8) THRI (11) ENTO (13)

78 A 1979 _ APHI (13) _ — - — CERC (10) — — — —

Q Key to family codes on next page. Key to family codes in Table 7: PSEUDOSCORPIONIDA NEOB Neobisiidae ISOPODA ISOP Unident. Isopoda JULIDA JULI Julidae COLLEMBOLA HYPO Hypogastruridae ISOT Isotomidae ENTO Entomobryidae SMIN Sminthuridae THYSANOPTERA THRI Thripidae HOMOPTERA CERC Cercopidae CICA Cicadellidae APHI Aphididae COLEOPTERA LANG Languriidae LATH Lathridiidae CUCJ Misc. Cucujoidea CURC Curculionidae DIPTERA CHIR Chironomidae CECI Cecidomyiidae STRA Stratiomyidae DROS Drosophilidae SCHA Unident. Schizophora Complex FORM Formicidae 82

Table 8. The two most dominant morphotypes3 and their percentage contribution to total estimated biomass of all dominant morphotypes according to site and period in Harrison County, Ohio, 1978-79. Actual sampling dates for 1978: May = 29 May - 10 June, June = 30 June - 9 July, July = 26 July - 8 August.

______Sampling Period______Area Plot Year May June July September

77 1978 CURC-501(67) CURC-1 (49) CUP.C-4 (22) ACRI-1 (46) CERC-801(11) CERC-1 (12) CURC-1 (13) ACRI-501(15) 1979 CURC-1 (18) CICA-9 (25) ACRI-501(56) ACRI-1 (44) N0CT-515(14) ACRI-1 (17) CICA-9 (11) GRYK-4 (21)

77 1978 CURC-501(47) CURC-1 (31) ACRI-501(22) ACRI-1 (47) CURC-502(17) CURC-2 (12) CURC-4 (17) STRA-501 (33) 1979 STRA-501(13) CICA-9 (27) ACRI-501(44) ACRI-1 (35) NOCT-501(10) CURC-1 (13) APHI-2 (15) ACRI-2 (25)

75 1978 CURC-501(37) CURC-1 (20) STRA-501(45) ACRI-1 (61) CERC-801(19) CERC-1 (14) ACRI-501(10) GRYK-4 ( 8) 1979 PARA-6 (40) CICA-9 (35) ACRI-501(30) ACRI-1 (61) CICA-809(11) STRA-501 ( 9) TETT-508( 8) ACRI-501 (14)

75 1978 CURC-501(29) CERC-1 (25) CERC-1 (15) ACRI-1 (34) NOCT-501(11) CURC-1 (16) ACRI-501(10) TETT-1 (10) 1979 CICA-809(17) CICA-9 (47) CICA-9 (24) ACRI-1 (48) FORM-6 (10) ARCT-531 (10) ACRI-501(18) ACRI-501(23)

CV 1978 JULI-1 (36) STRA-501(34) NOCT-502(24) PORC-1 (18) STRA-501(15) CURC-14 (14) STRA-501(11) STRA-501(17) 1979 JULI-1 (41) JULI-1 (36) NOCT-547(25) STRA-501(13) PORC-1 ( 8) PORC-1 (13) JULI-1 (14) ACAN-1 (13)

CV 1978 JULI-1 (23) CARA-25 (21) N0CT-502(38) PORC-1 (21) PENT-2 (12) CURC-5 (17) JULI-1 ( 9) ACRI-1 (15) 1979 JULI-1 (39) JULI-1 (48) NOCT-547(26) ACAN-1 (17) PORC-1 (19) PORC-1 (11) PORC-1 ( 8) STRA-501 (16)

OF 1978 - ——— TETT-508 (12) ACRI-1 (11) _ _ _ _ CICA-1 (12) PORC-1 (10) 1979 JULI-1 (17) CICA-9 (20) JULI-1 (24) GRYK-3 (10) CICA-809(10) TETT-804(14) CLEI-1 (10) XYST-1 ( 9)

78 1979 __ _ CERC-1 (54) _ _ _ - _ - CURC-2 ( 9) - - — -

g Key to morphotype codes on next page. 83 Key to morphotype codes in Table 8. Numbers greater than 500 refer to immatures. ISOPODA PORC-1 Porcellio scaber Latreille POLYDESMIDA XYST-1 Nannaria terricola (Williams and Hefner) CHORDEUMIDA CLEI-1 Cleidogona sp. complex JULIDA JULI-1 Ophyiulus pilosus (Newport) PARA-6 Paraiulidae, prim. Oriulus venustus (Wood) ORTHOPTERA ACRI-1 Melanoplus femurrubrum (DeGeer) ACRI-2 M. differentialis (Thomas) ACRI-501 Melanojplus sp., prim, femurrubrum (DeG.) TETT-1 Scudderia texensis Saus. & Piet. TETT-508 Tettigoniidae, unid. sp. TETT-804 Atlanticus testaceus (Scudder) GRYK-3 Gryllus sp. GRYK-4 Nemobiinae, unident. sn. PENT-2 Euschistus servus (Say) HOMOPTERA CERC-1 Philaenus spumarius (L.) CERC-801 P. spumarius (L.) CICA-1 Draculacephala mollipes (Say) CICA-9 Doratura stylatus (Boheman) CICA-809 D. stylatus (Boheman) ACAN-1 Acanalonia bivittata (Say) APHI-2 Aphididae, unident. sp(p). COLEOPTERA CARA-25 Pterostichus stygicus (Say) CURC-1 Hypera postica (Gyllenhal) CURC-2 H. punctata (Fabricius) CURC-4 Sitona cylindricollis (Fabricius) CURC-5 S. hispidula (Fabricius) CURC-501 Hypera sp., prim, postica (Gyllenhal) CURC-502 H. punctata (Fabricius) LEPIDOPTERA ARCT-531 Arctiidae, unident. sp. NOCT-501 Agrotis ipsilon Hufnagel N0CT-502 Amathes c-nigrum (L.) NOCT-515 Noctuidae, unident. sp. ill NOCT-547 Noctuidae, unident. sp. //2 DIPTERA STRA-501 Allognosta sp., prim, fuscitarsis (Say) HYMENOPTERA FORM-6 Ponera pennsylvanica (Buckley) 84

Table 9. Seasonal shift in arthropod dominance, based on dissimilarity values calculated from coefficients of community (CC) and community correlation coefficients (SI). Actual sampling dates for 1978: May = 29 May - 10 June, June = 30 June - 9 July, July = 26 July - 8 August.

______Sampling Periods______Area Plot Year May to June June to July July to Sept. CC SI CC SI CC SI

77 A 1978 0.86 0.97 0.72 0.48 0.79 0.84 1979 0.74 0.84 0.76 0.60 0.8 6 0.89

B 1978 0.89 0.94 0.76 0.49 0.75 0.76 1979 0.71 0.84 0.80 0.70 0.77 0.99

75 A 1978 0.82 0.84 0.72 0.52 0.78 0.90 1979 0.82 0.96 0.85 0.72 0.82 0.58

B 1978 0.86 0.92 0.75 0.38 0.74 0.69 1979 0.72 0.87 0.83 0.27 0.87 0.76

CV A 1978 0.77 0.39 0 .6 8 0.56 0.77 0.58 1979 0.69 0.05 0.71 0.55 0.79 0.62

B 1978 0.92 0.64 0.77 0.83 0.82 0.82 1979 0.80 0.06 0.72 0.70 0.83 0.78

OF A 1978 __ 0.77 0.83 1979 0.81 0.59 0.84 0.50 0.86 0.68 85 habitat affinities could be compiled (Table 10). From the data pre­

sented, no inferences can, of course, be drawn concerning distribu­

tion of these groups in habitat types or time periods other than

those sampled.

Trophic Structure

The most distinctive differences between trophic structure on

the recently reclaimed areas and on the CV area concerned the

relative importance of herbivores versus detritivore/fungivores. Ex­

cept in one plot/year group, detritivores were numerically dominant

(significant difference, P<0 .01) on all strip-mined sites examined

2 or more years after reclamation (Figs. 30, 31, 32) (78 area data

not shown). The exception was the 75B plot during 1978, when, as on

plots examined 1 year after reclamation, large numbers of alfalfa

weevil larvae or spittlebugs were present. All recently reclaimed

sites supported more herbivore biomass (significant difference,

£<0.01) than detritivore/fungivore biomass during both 1978 and 1979

(Figs. 33, 34). On both CV plots, however, herbivore biomass was

not significantly different from detritivore biomass (P>0.05) (Fig. 35).

On recently reclaimed sites herbivore family richness was greater

(significant difference, P<0.01) than detritivore family richness

in two of the nine plot/year groups and not significantly different

in the remaining seven (Figs. 36, 37). However, on the CV area,

detritivore richness was greater than herbivore richness (significant

difference, P<0.01) for all plot/year groups except plot B in 1978, when the difference was not significant (Fig. 38). 86 Table 10. Habitat specificity of arthropod taxa with restricted distributions on study sites in Harrison County, Ohio, 1978-79. For classification of taxa refer to Appendix E, Table 17.

Mean Density in Specific Specific Percent Habitat Taxon Habitat(s) Specificity (rio./m^)

Microbisium confusum Hoff CV 8 8 .1 85.1

Phalangiidae OF 4.9 } 86 .5{ CV 1.1

Porcellio scaber Latreille CV 12.4 } 95.1{ OF 10.0

Polydesmidae OF 10.5 }100.0{ CV 3.1

Cleidogonidae OF 31.3 }100.0{ CV 5.3

CV 118.1 Ophyiulus pilosus (Newport) } 92.1{ OF 57.0

Protura OF 97.6 18.0

Lepidocyrtus paradoxus Uzel 75 98.3 436.4

Hypogastruridae CVA 57.2 557.3

Acrididae 75,77,78 92.5 1 2 .0

Tingidae OF 98.4 17.6

Acanalonia bivittata (Say) CV 98.9 14.2 (adults and nymphs)

Simplocaria tesselata (LeC.) 75,77,78 100.0 1 .6

S. tesselata (LeC.) (larvae) 77,75 70.5 1 .1

Polyderis laevus (Say) 77(1979), 75 96.9 12.2 37 Table 10. (Cont'd)

Mean Density in Specific Specific Percent Habitat Taxon Habitat(s) Specificity (r.o./m2)

Coleomegilla maculata lengi Timberlake mined sites 100.0 0.9

Anchicera ephippiatus Zimmerman mined sites 99.9 16.3

Histeridae, prob. Acritus sp. CVA 90.9 18.8

Toramus pulchellus LeConte CV 78.4 104.3

Melanophthalma n.sp. CVA 65.8 29.7

Cortilena picta LeConte 77(1979) 51.9 48.5

Litargus nebulosus LeConte CVA 65.5 13.4

Eubaeocera n.sp. nr. Kingsolveri Cornell 75 69.3 2.0

Scydmaenidae (adults) OF 99.2 5.3

Bibionidae (larvae) OF 94.6 19.6

Lonchoptera sp. (adults) 77(1978), 78(1979) 76.4 4.8 (1 yr. post-reclam. ) Allognosta fuscitarsis (Say) (adults) mined sites 100.0 0.9

A. fuscitarsis (Say) (larvae) mined sites 99.8 62.9

Lasius alienus (Foerster) OF 99.7 16.5

Myrmica sp., emeryana Forel complex 75 67.1 6.6 88 Table 10. (Cont*d)

Mean Density in Specific Specific Percent Habitat Taxon Habitat(s) Specificity (no./m2)

Tetramorium caespitum (L.) 75 85.5 13.4

Leptothorax ambiguus Emery OF 77.4 258.5

Stennama impar Forel OF >98.9{ 9.6 CV 3.4

Formicidae (All spp.) 77(1978), 78(1979) 0.4 1.7 (1 yr. post-reclam.) 5 5 0 0 1 X PREDRTOR + PRRRSI TO ID 5000 - X DETRITIVORE OJ 2 : U500- CO _J u o o o - CT ZD □ 3500- 1-I S 3000- □ 2 2500-

U3 2000 -

§5 1 0 0 0 -

:z : 500-

J J S 1978 1979

2 Fig. 30. Trophic distribution of non-acarine arthropod density (number of individuals/m ) on the 77 area, Harrison County, Ohio. Connected symbol = mean of plot values within area indicated. Unconnected symbol = mean of quadrat values within a plot. Detritivores include fungivores and scavengers. Non-feeders are not shown. 55001 O HERBIVORE X PREOflTOR + PflRflSITOID 5000- X DETRITIVORE

tn cr

□ 3500- X

3000- □

2500-

O 2000-

1500- DQ S 1000- o

500- o -K -4-

JJ n s j j 1978 1979

2 Fig. 31. Trophic distribution of non-acarine arthropod density (number of individuals/m ) on the 75 area, Harrison County, Ohio. Connected symbol = mean of plot values within area indicated. Unconnected symbols = mean of quadrat values within a plot. Detritivores include fungivores and scavengers. Non-feeders are not shown. 5500 n 0 HERBIVORE X PREDATOR + PRRRSI TO ID 5000- X DETRITIVORE

cn CE

□ 3500-

^ 3000- o

S 2500-

£ 1500- m

^ 1000 -

500-

JJ fl S fl M J J S 1978 1979

2 Fig. 32. Trophic distribution of non-acarine arthropod density (number of individuals/m ) on the CV area, Harrison County, Ohio. Connected symbol = mean of quadrat values within area indicated. Unconnected symbol = mean of quadrat values within a plot. Detritivores include fungivores and scavengers. Non-feeders are not shown. 1800n O HERBIVORE X PREORTOR + PRRRSI TO ID X DETRITIVORE 1600-

C\J ^ moo- o

1200- G co

1000 -

D *-• 800- CD

§ 600- CL_ D 01 400 - j C I— CC cr 200 -

J JRS R M J J R s 1978 1979

2 Fig. 33. Trophic distribution of non-acarine arthropod biomass (mg/m ) on the 75 area, Harrison County, Ohio. Connected symbol = mean of plot values within area indicated. Unconnected symbol = mean of quadrat values within a plot. Detritivores include fungivores and scavengers. Non-feeders are not shown. 18001 O HERBIVORE X PRE0RT0R + PRRRSI TO 10 X DETRITIVORE 1600-

C\J ^ 1400- CD

1200-

Cf) G

1000 - o *-• 800- GO

§ 600- Q_ 0 01 400-

cc CE 200- fxkai J J fi s 1978 1979

2 Fig. 34. Trophic distribution of non-acarine arthropod biomass (mg/m ) on the 75 area, Harrison County, Ohio. Connected symbol = mean of plot values within area indicated. Unconnected symbol = mean of quadrat values within a plot. Detritivores include fungivores and scavengers. Non-feeders are not shown. 1800 O HERBIVORE X PREDATOR + PARPSIT01D X DETRITIVORE 1600 m o o

1200

1000

800

O 600 X yoo

200

0 J J n s M JJR S 1978 1979

35. Trophic distribution of non-acarine arthropod biomass (mg/m ) on the CV area, Harrison County, o. C mnected symbol = mean of plot values within area indicated. Unconnected symbol = mean of ralues within a plot. Detritivores include fungivores and scavengers. Non-feeders are not shown.g O HERBIVORE X PREORTGR + PRRRSITOID X DETRITIVORE

Od S 2 0 - o O Q CO LU i—i i—i

CL Ll_

D

DC LjJ CD CD

I I I i i J n m j j fl s 1978 1979

Fig. 36. 2TroPhic distribution of non-acarine arthropod richness (number of family/life form groups per 0.5 m ) on the 77 area, Harrison County, Ohio. Connected symbol = mean of plot values within area indicated. Unconnected symbol = mean of quadrat values within a plot. Detritivores include fungivores and scavengers. Non-feeders are not shown. O HERBIVORE X PREDATOR + PARRS1T0IQ X DETRITIVORE

C\J S 20- O o

CO LU

i—i

CC Li_

Li_ X O

CC UJ CD

J J J 1978 1979

Fig. ^7, Trophic distribution of non-acarine arthropod richness (number of family/life form groups per 0.5 m ) on the 75 area, Harrison County, Ohio. Connected symbol = mean of plot values within area indi­ cated. Unconnected symbol = mean of quadrat values within a plot. Detritivores include fungivores and scavengers. Non-feeders not shown. O HERBIVORE X PREDRTOR + PRRRSITOID S DETRITIVORE

CYJ

5 2 0 -

■ O

CD LlJ * - 1 5 - I— I

cn Lu

a= Ll J

CD + + +

_l------]------r J J J 1978 1979

2 Fig. 38. Trophic distribution of non-acarine arthropod biomass (mg/m ) on the CV area, Harrison County, Ohio. Connected symbol = mean of plot values within area indicated. Unconnected symbol = mean of quadrat values within a plot. Detritivores include fungivores and scavengers. Non-feeders are not shown. 5 DISCUSSION

PRODUCTIVITY

Vegetation

Although federal strip-mine law requires that mined lands be

restored to a level of productivity equivalent to or higher than that

which occurred before mining, the limited studies available have

shown mined lands to be generally less productive. Only pasture and

hay production has been near that on improved unmined land (Klimstra

and Jewell 1973). A national survey reported by Nielsen and Miller

(1980) found corn yields on mine spoils to be 4 to 90 percent less

than on adjacent unmined soils.

Direct comparison between vegetation production on the recently

reclaimed areas and forage crop production on unmined lands in eastern

Ohio is difficult. Yield data in the agricultural literature is usually presented in terms of highly-managed field trials including

several cuttings per year. The study sites I examined were roughly

comparable, though lower in terms of production, to unmined lands in northeastern Ohio as demonstrated by the following representative

field trial data (Van Keuren and Myers 1982). Two-year-old alfalfa

(Medicago sativa L.) plantings near Wooster, 100 km NW of the study 2 area, produced first-cutting yields of 379 g/m on 29 May and a total 2 annual yield (4 cuttings) of 892 g/m during 1981. Soil was Canfield silt loam, pH=6.4. On two nearby 2-year-old fields, fescue produced 98 2 first-cutting yields of 444 g/m on 28 May and total annual yields

2 2 (4 cuttings) of 760 g/m , and orchard grass produced 545 g/m at 2 first cutting and a 919 g/m annual total. During 1978, the 77 and 2 75 areas produced late May-early June yields of 381 and 327 g/m , respectively, and mean period yields over the year of 569 and 575 2 g/m , respectively. During 1979, the 77 and 75 areas produced May 2 yields of 342 and 407 g/m , respectively, and mean period yields over 2 May-September of 414 and 516 g/m , respectively. Standing vegetation on both the 77 and 75 areas was mowed and baled during 1980. Yield 2 on the 75 area was approximately 450 g/m (J. Smith, Consolidation

Coal Company, pers. comm. ).

Production on the recently-reclaimed areas was roughly equivalent to that on the old field area during 1978 but was lower (significantly so on the 77 area) during 1979. This decrease, while due in large extent to a drop in sweet clover and red clover biomass, was also influenced by a lower peak in grass production during 1979. High late season production of grass biomass during 1978, after senescence of clover, could have been due to reduced competition for light and to high soil N levels produced by the clover.

Production of crown vetch on the CV area was equal to or greater than production of standing vegetation on the recently reclaimed sites throughout the study (Fig. 10). However, production was signficantly lower on plot B of the CV area, probably the result of unmeasured edaphic factors. 100

Arthropods

In terms of density and biomass in the herbaceous layer, recently

reclaimed areas were at least as productive and usually more so than

the old field control area. High production in early 1978 was linked

to high clover populations. Many species accounting for the product­

ivity were phytophagous agricultural pests.

A major contributor to the richness and equitability on the old

field control area was the spatial heterogeneity of this habitat.

Diversity within patches (quadrats) on this site differed much less

from quadrat-level diversity on recently reclaimed sites than did

diversity at site level. The mined sites were more spatially

homogeneous, with a greater proportion of the same species occurring

from quadrat to quadrat sampled. High richness on the recently

reclaimed sites during 1978 was related to clover abundance. The

elevated resource states provided during that time resulted in greater

opportunity for more packing of species onto these sites.

The CV area supported low arthropod populations in the herbaceous

layer. The relative unsuitability of crown vetch as a food supply for herbivorous insects may be due in part to its brief history as an

economic crop, dating back only to 1935 (Wheeler 1974). Arthropod

species have not yet adapted to this potential food source. As noted,

the litter layer under crown vetch was quite productive. Although not measured, numbers of several other invertebrates were observed to be greater on the CV area than on any other area examined. These taxa

included mites (primarily Oribatei), earthworms (Lumbricidae)

(especially during 1978), and snails (Pulmonata). 101

Little relevant data on arthropod density, biomass, or diversity

are available in the literature for comparison to results of this

study. Most workers have concentrated on only a few taxa, used rela­

tive rather than absolute measures of abundance, or studied dissimilar

habitats or geographic regions. Most diversity studies report number

of species collected per area. I do not have comparable data at the

species level. Some comparisons of dominant species can be made,

however.

Populations of alfalfa weevil larvae were high on the recently

reclaimed areas in comparison to other studies. Lewis (1977) reported peak densities in Vernal alfalfa ranging from 574 to 1997 individuals/ 2 m during 1973-76 at Wooster, Ohio. Wilson et al. (1969) reported 2 densities ranging from 432 to 2498 individuals/m in a statewide

survey of Indiana in 1968. During May-June 1978, 2483 and 1274 2 larvae/m were collected on plots A and B of the 77 area, respective- 2 ly, and 523 and 193 individuals/m were collected on plots A and B of the 75 area, respectively. These numbers are high, even though sweet clover is not recognized as a preferred food plant of alfalfa weevil larvae, and sweet clover did not occur in pure stands (unlike alfalfa in the cited studies). Total legumes, excluding crown vetch, accounted for only 70.7 and 22.0 percent of total standing vegetation biomass on the 77 and 75 areas, respectively, during this sampling period.

Van Hook (1971) reported mean density and biomass of Melanoplus spp. during September in fescue-dominated grassland in eastern 2 2 Tennessee to be 5-0 individuals/m and 485 mg/m , respectively. The 102

recently reclaimed areas that I examined appeared to be more product­

ive. On the 77 area, mean density during September was 15.0 and 5.8 2 individuals/m during 1978 and 1979, respectively. Mean biomass 2 during the same periods was 1427 and 716 mg/m . On the 75 area, mean 2 density during September was 8.8 and 14.7 individuals/m during 1978

and 1979, respectively. Mean biomass during those periods was 857 2 and 1122 mg/m . From the standpoint of economic entomology, densities

were light to moderate. Light and heavy infestations are considered 2 to be 8 and 20 individuals/m , respectively (Illinois Cooperative

Extension Service 1969).

Teraguchi et al. (1977) reported peak insect densities of 1168 2 to 7144 individuals/m on old fields in northern Ohio. Peak densities

on sites examined in my study were roughly comparable, all falling

within that range.

Comparative data dealing with strip-mine arthropods are sparse.

The only available data on recently-reclaimed lands in the United

States are those of Hawkins and Cross (1982) for Alabama. Only

arthropods in standing vegetation were examined and these were col­

lected by sweeping. Their sites, examined 0-5 years after reclama­

tion, were apparently much less productive than those I examined, with 2 recorded densities ranging from 0.0 to 69.05 individuals/m , less

than even the CV area.

Because legumes other than crown vetch, particularly yellow sweet

clover, formed dense stands on the 77 area during the first sampling period but occurred in patches on the 75 area, the applicability of

Root's (1973) resource concentration hypothesis could be tested. The 103 hypothesis states that plentiful resources concentrated in dense or pure stands can result in outbreaks of phytophagous arthropods. If this hypothesis were supported by data collected on the study areas, the ratio of primary herbivore density on clover to clover biomass should have been higher on the 77 area than on the 75 area. The hypothesis was not supported. These ratios were 12.77 and 5.15 on plots A and B of the 77 area, respectively, and 7.07 and 11.84 on plots A and B of the 75 area, respectively.

COMMUNITY STABILITY

In this discussion stability will refer to low rate or lack of change rather than to the ability of a community to return to its previous state after perturbation (Hurd et al. 1971). Murdoch et al.

(1972) found Homoptera diversity and richness to be correlated with plant species richness and plant structural diversity. In that study, however, the most diverse fields were least stable from year to year, probably because more shifts in species abundance patterns were possible on diverse sites. During the 2 years of the current study, the CV and old field areas were relatively stable and the recently reclaimed areas were not. Diversity was not correlated with stability.

Stability of the arthropod communities was positively related to stability of the vegetation. Instability was related primarily to changes in. standing vegetation, particularly the clover component.

Trophic structure remained relatively constant within each habitat type. Constancy in trophic structure of communities through time, though not in taxonomic composition, has been documented by 104

Murdoch and Evans (1968), Heatwole and Levins (1972), and Teraguchi

et al. (1977). These patterns were variously interpreted as evidence of steady-state diversity and inherent functional organization of

communities. Cole (1980) has presented evidence that constancy of

trophic assemblage patterns is a statistical rather than biological phenomenon and can'be generated by use of a random subset of all possible species occurring in the community. On the study areas, although the reasons for existence of seemingly stable trophic relationships within habitats are debatable, the most important find­

ing is the relative importance of herbivores, with less stable popula­ tions, on the recently-reclaimed areas and detritivore/fungivores, with more stable populations, on the CV area.

SUCCESSION AND COMMUNITY DEVELOPMENT

In the systems studied, the fate of the various vegetation compon­ ents, on which the arthropods have been shown to depend, will largely determine the structure of succeeding arthropod communities. It seems plausible that legumes, other than crown vetch, are most productive during the first year after reclamation, and that grasses, probably fescue, which compete heavily with associated legumes (Smith 1975:

195), will ultimately become dominant. On the 75 area high populations of clover 3 years after reclamation could have been due, at least in part, to reseeding that was done on portions of that area in 1977.

Much of the sweet clover (immature stage) present on the 77 area during summer and fall 1979 was the result of reseeding of areas bladed in late summer and fall of 1978. I observed that these plants matured 105

during the following year, 1980. Thus the 77 area probably contained

more biomass of sweet clover in 1980 than in 1979. However, persis­

tence and resurgence of sweet clover populations on the areas was by

no means due solely to reseeding, for I noticed that patches were also

prevalent on the 77 area during 1981.

The importance of crown vetch in the successional scheme on these

areas was variable. By 1981, 4 years after reclamation, crown vetch

occurred only in a few small, insignificant patches on the 77 area,

even though a large field of crown vetch (a potential source of

colonizing propagules) occurred just southwest of the area. On the

other hand, crown vetch, a volunteer species according to reclamation

personnel, was a dominant plant species on the 75 area at the initia­

tion of the study, only 3 years after reclamation. The ultimate

weather, edaphic, and other factors that caused this differential

colonization by crown vetch are not known. Once established, however,

crown vetch can be expected to persist. Note the still relatively

complete dominance on the CV area, 11-14 years after reclamation.

The heavily competitive nature of both fescue and crown vetch will

probably retard natural succession for quite a long time on these and

similar areas.

Definite patterns in arthropod colonization of the study areas were not readily discernible. Some groups, such as ants, were

conspiciously low in number on sites examined 1-2 years after reclama­

tion as were species characteristic of habitats with greater litter

development (e.g., Isopoda, Diplopoda). At initiation of the study most sites were already colonized at a functional level (all trophic 106

categories well represented). This is not surprising in view of the

already well-established vegetation.

On sites with vegetation less developed than on these areas,

Hawkins and Cross (1982) failed to show definite successional trends

in arthropod communities in the herbaceous layer. The general trend

on recently reclaimed sites seems to be highest production (density,

biomass, richness) during the first year after reclamation and

variable production thereafter, depending on vegetation performance

and presumably weather conditions.

Most previous work on arthropod succession on strip-mined lands

has been concerned with reclamation to woodland (Dunger 1969, Neumann

1973) and on sites with low vegetational production during the first

years after reclamation. Successional patterns may be different on

these and similar sites because the colonizing fauna are more

susceptible to adverse climatic conditions. Previous investigators

(Neumann 1973, Shure and Ragsdale 1977, Hawkins and Cross 1982) have noted the limiting effects of high ground surface temperatures in

early stages on development. Well-developed vegetative cover on the

sites I examined probably precluded this problem, although surface

temperatures were not measured. A study more comparable to mine was

that by Struve-Kusenberg (1981), in unmined German fields dominated by white sweet clover (Melilotus alba Desr.). In that study, a 2-year-old area was dominated by Collembola and nematoceran larvae (Chironomidae,

Sciaridae), consistent with data from sites I examined. Likewise,

Isopoda- and Diplopoda (non-fliers) were later to establish. 107

POTENTIAL INDICATOR GROUPS

True indicator species cannot be determined because this study

was not extensive (only 5 sites) and the environmental/historical

factors to which potential indicator species could be responding were

largely unknown. However, several groups appeared to be habitat-

specific, at least within the narrow range of habitats examined, and

from these groups some potential indicators could be found.

Several lower arthropod groups (Phalangida, Isopoda, Diplopoda) were nearly restricted to the CV and old field control areas. These groups are dependent on a highly humid environment (Cloudsley-

Thompson 1968:26). The heavy litter layer on these sites and, at least on the CV area, the dense mat formed by the living crown vetch plants presumably maintained high humidity in the litter layer.

Another possible explanation for the distribution of these taxa was age of site. Because individuals of these taxa were incapable of flight, their dispersal to and establishment on recently-reclaimed sites might not have been rapid enough for build-up of large densi­ ties.

Several species were merely restricted by presence of host plants.

Acanalonia bivittata (Say) feeds on crown vetch (Wheeler 1974), and

Coleomegilla maculata lengi Timberlake is a coccinellid that feeds primarily on aphids associated with legumes. Several mycetophagous , e.g. Toramus pulchellus LeConte (Languriidae), Melanophthalma sp. (Lathridiidae), and Litargus nebulosus LeConte (Mycetophagidae), were associated with the microenvironmental conditions provided by crown vetch and associated litter. The greater affinity was for 108 replicate A, probably related to greater litter biomass on that replicate.

Allognosta larvae were essentially restricted to mined sites, where they were abundant during 1978. However, during 1979 they were abundant only on the 78 area. The reasons for this pattern are not explainable with available information. The life history of

Allognosta is virtually unknown (McFadden 1967). Many stratiomyids apparently overwinter as larvae. The larvae have a highly- calcified exoskeleton; perhaps their abundance is indicative of high soil Ca levels or high pH. Relatively low densities of small larvae on areas where grass was dominant indicate that the adults probably oviposit on open areas dominated by non-grass species.

Ants were characteristically one of the last groups to become established on defaunated lands. This finding is consistent with other studies (Heatwole and Levins 1972).

THE VALUE OF RECLAMATION TO WILDLIFE AND ENVIRONMENTAL QUALITY

Because vegetative cover was greater than 90%, and plant and arthropod production were comparable to that on unmined lands, the sites examined can be considered to be adequately reclaimed. Pro­ duction does, however, appear to decline with age of site, a possible result of decreased legume populations and decline in the amount of fertilizer applied at the time of seeding. But in terms of establishing short-term cover, the reclamation was successful.

Erosion was minimized, and organic matter was produced, necessary steps in rebuilding a soil on these sites. A primary reason for this success was the relatively high pH; the major impedance to revegeta- 109 tation on many Appalachian and Midwestern mines is the acidity and related toxic levels of metals (Committee on Soil as a Resource in

Relation to Surface Mining for Coal, National Research Council 1981:

140). Results of this study confirm that retopsoiling is not always a necessary prerequisite to productive vegetation establishment (note the high production on the CV area with no retopsoiling). On sites with poor-quality native soils, as occur in the unglaciated region of

Ohio, spoil or a mixture of spoil and topsoil could provide a suitable medium for plant growth. Choice of best soil medium needs to be made on a site-specific basis.

Disadvantages of present and past reclamation practices include failure to incorporate native species, such as warm season prairie grasses, into reclamation plans. While some native species may become established in small numbers on reclaimed areas, the non-native vegetation remains dominant. A large number of the associated arthropods are non-native, and these are not necessarily restricted to herbivores. Important detritivores, such as the sowbug Porcellio scaber Latreille and the millipede Ophyiulus pilosus (Newport), are

Old World species.

What is the significance of arthropod communities to the reclama­ tion process? Although damage by weevil larvae to sweet clover plants was observed, the plants completed their life cycle. Damage to grasses and legumes by other arthropod species, such as sap/phloem-feeding

Homoptera, although not readily detected, doubtless occurred. Damage to clover by root-feeders, e.g., Sitona larvae, was also not observ­ able, but probably occurred. These insects probably reduced vegetation 110 yield, but vegetation production was still adequate for reclamation purposes. The reverse effect of arthropods upon vegetation might also

have occurred. Herbivorous arthropods could have stimulated increase in vegetative yield, or at least rate of energy flow through the system, as a result of their feeding activities. For example, moderate grazing by grasshoppers, analogous to mowing or to grazing by cattle, could keep grass in a exponential growth phase. The greater the com­ plexity of the food web, while maintaining production, the greater the energy flow, and the more rapid soil development. The amount of frass produced by grasshoppers alone, and returned to the soil for a new group of arthropods (or other organisms) to process, must be significant.

Do the strip-mined sites contain the arthropod fauna necessary for, or at least positively related to, soil genesis? They apparently do. Primary decomposers such as isopods and millipedes were present.

All major families of Collembola, which feed on fungal hyphae as wellas on decomposing vegetation material, were abundant. A large complement of small fungivorous beetles (Lathridiidae, Cryptophagidae, Mycetopha- gidae, Languriidae) was widely distributed. Fungivores are thought to catalyze decomposition processes by keeping fungal populations in an exponential growth phase (Dindal 1971). Both r- and K-special- ists may be necessary for most effective decomposition. Collembola are generally r-specialists and oribatid mites are generally K- specialists, both apparently competing for the same food source (fungal hyphae). Collembola might feed during periods of rapid mycelial growth, whereas oribatids might use senescent microflora (Crossley Ill

1977). Collembola were numerous on all sites; however, oribatids, as well as isopods, millipedes, and some groups, were much more prevalent on the CV area. Populations of these latter groups also tended to increase with age of recently-reclaimed areas* although part of the apparent increase might have been caused by the presence of crown vetch on the 75 area (the oldest reclaimed site).

What is the potential of the reclaimed sites in terms of producing a food supply for vertebrates? For insectivorous birds the results indicate an abundant food supply during the breeding season when sweet or red clover is productive, but a much lower supply when clover is not dominant. Grasshoppers and crickets, however, which are not dependent on clover populations, could provide a food supply later in the year, prior to or during fall migration. Food accessibility and general habitat suitability must also be considered. Most grassland sparrows prefer rather sparsely vegetated, open habitat (Wray et al.

1978). Game species such as bobwhite quail (Colinus virginianus L.) also prefer open, herbaceous cover with little accumulated litter; litter is obstructive to the chicks (Brown and Samuel 1978). Results of this study indicated rapid litter buildup, about 250 g/m only 2 years after reclamation on the recently-reclaimed sites. The CV area, or crown vetch plantings in general, are less desirable than the recently-reclaimed sites. Relatively few arthropods were present in the herbaceous layer, and those were hidden under the dense crown vetch mat and were largely inaccessible to birds.

Small mammals, like birds, would have greater potential food supplies on recently-reclaimed areas with large clover populations, 112 where herbivorous arthropods at the bases of the plants could provide an abundant food supply. Mammals would fare better In crown vetch than would birds, for they could use the litter fauna more extensively.

Noctuid larvae, carabids, and non-arthropod groups such as snails and earthworms would be accessible to shrews and mice.

RECOMMENDATIONS AND RESEARCH NEEDS

1) Populations of sweet clover and/or red clover should be maintained;

maintenance may require reseeding. A more stable year-to-year food

supply for vertebrates would result, as well as the benefits of

an intrinsic N source to production of the systems. More research

is needed on life history responses of clovers to weather

conditions, competition with grasses, effects of arthropods on

production, and the interactions among these parameters on re­

claimed surface-mined lands.

2) Although many of the dominant arthropods on reclaimed lands are

agricultural pests, most of these lands are not intensively used

for agricultural production, and control of these arthropods by

pesticides is not usually warranted. These species are integral

components of community dynamics on these sites; further research

is needed on their roles in nutrient recycling, energy flow, and

development of the system. Pesticides would also damage the

litter/soil fauna, which is presumed to be instrumental in soil

development and maintenance of long-term productivity.

3) The entire field of the role of fauna in soil development needs

much more worR before groups can be manipulated to promote 113

desired results. Given other suitable conditions (e.g., neutral

or slightly alkaline pH), retopsoiling does not appear to be a pre­

requisite to formation of a complex and abundant litter fauna.

Soil populations, as well as litter populations, need further

study.

4) Management practices such as burning, mowing at or after mid­

summer, or light grazing might be used to reduce litter accumula­

tion on sites that otherwise would be less suitable for insecti­

vorous birds.

5) Seeding different plant species in patches rather

than creating a homogeneous habitat by seeding a mixture would

result in greater capacity for diversity, whether arthopods

or vertebrates. Evidence has been presented that indicates that

patches of sweet clover did not support less dense populations

of arthropods than did sweet clover in homogeneous stands.

6 ) The present study has dealt largely with non^native plants and,

in many cases, non-native fauna. The potential for reclamation

with native plant species, e.g., warm-season prairie grasses,

possibly for long-term reclamation, needs investigation. The

arthropod faunas associated with several revegetation plans need

to be determined and compared to assess the value of these plans.

7) The present study has investigated one end of a continuum, i.e.,

adequately-reclaimed sites on non-problem areas. An extensive,

survey of arthropods covering a wide variety of sites needs to

be made so that adequacy of reclamation judged by arthropod

community structure and indicator species can be characterized. CONCLUSIONS

1) During spring, and when sweet clover and red clover were abundant,

arthropod biomass and density in the herbaceous layer were greater

on recently reclaimed areas (1-4 years post-reclamation) than on

the unmined old field control. Alfalfa weevil larvae, which fed

on sweet clover, and/or spittlebugs were dominant species on the

mined areas during this time. Arthropod biomass in the herbaceous

layer during September of both years was greater on recently re­

claimed areas than on the old field control. Dominant Orthoptera,

especially Melanoplus femurrubrum (DeGeer), were responsible.

2) Except for the 78 area during 1979, arthropod communities on the

recently reclaimed areas were less diverse than on the old field

control area. Richness on the old field was a result of greater

spatial heterogeneity as well as of richness at quadrat level.

3) Relatively fewer taxa accounted for a greater proportion of

total biomass and density on recently reclaimed sites than on the

old field.

4) The CV area supported relatively low biomass and density of herbi­

vorous arthropods but maintained an abundant and diverse litter

fauna.

114 115 5) Arthropod production in the herbaceous layer was more readily

accounted for than was production in the litter layer. However,

even in the herbaceous layer, usually 50% or more of the variance

in arthropod biomass, density, and diversity could not be

explained.

6) Recently reclaimed sites were relatively herbivore-dominated;

the CV area was relatively detritivore/fungivore-dominated.

7) Stable arthropod communities were related to stable plant commun­

ities. Recently reclaimed areas were less stable than the old

field control area; the CV area was the most stable site.

8) Seasonal changes in species composition and richness were most

pronounced on recently reclaimed areas.

9) As age of reclaimed areas increased, herbivore biomass, density,

and richness declined and densities of detritivore/fungivores

increased.

10) Colonization of the reclaimed areas had been rapid. All major

trophic categories were well represented even on areas examined

1 year after reclamation.

11) In terms of biomass of vegetation and density and biomass of

arthropods, the reclaimed lands examined were not less productive

than unmined forage crop and old field sites described in published

studies. LITERATURE CITED

Arata, A. A. 1959. Ecology of muskrats in strip-mine ponds in southern Illinois. J. Wildl. Manage. 23:177-186.

Berger, W. H. , and F. L. Parker. 1970. Diversity of planktonic Foraminifera in deep sea sediments. Science 168:1345-1347.

Bode, E. 1975. Pedozoological investigations on recultivated soil of brown coal spoil heaps. Pedobiologia 15:284-289. (In German with English summ.).

Bookhout, T. A., C. P. Stone, J. D. Bittner, R. A. Tubb, S. H. Taub, and R. E. Deis. 1968. Potential of a strip-mined area for fish and wildlife reclamation. Ohio State Univ. Res. Found. Project. 2296. 84pp.

Borror, D. J., D. M. DeLong, and C. A. Triplehorn. 1976. An intro­ duction to the study of insects. 4th ed. Holt, Rinehart, and Winston, New York. 852pp.

Brant, R. A., and R. M. DeLong. 1960. Coal resources in Ohio. Ohio Div. Geol. Surv. Bull. 58:1-245.

Bray, J. R., and C. T. Curtis. 1957. An ordination of the upland forest communities of southern Wisconsin. Ecol. Monogr. 27:325-349.

Brenner, F. J. 1978. Food and cover evaluation of strip mine plants as related to wildlife management. Pages 294-305 in D. E. Samuel, J. R. Stauffer, C. H. Hocutt, and W. T. Mason, Jr., eds. Proc. Symp. Surface Mining and Fish/Wildlife Needs in the Eastern United States. U. S. Fish Wildl. Serv. FWS/OBS-78/81.

Brewer, R. E. 1958. Breeding bird populations of strip-mined land in Perry County, Illinois. Ecology 39:543-545.

Brown, S. L., and D. E. Samuel. 1978. The effects of controlled burning on potential bobwhite quail brood habitat on surface mines. Pages 352-357 in D. E. Samuel, J. R. Stauffer, C. H. Hocutt, and W. T. Mason, Jr., eds. Proc. Symp. Surface Mining and Fish/Wildlife Needs in the Eastern United States. U. S. Fish Wildl. Serv. FWS/OBS-78/81.

116 117

Chapman, D. L., B. S. McGinnes, and R. L. Downing. 1978. Breeding bird populations in response to the natural revegetation of abandoned contour mines. Pages 328-332 in D. E. Samuel, J. R. Stauffer, C. H. Hocutt, and W. T. Mason, Jr., eds. Proc. Symp. Surface Mining and Fish/Wildlife Needs in the Eastern United States. U. S. Fish Wildl. Serv. FWS/OBS-78/81.

Cloudsley-Thompson, J. L. 1968. Spiders, scorpions, centipedes, and mites. Pergamon Press, Oxford. 278pp.

Cole, B. J. Trophic structure of a grassland insect community. Nature 288:76-77.

Committee on Soil as a Resource in Relation to Surface Mining for Coal, National Research Council. 1981. Surface mining: soil, coal, and society. National Academy Press, Washington, D. C. 233pp.

Cornaby, B. W. 1977. Saprophagous organisms and problems in applied resource partitioning. Pages 96-100 in W, J. Mattson, ed. The role of arthropods in forest ecosystems. Springer-Verlag, New York.

Costley, R. J. 1936. An ecological survey of an artifically bared area, and adjacent territory, with special reference to the higher vertebrates. M. S. Thesis, Univ. of Illinois, Urbana. 103pp.

Crossley, D. A., Jr. 1977. The roles of terrestrial saprophagous arthropods in forest soils: current status of concepts. Pages 49-56 in W. J. Mattson, ed. The role of arthropods in forest ecosystems. Springer-Verlag, New York.

Curtis, R. L., D. K. Fowler, C. H. Nicholson, and L. F. Adkisson. 1978. Breeding bird populations on three contour surface mines reclaimed under differing intensities and types of treatment. Pages 369-375 iri D. E. Samuel, J. R. Stauffer, C. H. Hocutt, and W. T. Mason, Jr., eds. Proc. Symp. Surface Mining and Fish/Wildlife Needs in the Eastern United States. U. S. Fish Wildl. Serv. FWS/OBS-78/81.

Davidson, V. S. 1932. The effect of seasonal variability upon animal species in total populations in a deciduous forest suc­ cession. Ecol. Monogr. 2:305-333.

DeCapita, M. E., and T. A. Bookhout. 1975. Small mammal popula­ tions, vegetational cover, and hunting use of an Ohio stripmined area. Ohio J. Sci. 75:305-313. 118

Dindal, D. L. 1971. Review of soil invertebrate symbiosis. Pages 227-256 D. L. Dindal, ed. Proc. First Soil Microcommunities Conf., U. S. Atomic Energy Commission, Washington, D. C.

Duke, K. M. 1974. Above-ground arthropods as indicators of bio­ logical quality. Pages 25-26 in C. C. King and L. E. Elfner, eds. Organisms and biological communities as indicators of environmental quality— a symposium. Ohio Biol. Surv. Inf. Circ. No. 8.

Dunger, W. 1967. The development of the macro and megafauna in reclaimed spoil heaps. Pages 340-352 _in 0. Graff and J. E. Satchell, eds. Progress in soil biology. Friedr. Vieweg & Sohn GmbH, Braunschweig, Germany.

_ . 1969. On the role of arthropods in the composition of litter in the initial stages of soil formation. Pedobiologia 9:366-371. (In German with English summ.).

Evans, F. C., and W. W.. Murdoch. 1968. Taxonomic composition, trophic structure and seasonal occurrence in a grassland insect community. J. Anim. Ecol. 37:259-273.

Fournier, W. J., and E. W. Huddleston. 1977. The effect of diel periodicity on sampling grassland insect populations. US/IBP Grassland Biome Tech. Rep. No. 307. Colorado State Univ., Fort Collins. 68pp.

Hawkins, B. A., and E. A. Cross. 1982. Patterns of refaunation of reclaimed strip mine spoils by nonterricolous arthropods. Envir. Entomol. 11:762-775.

Heatwole, H., and R. Levins. 1972. Trophic structure stability and faunal change during recolonization. Ecology 53:531-534.

Hilsenhoff, W. L. 1977. Use of arthropods to evaluate water quality of streams. Wisconsin Dept. Nat. Resour. Tech. Bull. No. 100. 15pp.

Holland, F. R. 1973. Wildlife benefits from strip-mine reclamation. Pages 377-387 in R. J. Hutnik and G. Davis, eds. Ecology and reclamation of devastated lands. Vol. 1. Gordon and Breach, New York.

Hurd, L. E., M. V. Mellinger, L. L. Wolf, and S. J. McNaughton. 1971. Stability and diversity at three trophic levels in ter­ restrial successional ecosystems. Science 173:1134-1136.

Illinois Cooperative Extension Service. 1969. Grasshoppers and related pests. Entomol. Fact Sheet NHE-74. 2pp. 119

Jaccard, P. 1902. Lois de distribution florale dans la zone alpine. Bull. Soc. Vaudoise Sci. Nat. 38:69-130.

Jones, G. S. 1967. Vertebrate ecology of a strip-mined area in southern Indiana. M. S. Thesis, Purdue Univ., West Lafayette, Indiana. 158pp.

Karr, J. R. 1968. Habitat and avian diversity on strip-mined land in east-central Illinois. Condor 70:348-357.

Kevan, D. K. McE. 1962. Soil . Philosophical Library, Inc., New York. 237pp.

Kimmel, R. 0., and D. E. Samuel. 1978. Ruffed grouse use of a twenty year old surface mine. Pages 345-351 in D. E. Samuel, J. R. Stauffer, C. H. Hocutt, and W. T. Mason, Jr., eds. Proc. Symp. Surface Mining and Fish/Wildlife Needs in the Eastern United States. U.S. Fish Wildl. Serv. FWS/OBS-78/81.

Kirkland, G. L., Jr. 1976. Small mammals of a mine waste situation in the central Adirondacks, New York: a case of opportunism by Peromyscus maniculatus. Am. Midi. Nat. 95:103-110.

Klimstra, W. D., and S. R. Jewell. 1973. Strip mining: resources in conflict: impacts and reclamation efforts in Illinois. Trans. North Amer. Wildl. Nat. Res. Conf. 38:121-131.

Koryak, M., M. A. Shapiro, and J. L. Sykora. 1972. Riffle zoobenthos in streams receiving acid mine drainage. Water Res. 6:1239-1247.

Krementz, D. G., and J. R. Sauer. 1982. Avian communities on partially reclaimed mine spoils in south central Wyoming. J. Wildl. Manage. 46:761-765.

Leetham, J. W. 1975. A summary of field collecting and laboratory processing equipment and procedures for sampling arthropods at the Pawnee Site. US/IBP Grassland Biome Tech. Rep. No. 284. Colorado State Univ., Fort Collins. 49pp.

Lewis, D. R. 1977. Life table analysis of alfalfa weevil population dynamics in Ohio from 1973 through 1976. Ph.D. Dissertation, Ohio State Univ., Columbus. 111pp.

MacFadyen, A. 1962. Control of humidity in three funnel-type extractors for soil arthropods. Pages 158-168 ^n P. W. Murphy, ed. Progress in soil zoology. Butterworths, London. 120

Matter, W. J., J. J. Ney, and 0. E. Maughan. 1978. Sustained impact of abandoned surface mines on fish and benthic invertebrate pop­ ulations in headwater streams of southwestern Virginia. Pages 203-216 jji D. E. Samuel, J. R. Stauffer, C. H. Hocutt, and W. T. Mason, Jr., eds. Proc. Symp. Surface Mining and Fish/ Wildlife Needs in the Eastern United States. U. S. Fish Wildl. Serv. FWS/OBS-78/81.

McFadden, M. W. 1967. Soldier larvae in America north of Mexico. Proc. U. S. Nat. Mus. 121:1-72.

McGowan, K. J. 1980. Populations of small mammals and their utili­ zation of arthropods on Ohio strip-mined lands. M. S. Thesis, Ohio State Univ., Columbus. 76pp.

Mumford, R. E., and W. C. Bramble. 1973. Small mammals on surface-mined lands in southwestern Indiana. Pages 369-376 in R. J. Hutnik and G. Davis, eds. Ecology and reclamation of devastated lands. Vols. 1. Gordon and Breach, New York.

Murdoch, W. W., F. C. Evans, and C. H. Peterson. 1972. Diversity and pattern in plants and insects. Ecology 53:819-829.

Myers, C. W., and W. D. Klimstra. 1963. Amphibians and reptiles of an ecologically disturbed (strip-mined) area in southern Illinois. Am. Midi. Nat. 70:126-132.

Neumann, U. 1973. Succession of soil fauna in afforested spoil banks of the brown-coal mining district of Cologne. Pages 335- 347 Iji R. J. Hutnik and G. Davis, eds. Ecology and reclamation of devastated lands. Vol. 1. Gordon and Breach, New York.

Nielsen, G. A., and E. V. Miller. 1980. Crop yields on native soils and strip mine soils: a comparison. J. Soil Water Conserv. 35:44-46.

Odum, E. P. 1969. The strategy of ecosystem development. Science 164:262-270.

Ohio Division of Reclamation, n.d.a. Coal strip mining statistical report by counties for licenses issued from 1948 to April 10, 1972. Ohio Department of Natural Resources, Columbus. Ip. (mimeogr.).

______. n.d.^b. Coal strip mining statistical report by counties for licenses issued from April 10, 1972 to October 9, 1975. Ohio Department of Natural Resources, Columbus. Ip. (mimeogr.). 121

Ohio Mining and Reclamation Association. 1981. 1981 Ohio coal facts. Ohio Mining and Reclamation Association, Columbus. 12pp.

Pielou, E. C. 1966. The measurement of diversity in different types of biological collections. J. Theoret. Biol. 13:131-144.

Preston, H. R., and J. H. Green. 1978. Effects of acid mine drain­ age on aquatic macroinvertebrates in the Monongahela River Basin. Pages 217-222 in D. E. Samuel, J. R. Stauffer, C. H. Hocutt, and W. T. Mason, Jr., eds. Proc. Symp. Surface Mining and Fish/ Wildlife Needs in the Eastern United States. U. S. Fish Wildl. Serv. FWS/OBS-78/81.

Price, P. W. 1975. Insect ecology. John Wiley & Sons, New York. 514pp.

Riley, C. V. 1954. The utilization of reclaimed coal striplands for the production of wildlife. Trans. N. Amer. Wildl. Conf. 19:324-337.

Rogers, L. E., R. L. Buschbom, and C. R. Watson. 1977. Length- weight relationships of shrub-steppe invertebrates. Ann. Entomol. Soc. Amer. 70:51-53.

Root, R. B. 1973. Organization of a plant-arthropod association in simple and diverse habitats: the fauna of collards (Brassica oleracea). Ecol. Monogr. 43:95-124.

Rotenberry, J. T. 1980. Dietary relationships among shrubsteppe passerine birds: competition or opportunism in a variable environment? Ecol. Monogr. 50:93-109.

Salt, G., and F. S. J. Hollick. 1944. Studies of wireworm popula­ tions. I. A census of wireworms in pasture. Ann. Appl. Biol. 31:52-64.

Shannon, C. E., and W. Weaver. 1949. The mathematical theory of communication. University of Illinois Press, Urbana. 117pp.

Shure, D. J., and H. L. Ragsdale. 1977. Patterns of primary succession on granite outcrop surfaces. Ecology 58:993-1006.

Simberloff, D. S., and E. 0. Wilson. 1970. Experimental zoo­ geography of islands: a two-year record of colonization. Ecology 51:934-937.

Sly, G. R. 1976. Small mammal succession on strip-mined land in Vigo County, Indiana. Am. Midi. Nat. 95:257-267.

Smith, D. 1975. Forage management in the North. Kendall/Hunt Publ. Co., Dubuque, Iowa. 237pp. 122 Smith, H. G. 1964. Spoilbanks and birdlife: birds come back to Avondale with recovery of vegetation on reclaimed strip mines. Soil Conserv. 30:77.

Smith, V. G. 1928. Animal communities of a deciduous forest succession. Ecology 9:479-500.

Southwood, T. R. E. 1978. Ecological methods: with particular reference to the study of insect populations. 2nd ed. Chapman and Hall, London. 524pp.

Stander, J. M. 1970. Diversity and similarity of benthic fauna offJDregon. M. S. Thesis, Oregon State Univ., Corvallis.

Statistical Analysis System Institute, Inc. 1979. SAS user's guide. SAS Institute Inc., Raleigh, North Carolina. 494pp.

Struve-Kusenberg, R. 1981. Succession and trophic structure of the soil fauna of fallow land. Pedobiologia 21:132-141.

Teraguchi, S., M. Teraguchi, and R. Upchurch. 1977. Structure and development of insect communities in an Ohio old-field. Envir. Entomol. 6:247-257.

Tischler, W. 1955. Influence of soil types on the epigeic fauna of agricultural land. Pages 125-136 in D. K. McE. Kevan, ed. Soil zoology. Butterworths, London.

Tomkiewicz, S. M., Jr., and W. A. Dunson. 1977. Aquatic insect diversity and biomass in a stream marginally polluted by acid strip mine drainage. Water Res. 11:397-402.

Turnbull, A. L., and C. F. Nicholls. 1966. A "quick trap" for area sampling of arthropods in grassland communities. J. Econ. Entomol. 59:1100-1104.

Urbanek, R. P. 1976. Vertebrate and floral diversity on strip-mined land in Williamson and Saline counties, Illinois. M. A. Thesis, Southern Illinois Univ., Carbondale. 146pp.

U. S. Bureau of Mines. 1976. Mineral yearbook. Vol. I. Metals, minerals, and fuels. U. S. Department of the Interior, Washington, D. C.

U. S. Department of Commerce, Environmental Data Service. 1978. Climatological data: Ohio. U. S. Department of Commerce, National Climatic Center, Asheville, North Carolina. Annu. Summ. 83:1-15. 123 U. S. Department of Commerce, Environmental Data Service. 1979. Climatological data: Ohio. U. S. Department of Commerce, National Climatic Center, Asheville, North Carolina. Annu. Summ. 84:1-15.

Van Hook, R. I., Jr. 1971. Energy and nutrient dynamics of and orthopteran populations in a grassland ecosystem. Ecol. Monogr. 41:1-26.

Van Keuren, R. W., and D. K. Myers. 1982. Ohio forage report 1981. Ohio Agric. Res. Devel. Center, Agron. Dept. Ser. 195, March 1982:1-31.

Verts, B. J. 1959. Notes on the ecology of mammals of a strip- mined area in southern Illinois. Trans. Illinois State Acad. Sci. 52:134-139.

Weishaupt, C. G. 1971. Vascular plants of Ohio. 3rd ed. Kendall/ Hunt Publ. Co., Dubuque, Iowa. 292pp.

Wheeler, A. G., Jr. 1974. Phytophagous arthropod fauna of crown vetch in Pennsylvania. Can. Entomol. 106:897-908.

Whittaker, R. H. 1972. Evolution and measurement of species diversity. Taxon 21:213-251.

Wilson, E. 0. 1969. The species equilibrium. Pages 38-47 in G. M. Woodwell and H. H. Smith, eds. Diversity and stability in ecological systems. Brookhaven Symp. Biol. 22.

Wilson, N. C., R. T. Huber, J. F. Gerhold, and T. R. Hintz. 1969. Buildup of the alfalfa weevil parasite Bathyplectes curculionis in Indiana. J. Econ. Entomol. 62:1517-1518.

Wray, T., II, P. B. Wackenhut, and R. C. Whitmore. 1978. The repro­ ductive biology of passerine birds breeding on reclaimed surface mines in northern West Virginia. Pages 333-344 in D. E. Samuel, J. R. Stauffer, C. H. Hocutt, and W. T. Mason, Jr., eds. Proc. Symp• Surface Mining and Fish/Wildlife Needs in the Eastern United States. U. S. Fish Wildl. Setv. FWS/OBS-78/81.

Yahner, R. H., and J. C. Howell. 1975. Habitat use and species com­ position of breeding avifauna in a deciduous forest altered by strip mining. J. Tennessee Acad. Sci. 50:142-147.

Yeager, L. E. 1942. Coal-stripped land as a mammal habitat, with special reference to fur animals. Am. Midi. Nat. 27:613-635. APPENDIX A. BERLESE/TULLGREN FUNNEL EFFICIENCY AND CONTRIBUTION OF SUBSAMPLE TYPES TO TOTAL DENSITY

124 125

Table 11. Results of Berlese/Tullgren funnel extraction efficiency tests, June and August 1979.

Group Number of Number of Animals Animals % Entered Extracted Efficiency

Araneida 32 15 50.0

Isopoda 34 20 58.8

Diplopoda 21 13 61.9

Philaenus spumarius (Adults) 80 48 60.0

P. spumarius (Nymphs) 115 72 62.6

Carabidae (Adults) 46 39 84.8

Cryptophagidae/Languriidae (Adults)a 184 146 79.3

Hypera postica (Adults) 55 36 65.5

H. postica (Larvae) 300 170 56.7

Stratiomyidae (Larvae) 11 9 81.8

Other Arthropods 206 126 61.2

TOTAL 1,084 695 64.1

aSmall numbers of Lathridiids and Mycetophagids were also included. 126

Table 12. Percentage contribution of component parts of samples to total non-acarine arthropod density within each area and year. a

Area Subsample Stage Type Year 77 75 CV OF 78

1 + 2 Coarse 1978 15 7 4 9 . 1979 3 5 5 5 24

1 Fine 1978 13 8 6 9 — 1979 13 10 6 7 13

2 Fine 1978 20 22 6 15 _ 1979 9 17 5 11 7

3 Coarse 1978 11 6 8 6 _ Extract 1979 2 5 6 8 6

3 Fine 1978 3 5 10 10 _ Extract 1979 3 4 9 12 3 (prim. Adults)

3 Fine 1978 29 40 46 28 _ Extract 1979 64 34 49 46 38 (prim. Immatures)

3 Coarse 1978 1 1 1 1 _ Residue 1979 tb t 1 1 t

3 Fine 1978 7 10 18 21 — Residue 1979 5 25 19 11 9 aExtraction efficiency of Berlese/Tullgren funnels can be calculated as 100 X (Stage 3 coarse residue contribution + Stage 3 fine residue contribution)/(total contribution of all Stage 3 subsample types). bLess than 0.5%. APPENDIX B. REPRESENTATIVE WEIGHTS AND EQUATIONS FOR PREDICTION OF ARTHROPOD BIOIIASS

127 Table 13. Representative biomass values (WEIGHT) and parameter estimates for length-weight equations. 3 ’ b Based primarily on arthropod specimens collected on study areas in Harrison County, Ohio, 1978-1979.

------i------ORDER*OPILIONES------FAMILYC MORPHd WEIGHT MODELe M e B e R2 PHAJ AD/NYM - 3 2.625 -0.4*2 0.9444

------0RDER=ACARI------FAMILY MORPH WEIGHT MODEL M B R2 IXOD I 2.575 - -

ORDER*ARANEIDA FAMILY MORPH WEIGHT MODEL H B R2 AD/NYM 3 2.679 -0.623 0.9140 ARAN AD/NYM 3 2.248 0.449 0.8865 ARAN I 2 0.337 1.782 0.9403 LYCO AD/NYM 3 2.883 -1.381 0.9851 SALT AD/NYM 3 2.968 -1.032 0.9599 THOM AD/NYM 3 3.168 - 0.950 0.9652

noncDsTcnonnUlxl/CK* laUrul/Aa FAMILY MORPH WEIGHT MODEL M B R2 AD/NYM — 3 2.623 -0.794 0.9532 ARMA AD/NYM — 2 0.309 2.362 0.9252 PORC AD/NYM — 3 2.482 -0.742 0.9925

------ORDER=POLYDESMIDA------FAMILY MORPH WEIGHT MODEL M B R2 ro AD/NYM - 3 2.645 -2.414 0.9584 CO TABLE 13. CONTINUED. ORDER=CHORDEUHIDA ---- FAMILY MORPH WEIGHT MODEL M B R2 AD/NYM 3 2.24-8 -1.538 0.9151

------ORDER=JULIDA------FAMILY MORPH WEIGHT MODEL M B R2 AD/NYM - 3 2.154- - 1 .693 0.9564

------ORDER*LITHOBIOMORPHA------FAMILY MORPH WEIGHT MODEL M B R2 AD/NYM - 2 0.317 -0.437 0.8356

• ORDER*SC3LOPENDRONORPHA - FAMILY MORPH WEIGHT MODEL M B R2 AD/NYM 3 2.140 -2.209 0.9024

------ORDER=GEOPHILOMORPHA — FAMILY MORPH WEIGHT MODEL M B R2 AD/NYM - 3 2.307 ■4.152 0.8031

ORDER*COLLEMBQLA FAMILY MORPH WEIGHT MODEL B R2 AD/NYM 3 1.948 •1.692 0.7970 ENTO AD/NYM 3 2.520 -2.433 0.8164 SMIN AD/NYM 3 2.546 -1.482 0.9999 TABLE 13. CONTINUED. ---- ORDER=EPHEHERQPTERA --- FAMILY MORPH HEIGHT MODEL M B R2 AD/NYM 2 0.457 - 1.283 0.9939

FAMILY MORPH HEIGHT MODEL M B R2 COEM AD/NYM 3 2.829 -5.333 0.4182 LIBE AD/NYM I 19.633 -231.2 0.7377 • ------ORDERsQRTHOPTERA ---- FAMILY MORPH HEIGHT MODEL M 8 R2 AD/NYM 3 2.584 -1.100 0.9209 ACRI AD/NYM — 3 2.244 -0.249 0.8310 ACRI I — 3 2.274 -0.279 0.7928 ACRI 501 — 3 2.607 -1.305 0.9931 GRVJ AD/NYM — 3 2.634 -1.135 0.9838 GRYK AD/NYM — 3 2.642 -1. 134 — GRYK 502 — 3 2.358 -0.803 0.9901 GRYK 503 — 3 2.413 -0.796 0.9922 TETR AD/NYM — 3 3.269 -2.679 0.9277 TETT AD/NYM — 3 2.967 -1.973 0.9827 TETT 3 — 1 49.280 -375.6 0.9667 TETT 502 — 3 2.885 -1.790 0.9909

ORDER=HEMIPTERA FAMILY MORPH HEIGHT NOOEL MB R2 AD/NYM 3 2.708 -1.650 0.8901 ALYD 1 6.750 —•— — BERY 3 1.025 ——— CORE 2 47.733 —— —— CYDN 1 1.412 — — —— LYGA AD/NYM — 3 2.365 -1.315 0.9335 LYGA 7 0*082 ——— — 130 MIRI AD/NYM — 3 2.315 -1.233 0.9121 MIRI I 2.678 ——-— TABLE 13. CONTINUED. ORDER»HEMIPTERA FAMILY MORPH WEIGHT MODEL M B R2 MIRI 2 r 1.490 _ MIRI 3 f 6.767 —— — — MIRI 3 1.828 — — — — MIRI 5 1.656 — — — — MIRI 6 0.490 —— — MIRI 8 0.875 — ——— MIRI 9 0.150 — ——— MIRI 10 1.761 —— — — ■ NABI AD/NYM — 3 3.136 *2.860 0.6599 NAB I 1 1.976 — — —— NABI 2 2.137 — — —— NABI 3 8.356 — — — — PENT AD/NYM — 3 2.736 *1.099 0.9038 PENT I 28.424 —— PENT 2 38.366 — ——— PENT 6 19.533 ———— REDU AD/NYM — 3 3.025 -2.572 0.9756 RHOP 2 2.581 —— — — SALD 1 0.356 — — _ TING 1 0.408 — —— —

ORDER=HQMOPTERA FAMILY MORPH HEIGHT MODEL M B R2 AD/NYM _ 3 2.565 *1.180 0.8212 ACAN AD/NYM — 3 2.967 -0.787 0.9107 ACAN I 5.866 ——— — APHI AD/NYM — 3 1.903 * 0.660 0.8762 CERC AD/NYM — 3 3.076 -2.083 0.8627 CERC 1 2.726 — — — — CERC 2 6.376 — — —— CERC 3 6.275 — —*— CERC 5 3.361 ———— CICA AD/NYM — 3 2.628 -1.316 0.8673 C1CA 1 2.078 ——— CICA 2 0.601 — — —— CICA 3 0.688 ——— — CICA 6 0.377 ———— CICA 5S 0.697 — — —— CICA 9 5.116 — — - — TABLE 13. CONTINUED. ORDER*HOMOPTERA -- FAMILY MORPH HEIGHT MODEL M B R2 CICA 12 0.589 CICA 13 0.631 — <— — — CICA 14 0.132 — — — — CICA 15 0.188 ——— ^ — CICA 16 0.208 — — — " — CICA 23 0.377 — —— — CICA 27 0.176 — — — — CICA 28 1.110 — —— — ■ CICA 41 0.492 — — —— CICA 42 0.478 — — — — CICA 46 0.282 ———— CICA 47 6.687 _ — _ — CICA 48 0.840 — — • — CIXI AD/NYM — 3 2.969 -1.678 1.0000 CIXI 1 2.225 ——— DICT 1 2.083 — — — — ISSI AD/NYM — 3 2.226 -0.667 0.9372 MEMB AD/NYM — 3 6.176 -2.966 0.8836 MEMB 3 2.880 — — — — MEMB 4 4.825 ——— —

------ORDER*NEUR3P1 rERA------FAMILY MORPH HEIGHT MODEL MB R2

CHRJ 1 2.325 --- -

------ORDER“COLEOPTERA ------FAMILY MORPH HEIGHT MODEL MB R2 AD/NYM .• - 3 2.504 -1.099 0.8442 LARVA — 2 0.308 -0.956 0.7136 BYRR 1 0.751 ——— — BYRR 502 — 3 3.121 -1.663 — CANT AD/NYM — 3 4.466 -5.661 0.8880 — CANT LARVA 3 3.125 -5.045 0.9209 132 CARA AD/NYM — 3 2.776 -1.869 0.9446 CARA 1 21.336 — —— — CARA 15 0.311 —— — — TABLE 13. CONTINUED. ORDERsCOLEOPTERA ------FAMILY MORPH HEIGHT MODEL M B R2 CARA 22 1.496 CARA 23 5.661 —— — * CARA 48 18.685 — — — — CARA LARVA — 3 3.101 -4.884 0.9203 CHRY AO/NYM — 3 2.991 -1.176 0.8965 CHRY 11 1.630 —— — CHRY 14 1.641 — — —— CHRY 20 6.743 — — — — * CHRY 28 35.400 — —— — CHRY 33 2.693 ———— CHRY 37 0.991 —— — — CHRY 40 0.771 ———— CHRY LARVA — 3 3.004 -1.521 0.5481 CLER 1 — 1 10.860 -31.14 0.9199 CLER 3 — 3 1.223 0.248 0.8026 CLER 4 — 3 1.223 0.248 0.8026 CLER LARVA — 3 2.893 -4.285 0.9136 cocc AD/NYM — 2 0.715 0.002 0.9840 cocc 1 3.182 — — —— cocc 2 3.475 —— —— cocc 3 2.854 — ——— cocc 8 0.720 —— — — cocc LARVA — 3 2.098 -0.813 0.9930 cocc 901 1.299 —— — CRYP 1 0.102 — — — — cucu 2 0.409 —— — — cucu LARVA — 2 0.657 -3.737 0.7650 CURC AD/NYM — 3 2.738 -0.648 0.9187 CURC 1 3.985 —— CURC 2 16.568 — — — — CURC 3 2.071 — — —— CURC 4 2.181 — — —— CURC 5 2.107 — — _ — CURC 6 0.434 —— —— CURC 8 1.914 —— —— CURC 11 3.567 — —— — CURC 16 2.553 — ——— CURC LARVA . — 2 0.556 -1.411 0.9233 CURC 501 ^ 1.334 — CURC 501 1 0.271 —— —— CURC 901 1.814 —— — — CURC 902 14.811 — — — — TABLE L3. CONTINUED. ORDER*COLEDPTERA FAMILY MORPH WEIGHT MODEL M B R2 CURC 903 0.9A3 ELAT AD/NYM 3 2.595 - 1 . 4 2 4 0.9736 ELAT 4 7.310 — ELAT 7 25.563 — —— ELAT LARVA — 3 3.537 -5 . 9 6 4 0.9539 EUCI L 0.626 — HELO AD/NYM — 3 3.480 -1.586 0.9182 HIST AD/NYM — 2 1.156 -1.772 0.9987 HIST 6 6.A75 — — HIST LARVA — 3 3.101 -4.884 0.9203 LAGR LARVA — 3 2. 744 -3.990 0.9575 LAMP AD/NYM — 2 0.425 0.388 0.9939 LAMP A 1.875 — LAMP 501 3 2.956 -3.657 0.9566 LAMP 502 — 3 2.769 -3 . 4 0 6 0.9747 LANG 2 — 3 2.708 -1.962 0.8557 MORD 3 0.595 — MORD LARVA — 2 1.319 - 4 . 9 1 4 0.9765 MYCE 2 0.127 — NITI AD/NYM 2 oT792 -0.641 0.9194 NITI 2 0.363 — NITI 7 0.277 —— — PHAL AD/NYM — 3 1.945 -0.223 0.8100 PHAL 1 0.236 — PHAL 5 0.295 — — SCAR AD/NYM 3 3.121 -1.663 0.8558 SCAR A 33^759 —— SCAR 6 1.833 — — — SCAR LARVA — 3 2.531 -2.052 _ SILP LARVA — 3 2.871 -4.103 0.8736 STAP AD/NYM — 3 2.414 -2.135 0.8900 STAP 1 0.336 — STAP 3 0.643 — —_ _ STAP 22 0.056 — —— — STAP 23 0.061 — —— — STAP 201 5.196 — —— _ STAP 302 0.378 — _ — STAP 320 0.600 — — — — STAP 321 0.542 — — _ _ STAP A06 0.529 — — — _ STAP LARVA. — 3 2.573 -3.405 0.9105 TENE LARVAJ — 2 0.216 -2.461 TABLE 13. CONTINUED. ------ORDER»MECOPTER/I ------FAMILY MORPH WEIGHT MODEL M B R2 PANO 1 6.142 _ PANO 2 4.800 — — — PANO LARVA • 3 3.238 -4.618

ucra uuricr LA ----- FAMILY MORPH WEIGHT MODEL M B R2 AD/NYM * 3 2.771 - 2 .123 0.8543 LARVA — 3 3.210 -4.517 0.8511 PUPA — 3 2.738 -1.825 0.7536 ACRO 502 — 3 5.212 -12.27 0.5025 ARCT LARVA — 3 2.329 -1.245 0.5553 CQLJ 502 1.612 — — CTEN 1 23.000 — ——— GEON LARVA — 3 3.557 -6.045 0.9673 LEPI LARVA — 3 3.245 - 3.986 0.9955 MICR AD/NYM — 2 0.414 0.244 0.6113 NOCT LARVA — 3 3.346 -4.790 0.8463 PIER 2 10*597 — — — . SATY 3 26*083 ** • —•

r a cinm FAMILY MORPH WEIGHT MODEL MB R2 AD/NYM — 3 2.534 -1.796 0.8859 LARVA — 3 2.973 -3.930 0.8468 ACAL LARVA — 3 3.269 -4.401 ANTV AD/NYM — 3 2.476 -1.356 — ANTV I 1*029 — — ANTV 3 1*088 ——— * ANTV 7 3.769 — —— — BIBI AD/NYM — 2 0.801 -2.223 — BIBI 501 — 3 2.316 -2 . 3 1 7 0.7482 CALL AD/NYM — 3 4.010 -4 . 4 7 0 0.9226 CHIR LARVA . — 3 3.636 -4.810 1.0000 CHLO AD/NYM — 3 2.484 -1.742 0.6600 CHLO 1 0*165 — — — DIPT LARVA — 3 3.269 -4.401 0.8676 TABLE 13. CONTINUED. ORDERED!PTERA FAMILY MORPH HEIGHT MODEL M B R2 DOLI AD/NYM _ 3 2.425 -1.371 0.9369 DROS L 0.119 — — DROS 5 0.039 — — — DROS 7 0.125 — —— — EMPI AD/NYM — 3 3.019 -2.242 0.8639 LAUX 1 1.005 — — LAUX 2 0.366 — — _ LAUX 902 0.597 — — — — • LONC 1 0.229 — — —— NUSC AD/NYM 3 2.407 -1.231 0.9363 MUSC LARVA — 3 3.269 -4.401 MYCJ I 0.246 — — PHOR AD/NYM — 2 1.105 -2.396 0.9555 SARC AD/NYM — 3 2.590 -1.475 0.9246 SCIA AD/NYM — 3 2.582 -2.586 0.9669 SCIA I 0.047 — — SCIO AD/NYM — 3 2.071 -0.690 0.9728 SPHA AD/NYM — 3 2.274 -1.738 0.7204 SPHA 1* 0.095 — — STRA AO/NYM — 3 4.024 -4.415 0.9953 STRA 1 1.208 — STRA LARVA — 3 3.668 -4Tl31 0.9341 STRA 501 — 3 3.808 -4.278 0.9455 STRA 901 2.619 —— SYRP AD/NYM — 3 2.327 -1.915 0.8172 SYRP 1 0.929 — SYRP LARVA — 3 3.269 -4.401 — TABA AD/NYM — 3 4.128 -5.128 0.9988 TABA LARVA — 3 2.619 -3.942 0.9667 T ACK AD/NYM — 3 2.709 -1.481 0.9279 TACK PUPA 4.555 —— TIPU AD/NYM — 3 3.343 -4.501 0.9668 TIPU 2 0.525 — TIPU LARVA — 3 2.892 -3.663 0^7679 TABLE 13. CONTINUED. ORDER*HYMENQPTERA FAMILY MORPH HEIGHT MODEL M B R2 AD/NYM 3 2.687 1.992 ANDR AD/NYM — 3 3.495 3.252 0.95*3 APID 1 *5.000 — — APID 3 25.171 — — APID * 101.85 —— APID 5 75.000 —— BRAC AD/NYM — 3 3.249 2.587 0.82*5 CHRK AD/NYM — 3 3.495 3.252 FORM AD/NYM — 3 2.742 2.160 0.9182 FORM 5 0.275 — — FORN 0.182 — — FORM 0.678 — — FORM l l 1 1.666 —— — — FORM I 2 ! 0.183 FORM i * f 0.199 — — FORM 1* k 0.073 — — FORM 17 0.519 —— FORM 18 0.257 — — FORM 19 0.197 — — FORM 26 0.*28 —— HALI AD/NYM — 3 2.884 2.156 0.8853 HAL I 1 2.581 • — — HALI 5 0.974 — — HALI 6 4. 615 —— HALI 8 1.368 —— ICHN AD/NYM — 3 2.8 48 2.727 0.9307 PAMP LARVA — 3 1.907 0.076 PERI 1 4.416 — — POMP AD/NYM — 2 0.218 1.850 0^9*50 TENT AD/NYM — 2 0.411 0.252 0.9958 TENT LARVA — 3 1.907 0.076 0.*338 TIPH AD/NYM 3 2.753 2.170 0.9235

3Jsit iM i if uncfciT c n i . iliOIMCPTTA C v 1 A FAMILY MORPH HEIGHT MODEL M B R2 AD/NYM — 3 2.575 I.*66 0.8765 LARVA — 3 2.882 3.708 0.8235 PUPA — 3 2.8*2 2.093 0.8155 3 Length expressed in mm, weight and biomass expressed as mg dry.

^Procedure for using equations to estimate biomass from length: Morphotype-level equations were used when available. If equation parameters for a specific morphotype (MORPH) are not listed, then a family-level equation (indicated by a 4-letter code under FAMILY and a life form name under MORPH) was used. If a specific family-level equation is not listed, then an ordinal-level equation (indicated by no entry under FAMILY) was used. Q Refer to Table 17, Appendix E, for definition of codes.

^Refer to Table 17, Appendix E, for definition of codes; AD/NYM = general equation parameters for adults and/or nymphs, LARVA = general equation parameters for larvae, PUPA = general equation parameters for pupae. eModel 1: BIOMASS = (M x LENGTH + B) x 0.1, Model 2: BIOMASS = (e(M X LENGTH + B^) x 0.1, Model 3: BIOMASS = (e(M X loSe(LENGT11) + B)) x 0.1.

^Gravid females.

BMales.

Coarse fraction.

1Fine fraction.

JBI0MASSJdtomaoc = e (M x LENGTH + B) (fromfc Rogers et al. - 1977).1Q7-7\

^Workers.

"'"Reproductive females. 138 APPENDIX C TROPHIC CATEGORY ASSIGNMENTS

139 Table 14. General and specific trophic categories of non-acarine arthropods collected on study sites in Harrison County, Ohio, 1978-79.

------ORDER=PSEUDQSCORPIONIDA------FAMILY15 MORPHc GENERAL SPECIFIC AD/NYM PREDATOR PREDATOR tENTOMOPHAGOUSJ

------ORDER=OPILIONES FAMILY MORPH GENERAL SPECIFIC AD/NYM PREDATOR PREDATOR IENTOMOPHAGOUS)

QRDER=A CAR I ------FAMILY MORPH GENERAL SPECIFIC IXOD AD/NYM NO ANALYSIS PREDATOR OR PARASITE OF VERTEBRATES

ORDER=ARANEI DA------FAMILY MORPH GENERAL SPECIFIC AD/NYM PREDATOR PREDATOR IENTOMOPHAGOUS)

ORDER=ISQPODA ------FAMILY MORPH GENERAL SPECIFIC AP/NYM DETR/FUN3IYORE DETRITIVORE > FUNGIVORE, OR SCAVENGER

ORDER=POLYDESMIDA------—.------FAMILY MORPH GENERAL SPECIFIC AD/NYM DETR/FUNSIVORE DETRITIVQREt FUNGIVORE, OR SCAVENGER 140 TABLE 14. CONTINUED. ORDER=CHORDEUMIDA ------FAMILY MORPH GENERAL SPECIFIC AD/NYM DETR/FUNGIVORE DETRITIVORE, FUNGIVORE, OR SCAVENGER

— QRDER=JULIDA ------FAMILY MORPH GENERAL SPECIFIC AD/NYM DETR/FUNGIVORE DETRITIVORE, FUNGIVORE, QR SCAVENGER

QRDER=LITHOBIQMORPHA ------FAMILY MORPH GENERAL SPECIFIC AD/NYM PREDATOR PREDATOR (ENTOMOPHAGOUS)

FAMILY MORPH GENERAL SPECIFIC AD/NYM PREDATOR PREDATOR (ENTOMOPHAGOUS)

QRDER=GEQPHILOMQRPHA ------FAMILY MORPH GENERAL SPECIFIC AD/NYM PREDATOR PREDATOR (ENTOMOPHAGOUS)

■ ORDER=PROTURA ------FAMILY MORPH GENERAL SPECIFIC AD/NYM DETR/FUNGIVORE DETRITIVORE, FUNGIVORE, OR SCAVENGER TABLE 1*. CONTINUED. ORDER=COLLEMBQL A ------FAMILY MORPH GENERAL SPECIFIC AD/NYM DETR/FUNGIVORE DETRITIVORE, FUNGIVORE, OR SCAVENGER

QRDER=DIPLURA ------FAMILY MORPH GENERAL SPECIFIC AD/NYM DETR/FUNGIVORE DETRITIVORE, FUNGIVORE, OR SCAVENGER

QRDER=EPHEMEROPTERA ------FAMILY MORPH GENERAL SPECIFIC AD/NYM NO ANALYSIS NON-FEEDER

ORDER=ODONAT A ------FAMILY MORPH GENERAL SPECIFIC AD/NYM PREDATOR PREDATOR IENTOMOPHAGOUS)

QRDER=ORTHOPTERA ------FAMILY MORPH GENERAL SPECIFIC ACR I AD/NYM HERBIVORE LEAF OR STEM FEEDER BLAT AD/NYM DETR/FUNGIVORE DETRITIVORE, FUNGIVORE, OR SCAVENGER GRYJ AD/NYM HERBIVORE OMNIVORE i PR I MARILY HERBIVOROUS) GRYK AD/NYM HERBIVORE OMNIVORE I PR I MAR ILY HERBIVOROUS) MANT AD/NYM PREDATOR PREDATOR (ENTOMOPHAGOUS) TETR AD/NYM HERBIVORE LEAF OR STEM FEEDER TETT AD/NYM HERBIVORE LEAF OR STEM FEEDER TRID AD/NYM HERBIVORE LEAF OR STEM FEEDER TABLE 1A. CONTINUED. ORDER=PSQCOPTERA ------FAMILY MORPH GENERAL SPECIFIC AD/NYM DETR/FUNGIVORE DETRITIVORE, FUNGIVORE, OR SCAVENGER

ORDER=THYSANOPTERA ------FAMILY MORPH GENERAL SPECIFIC ALEO AD/NYM PREDATOR PREDATOR (ENTOMOPHAGOUS) PHLO AD/NYM DETR/FUNGIVORE DETRITIVORE, FUNGIVORE, OR SCAVENGER THRI AD/NYM HERBIVORE LEAF OR STEM FEEDER

ORDER=HEMIPTERA ------FAMILY MORPH GENERAL SPECIFIC ALYD AD/NYM HERBIVORE SAP FEEDER ANT J AD/NYM PREDATOR PREDATOR (ENTOMOPHAGOUS) BERY AD/NYM HERBIVORE SAP FEEDER CORE AD/NYM HERBIVORE SAP FEEDER CORl AD/NYM HERBIVORE SAP FEEDER CYDN AD/NYM HERBIVORE SAP FEEDER DIPS AD/NYM HERBIVORE SAP FEEDER ENIC AD/NYM PREDATOR PREDATOR (ENTOMOPHAGOUS) HEBR AD/NYM HERBIVORE SAP FEEDER LYGA AD/NYM HERBIVORE SEED FEEDER MIRI AD/NYM HERBIVORE SAP FEEDER NABI AD/NYM PREDATOR PREDATOR (ENTOMOPHAGOUS) PENT AD/NYM HERBIVORE SAP FEEDER PENT 3 PREDATOR PREDATOR (ENTOMOPHAGOUS) PENT 503 PREDATOR PREDATOR (ENTOMOPHAGOUS) REDU AD/NYM PREDATOR PREDATOR (ENTOMOPHAGOUS) RHOP AD/NYM HERBIVORE SAP FEEDER SALD AD/NYM PREDATOR PREDATOR (ENTOMOPHAGOUS) TING AD/NYM HERBIVORE SAP FEEDER

ORDER=HOMOPTERA FAMILY MORPH GENERAL SPECIFIC AD/NYM HERBIVORE SAP FEEDER TABLE 14. CONTINUED. ORDER=NEUROPTERA ------FAMILY MORPH GENERAL SPECIFIC AD/NYM PREDATOR PREDATOR IENTOMOPHAGOUSi LARVA PREDATOR PREDATOR IENTOMOPHAGOUS)

QRDER=CQLEOPTERA ------FAMILY MORPH GENERAL SPECIFIC ALLE LARVA DETR/FUNGIVORE DETRITIVORE, FUNGIVORE, OR SCAVENGER ANOB AD/NYM DETR/FUNGIVORE DETRITIVORE, FUNGIVORE, OR SCAVENGER ANTK AD/NYM DETR/FUNGIVORE DETRITIVORE, FUNGIVORE, OR SCAVENGER ANTK 3 HERBIVORE FLOWER FEEDER ANTK LARVA DETR/FUNGIVORE DETRITIVORE, FUNGIVORE, OR SCAVENGER BUPR AD/NYM HERBIVORE FLOWER FEEDER W/ LEAF/STEM-MINING LARVAE BYRR AD/NYM HERBIVORE MOSS FEEDER BYRR LARVA HERBIVORE MOSS FEEDER CANT AD/NYM PREDATOR PREDATOR (ENTOMOPHAGOUS) CANT LARVA PREDATOR PREDATOR IENTOMOPHAGOUS) CARA AD/NYM PREDATOR PREDATOR (ENTOMOPHAGOUS) CARA 26 PREDATOR PREDATOR W/ PARASITOID LARVAE CARA LARVA PREDATOR PREDATOR (ENTOMOPHAGOUS) CERA AD/NYM HERBIVORE FLOWER FEEDER CHRY AD/NYM HERBIVORE LEAF, STEM, OR ROOT FEEDER W/ ROOT-FEEDING LARVAE CHRY 16 HERBIVORE LEAF OR STEM FEEDER CHRY 17 HERBIVORE LEAF OR STEM FEEDER CHRY 18 HERBIVORE LEAF OR STEM FEEDER CHRY 21 HERBIVORE LEAF, STEM, OR ROOT FEEDER W/ LEAF/STEM-MINING LARVAE CHRY 22 HERBIVORE LEAF OR STEM FEEDER CHRY 24 HERBIVORE LEAF OR STEM FEEDER CHRY 28 HER3IVORE LEAF OR STEM FEEDER CHRY 30 HERBIVORE LEAF OR STEM FEEDER CHRY 32 HERBIVORE LEAF OR STEM FEEDER CHRY 33 HERBIVORE LEAF OR STEM FEEDER CHRY 36 HERBIVORE LEAF OR STEM FEEDER CHRY 39 HERBIVORE LEAF, STEM, OR ROOT FEEDER W/ LEAF/STEM—MINING LARVAE CHRY 44 HERBIVORE LEAF OR STEM FEEDER CHRY 46 HERBIVORE LEAF OR STEM FEEDER CHRY 50 HERBIVORE LEAF OR STEM FEEDER CHRY 51 HERBIVORE LEAF OR STEM FEEDER CHRY 52 HERBIVORE LEAF, STEM, OR ROOT FEEDER W/ LEAF/STEM-MINING LARVAE CHRY 53 HERBIVORE LEAF OR STEM FEEDER CHRY 54 HERBIVORE LEAF OR STEM FEEDER TABLE 14. CONTINUED. - ORDER=COLEOPTERA ------FAMILY MORPH GENERAL SPECIFIC CHRY 55 HERBIVORE LEAF OR STEM FEEDER CHRY 56 HERBIVORE LEAF, STEM, OR ROOT FEEOER W/ LEAF/STEM-MINING LARVAE CHRY 57 HERBIVORE LEAF OR STEM FEEDER CHRY 59 HERBIVORE LEAF OR STEM FEEDER CHRY 60 HERBIVORE LEAF, STEM, OR ROOT FEEDER W/ LEAF/STEM-MINING LARVAE CHRY LARVA HERBIVORE LEAF OR STEM FEEDER CHRY 501 HERBIVORE ROOT FEEDER CICI AD/NYM PREDATOR PREDATOR ( ENTOMOPHAGOUS! ' * CLAM AD/NYM DETR/FUNGIVORE DETRITIVORE, FUNGIVORE, OR SCAVENGER CLER AD/NYM PREDATOR PREDATOR IENTOMOPHAGOUS1 CLER LARVA PREDATOR PREDATOR (ENTOMOPHAGOUS) COCC AD/NYM PREDATOR PREDATOR (ENTOMOPHAGOUS) COCC LARVA PREDATOR PREDATOR IENTOMOPHAGOUS) COLA LARVA PREDATOR PREDATOR (ENTOMOPHAGOUS) COLB LARVA HERBIVORE LEAF OR STEM FEEDER COLE 499 NO ANALYSIS FEEDING HABITS UNKNOWN COLE LARVA NO ANALYSIS FEEDING HABITS UNKNOWN CORY AD/NYM DETR/FUNGIVORE DETRITIVORE, FUNGIVORE, OR SCAVENGER CRYP AD/NYM DETR/FUNGIVORE DETRITIVORE, FUNGIVORE, OR SCAVENGER CUCJ LARVA DETR/FUNGIVORE DETRITIVORE, FUNGIVORE, OR SCAVENGER CUCU AD/NYM DETR/FUNGIVORE DETRITIVORE, FUNGIVORE, OR SCAVENGER CUCU LARVA DETR/FUNGIVORE DETRITIVORE, FUNGIVORE, OR SCAVENGER CURC AD/NYM HERBIVORE LEAF, STEM, OR ROOT FEEDER W/ ROOT-FEEDING LARVAE CURC I HERBIVORE LEAF OR STEM FEEDER CURC 2 HERBIVORE LEAF OR STEM FEEOER CURC 3 HERBIVORE LEAF OR STEM FEEDER CURC 4 HERBIVORE LEAF, STEM, OR ROOT FEEDER W/ ROOT-FEEDING LARVAE CURC 5 HERBIVORE LEAF, STEM, OR ROOT FEEDER W/ ROOT-FEEDING LARVAE CURC 6 HERBIVORE FLOWER FEEDER CURC LARVA HERBIVORE ROOT FEEDER CURC 501 HERBIVORE LEAF OR STEM FEEDER CURC 502 HERBIVORE LEAF OR STEM FEEDER DERM AD/NYM DETR/FUNGIVORE DETRITIVORE, FUNGIVORE, OR SCAVENGER DERM LARVA DETR/FUNGIVORE DETRITIVORE, FUNGIVORE, OR SCAVENGER ELAT AD/NYM NO ANALYSIS NON-FEEDER W/ ROOT-FEEDING LARVAE ELAT LARVA HERBIVORE ROOT FEEDER ENDO AD/NYM DETR/FUNGIVORE DETRITIVORE, FUNGIVORE, OR SCAVENGER EUCI AD/NYM DETR/FUNGIVORE DETRITIVORE, FUNGIVORE, OR SCAVENGER HELO AD/NYM HERBIVORE LEAF OR STEM FEEOER HIST AD/NYM PREDATOR PREDATOR (ENTOMOPHAGOUS) HIST LARVA PREDATOR PREDATOR (ENTOMOPHAGOUS) HYDR AD/NYM DETR/FUNGIVORE DETRITIVORE, FUNGIVORE, OR SCAVENGER £ Ln TABLE 1*. CONTINUED. ORDER=COLEQPTERA ------FAMILY MORPH GENERAL SPECIFIC HYDR LARVA PREDATOR PREDATOR IENTOMOPHAGOUS) LAGR AD/NYM HERBIVORE LEAF OR STEM FEEDER LAGR LARVA HERBIVORE LEAF OR STEM FEEDER LAMP AD/NYM PREDATOR PREDATOR IENTOMOPHAGOUS) LAMP LARVA PREDATOR PREDATOR iENTOMOPHAGOUS) LANG AD/NYM HERBIVORE LEAF, STEM, OR ROOT FEEDER Wf LEAF/STEM-MINING LARVAE LANG 3 DETR/FUNGIVORE DETRITIVORE, FUNGIVORE, OR SCAVENGER LANG 4 DETR/FUNGIVORE DETRITIVORE, FUNGIVORE, OR SCAVENGER ' LANG 5 DETR/FUN3IVORE DETRITIVORE, FUNGIVORE, OR SCAVENGER LANG 6 DETR/FUNGIVORE DETRITIVORE, FUNGIVORE, OR SCAVENGER LANG 502 HERBIVORE LEAF OR STEM FEEDER LATH AD/NYM DETR/FUNGIVORE DETRITIVORE, FUNGIVORE, OR SCAVENGER LATH LARVA DETR/FUNGIVORE DETRITIVORE, FUNGIVORE, OR SCAVENGER LEI 0 AD/NYM DETR/FUNGIVORE DETRITIVORE, FUNGIVORE, OR SCAVENGER LEPT AD/NYM DETR/FUNGIVORE DETRITIVORE, FUNGIVORE, OR SCAVENGER MELO AD/NYM HERBIVORE LEAF OR STEM FEEDER MELO LARVA PREDATOR PREDATOR IENTOMOPHAGOUS) MELY AD/NYM PREDATOR PREDATOR {ENTOMOPHAGOUS) MELY LARVA PREDATOR PREDATOR (ENTOMOPHAGOUS) MORD AD/NYM HERBIVORE FLOWER FEEDER W/ PREDATORY LARVAE MORD LARVA PREDATOR PREDATOR (ENTOMOPHAGOUS) MYCE AD/NYM DETR/FUNGIVORE DETRITIVORE, FUNGIVORE, OR SCAVENGER NITI AD/NYM DETR/FUNGIVORE DETRITIVORE, FUNGIVORE, OR SCAVENGER NITI 2 HERBIVORE FLOWER FEEDER NITI 8 HERBIVORE FLOWER FEEDER NITI LARVA DETR/FUNGIVORE DETRITIVORE, FUNGIVORE, OR SCAVENGER NITI 802 HERBIVORE FLOWER FEEDER NOTE AD/NYM PREDATOR PREDATOR (ENTOMOPHAGOUS) PHAL AD/NYM DETR/FUNGIVORE DETRITIVORE, FUNGIVORE, OR SCAVENGER PHAL 2 HERBIVORE FLOWER FEEDER W/ LEAF/STEM-MINING LARVAE PSEL AD/NYM PREDATOR PREDATOR (ENTOMOPHAGOUS) PTIJ AD/NYM HERBIVORE LEAF OR STEM FEEDER . PTI J LARVA HERBIVORE LEAF OR STEM FEEDER PTIL AD/NYM DETR/FUNGIVORE DETRITIVORE, FUNGIVORE, OR SCAVENGER RHIP AD/NYM PARASITOID FLOWER OR NON-FEEDER W/ PARASITQID LARVAE SCAP AD/NYM DETR/FUNGIVORE DETRITIVORE, FUNGIVORE, OR SCAVENGER SCAR AD/NYM DETR/FUNGIVORE DETRITIVORE, FUNGIVORE, OR SCAVENGER SCAR A HERBIVORE LEAF, STEM, OR ROOT FEEDER W/ ROOT-FEEDING LARVAE SCAR 9 HERBIVORE LEAF, STEM, OR ROOT FEEDER W/ ROOT-FEEDING LARVAE SCAR 13 HERBIVORE LEAF, STEM, OR ROOT FEEDER W/ ROOT-FEEDING LARVAE SCAR LARVA HERBIVORE ROOT FEEDER SCOL AD/NYM HERBIVORE LEAF, STEM, OR ROOT FEEDER W/ ROOT-FEEDING LARVAE TABLE 14. CONTINUED. QRDER=COLEOPTERA ------FAMILY MORPH GENERAL SPECIFIC SCYD AD/NYM DETR/FUNGIVORE DETRITIVORE, FUNGIVORE, OR SCAVENGER SC YD LARVA DETR/FUNGIVORE DETRITIVORE, FUNGIVORE, OR SCAVENGER SILP AD/NYM DETR/FUNGIVORE DETRITIVORE, FUNGIVORE, OR SCAVENGER STAP AD/NYM , PREDATOR PREDATOR IENTOMOPHAGOUS) STAP 300d DETR/FUNGIVORE DETRITIVORE, FUNGIVORE, OR SCAVENGER STAP LARVA PREDATOR PREDATOR ( ENTOMOPHAGOUSI TENE AD/NYM DETR/FUNGIVORE DETRITIVORE, FUNGIVORE, OR SCAVENGER TENE LARVA DETR/FUNGIVORE DETRITIVORE, FUNGIVORE, OR SCAVENGER' THRO AD/NYM HERBIVORE FLOWER FEEDER W/ ROOT-FEEDING LARVAE

ORDER=STREPSIPTERA ------FAMILY MQRPH GENERAL SPECIFIC HALK AD/NYM PARASITOID FLOWER OR NON-FEEDER W/ PARASITOID LARVAE

ORDER=MECOPTERA ------FAMILY MORPH GENERAL SPECIFIC BITT AD/NYM PREDATOR PREDATOR IENTOMOPHAGOUS) PANO AD/NYM PREDATOR PREDATOR (ENTOMOPHAGOUS) PANO LARVA PREDATOR PREDATOR (ENTOMOPHAGUUS)

ORDER=LEPIDOPTERA — FAMILY MORPH GENERAL SPECIFIC AD/NYM HERBIVORE FLOWER FEEDER LARVA HERBIVORE LEAF OR STEM FEEDER TABLE 1*. CONTINUED. QRDER=DIPTERA FAMILY MORPH GENERAL SPECIFIC ACAA AD/NYM HERBIVORE FLGWER FEEDER ACAB AO/NYM HERBIVORE FLOWER FEEDER ACAL AD/NYM HERBIVORE FLOWER FEEDER AGRO AD/NYM HERBIVORE FLOWER FEEDER W/ LEAF/STEM- MINING LARVAE ANTV AD/NYM HERBIVORE FLOWER FEEDER ANTV LARVA DETR/FUNGIVORE DETRITIVORE. FUNGIVORE, OR SCAVENGER ANTX AD/NYM HERBIVORE FLOWER FEEDER W/ LEAF/STEM-•MINING LARVAE ASIL AD/NYM PREDATOR PREDATOR IENTOMOPHAGOUS! BIBI AD/NYM HERBIVORE FLOWER FEEDER W/ ROOT-FEEDING LARVAE BIBI LARVA HERBIVORE ROOT FEEDER CALL AD/NYM DETR/FUNGIVORE DETRITIVORE, FUNGIVORE, OR SCAVENGER CECI AD/NYM NO ANALYSIS NON-FEEDER CECI LARVA DETR/FUNGIVORE DETRITIVORE, FUNGIVORE, OR SCAVENGER CECI 50A PREDATOR PREDATOR (ENTOMOPHAGOUS! CECI 517 HERBIVORE LEAF OR STEM FEEDER CERQ AD/NYM NO ANALYSIS PREDATOR OR PARASITE OF VERTEBRATES CERQ LARVA DETR/FUNGIVORE DETRITIVORE, FUNGIVORE, OR SCAVENGER CHAO AD/NYM NO ANALYSIS NON-FEEDER CHIR AD/NYM NO ANALYSIS NON-FEEDER CHIR LARVA DETR/FUNGIVORE DETRITIVORE, FUNGIVORE, OR SCAVENGER CHLO AD/NYM HERBIVORE FLOWER FEEDER CHLO 3 HERBIVORE FLOWER FEEDER W/ LEAF/STEM-■MINING LARVAE CHLO 6 HERBIVORE FLOWER FEEDER W/ LEAF/STEM-•MINING LARVAE CHLO 10 HERBIVORE FLOWER FEEDER W/ LEAF/STEM-•MINING LARVAE CONO AD/NYM PARASITOID FLOWER OR NON-FEEDER W/ PARASITOID LARVAE CULI AD/NYM NO ANALYSIS PREDATOR OR PARASITE OF VERTEBRATES OOLI AD/NYM PREDATOR PREDATOR (ENTOMOPHAGOUS) DOLI LARVA PREDATOR PREDATOR (ENTOMOPHAGOUS) DROS AD/NYM HERBIVORE FLOWER FEEDER DROS LARVA DETR/FUNGIVORE DETRITIVORE, FUNGIVORE, OR SCAVENGER EMPI AD/NYM PREDATOR PREDATOR (ENTOMOPHAGOUS) EMPI LARVA PREDATOR PREDATOR (ENTOMOPHAGOUS) EPHY AD/NYM HERBIVORE ALGA FEEDER HELE AD/NYM HERBIVORE FLOWER FEEDER HELE LARVA DETR/FUNGIVORE DETRITIVORE, FUNGIVORE, OR SCAVENGER LAUX AD/NYM HERBIVORE FLOWER FEEDER LAUX LARVA DETR/FUNGIVORE DETRITIVORE, FUNGIVORE, OR SCAVENGER LEPJ AD/NYM PREDATOR PREDATOR (ENTOMOPHAGOUS) LONC AD/NYM HERBIVORE FLOWER FEEDER LONC LARVA DETR/FUNGIVORE DETRITIVORE, FUNGIVORE, OR SCAVENGER LONJ AD/NYM HERBIVORE FLOWER FEEDER MI LI AD/NYM DETR/FUNGIVORE DETRITIVORE, FUNGIVORE, OR SCAVENGER TABLE IA. CONTINUED. QRDER=DIPTERA FAMILY MORPH GENERAL SPECIFIC HUSC AD/NYM HERBIVORE FLOWER FEEDER MUSC LARVA DETR/FUNGIVORE DETRITIVORE, FUNGIVORE, OR SCAVENGER HYCJ AD/NYM NO ANALYSIS NON-FEEDER MYCJ LARVA DETR/FUNGIVORE DETRITIVORE, FUNGIVORE, OR SCAVENGER PHOR AD/NYM DETR/FUNGIVORE DETRITIVORE, FUNGIVORE, OR SCAVENGER PHOR LARVA DETR/FUNGIVORE DETRITIVORE, FUNGIVORE, OR SCAVENGER PIPU AD/NYM PARASITOID FLOWER OR NON-FEEDER W/ PARASITOID LARVAE PLAJ AD/NYM HERBIVORE FLOWER FEEDER W/ ROOT-FEEDING LARVAE" PSYC AD/NYM NO ANALYSIS NON-FEEDER RHAG AD/NYM PREDATOR PREDATOR IENTOMOPHAGOUS) SARC AD/NYM HERBIVORE FLOWER FEEDER SARC LARVA DETR/FUNGIVORE DETRITIVORE, FUNGIVORE, OR SCAVENGER SCAT AD/NYM NO ANALYSIS NON-FEEDER SCHA LARVA DETR/FUNGIVORE DETRITIVORE, FUNGIVORE, OR SCAVENGER SCHB LARVA DETR/FUNGIVORE DETRITIVORE, FUNGIVORE, OR SCAVENGER SCHC LARVA DETR/FUNGIVORE DETRITIVORE, FUNGIVORE, OR SCAVENGER SCHD LARVA DETR/FUNGIVORE DETRITIVORE, FUNGIVORE, OR SCAVENGER SCIA AD/NYM NO ANALYSIS NON-FEEDER SCIA LARVA DETR/FUNGIVORE DETRITIVORE, FUNGIVORE, OR SCAVENGER SCIO AD/NYM HERBIVORE FLOWER FEEDER SEPS AD/NYM DETR/FUNGIVORE DETRITIVORE, FUNGIVORE, OR SCAVENGER SIMU AD/NYM NO ANALYSIS PREDATOR OR PARASITE OF VERTEBRATES SPHA AD/NYM DETR/FUNGIVORE DETRITIVORE, FUNGIVORE, OR SCAVENGER STRA AD/NYM HERBIVORE FLOWER FEEDER STRA LARVA DETR/FUNGIVORE DETRITIVORE, FUNGIVORE, OR SCAVENGER SYRP AD/NYM HERBIVORE FLOWER FEEDER SYRP 6 NO ANALYSIS NON-FEEDER W/ DETR/FUNGIVOROUS LARVAE SYRP LARVA PREDATOR PREDATOR (ENTOMOPHAGOUS) TABA AD/NYM NO ANALYSIS PREDATOR OR PARASITE OF VERTEBRATES TABA LARVA PREDATOR PREDATOR (ENTOMOPHAGOUS) TACK AD/NYM PARASITOID FLOWER OR NON-FEEDER W/ PARASITOID LARVAE TEPH AD/NYM HERBIVORE FLOWER FEEDER W/ LEAF/STEM-MINING LARVAE THE J LARVA PREDATOR PREDATOR (ENTOMOPHAGOUS) TIPU AD/NYM NO ANALYSIS NON-FEEDER W/ DETR/FUNG I VOROUS LARVAE TIPU LARVA DETR/FUNGIVORE DETRITIVORE, FUNGIVORE, OR SCAVENGER TRIC AD/NYM NO ANALYSIS NON-FEEDER W/ DETR/FUNGIVOROUS LARVAE TR1C LARVA DETR/FUNGIVORE DETRITIVORE, FUNGIVORE, OR SCAVENGER TABLE 14. CONTINUED. ORDER=HYMENOPTERA ------FAMILY MORPH GENERAL SPECIFIC ANDR AD/NYM HERBIVORE FLOWER FEEDER W/ NIDICOLOUS LARVAE APHE AD/NYM PARASITOID FLOWER OR NON-FEEDER W/ PARASITOID LARVAE APID AO/NYM HERBIVORE FLOWER FEEDER W/ NIDICOLOUS LARVAE BETH AD/NYM PARASITOID FLOWER OR NON-FEEDER W/ PARASITOID LARVAE BRAC AD/NYM PARASITOID FLOWER OR NON-FEEDER W/ PARASITOID LARVAE CEPH AD/NYM NO ANALYSIS NON-FEEDER W/ LEAF/STEM-MINING LARVAE CERK AD/NYM PARASITOID FLOWER OR NON-FEEDER W/ PARASITOID LARVAE CHAL AD/NYM PARASITOID FLOWER OR NON-FEEDER W/ PARASITOID LARVAE CHRK AD/NYM PARASITOID FLOWER OR NON-FEEDER W/ PARASITOID LARVAE CYNI AD/NYM PARASITOID FLOWER OR NON-FEEDER W/ PARASITOID LARVAE CYNI I PARASITOID FLOWER OR NON-FEEDERW/ PARASITOID LARVAE CYNI 2 PARASITOID FLOWER OR NON-FEEDER W/ PARASITOID LARVAE CYNI 3 PARASITOID FLOWER OR NON-FEEDER W/ PARASITOID LARVAE CYNI A PARASITOID FLOWER OR NON-FEEDER W/ PARASITOID LARVAE CYNI 5 PARASITOID FLOWER OR NON-FEEDER W/ PARASITOID LARVAE DIAP AD/NYM PARASITOID FLOWER OR NON-FEEDER W/ PARASITOID LARVAE DRYI AD/NYM PARASITOID FLOWER OR NON-FEEDER W/ PARASITOID LARVAE ENCY AD/NYM PARASITOID FLOWER OR NON-FEEDER W/ PARASITOID LARVAE EULO AD/NYM PARASITOID FLOWER OR NON-FEEDERW/ PARASITOID LARVAE EUPE AD/NYM PARASITOID FLOWER OR NON-FEEDER W/ PARASITOID LARVAE EURY AD/NYM PARASITOID FLOWER OR NON-FEEDER W/ PARASITOID LARVAE EVAN AD/NYM PARASITOID FLOWER OR NON-FEEDER W/ PARASITOID LARVAE FIGI AD/NYM PARASITOID FLOWER OR NON-FEEDERW/ PARASITOID LARVAE FORM I DETR/FUNGIVORE OMNIVORE W/ NIDICOLOUS LARVAE FORM 5 DETR/FUNGIVORE APHID TENDER FORM 6 PREDATOR PREDATOR W/ NIDICOLOUS LARVAE FORM 8 DETR/FUNGIVORE APHID TENDER FORM 9 DETR/FUNGIVORE OMNIVORE W/ NIDICOLOUS LARVAE FORM 10 PREDATOR PREDATOR W/ NIDICOLOUS LARVAE FORM LI DETR/FUNGIVORE OMNIVORE W/ NIDICOLOUS LARVAE FORM 12 DETR/FUNGIVORE OMNIVORE W/ NIDICOLOUS LARVAE FORM 13 DETR/FUNGIVORE OMNIVORE W/ NIDICOLOUS LARVAE FORM 14 DETR/FUNGIVORE OMNIVORE W/ NIDICOLOUS LARVAE FORM 17 DETR/FUNGIVORE OMNIVORE W/ NIDICOLOUS LARVAE FORM 18 DETR/FUNGIVORE OMNIVORE W/ NIDICOLOUS LARVAE FORM 19 DETR/FUNGIVORE OMNIVORE W/ NIDICOLOUS LARVAE FORM 26 DETR/FUNGIVORE OMNIVORE W/ NIDICOLOUS LARVAE FORM 28 DETR/FUNGIVORE OMNIVORE W/ NIDICOLOUS LARVAE FORM 29 DETR/FUNGIVORE OMNIVORE W/ NIDICOLOUS LARVAE FORM 30 DETR/FUNGIVORE OMNIVORE W/ NIDICOLOUS LARVAE FORM 3L DETR/FUNGIVORE OMNIVORE W/ NIDICOLOUS LARVAE FORM 32 DETR/FUNGIVORE DETRITIVORE OR FUNGIVORE W/ NIDICOLOUS LARVAE 150 TABLE 14. CONTINUED. ORDER=HYMENOPTERA ------FAMILY MORPH GENERAL SPECIFIC FORM 34 DETR/FUNGIVORE OMNIVORE W/ NIDICOLOUS LARVAE FORM 35 DETR/FUNGIVORE APHID TENDER FORM 38 DETR/FUNGIVORE OMNIVORE W/ NIDICOLOUS LARVAE FORM 42 DETR/FUNGIVORE PARASITIC MYRMECUPHILE FORM 48 PREDATOR PREDATOR W/ NIDICOLOUS LARVAE FORM LARVA DETR/FUNGIVORE OMNIVORE W/ NIDICOLOUS LARVAE HALI AD/NYM HERBIVORE FLOWER FEEDER W/ NIDICOLOUS LARVAE HYME 499 PARASITOID FLOWER OR NON-FEEDER W/ PARASITOID LARVAE HYME LARVA NO ANALYSIS FEEDING HABITS UNKNOWN ICHN AD/ NYM PARASITOID FLOWER OR NON-FEEDER W/ PARASITOID LARVAE MEGJ AD/NYM PARASITOID FLOWER OR NON-FEEDER W/ PARASITOID LARVAE MYHA AD/NYM PARASITOID FLOWER OR NON-FEEDER W/ PARASITOID LARVAE PAMP AD/NYM HERBIVORE FLOWER FEEDER PAMP LARVA HERBIVORE LEAF OR STEM FEEDER PERI AD/NYM PARASITOID FLOWER OR NON-FEEDER W/ PARASITOID LARVAE PLAT AD/NYM PARAS ITOI D FLOWER OR NON-FEEDER W/ PARASITOID LARVAE POMP AD/NYM PREDATOR PREDATOR W/ NIDICOLOUS LARVAE PROC AD/NYM PARASITOID FLOWER OR NON-FEEDER W/ PARASITOID LARVAE PTER AD/NYM PARASITOID FLOWER OR NON-FEEDER W/ PARASITOID LARVAE SCEL AD/NYM PARASITOID FLOWER OR NON-FEEDER W/ PARASITOID LARVAE SPEC AD/NYM PREDATOR PREDATOR W/ NIDICOLOUS LARVAE TENT AD/NYM HERBIVORE FLOWER FEEDER TENT LARVA HERBIVORE LEAF OR STEM FEEDER TIPH AD/NYM PARASITOID FLOWER OR NON-FEEDER W/ PARASITOID LARVAE TORY AD/NYM PARAS ITOI D FLOWER OR NON-FEEDER W/ PARASITOID LARVAE TRI J AD/NYM PARASITOID FLOWER OR NON-FEEDER W/ PARASITOID LARVAE

ORDER=UNIDENT• INSECTA — FAMILY MORPH GENERAL SPECIFIC AD/NYM NO ANALYSIS FEEDING HABITS UNKNOWN LARVA NO ANALYSIS FEEDING HABITS UNKNOWN aMorphotype-level categories were used if listed. If categories for a specific morphotype are not listed, then family-level categories (indicated by a 4-letter code under FAMILY and a life form name under MORPH) were used. If specific family-level categories are not listed, then ordinal-level categories (indicated by no entry under FAMILY) were used.

^Refer to Table 17, Appendix E, for definition of codes. £ Refer to Table 17, Appendix E, for definition of codes: AD/NYM = adults and/or nymphs, LARVA = larvae.

^Adult Tachyporinae. APPENDIX D. VEGETATION SUMMARY

153 2 Table 15. Annual frequency of occurrence (%) and biomass (g/m ) of plant species in quadrats sampled on study areas in Harrison County, Ohio, 1978-79. __ ------1------YEAR=1978 AREA=77 ------SPECIES FREQ BIOMASS N BROHUS J AP3NICUS L. 0.011 95 FESTUCA ELATIOR VAR. ARUNDINACEA (SCHREB.) 0.989 95 LQLIUM SP. 0.042 95 POA PRATENSIS L. 0.011 95 DACTYL IS GLOMERATA L- 1.000 95 PHLEUM PRATENSE L. 0.042 95 ELYMUS CANADENSIS L. 0.011 ' ’ 95 TRITICUM AESTIVUM L. 0.011 95 SECALE CEREALE L. 0.032 95 SETARIA GLAUCA (L .) BEAUV. 0.011 95 SETARIA VIRIDIS (L.J BEAUV. 0.011 95 RUMEX CRISPUS L. 0.032 T a 95 POLYGONUM PERSICARIA L. 0.011 T 95 MELILOFUS ALBA DESR. 0.084 95 MELILOTUS OFFICINALIS (L.J LAM. 1.000 95 TRIFQLIUM PRATENSE L. 0.937 95 TRIFOLIUM REPENS L. 0.011 95 MEDICAGO SATIVA L. 0.011 95 AMBROSIA ARTEMISIIFOLIA L. 0.021 T 95 SOL IDAGO SP. 0.011 T 95 UNKNOWN SP. 0.063 0.069 95 TOTAL GRASSES 328.432 95 TOTAL LEGUMES 238.323 95

YEAR=1978 AREA=75 SPECIES FREQ BIOMASS N BROMUS INERMIS LEYSS 0.021 94 FESTUCA ELATIOR VAR. ARUNDINACEA ISCHREB.J 0.819 94 POA SP. 0.011 94 DACTYL IS GLOMERATA L. 0.968 94 AGROSTIS ALBA L. 0.011 94 PHLEUM PRATENSE L. 0.074 94 AGROPYRON REPENS (L .J BEAUV. 0.032 94 SETARIA VIRIDIS (L.J BEAUV. 0.011 94 ALLIUM VINEALE L. 0.011 T 94 BARBAREA VULGARIS R.BR. 0.011 T 94 POTENTILLA RECTA L. 0.074 0.063 94 POTENTILLA NORVEGICA L. 0.011 T 94 TABLE 15. CONTINUED ------YEAR=1978 AREA=75 SPECIES FREQ BIOMASS N LOTUS C3RNICULATUS L. 0.021 9* CORONILLA VARIA L. 0.6*9 9* MELILOTUS ALBA DESR. 0.053 9* MELILOTUS OFFICINALIS (L .) LAM. 0.628 9* TRIFOLIJM PRATENSE L. 0.1*9 9* TRIFOLIUM REPENS L. 0.0*3 9* MEDICAGO SAT IVA L. 0.011 9* OENOTHERA BIENNIS L. 0.01L T 9* DAUCUS CAROTA L. 0.011 T 9* AMBROSIA ARTEMISIIFOLIA L. 0.011 T 9* SOL IDAGO JUNCEA AIT. 0.011 T 9* SOL I DAGO SP. 0.011 T 9* CHRYSANTHEMUM LEUCANTHEMUM L. 0.021 0.186 9* UNKNOWN SP. 0.053 T 9* TOTAL GRASSES 275.328 9* TOTAL LEGUMES 30*.987 9*

------Y£AR=1978 AR EA=CV SPECIES FREQ BIOMASS N BROMUS INERMIS LEYSS 0.021 96 FESTUCA ELATIOR VAR. ARUNDINACEA ISCHREB.) 0.010 96 DACTYLIS GLOMERATA L. 0.031 96 PHALARIS ARUNDINACEA L. 0.010 0.068 96 PHLEUM PRATENSE L. 0.010 96 AGROPYRON REPENS IL.J BEAUV. 0. 177 96 POLYGONUM SCANDENS L. 0.031 T 96 RUBUS OCCIDENTALIS L- 0.010 T 96 CQRONILLA VARIA L. 1.000 96 MEDICAGO SATIVA L. 0.052 96 DAUCUS CAROTA L. 0.021 T 96 IPOMOEA LACUNQSA L. OR SP. 0.021 0.235 96 ASTER SP- 0.021 0.18* 96 ACHILLEA MILLEFOLIUM L. 0.010 T 96 CIRSIUM VULGARE (SAVI1 TENORE 0.031 1.779 96 CIRSIUM ARVENSE IL .i SCOP. 0.010 T 96 CENTAURIA MACULOSA LAM. 0.021 T 96 UNKNOWN SP. 0.021 T 96 TUTAL GRASSES 36.936 96 TOTAL LEGUMES 528.26 96 TABLE 15. CONTINUED. ------YEAR=197BAREA=OF SPECIES FREQ BIOMASS N BOTRYCHIUM VIRGINIANUM CL.) SW. 0.042 T 24 ATHYRIUM FILIX-FEMINA CL.) ROTH 0.042 1.755 24 ASPLENIUM PLATYNEURON (L . ) OAKES 0.042 T 24 BRUMUS INERMIS LEYSS 0.333 24 POA SP. 0.125 24 DACTYL IS GLOMERATA L. 0.250 24 HOLCUS LANATUS L. 0.833 , 24 AGROSTIS ALBA L. 0.083 24 PHLEUM PRATENSE L. 0.292 24 AGROPYRON REPENS IL .) BEAUV. 0.125 24 PANICUM CAPILLARE L. 0.042 24 PANICUM LANUGINOSUM ELL. 0.208 24 CAREX SP. 0.125 T 24 CORYLUS AMERICANA WALT. 0.042 1.053 24 ULMUS SP. 0.083 T 24 RUMEX ACETOSELLA L. 0.167 2.936 24 PRUNUS SEROTINA EHRH. 0.083 1.385 24 RUBUS FLAGELLARIS WILLD. 0. 167 1.716 24 RUBUS A lLEGHENIENSIS PORT. 0. 583 92.827 24 POTENTILLA SIMPLEX MICHX. 0.792 22.854 24 POTENTILLA RECTA L. 0.042 1.126 24 TRIFOLIUM REPENS L. 0.042 24 STROPHOSTYLES SP. 0.042 24 OXALIS STRICTA L. 0.500 0.75 24 GERANIUM CAROLINIANUM L. 0.042 T 24 ACALYPHA VIRGINICA L. 0.250 0.303 24 HYPERICUM SP. 0. 125 T 24 DAUCUS CAROTA L. 0.583 1.995 24 APOCYNUM CANNABINJM L. 0.167 20.865 24 SATUREJA VULGARIS IL .) GRITSCH 0.333 2.753 24 VERONICA OFFICINALIS L. 0.042 0.28 24 PLANTAGO RUGELI1 DCNE. 0.042 0.846 24 AMBROSIA ARTEMISM FOLIA L. 0.208 0.282 24 SOL I DAGO GRAMINIFOLIA (L.) SALISB. 0.375 9.017 24 SOLIDAG3 JUNCEA AIT. 0.333 41.485 24 SOLI DAGO PATULA MUHL. 0. 167 5.696 24 SOL I DAGO CANADENSIS L. 0.500 104.148 24 SOL I DAGO NEMORALIS AIT. 0.042 0.303 24 SOL I DAGO SP. 0.250 31.725 24 ASTER PILOSUS WILLD. 0. 125 3.247 24 ASTER SP. 0. 125 4.512 24 ACHILLEA MILLEFOLIUM L. 0.208 6.844 24 TABLE 15. CONTINUED. YEAR=1978 AREA=OF SPECIES FREQ BIOMASS N VERNONIA ALTISSIMA NUTF. 0.042 T 24 UNKNOWN COMPOSITE 0.042 T 24 UNKNOWN SP. 0. 167 T 24 TOTAL GRASSES 347.195 24 TOTAL LEGUMES T 24

YEAR=1979 AREA=77 - SPECIES FREQ BIOMASS N BROMUS JAPQNICUS L. 0.014 72 FESTUCA ELATIOR VAR. ARUNDINACEA (SCHREB.J 0.944 72 DACTYL IS GLOMERATA L. 0.972 72 AGROSTIS ALBA L. 0.028 72 PHLEUM PRATENSE L. 0.083 72 UNKNOWN GRASS SP. 0.014 72 RUMEX CRISPUS L. 0.014 T 72 POTENTILLA RECTA L. 0.028 T 72 LOTUS CORNICULATUS L. 0.014 72 MELILOTUS OFFICINALIS (L.J LAM. 0.625 72 TRIFOLIUM PRATENSE L. 0.431 72 TRIFOLIUM REPENS L. 0.014 72 MEDICAGO SAT IVA L. 0.014 72 LESPEDEZA SFIPULACEA MAXIM. 0.014 72 DAUCUS CAROTA L. 0.014 T 72 AMBROSIA ARTEMISIIFOLIA L. 0.028 0.124 72 SOL I DAGO SP. 0.014 0.124 72 ASTER SP. 0.014 0.062 72 UNKNOWN COMPOSITE 0.056 T 72 UNKNOWN SP. 0.125 T 72 TOTAL GRASSES 228.037 72 TOTAL LEGUMES 52.669 72 157 TABLE 15. CONTINUED. YEAR=i 979 AREA=75 SPECIES F.REQ BIOMASS N FESTUCA ELATIOR VAR. ARUNDINACEA ISCHREB.} 0.792 72 POA PRATENSIS L. 0.014 72 DACTYL IS GLOMERATA L. 0.778 72 AGROSTIS ALBA L. 0.028 72 PHLEUM PRATENSE L. 0.042 72 PANICUM LANUGINOSJM ELL. 0.014 0.029 72 SETARIA VIRIDIS IL.) BEAUV. 0.014 72 RUMEX CRISPUS L. 0.014 T 72 POLYGONJM PERSICARIA L. 0.014 T 72 LEPIDIUM CAMPESTRE IL.} R.BR. 0.014 0.227 72 BARBAREA VULGARIS R.BR. 0.014 T 72 POTENTILLA RECTA L. 0.083 T 72 LOTUS CORNICULATUS L. 0.028 72 CORONILLA VARIA L. 0.681 72 MEL ILOTUS OFFICINALIS IL.) LAM. 0.069 72 TRIFOLIJM PRATENSE L. 0. 125 72 TRIFOLIUM REPENS L. 0.014 72 MEDICAGO SAT IVA L. 0.014 72 MEDICAGO LUPULINA L. 0.014 72 OXALIS STRICTA L. 0.014 T 72 HYPERICUM MUTILUM L. 0.014 T 72 DAUCUS CAROTA L. 0.056 T 72 DIODIA TERES WALT. 0.028 T 72 LOBELIA INFLATA L. 0.014 T 72 AMBROSIA ARTEMISIIFOLIA L. 0.042 0.029 72 SOL I DAGO JUNCEA AIT. 0.014 T 72 SOL IDAGO SP. 0.028 0.029 72 ASTER PILOSUS WILLD. 0.014 0.248 72 ASTER SP. 0.028 1.372 72 CHRYSANTHEMUM LEUCANTHEMUM L. 0.042 0.029 72 CIRSIUM VULGARE ISAVI) TENORE 0.014 0.062 72 LACTUCA CANADENSIS L. 0.014 T 72 HIERACIUM GRONOVII L. 0.056 1.17 72 UNKNOWN COMPOSITE 0. 153 0.092 72 UNKNOWN SP. 0. 194 T 72 TOTAL GRASSES 167.218 72 TOTAL LEGUMES 239.047 72 158 TABLE 15. CONTINUED ------YEAR=1979 AREA=CV SPECIES FREQ BIOMASS N BROMUS INERMIS LEYSS 0.015 68 DACTYL IS GLOHERATA L. 0.029 68 AGROPYRON REPENS IL .) BEAUV. 0.235 68 ALLIUM VINEALE L. 0.015 0.098 68 RUMEX CRISPUS L. 0.015 0.061 68 BRASSICA NIGRA (L .l KOCH 0.029 0.098 68 CORONILLA VARIA L. 0.971 68 MEDICAGD SATIVA-L. 0.029 68 DAUCUS CAROTA L. 0.103 0.155 68 IPQMOEA LACUNOSA L. OR SP. 0.015 T 68 GALIUM APARINE L. 0.015 T 68 DIODIA TERES WALT. 0.015 0.091 68 BIDENS SP. 0.015 T 68 SOL I DAGO CANADENSIS L. 0.059 4.502 68 SOL I DAGO SP. 0.015 0.091 68 ASTER SP. 0.044 0.329 68 CIRSIUM VULGARE ISAVI) TENORE 0.074 3.405 68 CENTAUR I A MACULOSA LAM. 0.015 0.091 68 LACTUCA SERRIOLA L. 0.015 T 68 HIERACIJM GRONOVII L. 0.015 T 68 UNKNOWN COMPOSITE 0.059 T 68 UNKNOWN SP. 0.029 0.567 68 TOTAL GRASSES 34.968 68 TOTAL LEGUMES 487.198 68

------YEAR = 1979 AR EA=OF SPECIES FREQ BIOMASS N ATHYRIUM FILIX-FEMINA (L .) ROTH 0.028 T 36 ASPLENIUM PLATYNEJRON (L.) OAKES 0.111 T 36 BROMUS INERMIS LEYSS 0.694 0.263 36 FESTUCA ELATIOR VAR. ARUNDINACEA ISCHREB.) 0.028 36 POA SP. 0.222 36 DACTYLIS GLOMERATA L. 0.167 36 HOLCUS LANATUS L. 0.694 36 PHLEUM PRATENSE L. 0.222 36 AGROPYRON REPENS IL .) BEAUV. 0.028 36 PAN I CUM LANUGINOSJM ELL. O . l i l 36 UNKNOWN GRASS SP. 0.028 36 CAREX VULPINOIDEA WILLD. 0.028 T 36 TABLE 15. CONTINUED. ------TEAR=L979 AREA=OF SPECIES FREQ BIOMASS N CAREX SP. 0.139 6.585 36 JUNCUS TENUIS WILLD. 0.056 0.112 36 CORYLUS AMERICANA WALT. 0.028 T 36 RUMEX ACETOSELLA L. 0.194 0.296 36 PRUNUS SEROTINA EHRH- 0.083 0.336 36 RUBUS FLAGELLAR IS WILLD. 0.194 3.634 36 P.J8US ALLEGHENIENS IS PORT. 0.750 75.533 36 POTENTILLA SIMPLEX MICHX. 0.778 13.516 36 POTENTILLA RECTA L. 0.028 T 36 AGRIM3NIA PARVIFLORA AIT. 0.028 0.946 36 TRIFOIIJM REPENS L. 0.056 36 OXALIS STRICTA L. 0.194 T 36 ACALYPHA VIRGINICA L. 0.056 T 36 EUPHORBIA COROLLATA L. 0.028 T 36 RHUS RADICANS L. 0.028 0.147 36 ACER RUBRUM L. 0.028 1.403 36 HYPERICUM SP. 0.111 2.125 36 DAUCUS CAROTA L. 0.361 T 36 APOCYNUM CANNABINUM L. 0. 139 1.776 36 CONVOLVULUS SPITHAMAEUS L. 0.306 9.412 36 LYCOPJS VIRGINICUS L. 0.028 T 36 SATUREJA VULGARIS (L.J GRITSCH 0.250 0.774 36 GLECHOMA HEDERACEA L. 0.028 T 36 PRUNELLA VULGARIS L. 0.028 T 36 SOLANUM CAROLINENSE L. 0.023 0.147 36 SOLANUM NIGRUM L. 0.083 1.889 36 VERONICA OFFICINALIS L. 0.083 0.135 36 DIODIA TERES WALT. 0.028 T 36 AMBROSIA ARTEMISIIFOLIA L. 0.056 T 36 SOLI DAGO GRAMINIFOLIA IL .) SALISB. 0. 139 0.891 36 SOLIDAGO JUNCEA AIT. 0.033 1.342 36 SOL I DAGO PATULA MJHL• 0. 3bl 22.282 36 SOLIDAGO CANADENSIS L. 0.528 78.39 36 SOLIDAGO NEMORALIS AIT. 0.028 0.335 36 SOLIDAGO SP. 0.028 T 36 ASTER SP. 0.056 1.386 36 ACHILLEA MILLEFOLIUM L. 0. 139 1.291 36 CHRYSANTHEMUM LEUCANTHEMUM L. 0.028 0.149 36 EUPATORIUM MACULATUM L. 0.028 T 36 EUPATORIUM PURPUREUM L. 0.028 1.614 36 VERNONIA ALT IS SIMA NUTT. 0.028 1.886 36 HIERACIUM GRONOV11 L. 0.056 T 36 as o TABLE 15. CONTINUED YEAR=1979 AREA=OF SPECIES FREQ BIOMASS N UNKNOWN COMPOSITE O . l l l T 36 UNKNOWN SP. 0.194 T 36 TOTAL GRASSES 286.409 36 TOTAL LEGUMES T 36

------YEAR=1979 AREA=78 SPECIES FREQ BIOMASS N BROMUS JAPONICUS L. 0.167 6 FESTUCA ELATIOR VAR. ARUNDINACEA (SCHREB.) 1.000 6 DACTYL IS GLOMERATA L. 1.000 6 MELILOTUS OFFICINALIS (L .) LAM. I . 000 6 TRIFOLIUM PRATENSE L. 1.000 6 TOTAL GRASSES 94.737 6 TOTAL LEGUMES 439.596 6 a 2 Less than 0.0005 g/m . Table 16. Plant species recorded on study areas in Harrison County, Ohio, 1978-79. 1 = species recorded in quadrat. 0 = incidental record only. ------FAHILY=OPHIQGLOSSACEAE------SPECIES AREA77 AREA75 CV OF BOTRYCHIUM VIRGINIANUM (L .) SW. 1

FAMILY=POLYPODIACEAE ------SPECIES AREA77 AREA75 CV OF ONOCLEA SENSIBILIS L. 0 ATHYRIUM FILIX-FEMINA IL.) ROTH 1 ASPLENIUM PLATYNEURDN (L.) OAKES I

FAMILY=TYPHACEAE SPECIES AREA77 AREA75 CV OF TYPHA LATIFOLIA L. 0 0

FAMILY=POACEAE SPECIES AREA77 AREA75 CV OF BROMUS TECTORUM L. 0 BROMUS JAPONICUS L. 1 0 0 0 BROMUS INERMIS LEYSS 0 1 I 1 FESTUCA ELATIOR VAR. ARUNDINACEA (SCHREB.) 1 I 1 1 LOLIUM SP. 1 0 0 POA PRATENSIS L. 1 1 POA COMPRESSA L. 0 POA SP. 1 0 1 OACTYLIS GLOMERATA L. I 1 1 1 AVENA SAT IVA L. 0 HOLCUS LANATUS L. 0 0 1 AGROSTIS ALBA L. 1 1 0 I PHALARIS ARUNDINACEA L. 1 PHLEUM PRATENSE L. 1 1 1 ELYMUS VIRGIN!CUS COMPLEX 0 0 ELYMUS CANADENSIS L. L AGROPYRON REPENS IL .I BEAUV. 0 TRITICUM AESTIVUM L. i TABLE 16. CONTINUED. FAMILY=POACEAE SPECIES AREA77 AREA75 CV OF

SECALE CEREALE L. 1 PANICUM CAPILLARE L. 0 0 0 I PANICUM LANUGINOSUM ELL. - 1 0 1 PANICUM CLANDESTINUM L. 0 0 0 0 PANICUM BOSCII POIR. —— 0 0 ECHINOCHLOA CRUSGALLI (L .i BEAUV. 0 0 0 — SETARIA GLAUCA (L .I BEAUV. 1 0 — — SETARIA FABER!I HERRM. U 0 ■ 0 — SET ARIA VIRIDIS (L.) BEAUV. 1 1 0 — ANDROPOGON VIRGINICUS L. TRIODIA FLAVA IL.) SMYTH 0 - 0 MUHLENBERGIA FRONDOSA IPOIR.) FERN. n UNKNOWN GRASS SP. 1 1

FAMILY=CYPERACEAE SPECIES AREA77 AREA75 CV OF CAREX VULPINOIDEA WILLO. 1 CAREX SP. 1

FAMILY=JJNCACEAE SPECIES AREA77 AREA75 CV OF JUNCUS TENUIS WILLO. 0 0 1 JUNCUS SP. 0 0 0

FAMILY=LILIACEAE SPECIES AREA77 AREA75 CV OF ALLIUM CANADENSE L. 0 0 0 ALLIUM VINEALE L. 1 I YUCCA FILAMENTOSA L.

rr\ ' ) TABLE 16. CQNTINUEO. — FAMILY=SALICACEAE SPECIES AREA77 AREA75 CV QF SALIX SP. 0 POPULUS DELTOIDES HARSH. 0 POPULUS GRANDIDENT AT A MICHX. 0

FAMILY=BETULACEAE SPECIES AREA77 AREA75 CV OF

—_ — ALNUS GLUTINOSA IL.) GAERTN. . 0 CORYLUS AMERICANA WALT. I

FAMILY=ULMACEAE SPECIES AREA77 AREA75 CV OF ULHUS SP. I

FAMILY=JRTICACEAE SPECIES AREA77 AREA75 CV OF

URTICA DIOICA VAR. PROCERA (MUHL.) WEDO. —— — 0 POSS. URTICA GRACILIS AIT. —— — 0 BOEHMERIA CYLINDRICA (L .) SW. 0

FAMILY=POLYGONACEAEr ------SPECIES AREA77 AREA75 CV OF RUMEX ACETOSELLA L. — 0 0 I RUMEX OBTUSIFOLIUS L. 0 0 0 0 RUMEX CRISPUS L. 1 I 1 0 POLYGONUM CONVOLVULUS L. — 0 — — POLYGONUM SCANDENS L. 0 0 1 0 POLYGONUM PERSICARIA L. I 1 0 0 POLYGONJM HYDROPIPER -— 0 — POLYGONUM PENSYLVANICUM L. 0 - 0 -

-t-O' TABLE 16. CONTINUED. FAMILY=CHENQPODIACEAE ------SPECIES AREA77 AREA75 CV OF CHENQPODIUM ALBUM L. 0 0 0

FAMILY=PHYTOLACCACEAE ------SPECIES AREA77 AREA75 CV OF » PHYTOLACCA AMERICANA L. 0 0 0 0

FAMILY=CARYOPHYLLAC EA E ------SPECIES AREA77 AREA75 CV OF DIANTHUS ARMERIA L. 0 0 0 SAPONARIA OFFICINALIS L. 0

FAMILY=LAURACEAE SPECIES AREA77 AREA75 CV OF SASSAFRAS ALBIDUM INUTT.I NEES 0 0

FAMILY=CRUCIFERAE SPECIES AREA77 AREA75 CV OF LEPIDIUM CAMPESTRE I L . * R.BR. 0 1 0 0 LEPIDIUM VIRGINICUM L. 0 BARBAREA VULGARIS R.BR. 0 1 0 BRASSICA NIGRA IL .I KOCH

FAMILY=PLANT ANACEAE SPECIES AREA77 AREA75 CV OF PLATANUS OCCIDENTALIS L. 0

ON Ln TABLE 16- CONTINUED. FAMILY=ROSACEAE SPECIES AREA77 AREA75 CV OF PRUNUS PERSICA BATSCH 0 PRUNUS SEROTINA EHRH. - 0 0 1 CRATAEGUS SP. Un RUBUS OCCIDENTALIS L. - 0 1 RUBUS FLAGELLARIS WILLD. —— 0 i RUBUS ALLEGHENIENSIS PORT. — ◦ 0 i ROSA MULTIFLORA THUNB. — 0 — 0 ROSA PALUSTRIS MARSH Un POTENTILLA SIMPLEX MICHX. — 0 — i POTENTILLA RECTA L. 1 1 — i POTENTILLA NORVEGICA L- 0 1 — — GEUM CANA3ENSE JACQ- — 0 0 — AGRIMONIA PARVIFLORA AIT. — — 0 i AGRIMONIA PUBESCENS HALLR, 0

FAMILY=LEGUMINQSAE SPECIES AREA77 AREA75 CV OF ROBINIA PSEUOOACACIA L. - 0 0 0 VICIA DASYCARPA TEN. u LOTUS CORNICULATUS L, 1 1 0 0 CORONILLA VAR IA L. 0 I 1 — MELILOTUS ALBA DESR. 1 — 0 MELILOTUS OFFICINALIS IL.) LAM. 1 1 0 0 TRIFOLIUM PRATENSE L. 1 1 — 0 TRIFOLIUM REPENS L. 1 I 0 1 TRIFOLIUM HYBRIDUM L. 0 — 0 MEDICAGO SATIVA L. 1 1 1 0 MEDICAGO LUPJL1NA L. 0 1 0 LESPEDEZA STIPULACEA MAXIM. 1 STROPHOSTYLES SP. - 1

FAMILY=OXALIDACEAE SPECIES AREA77 AREA75 CV OF OXALIS STRICTA L. 0 1 0 1 166 TABLE 16. CONTINUED. - FAMILY=GERANIACEAE ------SPECIES AREA77 AREA75 CV OF GERANIUM CAROLINIANUM L. I

------FAMILY=SIMAROUBACEAE ------SPECIES AREA77 AREA75 CV OF AILANTHUS ALTISSIMA IMILL.J SHINGLE - 0 0 -

FAMILY=POLYGALACEAE SPECIES AREA 77 AREA75 CV OF POLYGALA VERTICILLATA L. 0 0

FAMILY=EUPHORBIACEAE ------SPECIES AREA77 AREA75 CV OF ACALYPHA VIRGINICA L. 0 0 1 EUPHORBIA COROLLATA L. 1

FAMILY=ANACARDIACEAE ------SPECIES AREA77 AREA75 CV OF RHUS RADICANS L. 0 1 RHUS TYPHINA L. 0

FAMILY=ACERACEAE SPECIES AREA77 AREA75 CV OF ACER SACCHARINUM L, 0 ACER RUBRJM L. I 167 TABLE 16- CONTINUED. ------FAM ILY = BALSAM INACEAE------SPECIES AREA77 AREA75 CV OF IMPATIENS CAPENSIS MEERB. - 0 0 -

FAMILY=VITACEAE SPECIES AREA77 AREA75 CV OF PARTHENOCISSUS QUINQUEFOLIA PLANCH. 0 VITIS SP. 0 0

FAMILY=MALVACEAE SPECIES AREA77 AREA75 CV OF ABUTILON THEOPHRASTI MEDIC. 0

FAMILY=HYPERICACEAE SPECIES AREA77 AREA75 CV OF HYPERICUM PERFORATUM L. 0 0 HYPERICUM PUNCTATUM L. 0 0 HYPERICUM MUTILUM L. 1 0 HYPERICUM SP. 0 1

FAMILY=ELAEAGNACEAE SPECIES AREA77 AREA75 CV OF ELAEAGNUS ANGUSTIFOLIA L. 0

FAMILY=ONAGRACEAE SPECIES AREA77 AREA75 CV OF CIRCAEA QUADRISULCATA (MAXIM.) F. 6 S. 0 EPILIBIUM COLORATUM BIEHLER 0 EPILOBIUM SP. O' 0 0 TABLE 16. CONTINUED. — FAMILY=ONAGRACEAE ------SPECIES AREA77 AREA75 OENOTHERA BIENNIS L- 0 1

FAMILY=UMBELL I FERAE SPECIES AREA77 AREA75 SANICULA TRIFOLIATA BECKN. DAUCUS CAROTA L. 1 1 PASTINACA SAT IVA L. 0

FAMILY=CORNACEAE SPECIES AREA77 AREA75 CORNUS FLORIDA L.

FAHILY=PRIMJLACEAE SPECIES AREA77 AREA75 ANAGALLIS ARVENSIS L. 0 LYSINACHIA QJAURIFOLIA L.

------FAMILY=OLEACEAE ------SPECIES AREA77 AREA75 FRAXINUS PENNSYLVANICA NARSH.

FAMILY=APOCYNACEAE ------SPECIES AREA77 AREA75 APOCYNUM CANNABINUM L. 0 0 o

TABLE 16. CONTINUED. - FAMILY=ASCLEPIADACEAE ------SPECIES AREA77 AREA75 CV OF ASCLEPIAS TUBEROSA L. — — — 0 ASCLEPIAS SYRIACA L. — 0 — 0 ASCLEPIAS INCARNATA L. — 0 0 0

- FAMILY=CDNVOLVULACEAE ------SPECIES AREA77 AREA75 CV OF CONVOLVULUS SEPIUM L. 0 0 0 0 CONVOLVULUS SPITHAMAEUS L. — — — L IPOMOEA PANDURATA tL .i G.F.W.MEYER — — — 0 IPOMOEA LACUNOSA- L. OR SP. 0 0 1 0

FAMILY=BORAGINACEAE ------SPECIES AREA77 AREA75 CV OF HACKELIA VIRGINIANA IL.} 0

FAMILY=VERBENACEAE SPECIES AREA77 AREA75 CV OF VERBENA HASTATA L. 0 VERBENA URTICIFOLIA L. 0 0 0

FAHILY=LABIATAE SPECIES AREA77 AREA75 CV OF VIRGINICUS L. 1 TEUCRIUM CANADENSE L. 0 SATUREJA VULGARIS (L.) GRITSCH 0 0 1 NEPATA CAT ARIA L. 0 0 GLECHOMA -1EDERACEA L. 1 PRUNELLA VULGARIS L. 0 1 170 TABLE 16. CONTINUED. — FAMILY=SOLANACEAE ------SPECIES AREA77 AREA75 CV OF SOLANUM CAROLINENSE L. 0 I SOLANUM NIGRUM L. 0 I PHYSALUS LONGIFOLIA NUTT. 0 PHYSALUS HETEROPHYLLA NEES 0

FAMlLY=SCROPHULARIACEAE ------SPECIES AREA77 AREA75 CV OF VERONICA OFFICINALIS L. I PENSTEMON DIGITALIS NUTT. 0 0 VEKB a SCUM THAPSUS L. 0 VERBASCUM BLATTARIA L. 0

FAMILY=PLANT AGINACEAE------SPECIES AREA77 AREA75 CV OF PLANTAGO LANCEOLATA L. 0 PLANTAGO RUGELII DCNE. 0 0 1

FAMILY=RUBIACEAE SPECIES AREA77 AREA75 CV OF GALIUM APARINE L. 1 DIODIA TERES HALT. 1 I I

FAMILY=CAPRIFOLIACEAE ------SPECIES AREA77 AREA75 CV OF SAMBUCUS CANADENSIS L. 0 0 TABLE 16. CONTINUED. — FAMILY=DIPSASACEAE ------SPECIES AREA77 AREA75 CV OF DIPSACUS SYLVESTRIS HUOS, 0 0 0

FAMILY=CAMPANULACEAE ------SPECIES AREA77 AREA75 CV OF LOBELIA INFLATA L. 0 1 0

FAMILY=COMPOSITAE SPECIES AREA77 AREA75 CV OF

AMBROSIA TRIFIDA L. 0 —— ' — AMBROSIA ARTEMIS 11F3LI A L. i 1 0 1 RUDBECKIA HIRTA L. —— — 0 BIDENS COMOSA (GREYJ HEIG. 0 0 0 — BIOENS SP. 0 — 1 — SOLIDAGO GRAMINIFOLIA (L .) SALISB. — 0 0 1 SOLIDAGO JUNCEA AIT. — 1 0 1 SOLIDAGO PATULA MUHL. — — — 1 SOLIDAGO GIGANTEA AIT. — — 0 0 SOLIDAGO CANADENSIS L. 0 0 1 1 SOLIDAGO NEMORALIS AIT. — 0 0 1 SOLIDAGO SP. 1 1 1 1 ASTER NOVAE-ANGLIAE L. —— 0 0 ASTER PILOSUS WILLD. — 1 — 1 ASTER SP. 1 1 1 1 ERIGERON ANNUUS (L.) PERS. — 0 0 0 ERIGERON STRIGOSUS MUHL. — 0 0 0 ERIGERON CANADENSIS L. 0 0 — - ACHILLEA MILLEFOLIUM L. 0 0 1 1 CHRYSANTHEMUM LEUCANTHEMUM L. 0 1 0 1 GNAPHALIUM OBTUSIFOLIUM L. — 0 0 — TUSSILAGO FARFARA L. 0 0 0 — ERECHTITES HIERACIFOLIA IL .I RAF. 0 0 0 — EUPATORIUM MACULATUM L. — — 0 1 EUPATORIUM PURPUREUM L. —— — 1 EUPATORIUM RJGOSUM HOUTT. — — 0 0 EUPATORIUM PERFQLIATUM L. — 0 — 0 VERNONIA ALT IS SIMA NUTT. - — 0 1 N> TABLE 16. CONTINUED. FAMILY=CQMPOSlTAE SPECIES AREA77 AREA75 CV OF

ARCTIUM MINUS (HILL) BERNH. — 0 0 0 CIRSIUM VULGARE ISAVI) TENORE 0 1 1 0 CIRSIUM DISCOLOR IMJHL.) SPRENG. — — 0 — CIRSIUM ARVENSE (L.) SCOP. 0 0 I — CENTAURIA MACULOSA LAM. — — 1 — CICHORIUM INTYBUS L. — 0 — 0 TRAGOPOGON SP. — 0 — 0 TARAXACUM OFFICINALE WEBER —— • 0 — SDNCHUS ASPER (L.J 0 — 0 — LACTUCA CANADENSIS L. — 1 — 0 LACFUCA SERRIOLA L. 0 0 1 0 LACTUCA FLORI DANA CL.) GAERTN. 0 0 — — HIERACIUM PRATENSE TAUSCH - —— 0 HIERACIUM GRONOV11 L. — 1 1 1 UNKNOWN COMPOSITE 1 1 1 I

------FAMILY=UNKNUWN ------SPECIES AREA77 AREA75 CV OF UNKNOWN SP. 1 1 1 1

i

U)- ^ j APPENDIX E. ARTHROPOD SUMMARY Table 17. Identified arthropod taxa from study areas in Harrison County, Ohio, 1978-79 ------ORDCODE=1 ORDER=PSEJDQSCORPI ONI DA ~FAMCODE = NEOB FAMILY MORPH3 SPECIES NEOBIS11OAE 1 MICROBISIUM CONFUSUM HOFF

0RDC0DE=2 ORDER=OPILIONES FAMCODE=PHAJ FAMILY MORPH SPECIES PHALANGII DAE

------. ORDCODE=3 QRDER=ACARINA FAMCGDE=Ixoo ------FAMILY MORPH SPECIES IXODIDAE

ORDC0DE=<* ORDER=ARANElDA FAMCOOE=AGEL ------FAMILY MORPH SPECIES AGELENlDAE 1 WADOTES HYBRIDUS ( EMERTQNJ AGELENIDAE 2 CICJRINA ARCUATA COMSTOCK AGELENIDAE 101 WADOTES CALCARATUS ( KEYSERLINGJ AGELENIDAE 502 CIC'JRINA SP.

ORDCODE=* ORDER=ARANEIDA FAMCODE=ANYP FAMILY MORPH SPECIES ANYPHAENIDAE ANYPHAENA SP. ANYPHAENIDAE 101 WULFILA SALTABUNDA (HENTZ) ANYPHAENIDAE 701 WULFILA SALTABUNDA IHENTZJ

ORD:ODE=4 ORDER=ARANEIDA FAMCODE=ARAJ FAMILY MORPH SPECIES UNIDENT. APANEIDA TABLE 17, CONTINUED. ------0RDC0DE=4 QRDER=ARANEIDA FAMCODE=ARAN ------FAMILY MORPH SPECIES ARANEIOAE I ARGIOPE TRIFASCIATA (FORSKAL) ARANEI3AE 2 ARGIOPE AURANTIA LUCAS ARANEIDAE 3 NEOSCONA ARABESCA ( WALCKENAER) ARANEIDAE 4 ACANTHEPEIRA STELLATA (WALCKENAER) ARANEI DAE 5 ARANEUS PRATENSIS ( EMERTQN) ARANEIDAE 6 ACACESIA HAMATA (HENTZ) ARANEIDAE 7 GEA HEPTAGON IHENTZi ARANEIDAE 11 ARANEUS TRIFOLIUM (HENTZ) ARANEIDAE 101 TETRAGNATHA LABORIOSA HENTZ ARANEIDAE 102 PACHYGNATHA TRISTRIATA C. L. KOCH ARANEIDAE 103 PACHYGNATHA AUTUMNAL IS KEYSERLING ARANEIDAE 501 ARGIOPE S P ., PROB. TRIFASCIATA (FORSKAL) ARANEIDAE 507 ARANEUS SP. ARANEIDAE 508 PROB. NEOSCONA ARABESCA (WALCKENAER) ARANEIDAE 602 MANGORA SP. ARANEIDAE 701 TETRAGNATHA LABORIOSA HENTZ

4 ORDER=ARANEIDA FAMCODE=CLJB FAMILY MORPH SPECIES CLJBIONIDAE 1 AGROECA PRATENSIS EMERTON CLUBIONIDAE 2 CLUB IONA MIXTA EMERTON CLUBIONIDAE 4 CLUB IONA JOHNSONI GERTSCH. C. ABBOT!I ( L. KOCH) CLJBIONIDAE 7 TRACHELAS DECEPTUS (BANKS) CLUBIONIDAE 132 CAST IANEIRA LONGIPALPUS (HENTZ) CLJBIONIDAE 801 AGROECA SP. CLJBIONIDAE 804 CLUB IONA SP.

0RDC0DE=4 ORDER=ARANEIDA FAMCODE=CTEJ FAMILY MORPH SPECIES CTENIDAE I ZORA PUMILA (HENTZ) 176 TA3LE 17. CONTINUED. 0RDC0DE=4 ORDER=ARANEIDA FAMCODE=CTEZ FAMILY MORPH SPECIES CTENIZIDAE 501 ANTRODIAETUS SP.

0RDC0DE=4 QRDER=ARANEIDA FAMCODE=DICJ FAMILY MORPH SPECIES DICTYNIDAE DICTVNA SP. DICTYNIDAE TRICHOLATHYS OHIOENSIS CHAMBERLIN S IVIE

0RDC0DE=4 ORDER=ARANEIDA FAMCUDE=GNAP FAMILY MORPH SPECIES GNAPHOSI DAE 1 ZELOTES HENTZI BARROWS GNAPHOSI DAE A DRASSYLUS DEPRESSUS (EMERTON) GNAPHOSIDAE 501 ZELOTES SP. GNAPHOSIDAE 502 SERGIOLUS SP.

0RDC0DE=4 ORDER=ARANEIDA FAMCQDE=HAHN FAMILY MORPH SPECIES HAHNIIDAE 501 NEOANTISTEA SP.

QRDC0DE=4 ORDEP.=ARANEI DA FAMCODE=LI NY FAMILY MORPH SPECIES LINYPHI IDAE 1 ERIDANTES ERIGONOIDES IEMERTON) LINYPHI IDAE 2 EP IGONE AUTUMNAL IS EMERTON LINYPHI IDAE 3 ISLANDIANA FLAVEOLA (BANKS) LINYPHI IDAE A SCYLACEUS PALL I DUS (EMERTON) LINYPHI IDAE 5 FRDNTINELLA PYRAMITELLA (WALCKENAER) LINYPHI IDAE 6 CERATICELUS EMERTONI CAMBRIDGE LINYPHI IDAE 7 WALCKENAERA SPIRALIS (EMERTON) LINYPHI IDAE 8 EPERI GONE TRILOBATA (EMERTON) LINYPHI IDAE 14 CATA BP. I THORAX PLUMOSUS (EMERTONI LINYPHI IDAE 23 EPERIGONE MACULATA (BANKS) /

TABLE 17. CONTINUED.

------ord : ode =4 QRDER=ARANEIDA FAMCODE=LINY ------FAMILY MORPH SPECIES LINYPHII DAE 37 LINYPHIA MANDIBULATA EMERTON 38 GRAMMGNOTA INORNATA EMERTON LI NYPHII DAE 39 HYPS EL I ST ES FLGRENS (CAMBRIDGE) LINYPHII DAE 806 CERATICELUS SP.t PROB. EMERTONI (CAMBRIDGE)

ORDER=ARANEIDA FAMCODE=LYCQ ------FAMILY MORPH SPECIES LYCOS I DAE I LYCGSA RABIDA WALCKENAER LYCOSIDAE 2 LYCGSA FRONDICOLA EMERTON LYCOS I DAE 3 LYCOSA HELLUO WALCKENAER LYCOS I DAE 4 SCHIZGCGSA SALTATRIX (HENTZi LYCOS I DAE 5 SCHIZGCOSA CRASS IPALPAT A LYCOSIDAE 6 SCHIZGCOSA AVIDA (WALCKENAER) LYCQSIDAE 7 PIRATA MINUTUS EMERTON LYCOSIDAE 8 PARDOSA SAXATILIS (HENTZ) LYCOSIDAE 9 PARDOSA MILVINA IHENTZ) LYCOSIDAE 10 PARDOSA MOESTA BANKS LYCOSIDAE 13 LYCOSA GULOSA WALCKENAER LYCOSIDAE 20 ARCTOSA FUNEREA (HENTZ) LYCOSIDAE 23 LYCOSA BALTIMORlANA (KEYSERLING) LYCOSIDAE 24 SCHIZOCOSA OCREATA (HENTZ) LYCOSIDAE 25 LYCOSA PUNCTULATA HENTZ LYCOSIDAE 26 TROCHOSA TERR ICOLA THORELL LYCOSIDAE 27 SCHIZOCOSA BIIINEATA (EMERTON) LYCOSIDAE 502 PIRATA SP. LYCOSIDAE 503 PROB. ARCTOSA FUNEREA (HENTZ) LYCOSIDAE 504 SCHIZOCOSA SP. LYCOSIDAE 506 PARDOSA SP. LYCOSIDAE 510 SCHIZGCOSA SP. LYCOSIDAE 601 PARDOSA SP.

QRDER=ARANEIDA FAMCODE=MIME FAMILY MCRPH SPECIES MIMETIOAE 501 MIMETUS SP.

00

t TABLE 17. CONTINUED. ------ORDCODE=6 ORDER=ARANEIDA FAMCODE=OXYO ------FAMILY MORPH SPECIES OXYOPIDAE 601 OXYOPES S P .»PROB. SALTICUS HENTZ OXYOPI DAE 602 OXYOPES S P ., PROB. SCALARIS HENTZ

ORDER=ARANEIDA FAMCODE=PISA FAMILY MORPH SPECIES PISAURIDAE 601 PISAURINA S P ., PROB. MIRA (WALCKENAER) PISAURIDAE 602 DOLOMEDES SP.

UKUulllit“ T ORDER=ARANEIDA FAMCODE=SAL T FAMILY MORPH SPECIES SALTICIDAE _ PELLENES (?) SP. SALTICIDAE 1 SITTICUS CURSOR BARROWS SALTICIDAE 2 METAPHIDIPPUS GALATHEA (WALCKENAER) SALTICIDAE 3 NEON NELL 11 PECKHAM SALTICIDAE 6 PHIDIPPUS SP. SALTICIDAE 5 SARINDA HENTZI SALTICIDAE 6 TALAVERA MI NUT A (BANKS) SALTICIDAE 8 PHIDIPPUS CLARUS KEYSEKLING SALTICIDAE 12 AGASSA CYANEA (HENTZ) SALTICIDAE 13 PHIDIPPUS S P ., PROB. AUDAX (HENTZ) SALTICIDAE 16 ZYGOBALLUS BETTINl PECKHAM SALTICIDAE 15 EVARCHA FALCATA (CLERCK) SALTICIDAE 503 PHIDIPPUS SP. SALTICIDAE 506 METAPHIDIPPUS SP. SALTICIDAE 505 EVARCHA (?) SP. SALTICIDAE 506 UNID. SALTICID SALTICIDAE 507 PHIDIPPUS SP. TABLE 17. CONTINUED. ORD:ODE=4 ORDER=ARANEIDA FAMCQDE=THER FAMILY MORPH SPECIES THERIOIIDAE 1 LATRODECTUS MACTANS (FABRICIUSJ THERIDIIDAE 2 SPINTHARUS FLAVIDUS HENTZ THERlDIIDAE 3 THERIDULA EMERTONI THERIDIIDAE A THERIQION ALBIDUM BANKS THERIDII DAE 101 THERIDION NESHAMINI THERIDIIDAE 102 ARGYRODES FICTILIUM THERIDIIDAE 103 CTENIUM LIYIDA (BLACKBALL) THERIDIIDAE 104 THYMOITES UNI MACJLATA THERIDIIDAE 105 STEATODA AMERICANA THERIDIIDAE 106 THYMOITES SP. THERIDIIDAE 707 THERIDION SP. THERIOIIDAE 711 THERIDION NESHAMINI

ord ; qde =4 QRDER=ARANEIDA FAMCODE=THOM FAMILY MORPH SPECIES THOMISI DAE EUMENOPS SP. — MISUMENOPS SP. THOMISI DAE — IMARUS l? i SP. THOMISI DAE 1 XYSTICUS FUNESTUS KEYSERLING THOMISI DAE 2 XYSTICUS DI5CURSANS KEYSERLING THOMISI DAE 3 XYSTICUS FEROX IHENTZ) THOMISI DAE 4 THANATUS FORMICINUS (CLERCK) THOMISI DAE 5 XYSTICUS AUCTIFICUS THOMISI DAE 8 XYSTICUS LUCTANS (C. L. KOCH) THOMISI DAE 10 MISUMENOIDES ALEATORIUS IHENTZ) THOMISI DAE 12 TIBELLUS OBLONGUS (WALCKENAER) THOMISI DAE 101 LATITHORAX KEYSERLING THOMISI DAE 501 TIBELLUS SP. THOMISIDAE 502 XYSTICUS SP. THOMISIDAE 503 XYSTICUS SP. THOMISI DAE 504 XYSTICUS SP. THOMISIDAE 505 XYSTICUS S Pl, PRIM. FUNESTUS KEYSERLING

ORDCODE=5 ORDER=ISOPODA FAMCODE = ARMA------FAMILY MORPH SPECIES ARMADILLIDIDAE 1 ARMADILLIDIUM VULGARE (LATREILLE) TABLE 17. CONTINUED. ORDCODE=5 ORDER=lSOPODA FAMCODE=ARMA ------FAMILY MORPH SPECIES ARMADILLIDIDAE 2 ARMADILLIDIUM NASATUM BUDDE-LUND

------QRDCODE=5 ORDER=ISOPODA FAMCODE=ISOP ------FAMILY MORPH SPECIES UNIDENT. ISOPODA

------ORDCODE=5 ORDE R=ISOPOOA FAMCODE=LIGI------FAMILY MORPH SPECIES LIS 11 DAE 1 LIGIDIUM LONGICAUDATUM

------ORDCODE=5 ORDER=I SOP0 DA FAMCQDE=PQRC------FAMILY MORPH SPECIES PORCELLIQNIDAE 1 PORCELL10 SCABER LATREILLE

------ORDC3DE=8 0RDER=POLYDESMIDA FAMCODE=POLY ------FAMILY MORPH SPECIES POLYDESMIDAE 1 PSEUDOPOLYDESMUS SERRATUS ISAYI POLYDESMIDAE 2 POLYDESMUS INCONSTANS LATZEL

------ORDCDDE =8 ORDER=POLYDESMI DA FAMCODE = XY ST------FAMILY MORPH SPECIES XYSTODESMIDAE 1 NANNARIA TERRICOLA (WILLIAMS & HEFNER) TABLE 17. CONTINUED. 0RDC3DE=9 ORDER=CHORDEUMI DA FAMCODE=ABAC FAMILY MORPH SPECIES ABACIONIDAE 8 ABACION LACTARIUM ISAY)

0RDC3DE=9 OROER=CHORDEUMIDA FAMCODE=CLEI FAMILY MORPH SPECIES CLEIDOS ONIDAE CLEIDOGONA MAJOR COOK £ COLLINS CLEIDOS ONIDAE CLEIDOGONA CELERITA IWILLIAMS 6 HEFNERJ CLEIDOSONIDAE CONOTYLA PARSONATA SHEAR CLEIDOSONIDAE CLEIDOGONA N.SP. CLEIDOS ONIDAE 1 CLEIDOGONA SP- CLEIDOSONIDAE * CLEIDOGONA CAESIOANNULATA IWOODI CLEIDOS ONIDAE 500 CLEIDOGONA SP.

------0RDC0DE=10 ORDER=JULIDA FAMCODE=BLAN ■ FAMILY MORPH SPECIES BLANIULIDAE 2 NOPOIULUS KOCHI I IGERVAIS)

------.------0RDC0DE=10 ORDER=J'JLI DA FAMCODE = JULI FAMILY MORPH SPECIES JULIDAE 1 OPHYIULUS PILOSUS ( NEWPORT!

------0RDC0DE=10 ORDER=JJLIDA FAMCODE=PARA • FAMILY HORPH SPECIES PARAJULIDAE 3 ANIULUS BOLLMANI CAUSEY PARAJULI DAE 6 PRIM. ORIULUS VENUSTUS (HOOD) TABLE 17. CONTINUED. QRDCODE = i 7 ORDER=LITHOBIQMQRPHA FAMCODE=LITH FAMILY MORPH SPECIES LITHOBI IDAE/HENICQPI DAE NADABIUS IOWENSIS MEINERT LITHQBI IDAE/HENICOPIDAE LAMYCTES FULVICORNIS MEINERT LITHOBI IDAE/HENICOPIDAE TIDAB I US SP. LITHOBI IDAE/HENICOPIDAE PAOBIUS VAGRANS CHAMBERLIN LITHOBI IDAE/HENICOPIDAE LITHOBI US FORFICATUS (LINN.) LITHOBI IDAE/HENICOPIDAE UN ID• SPP.

------ORDCODE=L8 OROER=SCOLOPENDRQMORPHA FAMC3DE=CRYX FAMILY MORPH SPECIES CRYPTOPIDAE 501 SCOLOPOCRYPTOPS SEXSPINGSUS (SAY)

------ORDCODE=19 ORDER=GEOPHILOMORPHA F AMCODE = GEOP FAMILY MORPH SPECIES GEOPHILIDAE 1 STRIGAMIA BOTHRIOPA WOOD

------0RDC0DE=22 ORDER=PROTJRA FAMCODE=PROT FAMILY MORPH SPECIES UNIDENT. PROTURA

0RDCDDE=23 ORDER=COLLEMBOLA FAMCODE=ENTO FAMILY MORPH SPECIES ENT0M03RYIDAE 1 TOMOCERUS FLAVESCENS TJLLBERG ENT0M03RYIDAE 3 LEPIDOCYRTUS PARADOXUS UZEL ENT OMOBRYI DAE 5 LEPIDOCYRTUS CINEREUSFOLSOM ENTOMOBRYIDAE 8 ENTOMOBRYA MULTIFASCIATA TULLBERG ENT OMOBRYIDAE 14 ORCHESELLA AINSLIEI FOLSOM BLE 17. CONTINUED. ORDCODE=23 ORDER=COLLEMBOLA FAMC0DE=HYP0 ------FAMILY MORPH SPECIES HYPOGASTRURIDAE 1 HYPOGASTRURA ISCHOETELLA) UNUNGUICULATA ITULLBERG) HYPOGASTRURIOAE 3 HYPOGASTRURA PANNOSA HYPOGASTRURIDAE 6 MORULINA N. SP.

ORDCODE=23 ORDER=COLLEMBQLA FAMCODE=ISOT FAMILY MORPH SPECIES ISOTOMIDAE I ISOTOMURIS PALUSTROIDES FOLSOM ISOTOMIDAE 4 ISOTOMA CARPENTERI BORNER ISOTOMIDAE 8 ISOTOMURUS TRICOLOR ISOTOMIDAE 9 FOLSOMIA CANDIDA WILLEM ISOTOMIDAE 401 ISOTOMA TRISPINATA MACGILLIVRAY ISOTOMIDAE 402 FOLSOMIA DECAXOPTHALMA

0RDC3DE=23 ORDER =COL’LEMB OLA F AMCODE=ONYC FAMILY MORPH SPECIES QNVCHIURIDAE 402 ONYCHIURUS PSEUDOTIMETARIUS ONYCHIURIDAE 403 ONYCHIURUS SI MIL IS FOLSOM

0RDC3DE=23 ORDER=COLLEMBOLA FAMCODE=SMIN FAMILY MORPH SPECIES SMINTHURIDAE 1 SMINTHURUS SYLVESTRIS BANKS SMINTHURIDAE 2 SMINTHURINUS HENSHAWI FOLSOM SMI NTHJRIDAE SMINTHURUS FITCHI FOLSOM SMINTHJRIDAE BOURLETIELLA HORTENSIS FITCH SMINXHJRIDAE 6 BOURLET1ELLA RUSSATA MAYNARD SMINTHJRIDAE 7 SMINTHURIDES OCCULTUS MILLS

0RDC0DE=24 ORDER=DIPLURA F AMCOL)E = ANA J FAMILY MORPH SPECIES

UNIDENT. DIPLURA 184 TABLE 17. CONTINUED.

------ord : ode =24 QRDER=DIPLURA FAMCODE=JAPY FAMILY MORPH SPECIES JAPYGIDAE

------0RDC0DE=26 ORDER=EPHEMEROPTERA FAMCODE=BAET FAMILY MORPH SPECIES UNIDENT. EPHEMEROPTERA

------ORDCODE=27 ORDER=ODONATA FAMCODE=AESH FAMILY MORPH SPECIES AESHNIDAE ANAX JUNIUS (DRURY) AESHNIDAE I GOMPHAESHNA SP. ?

ord : ode =27 ORDER=OD3NATA FAMCODE=CQEN FAMILY MORPH SPECIES COENAGRIONIDAE 1 ENALLAGMA SP. COENAGRIONIDAE 2 ENALLAGMA SP. COENAGRIONIDAE 3 ISCHNURA SP.

0RDw3DE=27 0RDER=0D3NAT A FAMCODE=LEST FAMILY MORPH SPECIES LESTIDAE 1 LESTES SP.

------ORDCQDE=27 ORDER=OODNAT A FAMCOOE=LIBE FAMILY MORPH SPECIES LIBELLJLIDAE LIBELLULA P'JLCHELLA DRURY LIBELLJLI DAE I SYMPETRUM SP. TABLE 17. CONTINUED. 0RDC0DE=28 ORDER=ORTHOPT ERA FAMCODE=ACRI FAMILY MORPH SPECIES ACRIDIDAE 1 MELANOPLUS FEMURRUBRUM IDEGEER) ACRID I DAE 2 MELANOPLUS DIFFERENT IALIS 1 THOMAS) ACRIDIDAE 3 MELANOPLUS BIVITTATUS ISAY) ACRIDIDAE 5 ENCOPTOLOPHUS SORDIDUS (BURM.) ACRIDIDAE 6 DISSOSTEIRA CAROLINA (L .) ACRIDIDAE 501 MELANOPLUS SP ., PRIM. FEMURRUBRUM IDEGEER)

------0RDCQDE=28 ORDER=QRTHOPTERA FAMCOOE=BLAT FAMILY MORPH SPECIES BLATTELLIDAE

------0RDC3DE=28 ORDER=ORTHOPTERA FAMCODE=GRYJ FAMILY MORPH SPECIES GRYLLACRIDIDAE

------0RDC3DE=28 ORDER=ORTHGPTERA FAMCODE =GRYK FAMILY MORPH SPECIES GRYLLI DAE 1 OECANTHUS QUADRIPUNCTATUS BEUTEN. GRYLLI DAE 3 GRYLLUS SP. GRYLLIDAE 4 NEMOBIINAE

0RDC3DE=28 ORDER=ORTHOPTERA FAMCODE=MANT FAMILY . MORPH SPECIES MANTIDAE 1

TABLE 17- CONTINUED. 0 R D C 3 D E = 2 8 ORDER = ORTHOPTER.A FAMCODE=TETR FAMILY MORPH SPECIES TETRIGIDAE 1 TETRIX ORNATA ISAYJ TETRIGIDAE 2 TETTIGIDEA LATERALIS ISAY)

0 R D C 3 D E = 2 8 ORDER=ORTHOPTERA FAMCODE=TETT FAMILY MORPH SPECIES TETTIGONIIDAE AMBLYCORYPHA SP-, TETTIGONIIDAE 1 SCUDDERIA TEXENSIS SAUS. C PICT TETTIGONIIDAE 3 CONOCEPHALUS FASCIATUS IDEGEER) TETTIGONIIDAE 4 ATLANTICUS TESTACEUS (SCUDDER)

------0RDC3DE=28 ORDER=QRTHOPT ERA FAMCODE=TRID FAMILY MORPH SPECIES TRIDACTYLIDAE

------0RDC3DE=34 ORDER=PSOCOPTERA FAMCQDE=PSEJ FAMILY MORPH SPECIES PSEUDOCAECILIIOAE

------0RDC0DE=34 ORDER=PSOCOPT ERA FAMC0DE=PS3C FAMILY MORPH SPECIES PSOCIDAE

------ORDCUD E=37 ORDER=THYSANOPTERA FAMCODE=ALEO FAMILY MORPH SPECIES AEOLOTHRIPI DAE TABLE 17. CONTINUED QRDCODE=37 ORDER=THYSANQPTERA FAMCODE=PHLO FAMILY MORPH SPECIES PHLOEOTHRIPI DAE

ORDCODE=37 ORDER=THYSANOPTERA FAMCODE=THRI FAMILY MORPH SPECIES THRIPIDAE

------0RDCDDE=38 ORDER=HEMIPTERA FAMCODE=ALYD FAMILY MORPH SPECIES ALYDIDAE

------0RDC3DE=38 ORDER=HEMIPTERA FAMCODE=ANTJ FAMILY MORPH SPECIES ANTH0C3RIDAE

------QRDC3DE=38 ORDER=HEMIPTERA FAMCODE=BERY FAMILY MORPH SPECIES BERYTI DAE

ORDC3DE=38 ORDER=HEMIPTERA FAMCODE=CQRE FAMILY MORPH SPECIES COREIDAE TABLE 17. CONTINUED. ------0RDC3DE=38 ORDER=HEMIPTERA FAMCODE=CORI FAMILY MORPH SPECIES CORIMELAENIDAE I CORIMELAENA SP.

------ORDC30E-38 ORDER=HEMIPTERA FAMC3DE=CYDN FAMILY MORPH SPECIES C Y D N I D A E 1 MELANAETHUS SP. C Y D N I D A E 2 SEHIRUS CINCTUS IPAL. DE BEAUV

------ORDC3 DE=38 ORDER=HEMIPTERA FAMCODE=DIPS FAMILY MORPH SPECIES OIPSOCORIDAE

------0RDC3DE-38 ORDER=HEMIPTERA FAMCODE=ENIC FAMILY MORPH SPECIES ENICOCEPHALIDAE I SYSTELLODERES SP.

O R D C O D E = 3 8 ORDER=HEMIPTERA FAMCODE=HEBR FAMILY MORPH SPECIES

H E 8 R I D A E \

------0RDC3DE=38 ORDER=HEMIPTERA FAMCODE=LYGA FAMILY MORPH SPECIES LYGAEIDAE 3 GEOCORIS SP. LYGAEIDAE 501 GEOCORIS SP. TABLE 17. CONTINUED. ------ORDC3 DE=38 ORDER=HEMIPTERA FAMCODE=MIRI ----- FAMILY MORPH SPECIES 1 ADELPHOCORIS LINEOLATUS IGOEZE) MIRIDAE 2 STENOTUS BINOTATUS IF.) MIRIDAE 3 LEPTDPTERNA DOLABRATA IL.I MIRIDAE . 4 POECILOCAPSUS LINEATUS (FABRICIUSI MIRIDAE 5 LYGUS LINEOLARIS IP. C B.J M I R I D A E 6 PLAGIOGNATHUS POLITUS IUHLERJ MIRIDAE 7 CRIOCORIS SALIENS (REUTER) M I R I D A E 8 TRIG3N0TYLUS COELESTIALIUM IKIRK.J M I R I D A E 9 HALT ICUS BRACTATUS ISAY) MIRIDAE 10 METRIORHYNCHQMIRIS DISLOCATUS < SAY) MIRIDAE 502 TRIGONOTYLUS COELESTIALIUM (KIRK.) MIRIDAE 50* LEPTOPTERNA DOLABRATA IL.) MIRIDAE 5 05 ADELPHOCORIS LINEOLATUS IGOEZE) MIRIDAE 513 LYGUS LINEOLARIS IP. C B.) M I R I D A E 528 METRIORHYNCHDMIRIS DISLOCATUS ISAY)

UKlJlJlJk-oo ORDER=HEMIPTERA FAMCODE=NABI FAMILY MORPH SPECIES N A B I D A E 1 N A B I S SP.

---- 0RDC3DE=38 ORDER=HEMIPTERA FAMCODE=PENT — ------FAMILY MORPH SPECIES PENTATOMIDAE 1 EUSCHISTUS VARIOLARIUS PALISOT DE BEAUVOIS PENTATOMIDAE 2 EUSCHISTUS SERVUS EUSCHISTOIDES IVOLLENHOVEN) PENTATOMIDAE 3 PODISUS MACULIVENTRIS ISAY) PENTATOMIDAE* MORMIDEA LUGENS FAB. PENT ATOMIDAE 5 ACROSTERNUM HILARE ISAY) PENTATOMIDAE 6 HOLCOSrETHUS LIMBOLARIUS ISTAL) PFNTATOMIDAE 7 COSMOPEPLA BIMACULATA (THOMAS) PENTATOMIDAE 8 COENUS DELIUS (SAY) PENTATOMIDAE 503 PODISUS MACULIVENTRIS ISAY) PENTATOMIDAE 504 E U S C H I S T U S I?) SP. PENT ATOMIDAE 505 EUSCHISTUS SP. PENTATOMIOAE 506 ACROSTERNUM HILARE ISAY) PENTATOMIDAE 508 MORMIDEA LUGENS IFA3.) TABLE 17- CONTINUED. ------ORDC1DE=38 ORDER=HEMIPTERA FAMCODE=REDU FAMILY MORPH SPECIES REDUVII DAE 1 SINEA DIADEMA IFA8.J

------QRDC3DE=38 ORDER=HEMIPTERA FAMCODE=RHOP FAMILY MORPH SPECIES RHOPALIDAE

------ORDCQDE=38 ORDER=HEMIPTERA FAMCODE=SALD FAMILY MORPH SPECIES SALDIDAE

------ORDCDDE=38 ORDER=HEMIPT ERA FAMCQDE=TING FAMILY MORPH SPECIES T I N G I D A E 1 CORYTH'JCA SP.

------.------0RDCDDE=39 ORDER=HOMOPT ERA FAMCODE=ACAN FAMILY MORPH SPECIES ACANALONIIDAE 1 ACANALONIA BIVITTATA ISAY) ACANALONII DAE 801 ACANALONIA BIVITTATA ISAYJ

0RDC3DE=39 ORDER=HOMOPT ERA FAMCODE=ALEY FAMILY MORPH SPECIES ALEYRODIDAE TABLE 17. CONTINUED. QRDC3DE=39 ORDER=HOMQPTERA FAMCODE=APHI FAMILY MORPH SPECIES APHIDOIDEA

ORDER=HOMOPTERA FAMCODE=CERC FAMILY MORPH SPECIES CERCOPIDAE 1 PHILAENUS SPUMARI US (LINN.)

UK 1/UiJUt'“5 OROER=HUMOPTERA FAMCODE=CICA ------FAMILY MORPH SPECIES CICADELLIDAEI DRACULACEPHALA MOLLIPES ISAYJ CICADELLIDAE 2 SCAPHYTOPIUS FRONTALIS IVAN DUZEE) CICADELLIDAE 3 SCAPHYTOPIUS ACUTUS ISAYJ CICADELLIDAE 4 LATULUS MISELLUS I BALLJ? L. SAYI IFITCHJ CICADELLIDAE 5 APHRODES ALBIFRONS IL.J CICADELLIDAE 7 PARAPHEPSIUS IRRORATUS ISAY) CICADELLIDAE 9 DORATURA STYLATUS IBGHEMAN) C I C A D E L L I D A E II NEOKOLLA HEIROGLYPHICA ISAY) CICADELLIDAE 12 ACERTAGALLIA SANGUINTOLENTA IPROVANCHERJ CICADELLIDAE 13 AGALLIA CONSTRICT A VAN DUZEE CICADELLIDAE 14 EMPOASCA SP. CICADELLIDAE 15 MACROSTELES SEXNOTATA (FALLEN) CICADELLIDAE 16 GRAMINELLA NIGRIFRONS (FORBES) CICADELLIDAE 18 FORCIPATA SP. CICADELLIDAE 19 ELYMANA INORNATA IVAN DUZEE) CICADELLIDAE 20 PARAPHEPSIUS SP. CICADELLIDAE 22 PLESIOMMATA TRIPUNCTATA IFITCH) CICADELLIDAE 24 P O N A N A SP. CICADELLIDAE 25 GRAPHACEPHALA COCCINEA (FORSTER) CICADELLIDAE 26 DRIOTURA GAMMAROIDES IVAN DUZEE)

0RDC3DE=39 QRDER=HOMOPTERA FAMCODE=CIXI - FAMILY MORPH SPECIES TABLE 17. CONTINUED. ------0RDC3DE=39 ORDER=HOMOPTERA FAMCODE=COCJ FAMILY MORPH SPECIES COCCQIDEA

------0RDC0DE=39 ORDER=HOMOPr ERA FAMCODE=DELP FAMILY MORPH SPECIES DELPHACIOAE

------ORDCO DE=39 QRDER=HOMOPTERA FAMCODE=DERB FAMILY MORPH SPECIES DERBIDAE

------0R0C3DE-39 OROER=HOMOPTERA FAMCODE=DICT FAMILY MORPH SPECIES DICTYOPHORIDAE L SCOLOPS SULCIPES SAY

------ORDCOOE=39 OROER=HOMOPTERA F A M C U D E = I SSI FAMILY MORPH SPECIES I S S I O A E 1 BRUCHOMQRPHA OCULATA NEWMAN ISSIDAE 50L BRUCHOMORPHA OCULATA NEWMAN

0RDC0DE=39 QRDER=HOMOPTERA FAMCODE=MEMB FAMILY MORPH SPECIES MEMBRACI DAE TABLE 17. CONTINUED. ------0RDC3DE=39 QRDER=HOMOPT ERA FAMCODE=PSYL - FAMILY MORPH SPECIES PSYLLIDAE

------O R D C 3 D E = ^ 0 ORDER=NEUROPTERA FAMCGDE=CHRJ FAMILY MORPH SPECIES CHRYSOPI DAE 1 CHRYSOPA SP.

------0RDC3DE=^0 ORDER=NEUROPTERA FAMCODE=HEME FAMILY MORPH SPECIES HEMER03II DAE

------ORDCODE=4l ORDER=COLEOPTERA FAMCQDE=ALLE FAMILY MORPH SPECIES ALLECULIDAE

------ORDC3DE=Al ORDER=COLEOPTERA FAMCODE=ANOB FAMILY MORPH SPECIES ANO BI I DAE

------ORDCODE=AI ORDER=COLEOPTERA F A M C O D E = ANT K FAMILY MORPH SPECIES I ANTHICUS CERVINUS LAF. ANTHICIDAE 2 MALPORUS FORMICARIUS LAF. ANTHICI DAE 3 ISCHYROPALPUS OBSCURUS ANTHICIDAE * TOMODERUS CONSTRICTUS ISAYJ ANTHICIDAE 6 SAPINTUS FULVIPES LAF. TABLE 17. CONTINUED. O R D C O D E = 4 i ORDER=COLEOPTERA FAMCODE=BUPR FAMILY MORPH SPECIES BUPRESTIDAE 1 CHRYSOBOTHRIS FEMORATA OLIV. BUPRESTI DAE 2 AGRILUS RUFICOLL1S FAB.

0 R D C 3 D E = * l ORDER=COLEOPTERA FAMCODE=BYRR FAMILY MORPH SPECIES 1 SIMPLOCARIA TESSELATA (LEC.) BYRRHIDAE 2 PORCINOLUS SP. BYRRHIDAE 6 SYNCALYPTA SP. BYRRHIDAE 501 S IMPLQCARIA TESSELATA (LEC.I

0 R D C 0 D E = ^ 1 ORDER=COLEQPTERA FAMCODE=CANT ------FAMILY MORPH SPECIES CANTHARIDAE 1 CHAULIOGNATHUS PENNSYLVANICUS CDEGEERi

0 R D C D D E = 4 1 ORDER=COLEOPT ERA FAMCODE=CARA FAMILY MORPH SPECIES CARABIDAE CHLAENIUS EMARGINATUS SAY CARABIDAE DICAELUS SCULPTILIS SAY CARABIDAE HARPALUS FALLAX LECDNTE CARABIDAE BEMBIDION SP.. PROS. M1MUS HAYWARD CARABIDAE CALOSOMA CALIDUM CARABIDAE SCARITES SUBTERRANEUS CARABIDAE CLIVINA IMPRESSIFRONS CARABIDAE CLIVINA BIPUSTULATA CARABIDAE CYMINDIS AMERICANA DEJ. CARABIDAE PLATYNUS HYPOLITHUS SAY CARABIDAE EVARTHRUS SODALIS SODALIS LEC. CARABIDAE PTERQSTICHUS LACHRYMOSUS NEWMAN CARABIDAE CALATHUS OPACULUS LEC. CARABIDAE AGONUM PALUSTRE GOULET CARABIDAE AMARA SP., NR. COELEBS HAYWARD CARABIDAE DISAMARA ARENARIA LEC. CARABIDAE AMARA OBESA SAY TABLE 17. CONTINUED. ------ORDCODE=41 ORDER=COLEOPTERA FAMCODE=CARA ------FAMILY MORPH SPECIES CARABIDAE _ AMARA CUPREOLATA PUTZ. CARABIDAE — HARPALUS HERBIVAGUS SAY CARABIDAE — ANISODACTYLUS RUSTICUS SAY CARABIDAE — ANISODACTYLUS DULCICOLLIS LAFERTE CARABIDAE — ANISODACTYLUS NIGERRIMUS DEJ. CARABIDAE — ACUPALPUS NANELLUS CSY. CARABIDAE — ' STENOLOPHUS CONJUNCTUS SAY CARABIDAE — STENOLOPHUS SP., NR. ROTUNDICOLLIS HALDEI CARABIDAE 1 PTEROSTICHUS (POECILUSI LJCUBLANDUS SAY CARABIDAE 2 CHLAENIUS TRICOLOR DEJEAN CARABIDAE 3 ANISODACTYLUS SANCTAECRUCIS FAB. C A R A B I D A E 4 BEMBIDIQN RAPIDUM LEC. CARABIDAE 5 DICAELUS ELONGATUS BONELLI C A R A B I D A E 6 BEMBIDIQN QUADRIMACULATUM L. CARABIDAE 7 STENOLOPHUS COMMA FAB. C A R A B I D A E 8 AGONUM PUNCTI FORME SAY CARABIDAE 9 DIPLOCHEILA OBTUSA LECONTE CARABIDAE 10 MICROLESTES BREVILOBUS LINDROTH CARABIDAE 11 STENOLOPHUS ROTUNDATUS LEC. C A R A B I D A E 12 AGONUM CUPRIPENNE SAY CARABIDAE 13 GALERITA IPROGALERITINAJ JANUS FABRICIUS CARABIDAE 14 PATROBUS LONGICORNIS SAY C A R A B I D A E 15 DYSCHIRIUS GLOBULUSUS SAY CARABIDAE 17 POLYDERIS LAEVUS ISAY) CARABIDAE 19 AGONUM GRATIUSUM MANN. CARABIDAE 20 AMARA CONVEXA LEC. CARABIDAE 21 AMPHASIA INTERSTITIALIS SAY CARABIDAE 22 COLLIURIS PENSYLVANICA L. CARABIDAE 23 AGONUM PLACIDUM SAY CARABIDAE 24 HARPALUS PENSYLVANICUS DEGEER CARABIDAE 25 PTEROSTICHUS STYGICUS SAY CARABIDAE 26 LEBIA ORNATA SAY CARABIDAE 27 HARPALUS FULGENS CSIKI CARABIDAE 28 PTEROSTICHUS LECONTEIANUS LUTSHNIK CARABIDAE 29 BRADYCELLUS TANTILLUS UEJ. CARABIDAE 30 BADISTER NOTATUS HALDEMAN CARABIDAE 31 SPHAERODERUS LECONTEI DEJEAN CARABIDAE 32 ELAPHROPUS LAEVIPES (CASEY), STENOLOPHUS CARABIDAE 35 BRADYCELLUS RUPESTRIS SAY CARABIDAE 39 CALATHUS GREGARIUS SAY CARABIDAE 40 ABAC I DUS ATRATUS NEWMAN CARABIDAE 42 BEMBIDIQN VERSICOLOR LECONTE TABLE 17. CONTINUED. ------0RDC3DE=41 ORDER=COLEGPTERA FAMCODE=CARA ------FAMILY MORPH SPECIES CARABIDAE 48 PTEROSTICHUS IPOECILUS) CHALCHITES SAY CARABIDAE 49 CALLEIDA PUNCTATA LEC.

0 R D C 3 D E = 4 1 ORDER=COLEOPTERA FAMCODE=CERA FAMILY MORPH SPECIES CERAMBYCIDAE I MEGACYLLENE ROBINIAE (FORSTER)

0 R D C 3 D E = 4 l ORDER=COLEOPTERA FAMCODE=CHRY ------FAMILY MORPH SPECIES CHRYSOMELIDAE 1 HORNALTICA ATRIVENTRIS (MELSH.) CHRYSOMELIDAE 2 CHAETOCNEMA PROTENSA LECONTE CHRYSOMELIDAE 3 CHAETOCNEMA PULICARIA MELSHEIMER CHRYSOMELIDAE 4 CHAETOCNEMA CONFIN1S CROTCH CHRYSOMELIDAE 5 CREPIDODERA SP. CHRYSOMELIDAE 6 PSYLLIODES ELEGANS HORN CHRYSOMELIDAE 7 EPITRIX FUSCULA CROTCH CHRYSOMELIDAE 8 PHYLLOTRETA STRIOLATA (FAB.) CHRYSOMELIDAE 9 CREPIDODERA SP. CHRYSOMELIDAE 10 PARI A FRAGARIAE WILCOX CHRYSOMELIDAE 11 PARI A THORACICA MELSHEIMER CHRYSOMELIDAE 12 LUPERALTICA SENILIS SAY CHRYSOMELIDAE 13 RHABDOPTERUS SP. CHRYSOMELIDAE 14 NODONOTA MARGARETAE SCHULTZ CHRYSOMELIDAE 16 CRYPTOCEPHALUS VENUSTUS FABRICIUS CHRYSOMELIDAE 17 ZYGOGRAMMA SUTURALIS FABRICIUS C H R Y S O M E L I D A E 18 TRIRHABDA CANADENSIS KIRBY CHRYSOMELIDAE 19 DIABROTICA LONGICORN1S 8ARBERI SMITH G LAWRENCE CHRYSOMELIDAE 20 DIABROTICA UNDECIMPUNCTATA HOWARDI BARBER CHRYSOMELIDAE 21 QDONTOTA DORSALIS THUNBERG CHRYSOMELIDAE 22 DEL3YALA GUTTATA OLIVIER CHRYSOMELIDAE 23 PARI A Q U A D R I N O T AT A SAY CHRYSOMELIDAE 24 CAPRA ITA SEXMACULATUS (ILLEGER) CHRYSOMELIDAE 25 PSYLLIODES (PUNCTULATA OR CUNVEXIOR) CHRYSOMELIDAE 28 LEPTINOTARSA JUNCTA GERMER CHRYSOMELIDAE 29 DERQCREPIS ERYTHROPUS MELSH. CHRYSOMELIDAE 30 TRIRHABDA VIRGATA LECONTE TABLE 17. CONTINUED. --- 0RDC3DE=41 QRDER=COLEOPTERA FAMCUDE=CHRY ------FAMILY MORPH SPECIES CHRYSOMELIDAE 31 NODONOTA TRISTIS OLIVIER CHRYSOMELIDAE 32 CRYPTOCEPHALUS INSERTUS HALDEMAN CHRYSOMELIDAE 33 OULEMA MELANOPA LINN. CHRYSOMELIDAE 3* SCELOLYPERUS NERACUS SAY CHRYSOMELIDAE 36 PACHYBRACHIS TRINOTATUS MELSH. CHRYSOMELIDAE 37 CREPIDODERA VIOLACEA MELSH. CHRYSOMELIDAE 38 COLASPIS BRUNNEA FABRICIUS CHRYSOMELIDAE 39 DIBOLIA BOREALIS CHEVROLAT CHRYSOMELIDAEAO SYSTENA BLANDA MELSH. CHRYSOMELIDAE 41 SYSTENA HUDSONIAS FURSTER CHRYSOMELIDAE 42 PHYLLOTRETA SP. NR. ULKEI HORN CHRYSOMELIDAE 44 CASS I DA RUBIGINOSA MULLER CHRYSOMELIDAE 45 LONGITARSUS NR. SUBRUFUS LECONTE CHRYSOMELIDAE 47 ORTHALTICA COPALINA FABRICIUS CHRYSOMELIDAE 49 EPITRIX BREVIS SCHWARZ CHRYSOMELIDAE 50 BASSAREUS LITURATUS FABRICIUS CHRYSOMELIDAE 51 LEMA TRIVITTATA SAY CHRYSOMELIDAE 52 MICRORHOPALA VITTATA FABRICIUS CHRYSOMELIDAE 53 CAPRAITA INDIGQPTERA LECONTE CHRYSOMELIDAE 54 PIERCE CHRYSOMELIDAE 55 CAPRAITA SUBVITTATA HORN, C. CIRCUMDATA RANDAL CHRYSOMELIDAE 56 MANTURA FLOIDANA CROTCH CHRYSOMELIDAE 57 OPHRAELLA CRIBRATA LECONTE CHRYSOMELIDAE 58 GRAPHOPS PUBESCENS MELSH. CHRYSOMELIDAE 59 AGROICONOTA BIVITTATA I SAY) CHRYSOMELIDAE 61 LONGITARSUS SP., NR. TESTACEUS MELSH. CHRYSOMELIDAE 507 EXEMA (?) SP.

UnuUJUC*>Tl nonPO-rniUKU l K- u UL tUrc h o t1 cCKA d a cAMrinc-ririrArlUJUt — LlUl __ — —— —— — — —— — — —— —— FAMILY MORPH SPECIES CICINDELIDAE 1 CICINDELA SEXGUTTATA FABRICIUS CICINDELIDAE 2 CICINDELA PUNCTULATA OLIVIER

" U R U U J U l - t I UlvlJnonnD-rni CK-UUL chothdatUr 1 LKA rArlLUUt-ULAncAMrrnc-n am —— ------— FAMILYMORPH SPECIES CLAMBIDAE — TABLE 17. CONTINUED. O R D C 3 D E = * l ORDER=COLEOPTERA FAMCQDE=CLER FAMILY MORPH SPECIES CLERIDAE 1 ENOCLERUS ROSMARUS (SAY) CLERIDAE 2 ISOHYDUOCERA TABI DA LECONTE

0 R D C 3 D E = ^ l ORDER=COLEOPTERA FAMCODE=COCC FAMILYMORPH SPECIES 1 COLEOMEGILLA MACULATA LENGI TIMBERLAKE COCCI NELLIDAE 2 CYCLONEDA MUNDA ISAY) COCCI NELLIDAE 3 HIPPODAMIA PARENTHESIS ISAY) COCCINELL1DAE 5 COCCINELLA NOVEMNOTATA HERBST COCCINELLIDAE 6 SCYMNUS SP. COCCINELLIDAE 7 DIOMUS TERMINATUS (SAY) COCCI NELLIDAE 8 HYPERASPIS UNDULATA ISAY)

0RDC3DE='+1 ORDER=COLEOPTERA FAMCODE=COLA FAMILY MORPH SPECIES UNI DENT. COLEOPTERA

O R D C 3 D E = * l ORDER=COLEOPTERA FAMCODE=COLB FAMILY MORPH SPECIES UNIDENT. COLEOPTERA

0RDC3DE=41 ORDER=COLEOPTERA FAMCODE=COLE FAMILY MORPH SPECIES UNI DENT. COLEOPTERA TABLE 17. CONTINUED. — QRDC3DE=41 ORDER=COLEOPTERA FAMCODE=CQRY FAMILY MORPH SPECIES CORYLOPHIDAE

— 0RDC3DE=41 ORDER=COLEOPTERA FAMCODE=CRYP FAMILY MORPH SPECIES CRYPTOPHAGIDAE 1 ANCHICERA EPHIPPIATUS ZIMMERMAI CRYPTOPHAGIDAE 4 ANCHI CERA SP.

— ORDCO DE=41 ORDER=CQLEOPTERA FAMCODE=CUCJ FAMILYMORPHSPECIES MISC. CUCUJOIDEA

— 0RDC3DE=41 ORDER=COLEOPTERA FAMCODE=CUCU FAMILY MORPH SPECIES CUCJJI DAE I AHASVERUS LONGULUS (BLATCHLEY) CUC JJ I DAE 2 TELEPHANUS VELOX IHALDEMANI CUCUJIDAE 502 TELEPHANUS VELOX (HALDEMANJ

-- 0RDC3DE=41 ORDER=COLEQPTERA FAMCODE=CURC FAMILY MORPH SPECIES CURCULIONIDAE 1 HYPERA POSTICA IGYLLENHAL) CURCULIONIDAE 2 HYPERA PUNCTATA (FABRICIUS) CURCULIONIDAE 3 HYPERA NIGRIROSTRIS CURCULIONIDAE 4 SITONA CYLINDRICOLLIS IFABRICH CURCULIONIDAE 5 SITONA HISPIDULA (FABRICIUS) CURCULIONIDAE 6 TYCHIUS STEPHENS! SCHOENHERR CURCULIONIDAE 7 MECINUS PYRASTER IHERBST) CURCULIONIDAE 8 ROELOFS CURCULIONIDAE 9 A P I O N SP. CURCULIONIDAE 10 A p 10 N SP. CURCULIONIDAE 501 HYPERA POSTICA (GYLLENHAL) TABLE 17. CONTINUED. ------0RDC3DE=41 ORDER=COLEOPTERA FAMCODE=CURC FAMILY MORPH SPECIES CURCULIONIDAE 502 HYPERA PUNCTATA (FABRICIUS) CURCULIONIDAE 901 HYPERA POSTICA (GYLLENHAL)

------0RDC3DE=*l ORDER=COLEOPTERA FAMCODE=DERM FAMILY MORPH SPECIES DERMESUDAE

------QRDCDDE=*1 ORDER=COLEOPTERA FAMCODE=ELAT FAMILY MORPH SPECIES ELATERIDAE 1 AEOLUS MELLILLUS (SAY) ELATERIDAE 2 NEGASTRIUS PECTORALIS (SAYJ ELATERIDAE 3 CONODERUS BELLUS (SAY) ELATERIDAE 4 AGRIOTES MANCUS (SAY) ELATERIDAE 5 MELANOTUS TRAPE20IDEUS (LEC.)

0RDCDDE=<*1 ORDER=COLEOPTERA FAMCODE=ENDQ F A M I L Y \ MORPH SPECIES ENDOMYCHIDAE

0 R D C 0 D E = 4 1 ORDER=CQLEOPTERA FAMCOOE=EUCI FAMILY MORPH SPECIES EUCINETIDAE 1 EUCINETUS TERMINALIS LECONTE

ORDCDDE=*l ORDER=COLEOPTERA FAMCDDE=HELO FAMILY MORPH SPECIES HELODIDAE TABLE 17. CONTINUED. ------ORDCODE=*l ORDER=COLEOPTERA FAMCODE=HIST FAMILY MORPH SPECIES HISTERIDAE 5 ACRITUS SP. ?

------OROC3DE=^l ORDER=COLEOPTERA FAMCODE=HYDR FAMILY MORPH SPECIES HYDROPHILIDAE

------0RDC3DE=^l ORDER=COLEOPTERA FAMCODE=LAGR FAMILY MORPH SPECIES LA3RIIDAE

------QRDCODE=Al ORDER=COLEOPTERA FAMCODE=LAMP FAMILY MORPH SPECIES LAMPYRIDAE 501 PHOTURIS SP. LAMPYRIDAE 502 PHOTINUS SP.

ORDCODE=4l ORDER=COLEOPTERA FAMCODE=LANG FAMILY MORPH SPECIES LANGURIIDAE 1 ACROPTEROXYS GRACILIS (NEWMAN) LANGURIIDAE 2 LANGURIA MOZARDI LATREILLE LANGURIIDAE 3 TORAMUS PULCHELLUS LECONTE LANGURIIDAE * LOBERUS IMPRESSUS LECONTE

ORDCDDE=

------0RDC3DE=*L GRDER=COLEOPTERA FAMCODE=LEPT FAMILY MORPH SPECIES LEPTINIDAE 1 LEPTINUS SP*

------0RDC3DE=A1 ORDER=COLEOPTERA FAMCODE=MELO FAMILY MORPH SPECIES MELOIOAE

------0RDC3DE=A1 ORDER=COLEOPTERA FAMCODE=MELY FAMILY MORPH SPECIES MELYRIDAE

------0RDC3DE=41 ORDER=CQLEQPTERA FAMCODE=MORD FAMILY MORPH SPECIES MORDELLIDAE

------0RDC3DE=

NJ o u> TABLE 17. CONTINUED. 0 R D C 3 D E = 4 1 ORDER=COLEOPTERA FAMCOQE=NITI FAMILY MORPH SPECIES NITIDULIDAE 1 GLISCHROCHILUS QUADRI SIGNATUS (SAY) NIT IDULIDAE 2 MELIGETHES NIGRESCENS STEPHENS NITIDULIDAE 3 CARPOPHILUS ANTIQUUS MELSHEIMER

0 R D C 0 D E = 4 1 ORDER=COLEQPTERA FAMCODE=NDTE FAMILY MORPH SPECIES NOTERIDAE

0 R D C 3 D E = U ORDER=COLEOPTERA FAMCODE=PHAL FAMILY MORPH SPECIES PHALACRIDAE 1 ACYLOMUS ERGOTI CASEY, OLIBRUS SP. PHALACRIDAE 4 LEPTOSTILBUS PROB. CONCINNUS CASEY PHALACRIDAE 5 STILBUS APICALIS MELSH. PHALACRIDAE 6 PHALACRUS SP. PHALACRIDAE 8 STILBUS NIT I DUS MELSH.

0 R D C 3 D E = 4 1 ORDER=COLEOPTERA FAMCODE=PSEL FAMILY MORPH SPECIES PSELAPHIDAE

O R D C 3 D E = A l ORDER=COLEOPTERA FAMCODE=PTIJ FAMILY MORPH SPECIES PTILODACTYLIDAE 1 PTILODACTYLA SERRICOLLIS SAY 204 FABLE 17. CONTINUED. 0RDC3DE=M ORDER=COLEOPTERA FAMCODE=PTIL ----- FAMILY MORPH SPECIES PTILIIOAE POSS. PTILOIOTYCNA MOERENS I MATTHEWS I PTILIIOAE 1 ACRQTRICHIS {CTENOPTERYX) SP. PTILIIOAE 2 'PTINELLA* MEKURA KUBOTA

------ORDCODE=^1 ORDER=COLEOPTERA FAMCOOE=RHIP FAMILY MORPH SPECIES RHIPIPHORIDAE

------ORDCO DE=41 QRDER=CQLEOPTERA FAMCODE=SCAP ------FAMILY MORPH SPECIES SCAPHIDIIDAE I EUBAEOCERA N. SP. NR. KINGSOLVERI CORNELL SCAPHIOII DAE 2 EUBAEOCERA NR. PICEA ICASEY) SCAPHIOIIDAE 3 SCAPHISOMA SP.

------O R D C D D E ^ i ORDER=COLEOPTERA FAMCODE=SCAR ---- FAMILY MORPH SPECIES SCARABAEIOAE APHONUS TRIDENTATUS ISAY) SCARABAEIDAE ONTHOPHAGUS ORPHEUS CANADENSIS FAB. SCARABAEIOAE APHOOIUS STERCOROSUS SCARABAEIOAE 1 TROX VARIOLATUS ME1SH. SCARABAEIOAE 2 ONTHOPHAGUS HECATE PANZ. SCARABAEIOAE 4 POPILLIA JAPONICA NEWMAN SCARABAEIOAE 6 ATAENIUS STRIGATUS ISAY) SCARABAEIOAE 7 TROX HAMATA ROB.

------0RDC0DE=41 ORDER=COLEOPTERA FAMCODE=SCOL FAMILY MORPH SPECIES SCOLYTIDAE I HYLASTINUS OBSCURUS IMARSHAM) 205 TABLE 17. CONTINUED. ORDCODE=41 ORDER=COLEOPTERA FAMCODE=SCYD FAMILY MORPH SPECIES, SCYDMAENIOAE

---- QRDC3DE=41 QRDER=COLEQPTERA FAMCODE=SILP FAMILY MORPH SPECIES S I L P H i O A E — S I L P H A SP. S ILPHIDAE 2 NICROPHORUS SP. S I L P H I O A E 3 NICROPHORUS SP.

U K U U Jl/Ca*Ti ORDER=COLEOPTERA FAMCQDE=STAP FAMILYMORPH SPECIES STAPHYLINIOAE 1 S T E N U S SP. STAPHYLIN IOAE 29 APOCELLUS SP. STAPHYLINIDAE 103 PALAMINUS SP. STAPHYLINIDAE 106 ECHIASTER BREVICORNIS CASEY STAPHYLINIDAE ill CARP EL IMUS SP. STAPHYLINIDAE 121 EUAESTHETUS SP. STAPHYLINIDAE 131 SCOPAEUS SP. STAPHYLINIDAE 132 HOMAEOTARSUS SP. STAPHYLINIDAE 133 SCOPAEUS SP. STAPHYLINIDAE 134 PAEDERUS SP. STAPHYLINIDAE 135 M E D 3 N SP. STAPHYLINIDAE 136 LATHROBIUM CONFUSUM LECONTE STAPHYLINIDAE 137 01OCHUS SP. STAPHYLINIDAE 301 TACHYPORUS NITIDULUS (FAB.) STAPHYLINIDAE 302 MYCETOPORUS SP. STAPHYLINIDAE 303 BRYOPORUS SP. STAPHYLINIDAE 304 LORD ITHON SP. STAPHYLINIDAE 306 MYCETOPORUS SP.

0RDC3DE=41 ORDER=COLEOPTERA FAMCUDE=TENE FAMILY MORPH SPECIES TENEBRIQNIDAE TABLE 17. CONTINUED. ------0RDCDDE=41 ORDER=COLEOPTERA FAMCODE=THRO - FAMILY MORPH SPECIES THROSCIDAE

------0RDC03E=42ORDER=STREPSIPTERA FAMCQDE=HALK FAMILY MORPH SPECIES HALICT3PHAGIDAE

------:------0RDC0DE=A3 ORDER=MECOPTERA FAMCODE=BITT — FAMILY MORPH SPECIES BITTACIDAE

: ORDC3DE=

------0RDC0DE=45 ORDER=LEPIDOPTERA FAMCODE=ACRO - FAMILY MORPH SPECIES ACROLOPHIDAE 502 ACROLOPHUS SP. ?

------0RDC03E=45 URDER=LEPIDOPTERA FAMCODE=ARCT ■ FAMILY MORPH SPECIES ARCTIIOAE 207 TABLE 17. CONTINOED- 0RDC0DE=45 ORDER=LEPIDOPTERA FAMCODE= COL J FAMILY MORPH SPECIES COLEOPHORIDAE

0RDC0DE=45 OROER=LEPIDOPTERA FAMCQD£= CTEN FAMILY MORPH SPECIES CTENUCHIDAE

0R0C0DE=45 OROER=LEPIDOPTERA FAMCODE= DANA FAMILY MORPH SPECIES DANAIDAE

------0RDC03 E-45 ORDER=LEPIDOPTERA FAMCUDE- G E3 M FAMILY MORPH SPECIES GEOMETRIDAE

QRDLODE=45 ORD£R=L EPIDOPTERA FAMCODE =HESP FAMILY MORPH SPECIES HESPERIIOAE

------0R0C03E=45 QRDER=LEPIDOPTERA FAMC3DE = LYCA FAMILY' MORPH SPECIES LYCAENIDAE

to o 00 TABLE 17. CONTINUED. 0 R D C 0 D E = 4 5 ORDER=LEPIDOPTERA FAHCODE=MICR FAMILY MORPH SPECIES UNI 0. M I C R O L E P I D Q P T E R A

0 R D C 0 D E = 4 5 ORDER=LEPIDOPTERA FAMCUDE=NOCT FAMILY MORPH SPECIES NOCTUOAE 501 AGROTIS IPSILON HUFNAGEL NOCTUIDAE 502 AMATHES C-NIGRUM IL.J NOCTJIOAE 505 PSEUOALETIA UNIPUNCTA I HAWORTH) NOCTUIDAE 506 AGROTIS BADINODIS NOCTUIDAE 513 NR. CAENURGINA SP.

0RDC0DE=*5 QRDER=LEPIDOPTERA FAMCODE=NYMP FAMILY MORPH SPECIES NYMPHALI DAE

0RDC0DE=*5 ORDER=LEPIDOPTERA FAMCODE=P IER FAMILY MORPH SPECIES PIERIDAE

0RDC0DE=45 ORDER=LEPIDOPTERA FAMCODE=SATY FAMILY MORPH SPECIES S AT YR I DAE

------o r d : o d e =*5 ORDER=OIPTERA FAMCODE=ACAA FAMILY MORPH SPECIES UNIDENT. 209 TABLE 17, CONTINUED. ------oro;ode=46 ORDER=DIPTERA FAMCODE= ACA8 FAMILY MORPH SPECIES UNI DENT• ACALYPTRATAE

------ORDCODE=A6 ORDER=DIPTERA FAMCODE= ACAL FAMILY MORPH SPECIES UNIDENT. ACALYPTRATAE

------0RDC0DE=46 ORDE R=DIPTERA FAMCODE- AGRO FAMILY MORPH SPECIES AGRQMYZIDAE CERODONTHA SP,

------QRDC 0DE=46 ORDER=DIPTERA FAMCODE= ANTV FAMILY MORPH SPECIES ANTHOMY11 DAE

------ORDCODE=46 ORDER=DIPTERA FAMCODE= ANTX FAMILY MORPH SPECIES ANTHOMYZIDAE 3 ISCHNOMYIA SP.

0RDC0DE=46 ORDER=DIPTERA FAMCODE=ASIL FAMILY MORPH SPECIES ASILIDAE LE 17. CONTINUED. O R D C O D E = 4 6 QRDER=DIPTERA FAMCODE=BIBI FAMILY MORPH SPECIES BIBIQNIDAE

0 R D C Q D E = 4 6 ORDER=DIPTERA FAMCODE=CALL ------FAMILY MORPH SPECIES CALLOPHORIDAE 1 CYNOMYOPSIS CADAVERINA (ROB.-DESV.) CALLQPHORIDAE 2 PHORMIA REGINA (MEIGEN)

O R D C O D E = 4 6 ORDER=DIPTERA FAMCODE=CECI — FAMILY MORPH SPECIES CECIDOMYI IOAE 4 PORTICONDYLA SP. CECIDOMYI IDAE 5 LOBODIPLOSIS SP. CECIDOMYI IDAE 6 CLINQDIPLOSIS SP. CECIDOMYI IDAE 7 ANARETE SP. CECIDOMYI IDAE 8 LESTODIPLQSIS GRASSATOR (FYLES) CECIDOMYI IDAE 10 PORRQCONDYLA SP. CECIDOMYI IDAE 12 LESTODIPLOSIS SP. CECIDOMYI IDAE 13 CLINODIPLOSIS SP. CECIDOMYI IDAE 17 LESTREMIA (S.L.3 SP. CECIDOMYI IDAE 18 WINNERTZIA SP. CECIDOMYI IDAE 21 ANARETE SP. CECIDOMYI IDAE 22 ANARETE SP. CECIDOMYI IDAE 501 CLINODIPLOSIS SP. CECIDOMYI IDAE 504 LESTODIPLOSIS SP. CECIDOMYI IDAE 507 CLINODIPLOSIS SP. CECIDOMYI IDAE 512 ARTHROCNODAX SP. CECIDOMYI IDAE 517 CONTARINIA SP. CECIDOMYI IDAE 901 LESTODIPLOSIS GRASSATOR (FYLES) LE 17, CONTINUED. 0RDC0DE=46 QRDER=DIPTERA FAMCODE=CERQ FAMILY MORPH SPECIES CERATOPQGONIDAE I DASYHELEA MUTABILIS ICOQ.) CERATOPOGONIDAE 2 BEZZIA SETULOSA (L.W.) CERATOPOGONIDAE 3 ATRICHOPOGON LEVIS ICOQ.) CERATOPOGONIDAE 4 DASYHELEA SP. CERATOPOGONIDAE 7 CULICOIDES STELLIFER ICOQ.) CERATOPOGONIDAE 12 OASYHELEA MAJOR (MALLOCH) CERATOPOGONIDAE 13 DASYHELEA ANCURA ICOQ.) CERATOPOGONIDAE 14 B E Z Z I A SP. C E R A T O P O G O N I D A E 15 PALP OMYIA SP. CERATOPOGONIDAE 501 ATRICHOPOGON GEMINUS OR LEVIS

.------ORDCOD E=45 ORDER=DIPTERA FAMCODE=CHAO FAMILY MORPH SPECIES CHAOBORIDAE

0 R D C Q D E = 4 6 ORDER=DIPTERA FAMCODE=CHIR FAMILY MORPH SPECIES CHIRDNOMIDAE 1 SMITTIA ATERRIMA IMEIGEN) CHIR0N3MIDAE 2 LIMNOPHYES FUMOSUS IJOHANNSEN) CHIRDNOMIDAE 27 TANYPUS PUNCTIPENNIS MEIGEN CHIRONOMIDAE 30 CRYPTOCHIRONOMUS SP. CHIRONOMI DAE 501 SMITTIA ATERRIMA IMEIGEN)

0 R D C 0 D E = 4 6 ORDER=DIPTERA FAMCODE=CHLO FAMILY MORPH SPECIES RHOPALOPTERUM SOROR IMACQUART) CHLQROPIDAE RHOPALOPTERUM NUDIUSCULA (LOEW) CHLOROPIDAE ELACHIPTERA ERTHROPLEURA SABROSKY CHLOROPIDAE PARECTECEPHALA EUCERA CLOEW) CHLOROPIDAE THAJMATOMYIA GRATA (LOEW) CHLOROPIDAE OSCINELLA FRIT (L.) CHLOROPIDAE DICRAEUS SP.. NR. WILBdRI SABROSKY CHLOROPIDAE TRICIMBA MELANCHOLICA (BECKER) TABLE 17. CONTINUED. 0RDC0DE=46 ORDER=DlPTERA FAMCODE=CHLQ ------FAMILY MORPH SPECIES CHLOROPIDAE APALLATES COXENDIX (FITCHI CHLOROPIDAE — OSCINELLA SP. CHLOROPIDAE — MEROMYZA SP. CHLOROPIDAE 1 ELACHIPTERA COSTATA (LOEWI CHLOROPIDAE 2 DIPLOTOXA SP. CHLOROPIDAE 3 RHOPALOPTERUM CARBONARI A (LOEWI CHLOROPIDAE APALLATES NEOCuXENDIX (SABROSKY) CHLOROPIOAE 5 OLCELLA TRIGRAMMA (LOEWI CHLOROPIDAE 6 RHOPALOPTERUM UMBROSA (LOEWI CHLOROPIDAE 9 PROB. TRICl MBA MELANCHOLICA (BECKER! CHLOROPIOAE 10 INCERTELLA MINOR (ADAMS 1 CHLOROPIDAE 12 THAUMATOMYIA GLABRA (MEIGEN) CHLOROPIDAE 13 TRICIM3A TRISULCATA (ADAMS)

------0RD»0DE=46 ORDER=DIPTERA FAMCODE=CQNO FAMILY MORPH SPECIES CONOPIDAE

------OROCQDE=^6 ORDER=DIPTERA FAMCODE=CJLI FAMILY MORPH SPECIES CULICIDAE

------ORDCODE=4-6 ORDER=DIPTERA FAMCQDE=DIPT F A M I L Y MOP.PH SPECIES UNIDENT. DIPTERA

0RDC0DE=4& ORDER=DIPTERA FAMCODE=DOLI FAMILY MORPH SPECIES DQLICHOPGDIDAE TABLE 17. CONTINUED. ------0 R D C 0 D E = 4 6 ORDER=DIPTERA FAMCQDE=DRQS FAMILY MORPH SPECIES DRQSOPHILIDAE

------QRDC OD E=46 ORDER=DIPTERA FAMCODE=EMPI FAMILY MORPH SPECIES EMPIDIDAE

------0 R D C 0 D E = 4 6 ORDER=DIPTERA FAMCODE=EPHY FAMILY MORPH SPECIES 1 HYADINA BRADLEY I (CRESSON) EPHYDRIDAE 2 PHILYGRIA DEBILIS LOEW EPHYDRIDAE 3 HYAOINA BINOTATA ICRESSON) EPHYDRIDAE 4 DISCOCERINA SP. EPHYDRIDAE 5 SCATOPHILA DESPECTA IHALIDAY) EPHYDRIDAE 6 PHILYGRIA N. SP. EPHYDRIDAE 401 LEPTOPSILOPA ATRIMANA ILOEW)

0 R D C 0 D E = 4 6 ORDER=DIPTERA FAMCODE=HELE FAMILY MORPH SPECIES HELEOMYZIDAE

0 R D C Q D E = 4 6 ORDER=DIPTERA FAMCODE=LAUX FAMILY MORPH SPECIES LAJXANIIDAE 1 MINETTIA LUPULINA IFABRICIUSJ LAUXANIIDAE 2 LYCIELLA PICT IVENTRIS IMALLOCH) LAUXANIIDAE 3 POECILOMINETTIA VALIDA (WALKER) TABLE 17. CONTINUED. ------.------0 R D C 0 D E = 4 6 ORDER=DIPTERA FAMCODE=LEPJ FAMILY MORPH SPECIES LEPT06ASTRIDAE

------0RDC0DE=A6 QRDER=DIPTERA FAMCODE=LONC FAMILY MORPH SPECIES LONCHOPTERI DAE I LONCHOPTERA SP.

------0RDC0DE=46 ORDER=DIPTERA FAMCQDE=LONJ FAMILY MORPH SPECIES LONCHAEIDAE

------ORDCQDE=A6 ORDER=DIPTERA FAMCODE=MILI FAMILY MORPH SPECIES MILICHIIDAE

------0RDC0DE=46 ORDER=DIPTERA FAMCODE=MUSC FAMILY MORPH SPECIES MUSCIDAE

------ORDCODE=A& ORDER=DIPTERA FAMCOOE=MYCJ FAMILY MORPH SPECIES MYCETOPHILI DAE I SCIOPHILA SP. MYCETOPHILI DAE 2 CEROPLATUS (S.L, I SP. MYC ETOPHILI DAE 3 ORFELIA SP. LE 17. CONTINUED. 0RDC0DE=46 ORDER=DIPTERA FAMCODE=PHOR ------FAMILY MORPH SPECIES PHORIDAE I MEGASELIA ( APHIQCHAETA) SP. PHORIDAE 2 MEGASELIA (MEGASELIA) SP. PHORIDAE 3 MEGASELIA (MEGASELIA) PICTA PHORIDAE 4 OOLICIPHORA OCCIDENTALIS (MELANDER C BRUES) PHORIDAE 5 METOPINA SUBARCUATA BORGME1ER PHORIDAE 6 MEGASILIA (MEGASELIA) SP. PHORIDAE 8 MEGASELIA (MEGASELIA) CAVERNICOLA BRUES PHORIDAE 9 DIPLONEURA FUNEBRIS ( MEIGEN) PHORIDAE 10 MEGASELIA ( APHIUCHAETA) LIMBURGENSIS SCHMITZ PHORIDAE 11 MEGASELIA (MEGASELIA) SP. PHORIDAE 12 MEGASELIA (MEGASELIA) SP.

------0RDC0DE=46 ORDER^DIPT ERA FAMCOOE=PIPU FAMILY MORPH SPECIES PIPUNCULIDAE

------0RDCQDE=46 ORDER=DIPTERA FAHCODE=PLAJ FAMILY MORPH SPECIES PLATYSTOMATIDAE

------0RDC0DE=4fc ORDER=DIPTERA FAMCODE=PSYC FAMILY MORPH SPECIES PSYCHODIDAE

ORDCQDE=46 QRDER=DIPTERA FAMCUDE=RHAG FAMILY MORPH RHAGIONIDAE t

TABLE 1 7 . CONTINUED. ------0RDC0DE=46 ORDER=DIPTERA FAMCODE= SARC FAMILY MORPH SPECIES SARCOPHAGIDAE

------0RDC0DE=46 ORDER=DIPTERA FAMCODE= SCAT FAMILY MORPH SPECIES SCATOPSIDAE

------— 0RDC0DE=46 ORDER=DIPTERA FAMCODE= SCHA FAMILY MORPH SPECIES UNIDENT. SCHIZOPHORA

------0RDC0DE=46 ORDER=DIPTERA FAMCODE= SCHB FAMILY MORPH SPECIES UNIDENT. SCHIZQPHORA

------0RDC0DE=4& ORDER=DIPTERA FAMCODE= SCHC FAMILY MORPH SPECIES UNI DENT. SCHIZOPHORA /

------ORDCODE=46 ORDER=DIPTERA FAMCOOE- SCHD FAMILY MORPH SPECIES UNIDENT. SCHIZOPHORA 217 TABLE 17. CONTINUED. 0RDC0DE=46 ORDER=DIPTERA FAMCODE=SCIA FAMILY MORPH SPECIES SCIARIDAE I BRADYSIA SP. SCIARI DAE > 2 BRADYSIA SP. SCIARIDAE 3 BRADYSIA SP. SCIARIDAE 4 BRADYSIA SP. SCIARI DAE 5 BRADYSIA SP. SCIARI DAE 6 BRADYSIA SP. SCIARIDAE 7 BRADYSIA SP. SCIARIDAE 9 BRADYSIA SP. SCIARI DAE 10 BRADYSIA SP. SCIARIDAE 11 BRADYSIA SP. SCIARIDAE 15 BRADYSIA SP. SCIARIDAE 18 BRADYSIA SP. SCIARIDAE 502 BRADYSIA SP. SCIARIDAE 503 BRADYSIA SP. SCIARI DAE 901 BRADYSIA SP. SCIARIDAE 902 BRADYSIA SP.

------0RDC0DE=46 ORDER=DIPTERA FAMCODE=SCI0 FAMILY MORPH SPECIES SCIOMYZIDAE 1 PHERBELLIA NANA (FALLEN) SCIOMYZIDAE 3 PHER BELLI A SP. SCIOMYZIDAE ' 4 TETANOCERA SP. SCIOMYZIDAE 5 PHERBELLIA SP.

------0RDC0DE=46 ORDER=DIPTERA FAMCODE=SEPS FAMILY MORPH SPECIES

SEPSIDAE -

.------0RDC0DE=45 ORDER=DIPTERA FAMCODE=SlMU FAMILY MORPH SPECIES

SIMUL11 DAE — LE 17. CONTINUED. o r d :o d e =46 ORDER=DIPTERA FAMCODE=SPHA -- FAMILY MORPH SPECIES I LEPTOCERA FONTINALIS (FALLEN! SPHAEROCERIDAE 2 LIMOSINA (SPELOBIA) SP. SPHAEROCERIDAE 3 ULINEA ATRA (MEIGENJ SPHAEROCERIDAE A COPROMYZA CALCITRANS ISPULER! SPHAEROCERIDAE 5 LIMOSINA SP. SPHAEROCERIDAE 6 LIMOSINA SP. SPHAEROCERIDAE 7 PTEREMIS SP. SPHAEROCERIDAE 9 LIMOSINA SP„ SPHAEROCERIDAE 11 LINEAFRONS (SPULER!

0RDC0DE=46 ORDER=DIPTERA FAMCODE=STRA ------FAMILY MORPH SPECIES STRATIOMYIDAE 1 ALLOGNOSTA FUSCITARSIS ISAY) STRATIOMYIDAE 2 ALLOGNOSTA OBSCURIVENTRIS (LOEW) STRATIOMYIDAE * ACTINA VIRID1S (SAY! STRATIOMYIDAE 5 PR03■ NEMOTELUS SP. STRATIOMYIDAE 501 ALLOGNOSTA SP.t PRIM. FUSCITARSIS (SAY)

0RDC0DE=46 ORDER=DIPTERA FAMCODE=SYRP ------FAMILY MORPH SPECIES SYRPHIOAE TOXOMERUS GEMINATUS (SAY) SYRPHIOAE 1 TOXOMERUS MARGINATUS (SAY) SYRPHIOAE 2 SPHAEROPHORIA ASYMMETRICA, ABBREVIATA, OR PHILANTHUS SYRPHIOAE 3 SPHAEROPHQRIA CONTIGUA MACQ. SYRPHIOAE * MELANOSTOMA PICTIPES BIGOT SYRPHIOAE 5 PLATYCHEIRUS ERRATICUS CURRAN SYRPHIDAE 6 MICRODON CONFLICTUS CURRAN SYRPHIOAE 7 ORTHONEYRA PULCHELLA (WILLI STEM! SYRPHIOAE 9 ALLOGRAPTA OBLIQUA (SAY)

------0RD-0DE=4-6 ORDER=DIPTERA FAMCODE = T ABA FAMILY MORPH SPECIES NJ )—* T ABANIDAE LO TABLE 17. CONTINUED. ------.------0RDCQDE=46 QRDER=DIPTERA FAMCODE=T ACK FAMILY MORPH SPECIES TACHINIDAE

------0RDC0DE=

------.------0RDC0DE=4-6 ORDER=DIPTERA FAMCUDE=THEJ FAMILY MORPH SPECIES THEREVIDIIDAE

------0RDC0DE=46 ORDE R=DIPTERA FAMCODE=TIPU FAMILY MORPH SPECIES TIPULIDAE 1 NEPHROTOMA FERRUGINEA IFABRICIUSI TIPULIDAE 2 LCMONIA {DICRANOMYIA) LIBERTA ( O .S .l TIPULIDAE 4 TIPULA (LUNATI PULA) BICORNIS FORBES TIPULIDAE 5 ERIOPTERA (SYMPLECTA) CANA WALKER TIPULIDAE 6 LIM3NIA IDICRANOMYIA) IMMODESTQIDES ALEX, TIPULIDAE 7 LIMDNIA IRH IPID IA ) MACULATA IMEIGEN) TIPULIDAE 501 NEPHROTOMA SP.» PROS FERRUGINEA TIPULIDAE 901 TIPULA SP., NR. BICORNIS

0RDCUDE=*6 ORDE R=DIPTERA FAMCODE=TRIC FAMILY MORPH SPECIES TRICHOCERIDAE

IO to O TABLE 17. CONTINUED. 0RDCQDE=47 ORDER=SIPHONAPTERA FAMCODE FAMILY MORPH SPECIES

—.------0RDC03E=48 ORDER=HYMENOPTERA FAMCODE=ANDR FAMILY MORPH SPECIES ANDRENIDAE

------OROCQDE=4-8 ORDER=HYMENOPTERA FAMCODE=APHE FAMILY MORPH SPECIES APHELINIDAE

------ORDCOD E=A3 ORDER= HYMENOPTERA FAMCODE=APID FAMILY MORPH SPECIES API DAE 3 APIS MELLIFERA L.

ORDCODE=48 QRDER=HYMENOPTERA FAMCODE=BETH FAMILY MORPH SPECIES BETHYLIDAE

------0RDC0DE=43 ORDER=HYMENOPTERA FAMCQDE=BRAC FAMILY MORPH SPECIES BRACONIDAE TABLE 17. CONTINUED. ------0RDC0DE=48 ORDER=HYMENOPTERA FAMCOOE=CEPH ------FAMILY MORPH SPECIES CEPHIDAE

------0RDC0DE=48 ORDER=HYMENOPTERA FAMCODE =C E R K ------FAMILY MORPH SPECIES CERAPHRONIDAE

------.------0RDC0DE=48 ORDER=HYMENOPTERA FAMCODE=CHAL ------FAMILY MORPH SPECIES CHALCIDAE

------ORDCODE=43 ORDER=HYMENOPTERA FAMCODE=CHRK ------FAMILY MORPH SPECIES CHRYSODIDAE

------O R OCOD E=48 ORDER=HYMENOPTERA FAMCODE=CYNI ------FAMILY MORPH SPECIES CYMIPIDAE POSS. LYTOXYSTA BREVIPALPIS KIEFFER CYNIPI DAE I PHAENOGLYPHIS AMBROS IAE ( ASHMEADJ CYNIPIDAE 3 PHAENOGLYPHIS S P ., POSS. CALVERTI ANDREWS

0RDC0DE=43 ORDER=HYMENOPTERA FAMCODE=DIAP FAMILY MORPH SPECIES DI APR 11 DAE N) N3 to \

TABLE 17. CONTINUED. 0RDC03E=48 ORDER=HYMENQPTtRA FAMCODE=DRYI FAMILY MORPH SPECIES DRYINIDAE

0RDC0DE=43 ORDER=HYMENOPTERA FAMCODE=ENCY FAMILY MORPH SPECIES ENCYRTIDAE

0RDC0DE=48 ORDER=HYMENQPTERA FAMCODE=EULO FAMILY MORPH SPECIES EULOPHIDAE

0RDC0DE=48 ORDER=HYMENOPTERA FAMCOOE=EUPE FAMILY MORPH SPECIES EUPELMIDAE

ORDCODE=43 QRQER=HYMENOPTERA FAMCODE=EURY FAMILY MORPH SPECIES EURYTOMIDAE

0RDC0DE=43 ORDER=HYMENOPTERA FAMCODE=EVAN FAMILY MORPH SPECIES EVANII DAE

NJ ro TABLE 17. CONTINUED.

------0RDC0DE=48 QRDER=HYMENOPTERA FAMCQDE=FISII ------FAMILY MORPH SPECIES FIGITIDAE

ORDER=HYMENOPTERA FAMCODE=FORM FAMILY MORPH SPECIES FORMICIDAE MYRMICA PUNCTIVENTRIS RGGER FORM!Cl DAE L FORMICA ARGENTEA WHEELER FORMICIDAE 5 LASIUS ALIENUS (FOERSTER) FORMICIOAE 6 PONERA PENNSYLVANICA BJCKLEY FORMICIDAE 8 CREMATOGASTER CERASI (FITCH) FORMICl DAE 9 STENAMMA BREVICORNE (MAYR) FORMICIDAE 10 AMBLYOPONE PALLIPES (HALDEMAN) FORMICIDAE 11 MYRMICA S P ., EMERYANA FOREL COMPLEX FORMICIDAE 12 TETRAMORIUM CAESPITUM ( LINNAEUSJ FORMICIDAE 13 STENAMMA D1ECKI EMERY FORMICIDAE 14 LEPTQTHORAX AMBIGUUS EMERY FORMICIDAE 17 APHAENOGASTER RUDIS EMERY FORMICIDAE 18 STENAMMA S P ., PRIM. IMPAR FOREL FORMICIOAE 19 TAPINOMA SESSILE ISAY) FORMICIDAE 26 MYRMICA PINETORUM WHEELER FORMICIDAE 27 PRENOLEPIS IMPARIS (SAY) FORMICIDAE 28 LASIUS SPECULIVENTRIS EMERY FORMICIDAE 29 FORMICA INTEGRA NYLANDER FORMICIDAE 30 CAMPONOTUS PENNSYLVANICUS (DEGEER) FORMICIDAE 31 PARATRECHINA S P ., PROB. PARVULA (MAYR) FORMICIDAE 32 SOLENOPSIS SP.. PROB. MOLESTA (SAY) FORMICIDAE 34 MYRMECINA AMERICANA EMERY FORMICIDAE 35 LASIUS UMBRATUS (NYLANDER) FORMICIDAE 38 FORMICA PALLIDEFULVA NITIDIVENTRIS EMERY FORMICIDAE 42 HARPAGOXENUS AMERICANUS (EMERY) FORMICIDAE 48 SMITHISTRUMA SP.

ORDER=HYMENOPTERA FAMCODE=HALI FAMILY MORPH SPECIES ho HALICTIDAE ho • is TABLE 17. CONTINUED. ------0RDCQDE=48 ORDER=HYMENOPTERA FAMCODE=HYME FAMILY MORPH SPECIES UNID. HYMENOPTERA

0RDC0DE=48 QRDER=HYMENOPTERA FAMCODE=ICHN - FAMILY MORPH SPECIES 1 GELIS SP. ICHNEUMONIOAE 2 LISSONOTA RUBRICA CR. ICHNEUMONIDAE A RJBICUNDIELLA PERTURBATRIX HEIN. ICHNEUMONIDAE 5 FHYRATELES LUGUBRATOR (GRAV.J ICHNEUMONIDAE 6 ICHNEUMON LAETUS BRULLE ICHNEUMONIDAE 7 THERIUN FUSCIPENNE (NORTON) ICHNEUMONIDAE 8 THYRATELES INSTABILIS (C R .) ICHNEUMONIDAE 9 GAMBRUS ULTIMUS CR. ICHNEUMONIDAE 10 TRATHALA PARALLELA DASCH ICHNEUMONIDAE 11 ETHELURGUS SP. ICHNEUMONIDAE 12 0 1 PLAZON LAETATORIUS (FABR.I ICHNEUMONIDAE 13 BATHYPLECTES SP. ICHNEUMONIDAE 14 STENOMACRUS SP. ICHNEUMONIDAE 16 CYMODUSA SP. ICHNEUMONIDAE 17 ERROMENUS D1MIDIATUS CRESSON ICHNEUMONIDAE 18 LYSIBIA TENAX TOWNES ICHNEUMONIDAE 19 MESOCHORUS DISCITERGUS (SAY) ICHNEUMONIDAE 20 ICHNEUMON GESTUOSUS CR. ICHNEUMONIDAE 21 DICHROGASTER TENERIFAE HELLEN ICHNEUMONIDAE 22 MEGASTYLUS SP. ICHNEUMONIDAE 23 ITOPLECTIS CONQUISI TOR (SAY) ICHNEUMONIDAE 25 PHYGADEVON SP.

------0RDC0DE=48 ORDER=HYMENOPTERA FAMCODE=MEGJ FAMILY MORPH SPECIES MEGASPILIDAE

K> Ol TABLE 1 7 . CONTINUED. 0RDC0DE=48 URDER=HYMENOPTERA FAMCQDE1MYMA FAMILY MORPH SPECIES MYMARIDAE

0RDC0DE=48 ORDER= HYMENOPTERA FAMCODE: PAMP FAMILY MORPH SPECIES PAMPHIL11 DAE

0RDC0DE=48 ORDER=HYMENOPTERA FAMCODE1PERI FAMILY MORPH SPECIES PERILAMPIDAE

0RDC0DE=48 ORDER=HYMENOPTERA FAMCODE: PLAT FAMILY MORPH SPECIES PLATYGASTERIDAE

------— ORDCOO E=48 QRDER=HYMENOPTERA FAMCODE =POMP FAMILY MORPH SPECIES POMPILIDAE

0RDC0DE=48 ORDER=HYMENOPTERA FAMCODE =PROC FAMILY MORPH SPECIES PROCTOTRUPIDAE

ro ro as TABLE 1 7 . CONTINUED. ------QRDC GO E=48 ORDER=HYMENOPTERA FAMCGDE- PTER FAMILY MORPH SPECIES PTEROMALIDAE 36 SPALANGIA SP.

QRDC0DE=48 OROER=HYMENOPTERA FAMCODE= SCEL FAMILY MORPH SPECIES SCELIONIDAE

ORDCODE=*8 ORDER=HYMENOPTERA FAMCODE= SPEC FAMILY MORPH SPECIES SPHECIDAE

------.------CRDC00E=48 ORDER=HYMENOPTERA FAMCODE= TENT FAMILY MORPH SPECIES TENTHREDINIDAE

OROCODE=A8 ORDER=HYMENOPTERA FAMCODE= TIPH FAMILY MORPH SPECIES TIPHlIDAE

0RDC0DE=48 QRDER=HYMENOPTERA FAMCQDE= TORY FAMILY MORPH SPECIES TORYMIDAE

TO ho •sj TABLE 1 7 . CONTINUED. 0*DC0DE=48 ORDER-HYMENOPTERA FAMCODE=TRIJ — FAMILY MORPH SPECIES TRICHOGRAMMATIDAE

_------QRDC0DE=49 ORDER=UNID. ARTHROPODA FAMCODE=ARTH FAMILY MDRPH SPECIES UNIDENT. INSECTA

Codes 1-499 refer to adults or, in cases where adults were not easily distinguished from immatures (see Methods), to adults plus immatures. Codes 500-899 refer to nymphs or larvae; except where indicated otherwise, each code between 800 and 890 refers to the nymphal or larval form of the adult with a code equivalent to the code for the immature form minus 800. Codes 900-999 refer to pupae. 228 2 - 2 Table 18. Estimated biomass (mg/m ) and density (individuals /m ) of dominant morphotypes according to sampling period and plot in Harrison County, Ohio, 1978-79. PERI0D=29 NAY-10 JJNE 1978 PL3T*77A ORDER3 FAMILY3 MORPH3 HBIOb LBIOc BIQMASSd HDENe LDENf DENSITYS 41 CURC 501 711.77 825.49 1537.26 1355.33 1127.43 2482.76 39 CERC 801 157.04 91.07 248.11 178.00 128.92 306.92 hi CURC 502 27.21 181.57 208.79 13.33 38.79 52.13 hi CURC 901 85.88 43.69 129.56 47.33 24.08 71.41 hi CURC 1 2.66 39.41 42.07 0.67 9.89 10.56 46 DROS 1 35.91 2.75 38.65 301.00 23.01 324.01 38 PENT 2 25.58 — 25.58 0.67 0.67 41 Niri 2 10.66 1.58 12.24 29.33 4.33 33.67 41 cocc 1 8.49 1.06 9.55 2.67 0.33 3.00 38 PENT 1 9.47 — 9.47 0.33 0.33 h 5 N0CT 52 h — 4.39 4.39 — 0.33 0.33 39 CICA I 3.46 — 3.46 1.67 1.67 41 CURC h 2.18 0.73 2.91 1.00 0.33 1.33 39 CICA 805 0.70 1.92 2.62 4.67 9.59 14.25 h ARAN 101 2.51 — 2.51 0.33 0.33 46 TIPJ 2 2.45 — 2.45 4.67 — 4.67 45 NOCT h 1.76 — 1.76 0.33 — 0.33 38 NIRI 8 1.75 — 1.75 2.00 — 2.00 hb ANTY 3 1.09 — 1.09 1.00 — 1.00 hi cocc 3 0.95 — 0.95 0.33 — 0.33 h LYCO 10 0.92 — 0.92 0.33 — 0.33 *5 NOCT 517 0.00 0.85 0.85 0.33 0.33 0.67

PERI09*29 MAY-10 JUNE 1978 PL3T=77B ORDER FAMILY MORPH HBIO LBIO BIOMASS HDEN LDEN DENSITY 41 CURC 501 523.43 386.47 909.90 777.33 496.25 1273.58 41 CURC 502 113.54 219.81 333.35 18.33 27.05 45.38 39 CERC 801 179.98 142.25 322.23 165.67 144.24 309.90 41 CURC 901 203.20 40.57 243.77 112.00 22.36 134.36 41 CURC 1 23.91 48.27 72.18 6.00 12.11 18.11 46 DROS 1 29.51 0.12 29.63 247.33 1.00 248.33 38 PENT 3 12.10 — 12.10 0.67 — 0.67 46 TIPJ 1 8.42 — 8.42 1.67 — 1.67 39 CICA 805 1.37 4.98 6.34 7.00 18.17 25.17 39 CERC 1 4.54 — 4.54 1.67 1.67 41 CANT 3 3.39 — 3.39 0.33 — 0.33 41 ELAT I - 2.04 2.04 0.67 0.67 28 ACRI 501 1.30 - 1.30 1.00 1.00 TABLE 18. CONTINUED. PERI09*29 HAY-13 JUNE 1978 PL0T=778 FAMILY MORPH HBIO LBIO BIOMASS HDEN LDEN 46 HUSC 6 0 .7 3 0 .7 3 0 .3 3 46 ANTY 3 0 .7 3 — 0 .7 3 0 .6 7 * 41 CURC 5 • 0 .7 0 0 .7 0 0 .3 3

-1 3 JUNE 1978 PLOT *^TCA ————___ _ £ r FAMILY MORPH HBIO LBIO BIOMASS HDEN LDEN 41 CURC 501 208.28 2 2 2 .5 2 4 3 0 .8 0 2 8 5 .3 3 2 3 7 .8 0 39 CERC 801 116.79 1 0 6 .6 4 2 2 3 .4 3 1 2 3 .3 3 1 7 0 .5 8 39 CERC 1 9 5 .3 5 2 4 .5 3 1 1 9 .8 8 3 5 .0 0 9 .0 0 41 CURC 502 10.53 105.60 1 1 6 .1 3 3 .0 0 1 4 .7 9 41 CURC 901 31.45 21.39 5 2 .8 4 1 7 .3 3 1 1 .7 9 39 CICA 809 4 4 .7 6 3 .6 6 48.42 14.33 17.34 41 CURC I 17.27 13.28 3 0 .5 6 4 .3 3 3 .3 3 39 CICA 805 0 .5 3 1 2 . 79 1 3 .3 2 3 .0 0 6 9 .7 1 41 ELAT 1 1 .1 6 1 1 .0 9 1 2 .2 5 0 .3 3 3 .0 0 41 CURC 2 — 1 1 .0 5 1 1 .0 5 — 0 .6 7 46 DROS 1 9. 74 0 .1 2 9 .8 6 8 1 .6 7 1 .0 0 48 FORM 11 0 .9 0 7 .0 1 7 .9 1 1 .3 3 1 0 .3 3 41 COCC 1 5 .3 0 2.12 7.43 1.67 0 .6 7 41 CURC 4 2.18 5.09 7.27 1 .0 0 2 .3 3 46 TIPJ 4 6 .9 8 — 6 .9 8 1 .0 0 38 MIRI 505 5 .1 2 0 .8 5 5 .9 6 1 3 .0 0 1 .0 0 41 CHRY 507 — 4 .2 3 4 .2 3 2 .0 0 39 CICA 1 4 .1 6 — 4 .1 6 2 .0 0 38 MIRI 803 2.76 1.23 3 .9 9 1 .6 7 0 .6 7 45 NOCT 518 1 .2 6 2 .5 9 3 .8 5 0 .6 7 1 .6 7 46 SCHD 507 — 3 .6 1 3 .6 1 1 .0 0 46 LAUX 1 3 .3 5 — 3 .3 5 3 .3 3 41 BYRR 1 — 3 .0 0 3 .0 0 4 .0 0 46 TIPJ 2 2 .6 2 — 2 .6 2 5 .0 0 28 ACRI 501 2 .5 8 — 2 .5 8 3 .0 0 — 46 TIPUI 2 .4 4 — 2 .4 4 1 .0 0 — 45 NICR 35 2 .0 9 — 2 .0 9 0 .3 3 — 46 ANTY 4 1 .9 4 — 1 .9 4 1 .3 3 — 41 LAGR 1 1 .9 0 — 1 .9 0 0 .3 3 — 45 NOCT 515 1 .8 9 — 1 .8 9 0 .3 3 — 45 NICR 504 — 1 .0 9 1 .0 9 - 2 .4 6 4 THOM 502 - 0 .8 8 0 .8 8 - 0 .3 3 TABLE 18. CONTINUED. PERIOD*29 NAY-10 JUNE 1978 PL3T=75B ORDER FAHILY NORPH HBIO LBIO BIONASS HDEN LDEN DENSITY CURC 501 75.86 82.37 158.23 99.67 9 3 .5 6 1 9 3 .2 3 i s NOCT 501 — 6 3 .5 5 6 3 .5 5 — 0 .3 3 0 .3 3 39 CERC 801 40.30 13.57 53.87 2 5 .3 3 1 2 .3 3 3 7 .6 7 39 CICA 809 3 8 .0 1 1.23 39.24 23.00 0 .6 7 2 3 .6 7 41 CURC 1 1.33 2 7 .9 0 2 9 .2 3 0 .3 3 7 .0 0 7 .3 3 41 CURC 502 6.41 1 6 .3 2 2 2 .7 2 0 .3 3 2 .3 3 2 .6 7 41 COCC 5 1 8 .0 3 — 1 8 .0 3 0 .3 3 0 .3 3 46 TIPU 4 1 5 .0 6 — 1 5 .0 6 2 .0 0 — ■ 2 .0 0 41 N i n 2 1 0 .9 0 3 .0 3 1 3 .9 3 3 0 .0 0 8 .3 3 3 8 .3 3 48 TENT 504 1 3 .8 8 — 1 3 .8 8 0 .6 7 0 .6 7 46 STRA 2 1 2 .9 1 0 .2 6 1 3 .1 7 1 3 .0 0 0 .3 3 1 3 .3 3 46 DROS 1 1 1 .4 1 1.31 1 2 .7 3 9 5 .6 7 11.00 106.67 41 BYRR 1 — 7 .2 6 7 .2 6 — 9 .6 7 9 .6 7 4 SALT 4 — 6 .8 1 6 .8 1 — 0 .3 3 0 .3 3 4 LYCO 6 — 6 .4 0 6 .4 0 — 0 .3 3 0 .3 3 39 CICA 805 0 .8 5 5 .2 9 6 .1 3 4 .6 7 2 4 .6 8 2 9 .3 4 41 CURC 5 1 .4 0 4 .2 1 5 .6 2 0 .6 7 2 .0 0 2 .6 7 38 NIRI 505 3.68 0.91 4 .5 8 1 8 .0 0 1 .0 0 1 9 .0 0 38 NIRI 3 4 .2 7 — 4 .2 7 2 .3 3 2 .3 3 46 ANTV 1 4 .1 1 — 4 .1 1 4 .0 0 — 4 .0 0 41 STAP 207 — 3 .8 5 3 .8 5 0 .6 7 0 .6 7 48 FORN 6 — 3 .6 4 3 .6 4 — 2 0 .0 0 2 0 .0 0 41 CURC 901 3 .6 3 — 3 .6 3 2 .0 0 — . 2 .0 0 38 NIRI 1 3 .5 7 — 3 .5 7 1 .3 3 — 1 .3 3 41 CANT 4 3 .3 9 — 3 .3 9 0 .3 3 — 0 .3 3 4 LYCO 7 0 .4 7 2.83 3.30 0.67 4.67 5 .3 3 41 COCC 1 2 .1 2 1 .0 6 3.18 0.67 0.33 1 .0 0 4 CLUB 2 — 2 .9 9 2 .9 9 0 .6 7 0 .6 7 39 CICA 1 2 .7 7 — 2 .7 7 1 . 33 — 1 .3 3 41 ELAT 5 2 .7 6 — 2 .7 6 0 .3 3 — 0 .3 3 38 NIRI 803 2 .5 4 — 2 .5 4 1 .3 3 — 1 .3 3 46 STRA 1 2 .4 2 — 2 .4 2 2 .0 0 — 2 .0 0 45 NICR 36 2 .3 7 — 2 .3 7 0 .3 3 — 0 .3 3 41 CURC 4 0 .7 3 1 .4 5 2 .1 8 0 .3 3 0 .6 7 1 .0 0 46 CALL 9 1 .6 8 — 1 .6 8 0 .3 3 — 0 .3 3 45 NICR 508 1 .3 7 — 1 .3 7 0 .3 3 — 0 .3 3 4 SALT 2 1 .2 5 — 1 .2 5 0 .6 7 — 0 .6 7 41 ELAT 1 — 1 .2 1 1 .2 1 — 0 .3 3 0 .3 3 45 NOCT 513 — 1 .1 3 1 .1 3 — 0 .3 3 0 .3 3 48 HAL I 1 0 .8 6 — 0 .8 6 0 .3 3 — 0 .3 3 — - 4 THON 802 0 .7 5 0 .7 5 0 .3 3 0 .3 3 231 41 STAP 527 - 0 .6 6 0 .6 6 - 0 .3 3 0 .3 3 TABLE 18. CONTINUED. PERI00=29 MAY—10 JUNE 1978 PL0T=75B ORDER FAMILY MORPH HBIO LBIO BIOMASS HDEN LDEN DENSITY 65 MICR 503 — 0.59 0.59 0.33 0.33 6 LYCO 506 0.39 — 0.39 0.33 0.33 61 ELAT 502 — 0.31 0.31 0.67 0.67 61 STAP 302 — 0.25 0.25 - 0.67 0.67

PERI00*29 HAY-13 JJNE 1978 PL3T=CVA ORDER FAMILY MORPH HBIO LBIO BIOMASS HDEN LDEN DENSITY 10 JULI 1 1.33 136.21 137.56 3 .3 3 5 5 .2 3 5 8 .5 6 66 STRA 501 — 5 9 .1 3 5 9 .1 3 — 2 8 .0 5 2 8 .0 5 5 PORC L — 2 2 .0 5 2 2 .0 5 — 3 .6 7 3 .6 7 61 CURC 5 0.70 20.37 21.07 0 .3 3 9 .6 7 1 0 .0 0 38 PENT 5 1 8 .3 6 — 1 8 .3 6 0 .3 3 — 0 .3 3 8 POLY 2 — 1 3 .9 1 1 3 .9 1 2 .6 7 2 .6 7 61 CURC 501 5.35 5.69 10.86 6 .6 7 6 .1 3 1 2 .7 9 66 TIPU 6 1 0 .0 2 — 1 0 .0 2 1 .0 0 1 .0 0 66 SCHD 501 9 .7 8 — 9 .7 8 8 .0 0 — 8 .0 0 39 CICA 809 6 .8 7 1 .2 8 8 .1 5 6 .6 7 0 .6 7 7 .3 3 61 CARA 1 7 .1 1 — 7 .1 1 0 .3 3 0 .3 3 61 CURC 13 — 6 .3 7 6 .3 7 0 .6 7 0 .6 7 61 CARA 8 — 6 .1 6 6 .1 6 — 0 .6 7 0 .6 7 61 CARA 19 1 .6 5 3 .8 3 5 .6 8 0 .3 3 0 .6 7 1 .0 0 66 STRA 503 — 6 .3 6 6 .3 6 1 .0 0 1 .0 0 9 CLEI 1 — 3 .7 1 3 .7 1 — 1 .3 3 1 .3 3 39 CICA 803 3 .6 6 — 3 .6 6 7 .6 7 7 .6 7 39 CERC 1 3 .6 3 — 3 .6 3 1 .3 3 — 1 .3 3 65 NOCT 513 — 3 .6 3 3 .6 3 0 .3 3 0 .3 3 2 PHAJ 1 3 .5 6 — 3 .5 6 0 .3 3 0 .3 3 61 STAP 206 — 3 .2 5 3 .2 5 U 6 7 1 .6 7 6 THOM 3 — 3 .2 0 3 .2 0 — 0 .3 3 0 .3 3 61 COCC 1 1 .0 6 2 .1 2 3 .1 8 0 .3 3 0 .6 7 1 .0 0 66 STRA 1 2 .6 2 0 .6 0 2 .8 2 2 .0 0 0 .3 3 2 .3 3 61 CARA 39 — 2 .6 6 2 .6 6 0 .3 3 0 .3 3 66 DROS 1 2 .2 7 0 .0 6 2 .3 1 1 9 .0 0 0 .3 3 1 9 .3 3 65 NOCT 3 2 .2 3 — 2 .2 3 0 .3 3 0 .3 3 66 SCIO 5 1 .7 9 — 1 .7 9 2 .0 0 — 2 .0 0 65 MICR 508 0 .0 3 1 .7 6 1 .7 7 0 .3 3 0 .3 3 0 .6 7 39 CICA 836 0 .7 8 0 .9 3 1 .7 1 1 .0 0 1 .0 0 2 .0 0 38 MIRI 505 0 .8 9 0 .6 5 1 .3 6 2 .6 7 2 .0 0 6 .6 7 61 LANS 2 — 0 .9 1 0 .9 1 0 .3 3 0 .3 3 TABLE 18. CONTINUED. ----- PERI00*29 MAY- 10 JUNI 1978 PLOT *CVA ------ORDER FAMILY MORPHHBIO LBIO BIOMASS HDEN LDEN DENSITY 4 6 S T R A 2 0 . 4 4 0.4* 0.33 - 0.33 4 S A L T 8 0 2 0 . 3 1 0.31 0.33 - 0.33

------PER 103*29 MAY- 1 3 JUNI 1978 PLOT=CVB ORDER FAMILYMORPH HBIO LBIO BIOMASS HDEN LDEN DENSITY 1 0 J U L I 1 0 . 6 7 4 9 . 0 4 4 9 .7 1 1 .6 7 6 1 .9 3 6 3 .6 0 3 8 PENT 2 2 5 . 5 8 — 2 5 .5 8 0 .6 7 — 0 .6 7 2 8 A C R I 7 2 1 . 5 8 — 2 1 .5 8 0 .3 3 — 0 .3 3 3 9 CICA 8 0 9 1 8 . 4 7 1 . 7 0 2 0 .1 7 9 .6 7 0 .6 7 1 0 .3 3 5 P O R C 1 — 1 9 . 3 3 1 9 .3 3 — 4 . 00 4 .0 0 41 C U R C 5 — 1 7 . 5 6 1 7 .5 6 — 8 .3 3 8 .3 3 3 9 CICA 8 3 6 1 0 . 1 2 0 . 9 2 1 1 .0 4 1 8 .3 3 1 .0 0 1 9 .3 3 3 9 C I C A 5 1 7 0 . 2 3 5 . 3 5 5 .5 8 0 .3 3 4 .0 0 4 .3 3 48 T E N T 5 0 5 — 5 . 4 0 - — 5 .4 0 0 .3 3 0 .3 3 41 CURC 13 5 . 3 7 5 .3 7 — 1 .0 0 1 .0 0 4 8 FORM 6 — 4 . 9 1 4 .9 1 — 2 7 .0 0 2 7 .0 0 45 NOCT 5 2 1 — 3 . 6 3 3 .6 3 — 0 .3 3 0 .3 3 4 6 T A C K 3 3 . 1 9 3 .1 9 0 .3 3 — 0 .3 3 41 C U R C 14 3 . 1 9 3 .1 9 — 0 .3 3 0 .3 3 3 9 C I C A 8 0 3 3 . 1 2 0 . 0 5 3 .1 7 9 .3 3 0 .3 3 9 .6 7 4 6 T I P U 4 2 . 5 1 — 2 .5 1 0 .3 3 — 0 .3 3 61 C U R C 5 0 1 1 . 7 0 0 . 5 3 2 .2 3 3 .6 7 0 .6 7 4 .3 3 4 5 M I C R 5 0 8 2 . 1 7 2 .1 7 0 .3 3 — 0 .3 3 6 8 FORM 18 1 . 9 7 1 .9 7 — 7 .6 7 7 .6 7 3 9 CICA 5 1 6 1 . 5 2 0 . 1 3 1.65 5.67 0.67 6 .3 3 4 1 CARA 30 — 1 . 3 4 1 .3 4 — 1 .0 0 1 .0 0 61 C U R C 1 — 1 . 3 3 1 .3 3 — 0 .3 3 0 .3 3 4 6 M U S C 7 1 . 1 6 1 .1 6 0 .3 3 — 0 .3 3 4 6 STRA 5 0 3 l l l O 1 .1 0 — 0 .3 3 0 .3 3 4 6 DROS 1 0 . 9 9 0 .9 9 8 .3 3 — 8 .3 3 3 9 CICA 4 0 . 7 5 — 0 .7 5 2 .0 0 — 2 .0 0 39 CICA 30 0 . 7 5 — 0 .7 5 0 .3 3 — 0 .3 3 45 M I C R 10 0 . 4 2 — 0 .4 2 0 .3 3 — 0 .3 3 4 6 A N T Y 1 0 . 3 4 — 0 .3 4 0 .3 3 — 0 .3 3

NO U) U) TABLE 18. CONTINUED. PERI0D=30 JUNE-9 JULY 1978 PL3T=77A ORDER FAMILY MORPH HBIO LBID BIOMASS HDEN LDEN DENSITY Vi CURC i 1V 8.79 321.50 470.29 3 7 .3 3 8 0 .6 7 1 1 8 .0 0 39 CERC I 112.61 7.26 119.87 4 1 .3 3 2 .6 7 4 4 .0 0 Vi CURC 2 1 1 .0 5 6 6 .2 7 7 7 .3 2 0 .6 7 4 .0 0 4 .6 7 46 STRA 501 3.V9 33.98 3 7 . V6 2 .3 3 2 5 .9 2 2 8 .2 5 VI CURC 5 5 .6 2 2 8 .0 9 3 3 .7 1 2 .6 7 1 3 .3 3 1 6 .0 0 39 APHI 2 2 7 .1 9 1 .9 2 2 9 .1 1 3 6 4 .0 0 31.77 395.77 38 MIRI 5 25.VO 1.66 27.06 1 5 .3 3 1 .0 0 1 6 .3 3 VI CURC 901 1 8 .7 5 — 1 8 .7 5 1 0 .3 3 1 0 .3 3 V5 NOCT 521 1 3 .3 5 0.03 13.38 2.00 0 .3 3 2 .3 3 28 ACRI 501 12.6V 0.3V 1 2 .9 8 2 .6 7 0 .3 3 3 .0 0 V5 NOCT 513 1 2 .5 0 — 1 2 .5 0 0 .6 7 0 .6 7 38 PENT 503 1 1 .2 0 — 1 1 .2 0 1 .3 3 — 1 .3 3 38 PENT 3 9 .9 6 — 9 .9 6 0 .3 3 — 0 .3 3 VI CURC 3 V .iV 5 .5 2 9 .6 6 2 .0 0 2 .6 7 4 .6 7 V8 APID 3 8 .3 9 — 8 .3 9 0 .3 3 — 0 .3 3 VI CHRY VO 5 .9 1 2.31 8.22 7.67 3 .0 0 1 0 .6 7 V6 DRDS 1 6 .7 2 0 .0 8 6 .8 0 5 6 .3 3 0 .6 7 5 7 .0 0 VI COCC 1 V.2V 1.06 5 .3 0 1 .3 3 0 .3 3 1 .6 7 39 CICA 805 3.75 1.V6 5.21 2.00 0.67 2 .6 7 V5 NOCT 517 — V.81 V .81 11 .7 1 1 1 .7 1 V6 TIPU 505 — V. 38 V. 38 — 1 1 .9 2 1 1 .9 2 V6 MYCJ 1 V.3V — V.3V 1 7 .6 7 1 7 .6 7 39 CICA 9 3 . VI — 3 . VI 0 .6 7 — 0 .6 7 V6 SYRP 1 3 . VI — 3 . VI 3 .6 7 — 3 .6 7 38 NABI I 1.98 1.32 3.29 1 .0 0 0 .6 7 1 .6 7 VI COCC 501 1 .2 7 0 .9 5 2 .2 2 4 .0 0 2 .4 6 6 .4 6 39 CICA 1 2 .0 8 — 2 .0 8 1 .0 0 1 .0 0 V6 ANTV 1 2 .0 6 — 2 .0 6 2 .0 0 — 2 .0 0 V6 MUSC 7 1 .8 2 — 1 .8 2 0 .6 7 — 0 .6 7 V5 MICR 21 1 .7 7 — 1 .7 7 0 .3 3 — 0 .3 3 VI COCC 901 1 .7 3 — 1 .7 3 1 .3 3 — 1 .3 3 38 PENT 501 — 1 .4 9 1 . 49 — 0 .3 3 0 .3 3 VI CURC V — 1.V5 1. 45 — 0 .6 7 0 .6 7 39 CICA 5 1 .3 9 — 1 .3 9 0 .6 7 0 .6 7 V5 MICR 505 — 1 .2 6 1 .2 6 — l l o o 1 .0 0 V6 ANTV 7 1 .2 6 — 1 .2 6 0 .3 3 0 .3 3 V8 FORM 11 — 1.1 1 l . i l - 0 .6 7 0 .6 7 V6 MUSC 11 1 .0 5 — 1 .0 5 0 .3 3 0 .3 3 V5 MICR 18 1 .0 2 — 1 .0 2 0 .6 7 — 0 .6 7 VI CARA 51 — 1 .0 0 1 .0 0 — 0 .3 3 0 .3 3 234 38 MIRI 2 0 .9 9 — 0 .9 9 0 .6 7 0 .6 7 VI CLER I 0 .9 6 - 0 .9 6 0 .3 3 — 0 .3 3 TABLE 18. CONTINUED. • 7 7 A - 9 JULY 1978 PLOT 5 f f A ER FAMILY MORPH HBIO LBIO BIOMASS KDEN LOEN 41 CURC 25 - 0 .7 9 0 .7 9 - 0 .3 3

• 7 7 a -9 JULY 1978 PLOT - I l l ) ER FAMILY MORPH HBIO LBIO BIOMASS HDEN LOEN 41 CURC 1 73.07 204.60 277.67 1 8 .3 3 5 1 .3 4 41 CURC 2 1 6 .5 7 88.36 104.93 1 .0 0 5 .3 3 39 CERC 1 9 2 .6 3 4 .5 4 9 7 .1 7 3 4 .0 0 1 .6 7 28 ACRI 501 77.44 2.09 7 9 .5 3 1 8 .6 7 1 .0 0 46 STRA 501 1 5 .4 0 5 2 .5 5 6 7 .9 5 1 3 .6 7 1 0 9 .0 5 48 APIO 3 5 0 .3 4 — 5 0 .3 4 2 .0 0 41 CURC 3 8 .2 8 2 4 .8 5 3 3 .1 4 4 .0 0 1 2 .0 0 41 CURC 5 5.62 21.77 2 7 .3 9 2 .6 7 1 0 .3 3 39 APHI 2 1 9 .6 4 0 .9 1 2 0 .5 4 2 9 9 .3 3 1 4 .4 3 27 LIBE 2 1 7 .1 6 — 1 7 .1 6 0 .3 3 38 REOU 2 5 .9 6 7 .4 6 1 3 .4 3 0 .3 3 0 .3 3 39 CICA 5 8 .4 8 3 .8 4 1 2 .3 2 4 .3 3 2 .0 0 38 MIRI 5 1 1 .6 0 0 .5 5 1 2 .1 5 7 .0 0 0 .3 3 38 PENT 503 9 .8 0 0 .1 7 9 .9 7 1 .3 3 0 .3 3 45 NOCT 11 8 . 6 6 — 8 . 6 6 0 .3 3 41 COCC 1 8 .4 9 — 8 .4 9 2 .6 7 — 39 CICA 46 5 .6 5 0 .0 9 5 .7 4 2 0 .0 0 0 .3 3 38 PENT 801 5 .4 8 — 5 .4 8 0 .6 7 39 CICA 805 2 .1 1 2 .3 4 4 .4 6 1 .0 0 1 .0 0 41 CARA 23 — 3 .7 7 3 .7 7 0 .6 7 39 CICA 9 1 .7 1 1 .7 1 3 .4 1 0 .3 3 0 .3 3 4 ARAN 101 3.04 — 3 .0 4 0 .3 3 41 CURC 903 2.51 0 .3 1 2 .8 3 2 .6 7 0 .3 3 45 MICR 509 — 2 .4 4 2 .4 4 • — 1 .0 0 38 ALYD 1 2 .2 5 — 2 .2 5 0 .3 3 41 COCC 901 2.16 — 2 .1 6 1 .6 7 — 41 CHRY 33 0 .9 0 0 .9 0 1 .8 0 0 .3 3 0 .3 3 39 CICA I 1 .3 9 — 1 .3 9 0 .6 7 — 46 MUSC 7 1 .2 8 — 1 .2 8 0 .3 3 — 41 CURC 6 0 .7 2 0.29 1.01 1.67 0 .6 7 41 COCC 3 0 .9 5 — 0 .9 5 0 .3 3 41 STAP 206 — 0 .9 0 0 .9 0 0 .3 3 41 STAP 308 - 0 .3 2 0 .3 2 - 1 .0 0 TABLE IB. CONTINUED. PERI 05=30 JUNE-9 JULY 1978 PLDT*75A ORDER FAMILY MORPH HBIO LBIO BIOMASS HDEN LDEN , DENSITY 41 CURC I 13.28 112.92 126.21 3.33 28.33 31.67 39 CERC 1 7 4 .4 7 1 3 .6 2 8 8 .0 9 2 7 .3 3 5 .0 0 3 2 .3 3 46 STRA 501 1.17 72.81 73.97 5 .0 2 1 6 1 .7 9 1 6 6 .8 0 45 NOCT 518 3 6 .8 9 0 .3 4 3 7 .2 3 0 .3 3 1 .0 0 1 .3 3 28 ACRI 1 2 5 .6 0 — 2 5 .6 0 0 .3 3 0 .3 3 39 APHI 2 22.77 1.03 23.80 2 9 4 .2 8 8771 3 0 3 .0 0 39 CICA 9 1 8 .7 6 1 .7 1 2 0 .4 7 3 .6 7 0 .3 3 4 .0 0 41 CURC 2 — 1 6 .5 7 1 6 .5 7 — 1 .0 0 1 .0 0 39 CICA 5 5.67 10.63 16.30 3.67 8 .0 0 1 1 .6 7 28 ACRI 501 1 4 .2 1 — 1 4 .2 1 6 .0 0 — 6 .0 0 39 CICA 805 1 .5 1 1 0 .5 5 1 2 .0 6 0 .6 7 8 .3 3 9 .0 0 41 CURC 5 — 1 1 .9 4 1 1 .9 4 — 5 .6 7 5 .6 7 28 GRYK 502 9 .3 8 1.67 11.05 14.67 5 .4 6 2 0 .1 3 10 JULI 1 — 1 0 .5 2 1 0 .5 2 — 1 .0 0 1 .0 0 28 TETR 6 — 1 0 .0 2 1 0 .0 2 — 0 .3 3 0 .3 3 41 COCC 1 6 .3 6 2 .1 2 8 .4 9 2 .0 0 0 .6 7 2 .6 7 48 APID 3 8 .3 9 — 8 .3 9 0 .3 3 — 0 .3 3 38 PENT 503 7 .0 8 — 7 .0 8 2 .0 0 — 2 .0 0 41 CURC 3 0 .6 9 6 .2 1 6 .9 0 0 .3 3 3 .0 0 3 .3 3 48 FORM 19 2 .3 8 4 .4 1 6 .7 8 12.03 22.33 34.37 38 ALYD 1 6 .7 5 — 6 .7 5 1 .0 0 — 1 .0 0 41 COCC 501 3 .1 0 2 .9 1 6 .0 1 1 0 .6 7 3 .4 6 1 4 .1 3 38 MIRI 5 3 .3 1 1 .6 6 4 .9 7 2 .0 0 1 .0 0 3 .0 0 45 NOCT 539 — 4 .7 7 4 .7 7 — 1 .0 0 1 .0 0 48 FORM 12 1.10 3.65 4.75 6.00 20.00 2 6 .0 0 4 LYCO 5 — 4 .7 2 4 .7 2 — 0 .3 3 0 .3 3 39 CICA 12 4 .3 2 0 .3 9 4.71 7.33 0.67 8 .0 0 41 ELAT 1 1 .5 6 3 .0 2 4.58 0.67 0.67 1 .3 3 41 CARA 8 — 4 .0 4 4 .0 4 — 0 .6 7 0 .6 7 28 TETT 803 2 .1 2 1 .7 8 3 .9 0 1 .6 7 0 .6 7 2 .3 3 41 NITI 802 0 .9 3 2 .4 5 3 .3 7 9 .6 7 3 0 .4 4 4 0 .1 0 46 LAUX 1 3 .3 5 — 3 .3 5 3 .3 3 — 3 .3 3 46 DOLI 11 3 .1 7 — 3 .1 7 2 .0 0 — 2 .0 0 41 CARA 39 3 .0 7 — 3 .0 7 0 .3 3 — 0 . 33 41 CURC 4 1 .4 5 1 .4 5 2 .9 1 0 .6 7 0 .6 7 1 .3 3 41 CURC 901 1 .8 1 0 .6 0 2 .4 2 1.00 0.33 1.33 46 SYRP 1 1 .8 6 0 .3 1 2 .1 7 2 .0 0 0 .3 3 2 .3 3 4 LYCO 20 — 1 .9 2 1 .9 2 — 0 .6 7 0 .6 7 38 MIRI 1 1 .7 9 — 1 .7 9 0 .6 7 — 0 .6 7 %5 NOCT 517 — 1 .7 8 1 .7 8 — 1 3 .1 7 1 3 .1 7 41 COCC 901 1 .3 0 0 .4 3 1 .7 3 1 .0 0 0 .3 3 1 .3 3 48 FORM 11 — 1 .6 9 1 .6 9 - 2 .0 0 2 .0 0 TABLE 18. CONTINUED. PERI 00*30 JUNE-9 JULY 1978 PL3T=75A ORDER FAMILY MORPH HBIO LBIO BIOMASS HDEN LDEN DENSITY 39 CICA 517 1 .5 9 1 .5 9 — 1 3 .7 6 1 3 .7 6 39 CICA 27 1 .5 9 1 .5 9 9 .0 0 — 9 .0 0 39 CICA 812 0 .2 7 1 .1 0 1 .3 7 6 .6 7 3 .6 7 1 0 .3 3 46 MUSC 7 1 .3 2 1 .3 2 0 .3 3 — 0 .3 3 61 CANT 501 1 .2 2 1 .2 2 — 0 .6 7 0 .6 7 68 ICHN 2* 0 .7 3 0 .6 5 1 .1 8 1 .3 3 0 .6 7 2 .0 0 3 IXOO 1 0 .8 6 — 0 .8 6 0 .3 3 — 0 .3 3 *5 MICR 31 0 .7 7 — 0 .7 7 0 .3 3 0 .3 3 65 MICR 509 0 .0 0 . 0 .6 5 0 .6 6 0 .3 3 0 .6 7 1 .0 0 65 NOCT 566 0.61 0 .6 1 0 .3 3 — 0 .3 3 66 ANTV 6 0 .6 6 — 0 .6 6 0 .3 3 — 0 .3 3

PERI03=30 JUNE-9 JULY 1978 PL3T*75B ORDER FAMILY MORPH HBIO LBIO BIOMASS HDEN LDEN DENSITY 39 CERC I 121.69 7 .2 6 1 2 8 .9 5 6 6 .6 7 2 .6 7 6 7 .3 3 61 CURC 1 7 .9 7 7 7 .0 5 8 5 .0 2 2 .0 0 1 9 .3 3 2 1 .3 3 39 CICA 9 6 9 .9 2 5 .1 2 7 5 .0 6 1 3 .6 7 1 .0 0 1 6 .6 7 65 NOCT 513 — 3 3 .3 9 3 3 .3 9 — 0 .3 3 0 .3 3 61 CURC 2 — 3 3 .1 6 3 3 .1 6 — 2 .0 0 2 .0 0 39 CICA 5 2 .3 6 1 1 .2 9 1 3 .6 5 1 .6 7 9 .3 3 1 1 .0 0 38 PENT 3 1 3 .6 0 1 3 .6 0 1 .0 0 — 1 .0 0 61 COCC 1 7 .6 3 67 26 1 1 .6 7 2 .3 3 1 .3 3 3 .6 7 38 MIRI 1 1 0 .7 1 0 .8 9 1 1 .6 1 6 .0 0 0 .3 3 6 .3 3 28 ACRI 501 10.79 0 .5 1 1 1 .3 0 6 .3 3 0 .3 3 6 .6 7 39 CICA 805 2 .8 0 8 .3 7 1 1 .1 7 6 .0 0 6 .6 7 1 2 .6 7 61 CARA 8 1 .7 1 6 .6 7 8 .1 8 0 .3 3 1 .0 0 1 .3 3 39 CICA 12 2 .9 5 6 .3 2 7 .2 7 5 .0 0 7 .3 6 1 2 .3 6 61 CARA 39 — 6 .7 6 6 .7 6 — 1 .0 0 1 .0 0 66 STRA 501 0 .6 1 5 .9 1 6 .5 1 0 .6 7 6 .0 0 6 .6 7 61 CURC 5 0 .7 0 6 .9 2 5 .6 2 0 .3 3 2 .3 3 2 .6 7 61 CURC 6 1 .6 5 3 .6 3 5 .0 9 0 .6 7 1 .6 7 2 .3 3 61 CURC 901 6.86 6 .8 6 2 .6 7 — 2 .6 7 61 COCC 501 1 .6 8 2 .6 2 6 .3 0 3.00 6.66 7. 66 66 TIPU 501 — 6 .1 3 6 .1 3 — 1 0 .3 3 1 0 .3 3 61 BYRR 1 — 6 .0 0 6 .0 0 — 5 .3 3 5 .3 3 68 FORM 11 0 .9 0 2 .9 6 3 .8 6 1 .3 3 6 .3 3 5 .6 7 65 NOCT 569 — 2 .9 6 2 .9 6 0 .3 3 0 .3 3 38 NABI 3 2 .7 9 2 .7 9 0 .3 3 — 0 .3 3 68 HALI 1 2 .5 8 — 2 .5 8 1 .0 0 — 1 .0 0 TABLE 18. CONTINUED. PERIOD*30 JUNE-9 JULY 1978 PLDT=75B ER FAMILY MORPH HBIO LBIO BIOMASS HDEN LDEN 38 REDU 802 — 2 .3 1 2 .3 1 0 .3 3 41 COCC 3 0 .9 5 0 .9 5 1 .9 0 0 .3 3 0 .3 3 38 PENT 503 1 .8 5 — 1 .8 5 3 .0 0 — 4 LYCO 5 — 1 .8 5 1 .8 5 — 0 .3 3 4 LYCO 8 1 .5 4 — 1 .5 4 0 .3 3 48 HALI 6 — 1 .5 4 1 .5 4 — 0733 38 PENT 501 1 .4 9 — 1 .4 9 0 .3 3 46 SARC 16 1 .4 1 — 1 .4 1 0 .3 3 — • 28 TETT 803 1 .3 9 — 1 .3 9 2 .3 3 — 39 CICA 1 1 .3 9 — 1 .3 9 0 .6 7 — 41 COCC 901 0 .8 7 0 .4 3 1 .3 0 0 .6 7 0 .3 3 41 CANT 501 — 1 .2 4 1 .2 4 — 0 .3 3 45 NOCT 554 — 1 .1 3 1 .1 3 — 0 .3 3 38 MIRI 5 1 .1 0 — 1 .1 0 0 .6 7 4 ARAN 508 — 0 .9 9 0 .9 9 — 0 .3 3 46 OOLI 11 0 .9 4 — 0 .9 4 0 .6 7 46 SYRP 504 0 .8 5 0 .0 6 0 .9 2 1 .0 0 0733 41 CHRY 38 0 .8 1 0 .8 1 0 .3 3

=30 JUNE- 9 JULY 1978 PLOT* CVA ------'ER FAMILY MORPH HB10 LBIO BIOMASS HDEN LOEN 46 STRA 501 11.86 1 6 4 .2 9 1 7 6 .1 5 1 1 .6 7 1 8 3 .2 3 41 CURC 14 7 5 .9 4 7 5 .9 4 6.00 10 JULI I 37 23 5 8 .2 4 6 1 .4 7 1 8 .3 3 2 0 4 .0 6 5 PORC 1 2 0 .3 5 2 0 .3 5 6.00 41 CURC 5 3751 1 1 .2 4 1 4 .7 5 1 .6 7 5 .3 3 38 MIRI 6 1 2 .7 5 0 .1 6 1 2 .9 2 2 6 .0 0 0 .3 3 39 ACAN 801 1 2 .8 3 1 2 .8 3 1 9 .3 3 39 CERC 1 1 1 .8 1 1 1 .8 1 4 .3 3 39 CICA 9 1 0 .2 3 1 0 .2 3 2.00 2 PHAJ 8 1 0 .0 8 1 0 .0 8 2.00 38 PENT 1 9 .4 7 9 .4 7 0 .3 3 46 OROS 1 8 .2 3 0 .9 9 9 .2 3 6 9 .0 0 8 .3 3 38 MIRI 1 7 . 14 0 .8 9 8 .0 3 2 .6 7 0 .3 3 41 CARA 25 7 .8 1 7 .8 1 0 .3 3 41 CARA 1 77ll 7 .1 1 0 .3 3 45 NOCT 529 0 .0 6 6 .3 9 6 .4 5 0 .3 3 2.00 48 FORM 6 0 .3 0 6.12 6 .4 3 1 .6 7 3 3 .6 7 4 THOM 3 5 .3 3 5 .3 3 0 .3 3 TABLE 18. CONTINUED. PERIOD=30 JUNE-9 JULY 1978 Pl 3T=CVA FAMILY MORPH HBIO LBIO BIOMASS HDEN LDEN 39 CICA 5 3 .0 3 2 .2 7 5 .3 0 1 .0 0 2 .3 3 10 PARA 6 — 4 .7 8 4 .7 8 0 .3 3 39 CICA 805 2 .0 8 2 . 6 2 4 .7 0 1 .0 0 1 .3 3 41 STAP 132 — 3 .9 7 3 .9 7 1 .0 0 38 PENT 801 3 .8 8 — ■ 3 .8 8 0 .3 3 9 CLEI 1 — 3 .3 5 3 .3 5 1 .0 0 39 CICA 36 2 .8 1 — 2 .8 1 2 .0 0 4 LYCO 10 2 .4 7 — 2 .4 7 1 .0 0 — 1 38 MIRI 505 2 .3 2 — 2 .3 2 3 .0 0 — 8 POLY 2 — 2 .3 1 2 .3 1 0 .6 7 41 PTIJ 1 — 2 .2 8 2 .2 8 — 1 .0 0 17 LITH 4 — 2 .2 2 2 .2 2 — 4 .3 3 28 TETT 501 2 .0 6 — 2 .0 6 1 .0 0 4 LYCO 7 0 .2 0 1 .7 6 1 .9 6 0 .3 3 2 .6 7 41 CARA 39 — 1.9 6 1 .9 6 0 .3 3 39 CICA 3 1 .7 9 — 1 .7 9 3 .6 7 48 FORM 12 — 1.7 1 1 .7 1 9 .3 3 39 ISSI 1 1 .3 9 — 1 .3 9 I . 67 41 CURC 1 — 1 .3 3 1 .3 3 0 .3 3 46 SCHA 503 0 .0 0 1 .1 5 1 .1 5 0 .3 3 7 8 .3 9 41 CARA 30 — 0 .8 8 0 .8 8 1 .0 0 46 STRA 503 0 .6 7 0 .1 7 0 .8 4 0 .3 3 0 .3 3 41 STAP 206 — 0 .5 1 0 .5 1 0 .3 3

9 JULY 1978 PL3T = CV B ------IER FAMILY MORPH HBIO LBIO BIOMASS HDEN LDEN 41 CARA 25 _ 4 0 .1 8 4 0 .1 8 1 .0 0 41 CURC 5 2 .1 1 3 1 .6 1 3 3 .7 1 1 .0 3 1 5 .0 0 41 CARA 76 — 1 5 .7 0 1 5 .7 0 0 .3 3 10 JULI 1 0 .1 4 1 3 .8 4 1 3 .9 8 3 .3 3 4 9 .2 8 5 PORC 1 0 .0 7 1 3 .2 8 1 3 .3 5 0 .3 3 6 .0 0 46 DROS I 7 .6 0 1 .3 5 8 .9 5 6 3 .6 7 1 1 .3 3 41 CARA 40 — 7 .8 1 7 .8 1 0 .3 3 2 PHAJ 8 6 .4 6 — 6 .4 6 0 .3 3 38 MIRI I 6 .2 5 — 6 .2 5 2 .3 3 — 41 LAMP 6 — 5 .2 9 5 .2 9 0 .3 3 39 CICA 805 0 .6 9 4 .1 0 4 .8 0 0 .3 3 1 .6 7 38 MIRI 505 2 .8 8 0 .8 4 3 .7 2 5 .0 0 0 .6 7 39 CERC 1 3 .6 3 — 3 .6 3 1 .3 3 TABLE 18. CONTINUED. PERI0D*30 JUNE-9 JULY 1978 PL3T*CVB FAMILY MORPH HBIO LBIO BIOMASS HOEN LDEN 38 MIRI 6 3 .4 3 0 .1 6 3 .6 0 7 .0 0 0 .3 3 45 NOCT 547 — 3 .2 5 3 .2 5 2 .0 0 * LYCO 10 2 .7 6 — 2 .7 6 1 .0 0 41 PTIJ 1 — 2 .1 3 2 .1 3 1 .0 0 39 CICA 2 1 .6 0 1 .6 0 2 .6 7 41 CARA 19 — U 3 8 1 .3 8 0 .3 3 41 NITI 10 — 1 .3 7 1 .3 7 — 0 .3 3 4 LYCO 7 — 1 .3 6 1 .3 6 — 1 .6 7 38 NABI 1 1 .3 2 — 1 .3 2 0 .6 7 46 SCHA 503 — 1 .2 6 1 .2 6 7 5 .3 4 4 ARAN 4 1 .1 8 — 1 .1 8 0 .3 3 48 FORM 6 — 1 .1 5 1 .1 5 6 .3 3 38 MIRI 5 0 .5 5 0 .5 5 1 .1 0 0 .3 3 0 .3 3 41 COCC 1 1 .0 6 — 1 .0 6 0 .3 3 46 CALL 12 1 .0 5 — 1 .0 5 0 .3 3 — 41 COCC 501 — 1 .0 1 I . 01 2 .1 3 39 CICA 5 1 .0 1 — 1 .0 1 0 .3 3 48 HAL I 1 0 .8 6 — 0 .8 6 0 .3 3 — 39 CICA 28 0 .7 4 — 0 .7 4 0 .6 7 — 46 MUSC 16 0 .7 3 — 0 .7 3 0 .3 3 — 4 CLUB 4 — 0 .6 8 0 .6 8 0 .3 3 41 STAP 137 — 0 .6 2 0 .6 2 _ 1 .0 0 46 STRA 501 — 0 .3 4 0 .3 4 - 0 .6 7

PERIOD>2S JULY-8 AUGUST 1978 PLOT = 77A ER FAMILY MORPH HBIO LBIO BIOMASS HDEN LDEN 41 CURC 4 1 0 8 .3 2 1 0 6 .1 4 2 1 4 .4 6 4 9 .6 7 4 8 .6 7 41 CURC 1 7 3 .0 7 51.81 124.88 1 8 .3 3 1 3 .0 0 39 CERC 1 8 4 .4 5 1 9 .9 8 1 0 4 .4 4 3 1 .0 0 7 .3 4 46 STRA 501 1 6 .4 1 7 8 .6 9 9 5 .1 0 1 4 .0 0 1 9 2 .6 3 41 CURC 5 2 5 .2 8 4 6 .3 5 7 1 .6 4 1 2 .0 0 2 2 .0 0 46 TIPU 505 — 5 3 .9 4 5 3 .9 4 — 9 .6 7 28 ACRI 501 4 8 .5 4 0 .9 7 4 9 .5 0 8 .6 7 0 .3 3 45 NOCT 502 — 2 7 .0 8 2 7 .0 8 0 .3 3 39 CICA 1 2 6 .3 2 2 6 .3 2 1 2 .6 7 38 PENT 3 1 8 .1 4 7 .8 5 2 5 .9 9 1 .0 0 0 .3 3 41 CARA 19 2 .4 8 2 2 .8 5 2 5 .3 4 0 .6 7 5 .6 7 41 CURC 2 — 2 2 .0 9 2 2 .0 9 1 .3 3 45 NOCT 532 0 .0 6 2 1 .3 7 2 1 .4 3 0 .3 3 3 .3 3 TABLE IB. CONTINUED. PER 100*26 JULY 8 AUGJST 1978 PL0T=77A ORDER FAMILY MORPH HBIO LBIO BIOMASS HDEN LDEN DENSITY 65 ARCT 503 1 8 .9 5 — 1 8 .9 5 0 .3 3 _ 0 .3 3 38 NIRI 5 1 6 .3 6 — 1 6 .3 6 8 .6 7 — 8 .6 7 39 CICA 801 1 2 .1 3 1 .9 0 1 6 .0 6 1 2 .6 7 1 .0 0 1 3 .6 7 38 PENT 2 1 2 .7 9 — 1 2 .7 9 0 .3 3 — 0 .3 3 38 PENT 503 8 .6 7 6 .3 0 1 2 .7 7 6 .6 7 1 .0 0 5 .6 7 38 PENT 1 9 .6 7 — 9 .6 7 0 . 33. 0 .3 3 61 COCC 1 7 .6 3 — 7 .6 3 2 .3 3 — 2 .3 3 6 THOM 8 6 .1 3 — 6 .1 3 0 .3 3 — ' 0 .3 3 61 COCC 501 1 .2 3 6 .5 1 5 .7 6 6 .3 3 3 .6 7 1 0 .0 0 38 MIRI 805 6 .0 7 0 .7 3 6 .8 0 2 6 .0 0 2 .0 0 2 8 .0 0 66 TACK 8 — 3 .8 8 3 .8 8 — 0 .3 3 0 .3 3 65 MICR 20 3 .5 5 — 3 .5 5 0 .6 7 — 0 .6 7 61 CURC 3 2 .7 6 0 .6 9 3 .6 5 1 .3 3 0 .3 3 1 .6 7 39 CICA 517 — 3 .0 6 3 .0 6 — 8 .9 2 8 .9 2 61 CARA 8 2 .2 9 — 2 .2 9 0 .3 3 — 0 .3 3 66 STRA 1 2 .0 1 — 2 .0 1 1 .6 7 — 1 .6 7 39 CICA 9 1 .7 1 — 1 .7 1 0 .3 3 — 0 .3 3 63 PANO 502 0 .5 7 0 .5 7 — 0 .3 3 0 .3 3

PERIQD*26 JULY 3 AUGUST 1978 PL3T=77B ORDER FAMILY MORPH . HBIO LBIO BIOMASS HDEN LDEN DENSITY 28 ACRI 501 171.26 5 8 .5 6 2 2 9 .8 0 1 6 .3 3 6 .6 7 2 3 .0 0 61 CURC 6 6 8 .3 3 1 0 9 .7 7 1 7 8 .1 1 3 1 .3 3 5 0 .3 3 8 1 .6 7 66 STRA 501 9 .1 5 97.26 106.61 5.33 117.10 122.66 61 CURC 1 6 1 .1 8 2 5 .2 6 6 6 .6 2 1 0 .3 3 6 .3 3 1 6 .6 7 61 CURC 2 2 7 .6 1 3 3 .1 6 6 0 .7 5 1 .6 7 2 .0 0 3 .6 7 61 CURC 5 9 . 13 6 9 .8 7 5 9 .0 0 6 .3 3 2 3 .6 7 2 8 .0 0 39 CERC 1 5 2 .6 7 3 .6 3 5 6 .3 0 19.33 1.33 20.67 38 MIRI 5 2 8 .7 1 — 2 8 .7 1 1 7 .3 3 — 1 7 .3 3 65 NOCT 563 2 7 .5 3 2 7 .5 3 - 2 .6 7 2 .6 7 39 CICA 1 2 6 .3 2 0 .6 9 2 7 .0 2 1 2 .6 7 0 .3 3 1 3 .0 0 68 APIO 5 2 5 .0 0 — 2 5 .0 0 0 .3 3 — 0 .3 3 65 ACRO 502 — 2 1 .9 6 2 1 .9 6 — 0 .6 7 0 .6 7 61 COCC 1 1 6 .8 5 — 1 6 .8 5 6 .6 7 — 6 .6 7 39 CICA 801 1 0 .2 6 1 .6 8 1 1 .7 3 1 6 .3 3 1 .0 0 1 5 .3 3 28 ACRI 505 1 1 .3 2 — 1 1 .3 2 0 .3 3 0 .3 3 — 61 SCAR 6 1 1 .2 5 1 1 .2 5 . — 0 .3 3 0 .3 3 61 COCC 501 5 .7 1 2 .2 6 7 .9 5 1 5 .0 0 1 .3 3 1 6 .3 3 241 38 PENT 3 7 .5 3 - 7 .5 3 0 .6 7 0 .6 7 TABLE 18. CONTINUED. PEU0D*26 JULY-8 AUGUST 1978 PL0T=77B ORDER FAMILY MORPH HBIO LBIO BIOMASS HDEN LDEN DENSITY V6 LAUX 2 7.V 3 7.V 3 2 0 .3 3 2 0 .3 3 *5 NOCT 539 7 .2 8 — 7 .2 8 2 .0 0 — . 2 .0 0 V6 STRA 1 7 .2 5 — 7 .2 5 6 .0 0 — 6 .0 0 28 GRYK 502 7 .0 1 — 7 .0 1 2 .0 0 — 2 .0 0 39 CICA 13 6.52 0.21 6.73 10.33 0.33 10.67 39 CICA IV 5 .8 0 — 5 .8 0 VV.00 — VV.00 39 APHI 2 V. V6 1.0V 5 .5 0 5 1 .6 7 1 9 .1 3 7 0 .8 0 V SALT 8 5.3V — 5.3V 0 .3 3 • 0 .3 3 VI CARA 19 1.1V V . l l 5 .2 5 0 .3 3 1 .0 0 1 .3 3 38 REDU 2 V. 68 — V. 68 0 .3 3 — 0 .3 3 VI CARA 8 — V .58 V .58 — 0 .6 7 0 .6 7 *5 NOCT 517 — V. 17 V. 17 — 1 .6 7 1 .6 7 VI COCC 901 3 .9 0 — 3 .9 0 3 .0 0 — 3 .0 0 VI CURC 3 2.07 1.38 3.V5 1.00 0.67 1.67 38 MIRI 505 3 .0 2 — 3 .0 2 7 .3 3 — 7 .3 3 V5 NOCT 90V 2 .5 5 — 2 .5 5 0 .3 3 — 0 .3 3 2 PHAJ 8 2 .3 6 — 2 .3 6 0 .3 3 — 0 .3 3 VI CHRY 20 2 .2 5 — 2 . 2 5 0 .3 3 — 0 .3 3 39 CICA 9 1 .7 1 — 1 .7 1 0 .3 3 — 0 .3 3 VI CARA 503 — 1 .1 8 1 .1 8 - 1 9 .6 8 1 9 .6 8 VI CARA V2 — 0 .8 1 0 .8 1 - . 2 .3 3 2 .3 3

PEU0D=25 JULY-3 AUGJST 1978 PLDT*75A ORDER FAMILY MORPH HBIO LBIO BIOMASS HDEN LDEN DENSITY V6 STRA 501 81.73 51V.38 596.11 V5.00 2 7 2 . V5 317.V 5 28 ACRI 501 118.9V 10.09 129.03 10.00 1.00 11.00 VI SCAR V 22.51 3 3 .7 6 5 6 .2 7 0.67 1.00 1.67 39 CERC 1 V2.68 1.82 VV.50 15.67 0 .6 7 1 6 .3 3 VI CURC 5 V .21 39.33 V3.5V 2.00 18.67 20.67 VI CURC V 9.V 5 3 2 .7 1 V 2.16 V. 33 1 5 .0 0 1 9 .3 3 V5 NOCT 532 5 .2 6 3V .98 VO. 25 0.33 3.33 3.67 28 GRYK 502 28.32 — 2 8 .3 2 8 .6 7 — 8 .6 7 V5 NOCT 518 27.08 0.29 27.37 0 .3 3 0 .3 3 0 .6 7 39 CICA 1 2 7 .0 2 — 2 7 .0 2 1 3 .0 0 — 1 3 .0 0 V5 NOCT 5VV — 1 9 .5 3 1 9 .5 3 — 1 .3 3 1 .3 3 38 MIRI 1 1 8 .7 5 — 1 8 .7 5 7 .0 0 — 7 .0 0 VI CURC 1 3 .9 9 I V .61 1 8 .6 0 I . 00 3 .6 7 V. 67 28 TETT 803 IV. 58 3.69 18.26 1 .3 3 0 .3 3 1 .6 7 39 CICA 5 1.6V IV. 02 15.66 1 .3 3 1 0 .6 7 1 2 .0 0 FABLE 18. CONTINUED. PERIOD*26 JULY-8 AUGJST 1978 PL0T»75A ORDER FAMILY MORPH HBIO LBIO BIOMASS HDEN LDEN DENSITY 39 CICA 517 1 .8 2 1 1 .6 4 1 3 .4 7 2 2 .0 0 4 0 .6 4 6 2 .6 4 *5 ACRO 502 — 1 2 .8 4 1 2 .8 4 — 0 .3 3 0 .3 3 39 CICA 801 9 .6 8 2 .7 9 1 2 .4 7 9 .3 3 1 .3 3 1 0 .6 7 38 PENT 3 1 2 .1 0 1 2 .1 0 0 .6 7 — 0 .6 7 46 TIPU 505 1 0 .7 4 1 0 .7 4 — 2 .6 7 2 .6 7 41 COCC I 9 .5 5 1 .0 6 1 0 .6 1 3 .0 0 0 .3 3 3 .3 3 38 PENT 1 9 .4 7 9 .4 7 0 .3 3 — 0 .3 3 41 CURC 3 — 7 . 59 7 .5 9 — 3 .6 7 3 .6 7 4 ARAN 1 7 .1 3 7 .1 3 0 .6 7 — 0 .6 7 45 NOCT 529 7 .1 2 7 .1 2 — 1 .3 3 1 .3 3 41 CHRY 11 5 .4 3 1 .0 9 6 .5 2 3 .3 3 0 .6 7 4 .0 0 45 NOCT 515 0 .1 9 6 .1 8 6 .3 6 0 .3 3 1 .0 0 1 .3 3 46 DROS 1 6 .0 0 6 .0 0 5 0 .3 3 — 5 0 .3 3 41 CURC 2 — 5752 5 .5 2 — 0 .3 3 0 .3 3 41 COCC 501 0 .1 7 5 .0 2 5 .1 9 1 .0 0 2 .3 3 3 .3 3 39 CICA 13 5 .0 4 — 5 .0 4 8 .0 0 — 8 .0 0 38 MIRI 5 4 .9 7 — 4 .9 7 3 .0 0 — 3 .0 0 41 BYRR 1 — 4 .7 6 4 .7 6 — 6 .3 3 6 .3 3 46 STRA 1 4 .0 3 0 .4 0 4 .4 3 3 .3 3 0 .3 3 3 .6 7 2 PHAJ 8 4 .3 9 4 .3 9 1 .0 0 — 1 .0 0 38 PENT 503 4 .2 7 0 .0 3 4 .2 9 6 .3 3 0 .3 3 6 .6 7 28 TETR 502 — 4 .2 5 4 .2 5 — 0 .3 3 0 .3 3 41 CARA 8 — 3 .6 5 3 .6 5 — 0 .6 7 0 .6 7 4 ARAN 2 3 .5 1 3 .5 1 0 .3 3 — 0 .3 3 48 FORM 11 0 .2 3 2 .9 2 3 .1 5 0 .3 3 3 .3 3 3 .6 7 39 CICA 12 2 .9 5 0 .2 0 3 .1 4 5 .0 0 0 .3 3 5 .3 3 41 COCC 2 2 .3 2 2 .3 2 0 .6 7 — 0 .6 7 38 ALYD 1 2 . 25 — 2 .2 5 0 .3 3 — 0 .3 3 41 HIST 6 — 2 .1 6 2 .1 6 — 0 .3 3 0 .3 3 45 COLJ 502 — 2 .1 5 2 .1 5 — 1 .3 3 1 .3 3 45 MICR 504 0 .0 8 1 .7 0 1 .7 8 2 .0 0 7 .0 5 9 .0 5 41 CHRY 38 1 .5 7 1 .5 7 0 .6 7 — 0 .6 7 243 TABLE 18. CONTINUED. PERIDD=25 JULY-8 AUGUST 1978 PL0T*75B ORDER FAMILY MORPH HBIO LBIO BIOMASS HDEN LDEN DENSITY 39 CERC 1 9 1 .7 2 1 0 .9 0 102.62 33.67 4 .0 0 3 7 .6 7 28 ACRI 501 6 2 .3 2 7 .2 5 6 9 .5 7 5 .3 3 0 .3 3 5 .6 7 ♦5 NOCT 502 — 4 0 .6 5 4 0 .6 5 — 0 .3 3 0 .3 3 45 NOCT 532 7 .3 6 3 2 .1 5 3 9 .5 0 0 .3 3 1 .3 3 1 .6 7 28 ACRI 1 3 8 .4 2 3 8 .4 2 0 .6 7 — 0 .6 7 39 CICA 1 3 6 .0 2 1 .3 9 3 7 .4 1 1 7 .3 3 0 .6 7 1 8 .0 0 4 ARAN 1 2 8 .4 1 1 .1 8 2 9 .5 9 5 .0 0 0 .3 3 5 .3 3 39 CICA 9 2 7 .2 9 2 7 .2 9 5 .3 3 — 1 5 .3 3 45 ARCT 503 — 22752 2 2 .5 2 — 0 .3 3 0 .3 3 41 CURC 2 — 2 2 .0 9 2 2 .0 9 — 1 .3 3 1 .3 3 46 STRA 501 — 2 1 .9 3 2 1 .9 3 — 7 .6 7 7 .6 7 38 PENT 1 1 8 .9 5 1 8 .9 5 0 .6 7 — 0 .6 7 4 THOM 12 1 7 .2 3 — 1 7 .2 3 0 .3 3 — 0 .3 3 39 CICA 5 3 .8 2 1 1 .8 5 1 5 .6 7 1 .6 7 8 .3 3 1 0 .0 0 39 CICA 801 1 2 .0 4 2 .4 9 1 4 .5 3 1 0 .0 0 1 .3 3 1 1 .3 3 41 CURC 4 5 .0 9 8 .7 2 1 3 .8 1 2 .3 3 4 .0 0 6 .3 3 41 CURC 1 1 .3 3 1 1 .9 6 1 3 .2 8 0 .3 3 3 .0 0 3 .3 3 48 FORM 11 4 .0 7 9 .0 4 1 3 .1 1 6 .0 0 1 3 .3 3 1 9 .3 3 48 FORK 12 1 .1 0 1 1 .8 8 1 2 .9 7 6 .0 0 6 5 .0 1 7 1 .0 1 28 TETT 803 1 2 .8 5 1 2 .8 5 1 .6 7 — 1 .6 7 41 ELAT 1 2 .7 5 9 .2 8 1 2 .0 4 0 .6 7 2 .0 0 2 .6 7 28 GRYK 502 1 1 .7 8 0 .0 8 1 1 .8 6 5 .3 3 0 .3 3 5 .6 7 28 TETT 501 9 .3 6 9 .3 6 0 .3 3 — 0 .3 3 38 NABI 3 5 .5 7 2 .7 9 8 .3 6 0 .6 7 0 .3 3 1 .0 0 45 NOCT 544 — 6 .2 5 6 .2 5 — 0 .3 3 0 .3 3 38 PENT 8 6 .0 5 6 .0 5 0 .3 3 — 0 .3 3 4 SALT 8 5 .6 9 — 5 .6 9 0 .3 3 — 0 .3 3 41 CURC 5 — 5 .6 2 5 .6 2 — 2 .6 7 2 .6 7 45 ACRO 502 — 5 .4 5 5 .4 5 — 0 .3 3 0 .3 3 4 THOM 8 4 .8 5 4 .8 5 0 .3 3 — 0 .3 3 45 NOCT 902 — 4 .8 4 4 .8 4 — 0 .3 3 0 .3 3 41 BYRR 1 — 4 .7 6 4 .7 6 — 6 .3 3 6 .3 3 38 MIRI I 4 .4 6 4 .4 6 1 .6 7 — 1 .6 7 28 TETR 804 — 4731 4 .3 1 — 1 .0 0 1 .0 0 45 MICR 503 — 3 .1 2 3 .1 2 — 2 2 .4 7 2 2 .4 7 4 ARAN 811 — 2 .9 3 2 .9 3 — 0 .3 3 0 .3 3 46 SARC 14 2 .6 0 2 .6 0 0 .3 3 — 0 .3 3 10 JULI 1 2759 2 .5 9 - 1 .3 3 1 .3 3 41 CARA 8 - 2 .2 9 2 .2 9 — 0 .3 3 0 .3 3 48 ICHN 38 2 .0 2 2 .0 2 0 .3 3 — 0 .3 3 39 ACAN 1 1 .9 5 — 1 .9 5 0 .3 3 — 0 .3 3 45 NOCT 513 1 .8 9 1 .8 9 - 0 .3 3 0 .3 3 WZ TABLE IB. CONTINUED. • 7 e a r C\ 1 U J U t T ' ~8 AUGUST 1978 PLOT — r3 d ER FAMILY MORPH HBIO LBIO BIOMASS HDEN LDEN 46 CALL 11 1 .6 0 - 1 .6 0 0 .3 3 -

• f ii A ... JUL ■-8 AUGUST 1978 PLOT S UVA ——— ER FAMILY MORPH HBIO LBIO BIOMASS HDEN LDEN 45 N ocr 502 3 3 5 .6 0 3 3 5 .6 0 5 .3 3 46 STRA 501 9.37 1 4 5 .7 5 1 5 5 .1 2 3 .6 7 6 7 .2 2 10 JULI 1 0.79 114.66 115.45 5 .0 0 2 2 5 .8 9 45 NOCT 529 — 8 7 .8 4 8 7 .8 4 — 1 3 .5 9 45 ARCT 503 83.27 — 8 3 .2 7 1 .0 0 41 CARA 25 — 8 2 .6 7 8 2 .6 7 — 2T0O 41 CURC 5 3.51 67.43 70.94 1.67 3 2 .0 0 41 CARA 39 — 5 7 .3 0 5 7 .3 0 6 .6 7 39 ACAN 801 4 5 .6 7 4 .5 8 5 0 .2 5 2 4 .0 0 1 .3 3 4 THOM 12 — 4 3 .5 6 4 3 .5 6 — 0 .3 3 45 NOCT 501 — 3 2 .8 8 3 2 .8 8 — 2 .3 3 39 ACAN 1 2 9 .2 2 1 .9 5 3 1 .1 7 5 .0 0 0 .3 3 5 PORC 1 — 2 9 .0 8 2 9 .0 8 — 4 .6 7 9 CLEI 1 0.40 28.46 28.86 0 .3 3 4 6 .1 4 41 CARA 1 — 2 1 .3 4 2 1 .3 4 — 1 .0 0 39 CERC 1 1 1 .8 1 2 .7 2 1 4 .5 3 4 .3 3 1 .0 0 39 CICA 5 7 .1 0 7 .0 8 14.18 2.67 3.67 28 TETT 501 1 1 .6 6 — 1 1 .6 6 0 .3 3 — 45 NOCT 513 — 9 .9 8 9 .9 8 0 .3 3 38 PENT 1 — 9 .4 7 9 .4 7 — 0 .3 3 46 SCIO 5 4.66 1.24 5.90 5 .0 0 1 .3 3 38 MIRI 1 5 .3 6 — 5 .3 6 2 .0 0 — 45 NOCT 524 — 5 .3 5 5 .3 5 — 0 .6 7 2 PHAJ 8 4 .3 9 — 4 .3 9 1 .0 0 — 45 MICR 506 1 .0 9 3 .2 6 4.35 4.00 0.67 45 NOCT 532 — 4 .2 6 4 .2 6 — 4 .9 2 41 COCC I 2 .1 2 2 .1 2 4 .2 4 0 .6 7 0 .6 7 48 FORM 11 — 4 .0 7 4 .0 7 — 6 .0 0 45 NOCT 903 3 .8 2 — 3 .8 2 0 .3 3 — 28 GRYK 502 3 .0 3 0 .7 4 3 .7 7 2 .3 3 0 .6 7 38 NABI 801 0 .7 7 2 .9 4 3 .7 1 1 .6 7 6 .2 5 41 CURC 14 — 3 .5 9 3 .5 9 - 0 .3 3 39 CICA 1 3 .4 6 — 3 .4 6 1 .6 7 — 39 CICA 12 2 .5 5 0 .7 9 3 .3 4 4 .3 3 1 .3 3 41 CARA 19 - 3 . 3 1 3 .3 1 - 0 .6 7 TABLE IB. CONTINUED. =26 JULY-8 AUGUST 1978 PLOT = C V A ------ORDER FAMILY NORPH HBIO LBIO BIOMASS HDEN LOEN DENSITY 46 DROS 1 3 .2 2 0 .0 4 3 .2 6 2 7 . OD 0 .3 3 2 7 .3 3 48 ICHN 38 3 .2 4 — 3 .2 4 0 .3 3 0 .3 3 41 STAP 132 — 3 .2 1 3 .2 1 0 .6 7 0 .6 7 41 STAP 526 — 3 .1 5 3 .1 5 — 3 .6 7 3 .6 7 45 NOCT 518 — 2 .9 6 2 .9 6 — 0 .3 3 0 . 33 46 TACK 9 2 .9 2 — 2 .9 2 0 .3 3 0 .3 3 38 NABI 3 2 .7 9 — 2 .7 9 0 .3 3 — 0 .3 3 41 CURC 1 1 .3 3 1 .3 3 2 .6 6 0 .3 3 0 .3 3 0 .6 7 41 CARA 30 — 2 .2 4 2 .2 4 1 .6 7 1 .6 7 38 NIRI 6 2 .1 3 — 2 .1 3 4 .3 3 4 .3 3 46 STRA 1 2 .0 1 — 2 .0 1 1 .6 7 — 1 .6 7 45 MICR 504 — 1 .9 3 1 .9 3 0 .6 7 0 .6 7 38 HIRI 5 1 .6 6 — 1 .6 6 1 .0 0 1 .0 0 45 NOCT 10 1 .2 7 — 1 .2 7 0 .3 3 — 0 .3 3 46 MUSC 13 1 .0 5 — 1 .0 5 0 .3 3 — 0 .3 3

PERI0D=26 JULY-8 AUGUST 1978 PLOT*CV3 ORDER FAMILY MORPH HBIO LBIO BIOMASS HDEN LDEN DENSITY 45 NOCT 502 — 2 7 9 .5 9 2 7 9 .5 9 2 . 67 2 .6 7 10 JULI I 2 .6 7 6 2 .1 0 6 4 .7 8 1 0 .0 0 1 1 9 .7 0 1 2 9 .7 0 45 NOCT 532 — 3 3 .2 0 3 3 .2 0 1 .6 7 1 .6 7 5 PORC 1 — 3 2 .8 2 3 2 .8 2 — 1 4 .3 4 1 4 .3 4 41 CURC 5 4 .2 1 2 6 .6 9 3 0 .9 0 2 .0 0 1 2 .6 7 1 4 .6 7 41 CARA 40 — 3 0 .2 4 3 0 .2 4 — 1 .0 0 1 .0 0 45 NOCT 501 — 2 5 .7 5 2 5 .7 5 — 0 .6 7 0 .6 7 45 NOCT 554 2 4 .2 7 — 2 4 .2 7 0 .3 3 0 .3 3 28 ACRI 501 1 8 .7 5 3 .6 6 2 2 .4 1 2 .3 3 0 .3 3 2 .6 7 45 NOCT 518 — 2 1 .6 7 2 1 .6 7 0 .3 3 0 .3 3 28 ACRI 802 2 1 .5 8 — 2 1 .5 8 0 .3 3 0 .3 3 45 NOCT 529 — 2 1 .1 5 2 1 .1 5 3 .0 0 3 .0 0 4 ARAN 1 — 1 3 .9 3 1 3 .9 3 — 0 .3 3 0 .3 3 39 ACAN I 1 3 .6 4 — 1 3 .6 4 2 .3 3 2 . 33 4 ARAN 501 1 1 .1 8 0 .6 2 1 1 .8 0 3 .3 3 0 .3 3 3 .6 7 41 CARA 25 1 1 .3 2 — 1 1 .3 2 0 .3 3 0 .3 3 39 ACAN 801 4 .1 5 3 .3 1 7 .4 6 2 .6 7 1 .6 7 4 .3 3 39 CERC I 5 .4 5 1 .8 2 7 .2 6 2 .0 0 0 .6 7 2 .6 7 41 CARA 1 — 7 .1 1 7 .1 1 0 .3 3 0 .3 3 41 CURC 14 3 .1 2 3 .1 2 6 .2 5 0.33 0.33 0.67 246 28 GRYK 502 4 .6 9 0 .4 7 5 .1 6 3 .0 0 0 .3 3 3 .3 3 TABLE 18. CONTINUED. PER 130*25 JULY-8 AUGJST 1978 PL0T=CVB FAMILY MORPH HBIO LBIO BIOMASS HOEN LDEN DENSITY 4 CLUB 4 2 .2 0 2 .1 7 4 .3 7 1 .0 0 0 .3 3 1 .3 3 45 NOCT 517 — 4 .3 3 4 .3 3 5 .4 6 5 .4 6 41 COCC 1 3 .1 8 1 .0 6 4 .2 4 1 .0 0 0 .3 3 1 .3 3 41 COCC 501 1 .3 5 2 .6 8 4 .0 3 2 .6 7 9 .1 7 1 1 .8 4 38 MIRI 1 3 .5 7 — 3 .5 7 1 .3 3 1 .3 3 39 CICA 1 2 .7 7 0 .6 9 3 .4 6 1 .3 3 0 . 33 1 .6 7 39 CICA 5 0 .6 9 2 .2 3 2 .9 2 0 .3 3 1 .6 7 2 .0 0 46 STRA 501 0.48 1.99 2 .4 7 0 .3 3 0 .6 7 1 .0 0 41 CHRY 20 — 2 .2 5 2 .2 5 0 .3 3 0 .3 3 4 SALT 2 2 .2 0 — 2 .2 0 0 .6 7 0 .6 7 41 CHRY 44 — 2 .1 9 2 .1 9 0 .3 3 0 .3 3 41 CARA 30 — 1 .9 7 1 .9 7 — 1 .6 7 1 .6 7 2 PHAJ 8 1 .6 3 — 1 .6 3 0 .6 7 0 .6 7 45 ARCT 503 1 .6 0 — 1 .6 0 0 .3 3 — 0 .3 3 46 TACK 10 1 .4 8 — 1 .4 8 0 .3 3 — 0 .3 3 41 CARA 19 — 1 .3 8 1 .3 8 0 .3 3 0 .3 3 46 STRA 504 — 1 .3 7 1 .3 7 — 0 .3 3 0 .3 3 46 SCIO 6 0 .5 5 *• 0 .5 5 0 .3 3 0 .3 3

8 AUGUST 1978 PLOT*QF ------ER FAMILY MORPH HBIO LBIO BIOMASS HDEN LDEN DENSITY 28 TETT 508 8 1 .8 2 _ 8 1 .8 2 0 .3 3 0 .3 3 39 CICA 1 7 8 .2 8 0 .6 9 7 8 .9 7 3 7 .6 7 0 .3 3 3 8 .0 0 39 CICA 801 6 7 .6 7 6 .0 9 7 3 .7 6 5 4 .0 0 2 2 .2 6 7 6 .2 6 28 ACRI 3 6 1 .9 6 — 6 1 .9 6 0 .3 3 0 .3 3 2 PHAJ 8 2 5 .6 1 2 4 .9 1 5 0 .5 2 6 .6 7 5 .6 7 1 2 .3 4 48 TENT 501 1 3 .5 9 1 4 .1 8 2 7 .7 6 2 .6 7 1 .6 7 4 .3 3 5 PORC I 1.2 1 2 3 .2 2 2 4 .4 4 1 .6 7 4 .0 0 5 .6 7 28 GRYK 803 2 2 .8 4 — 2 2 .8 4 1 .0 0 1 .0 0 45 MICR 28 1 9 .4 6 — 1 9 .4 6 1 2 .0 0 — 1 2 .0 0 45 NOCT 542 1 2 .9 7 6 .1 1 1 9 .0 9 2 .0 0 6 .3 4 8 .3 4 39 CICA 9 1 5 .3 5 — 1 5 .3 5 3 .0 0 3 .0 0 10 JULI 1 1 .9 6 1 3 .3 5 1 5 .3 1 3 .3 3 9l92 1 3 .2 5 45 NOCT 551 1 1 .5 0 2 .9 6 1 4 .4 6 0 .3 3 0 .3 3 0 .6 7 41 CURC 14 — 1 2 .4 9 1 2 .4 9 — 1 .3 3 1 .3 3 9 CLEI 1 0 .0 5 1 1 .5 0 1 1 .5 5 0 .3 3 1 .6 7 2 .0 0 39 APHI 10 7 .5 2 0 .2 7 7 .8 0 6 8 .3 3 1 .6 7 7 0 .0 0 39 CICA 536 0 .4 8 7 .2 2 7 .7 0 3 .3 3 3 9 .1 4 4 2 .4 7 45 NOCT 518 7 .3 6 - 7 .3 6 0 .3 3 0 .3 3 TABLE 18. CONTINUED* - PERIOD=26 JULY-8 AJSUST 1978 PL3T*0F ORDER FAMILY MORPH HBIO LBIO BIOMASS HDEN LDEN DENSITY 41 CURC 11 — 7 .1 3 7 .1 3 2 .0 0 2 .0 0 39 CERC 3 5 .7 0 1 .4 2 7 .1 2 1 .3 3 0 .3 3 1 .6 7 41 CARA 31 6 .3 6 — 6 .3 6 0 .3 3 0 .3 3 38 PENT 8 — 5 .8 8 5 .8 8 0 .6 7 0 .6 7 A ARAN 811 5 .7 6 — 5 .7 6 4 . 00 4 .0 0 41 CURC 2 5 .5 2 — 5 .5 2 0 .3 3 — 0 .3 3 45 NICR 502 — 5 .4 6 5 .4 6 0 .3 3 0 .3 3 41 CURC 1 1 .3 3 3 .9 9 5 .3 1 0 .3 3 1 .0 0 1 .3 3 39 CERC 1 4 .5 4 — 4 .5 4 1 .6 7 1 .6 7 45 NOCT 552 4 .3 9 0 .1 1 4 .5 0 0 .3 3 0 .3 3 0 .6 7 4 THOM 502 — 4 .4 1 4 .4 1 2 0 .3 4 2 0 .3 4 39 CERC 2 4 .3 7 — 4 .3 7 1 .0 0 1 .0 0 41 CARA 69 — 4 .0 0 4 .0 0 0 .3 3 0 .3 3 41 CHRY 13 2.53 1.34 3.87 0 .6 7 0 .3 3 1 .0 0 41 CURC 16 — 3 .4 0 3 .4 0 — 1 .3 3 1 .3 3 43 PANO 2 3 .2 0 — 3 .2 0 0 .6 7 0 .6 7 28 GRYK 502 2 . BO — 2 .8 0 1 .3 3 — 1 .3 3 38 NABI 3 2 .7 9 — 2 .7 9 0 .3 3 — 0 .3 3 8 POLY 1 — 2 .6 4 2 .6 4 — 0 .3 3 0 .3 3 45 NOCT 512 1 .8 9 0 .7 3 2 .6 2 0 .3 3 1 .0 0 1 .3 3 39 CICA 22 2 .5 2 — 2 .5 2 3 .0 0 — 3 .0 0 39 CERC 803 — 2 .4 9 2 .4 9 0 .3 3 0 .3 3 39 CIXI 1 2 .2 2 — 2 .2 2 1 .0 0 1 .0 0 4 PISA 602 2 .1 7 — 2 .1 7 0 .3 3 — 0 .3 3 38 NABI 1 1 .3 2 0 .6 6 1 .9 8 0 .6 7 0 .3 3 1 .0 0 41 CHRY 14 0 .5 5 1 .0 9 1 .6 4 0 .3 3 0 .6 7 I . 00 39 MEMB 4 — 1 .6 1 1 .6 1 — 0 .3 3 0 .3 3 41 STAP 206 — 1 .2 0 1 .2 0 — 0 .6 7 0 .6 7 48 ICHN 20 1 .1 4 — 1 .1 4 0 .3 3 0 .3 3 48 FORM 17 — 1 .0 4 1 .0 4 2 .0 0 2 .0 0 38 RHOP 2 — 0 .8 6 0 .8 6 — 0 .3 3 0 .3 3 41 CURC 25 - 0 .7 8 0 .7 8 - 0 .3 3 0 .3 3 248 TABLE 18. CONTINUED. PERI0D=4-14 SEPTEMBER 1978 PL3T=77A ORDER FAMILY MORPH HBIO LBIO BIOMASS HDEN LOEN DENSITY 28 ACRI I 1 1 2 0 .9 0 — 1 1 2 0 .9 0 1 1 .0 0 1 1 .0 0 28 ACRI 501 3 6 1 .6 7 — 3 6 1 .6 7 6 .6 7 — 6 .6 7 28 ACRI 2 2 6 8 .2 6 — 2 6 8 .2 6 1 .3 3 — 1 .3 3 46 STRA 501 3 0 .7 5 1 3 5 .3 7 1 6 6 .1 2 2 0 .0 0 7 4 .7 6 9 4 .7 6 28 ACRI 802 9 2 .4 8 — 9 2 .4 8 0 .6 7 — 0 .6 7 28 TETT 3 8 4 .2 2 — 8 4 .2 2 2 .0 0 — 2 .0 0 41 CURC 1 4 1 .1 8 3 7 .2 0 7 8 .3 8 1 0 .3 3 9 .3 3 1 9 .6 7 41 CURC 4 3 5 .6 2 2 7 .6 2 6 3 .2 5 1 6 .3 3 1 2 .6 7 2 9 .0 0 28 GRYK 4 3 3 .6 1 — 3 3 .6 1 2 .0 0 — 2 .0 0 41 CUCJ 2 7.23 9.96 17.19 1 7 .6 7 2 4 .3 4 4 2 .0 1 39 — — CICA 1 1 5 .2 4 00 * 1 5 .2 4 7 .3 3 7 .3 3 41 CURC 5 5 .6 2 • 1 4 .0 5 2 .6 7 4 .0 0 6 .6 7 4 ARAN 11 1 1 .4 5 — 1 1 .4 5 0 .3 3 — 0 .3 3 4 THOM 1 7 .0 8 3 .3 8 1 0 .4 5 1 .0 0 0 .3 3 1 .3 3 45 NOCT 529 2 .3 9 6 .7 2 9 .1 1 1 .0 0 5 .4 6 6 .4 6 41 MELO 2 8 .2 3 — 8 .2 3 0 .3 3 — 0 .3 3 4 ARAN 1 7 .3 0 — 7 .3 0 0 .3 3 — 0 .3 3 39 CERC 1 7 .2 6 — 7 .2 6 2 .6 7 — 2 .6 7 41 CURC 2 — 5 .5 2 5 .5 2 — 0 .3 3 0 .3 3 38 NABI 1 3 .2 9 1 .3 2 4 .6 1 1 .6 7 0 .6 7 2 .3 3 41 CARA 8 1 .8 2 2 .4 4 4 .2 6 0 .3 3 0 .3 3 0 .6 7 41 CARA 19 1 .6 5 2 .4 7 4 . 12 0 .3 3 0 .6 7 1 .0 0 4 THOM 502 — 2 .6 4 2 .6 4 — 1 .6 7 1 .6 7 45 NOCT 10 2 .5 4 — 2 .5 4 0 .6 7 — 0 .6 7 41 CHRY 20 2 .2 5 — 2 .2 5 0 .3 3 — 0 .3 3 41 CARA 28 — 1 .9 6 1 .9 6 — 0 .3 3 0 .3 3 46 TIPU 505 — 1 .7 6 1 .7 6 — 0 .3 3 0 .3 3 45 NOCT 544 — 1 .6 9 1 .6 9 — 0 .6 7 0 .6 7 2 PHAJ 8 1 .6 2 — 1 .6 2 0 .3 3 — 0 .3 3 45 NOCT 532 — 1 .4 8 1 .4 8 — 0 .3 3 0 .3 3 41 CARA 65 0 .2 4 1 .2 3 1 .4 7 0 .3 3 1 .0 0 1 .3 3 41 STAP 253 — 1 .4 4 1 .4 4 — 1 .0 9 1 .0 0 41 CARA 51 — 1 .3 3 1 .3 3 — 0 .3 3 0 .3 3 41 STAP 132 — 1 .2 9 1 .2 9 — 0 .3 3 0 .3 3 10 JULI 1 — 1 .0 7 1 .0 7 — 0 .3 3 0 .3 3 41 STAP 206 — 0 .7 9 0 .7 9 — 0 .3 3 0 .3 3 45 NOCT 515 0 .0 0 0 .6 4 0 .6 4 0 .3 3 1 .0 0 1 .3 3 39 CICA 5 — 0 .6 1 0 .6 1 — 0 .3 3 0 .3 3 249 TABLE 18. CONTINUED. PER10D=4-14 SEPTEMBER 1978 PL3T*77B ORDER FAMILY MORPH HBIO LBIO BIOMASS HDEN LOEN OENSITY 28 ACRI I 955.02 _ 9 5 5 .0 2 9 .0 0 _ 9 .0 0 46 STRA 501 87.60 577.29 6 6 4 .8 9 8 3 .3 3 3 4 9 .6 9 4 3 3 .0 2 28 ACRI 501 55.91 0.70 5 6 .6 1 1 .0 0 0 .3 3 1 .3 3 28 GRYK 4 45.41 — 4 5 .4 1 2 .6 7 — 2 .6 7 41 CURC 1 18.60 22.58 4 1 .1 8 4 .6 7 5 .6 7 1 0 .3 3 41 CURC 4 11.63 27.62 3 9 .2 6 5 .3 3 1 2 .6 7 1 8 .0 0 45 NOCT 529 1.15 21.86 2 3 .0 1 0 .6 7 4 .6 7 5 .3 3 41 CURC 5 6.32 16.15 2 2 .4 7 3 .0 0 7 .6 7 1 0 .6 7 39 CERC 1 21.79 2 1 .7 9 8 .0 0 — 8 .0 0 28 TETT 3 17.05 — 1 7 .0 5 0 .3 3 — 0 .3 3 38 PENT 3 13.90 — 1 3 .9 0 0 .6 7 — 0 .6 7 39 CICA 1 13.16 0.69 1 3 .8 5 6 .3 3 0 .3 3 6 .6 7 38 PENT 2 12.79 — 1 2 .7 9 0 .3 3 — 0 .3 3 4 ARAN 1 11.45 — 1 1 .4 5 0 .3 3 — 0 .3 3 41 SCAR 4 11.25 — 1 1 .2 5 0 .3 3 — 0 .3 3 45 CTEN 1 7.67 — 7 .6 7 0 .3 3 — 0 .3 3 4 THOM 505 1.85 5.62 7 .4 7 0 .3 3 0 .6 7 1 .0 0 41 CARA 19 5.35 1.54 6 .8 9 1.33 0.33 1.67 41 CARA 8 - 6.53 6 .5 3 — 1 .0 0 1 .0 0 41 CARA 48 — 6.23 6 .2 3 — 0 .3 3 0 .3 3 4 SALT 8 - 5.69 5 .6 9 — 0 .3 3 0 .3 3 41 CURC 3 0.69 3.45 4 .1 4 0 .3 3 1 .6 7 2 .0 0 38 PENT 8 — 4.13 4 .1 3 — 0 .3 3 0 .3 3 39 CICA 46 3.95 0.09 4 .0 5 1 4 .0 0 0 .3 3 1 4 .3 3 38 PENT 802 3.88 — 3 .8 8 0 .3 3 — 0 .3 3 41 CUCJ 2 2.59 1.23 3.82 6.33 3.00 9 .3 3 45 NOCT 547 — 2.96 2 .9 6 — 0 .3 3 0 .3 3 46 TIPU 1 2.66 2 .6 6 I . 00 — 1 .0 0 38 NABI 1 1.32 1.32 2 .6 3 0 .6 7 0 .6 7 1 .3 3 41 COCC 1 2.12 2 .1 2 0 .6 7 — 0 .6 7 41 CARA 503 0.04 2701 2 .0 5 3 .3 3 4 6 .9 4 5 0 .2 8 45 NOCT 19 1.76 1 .7 6 0 .3 3 — 0 .3 3 38 MIRI 5 1.66 — 1 .6 6 1 .0 0 — 1 .0 0 4 THOM 502 — 1.32 1 .3 2 — 1 .3 3 1 .3 3 41 STAP 206 — 1.31 1 .3 1 — 0 .6 7 0 .6 7 39 CICA 5 0.78 0.42 1 .2 1 0 .3 3 0 .3 3 0 .6 7 46 STRA 503 — 1.05 1 .0 5 — 0 .3 3 0 .3 3 45 NOCT 544 — 0.74 0 .7 4 — 0 .6 7 0 .6 7 46 TIPU 505 — 0.63 0 .6 3 — 5 .1 3 5 .1 3 — 41 STAP 253 0.58 0 .5 8 — 0 .3 3 0 .3 3 250 41 CARA 517 - 0.51 0 .5 1 — 0 .6 7 0 .6 7 TABLE 18. CONTINUED. SEPTEMBER 1978 PL 31= 75 A ----- FAMILY MORPH HBIO LBIO BIOMASS HDEN LDEN ACRI 1 959.91 959.91 10.33 28 GRYK 4 117.55 13.66 131.22 8.67 0.67 28 ACRI 501 96.90 — 96.90 1.67 46 STRA 501 1.83 71.95 73.78 4.67 32.67 28 GRYK 3 60.73 — 60.73 1.00 38 PENT 3 13.90 12.10 25.99 0.67 0.67 39 CICA 1 22.17 2.08 24.24 10.67 1.00 28 TETR 6 21.63 — 21.63 1.00 4 ARAN 1 8.61 11.45 20.07 0.67 0.33 38 CORE 2 15.91 — 15.91 0.33 28 TETT 3 15.41 — 15.41 0.33 — 28 ACRI 9 13.08 — 13.08 0.33 — *5 NOCT 529 0.37 10.51 10.88 1.33 5.92 39 CICA 5 0.33 9.47 9.80 0.33 9.34 38 PENT 1 9.47 — 9.47 0.33 39 CERC 1 6.36 2.72 9.08 2.33 1.00 39 CICA 2 8.22 0.60 8.82 13.67 1.00 10 PARA 6 — 8.66 8.66 — 0.33 41 CURC 5 3.51 4.92 8.43 1.67 2.33 41 CURC 4 3.63 2.91 6.54 1.67 1.33 4 LYCO 25 6.2 2 — 6.22 0.33 41 CURC 1 1.33 3.99 5.31 0.33 lloo 28 TETR 7 — 4.25 4.25 — 0.33 4 THDM 1 3.57 — 3.57 0.33 39 CICA 4 3.52 — 3.52 9.33 — 41 ELAT 1 — 3.40 3.40 1.00 10 JULI 1 — 3.08 3.08 — 0.67 4 ARAN 811 2.93 — 2.93 0.33 39 CICA 517 0.19 2.73 2.92 1.67 17.88 46 TIPU 901 2.40 — 2.40 0.33 41 ELAT 502 — 2.24 2.24 1.00 41 CARA 28 1.96 — 1.96 0.33 4 CLUB 7 0.73 1.19 1.93 0.33 0.33 41 CARA 8 — 1.89 1.89 0.33 5 PORC 1 — 1.65 1.65 — 0.33 28 GRYK 502 1.52 — 1.52 0.33 — 41 STAP 206 — 1.50 1.50 0.67 39 MEMB 503 — 1.45 1.45 — 0.33 41 STAP 132 — 1.29 1.29 — 0.33 41 BYRR 10 — 1.19 1.19 — 0.67 41 CARA 19 1.10 — 1.10 0.33 — 41 STAP 213 - 1.02 1.02 0.33 TABLE 18. CONTINUED. PERI00*4-14 SEPTEMBER 1978 PL3T=75A ORDER FAMILY MORPH HBIO LBIO BIOMASS HDEN LDEN DENSITY 41 BYRR 1 — 1.00 I.00 — 1.33 1.33 45 MICR 11 0.95 — 0.95 0.33 — 0.33 41 STAP 134 — 0.89 0.89 — 0.67 0.67 41 COCC 501 — 0.57 0.57 — 0.33 0.33

PERI00=4-14 SEPTEMBER 1978 PLOT«75B ORDER FAMILY MORPH HBIO LBIO BIOMASS HDEN LOEN DENSITY 28 ACRI 1 436.75 436.75 4.33 4.33 28 TETT 1 123.28 — 123.28 0.33 0.33 28 TETT 3 103.53 — 103.53 2.67 2.67 28 ACRI 2 91.11 — 91.11 0.33 0.33 4 ARAN 1 90.43 — 90.43 2.33 2.33 28 ACRI 8 71.21 — 71.21 0.67 0.67 28 GRYK 4 55.85 7.88 63.74 4.00 0.67 4.67 28 ACRI 501 44.79 44.79 0.67 0.67 46 STRA 501 1.82 38.16 39.98 1.33 16.33 17.67 38 PENT 1 — 18.95 18.95 0.67 0.67 28 TETR 6 — 16.00 16.00 0.33 0.33 39 CICA 1 14.55 0.69 15.24 7.00 0.33 7.33 *5 NOCT 529 7.55 3.80 11.35 2.00 3.33 5.33 4 CLUB 102 11.24 — 11.24 0.67 0.67 41 CURC 1 3.99 6.64 10.63 I.00 1.67 2.67 48 FORM 6 — 10.07 10.07 55.35 55.35 41 STAP 207 — 9.97 9.97 6.00 6.00 38 PENT 8 4.53 4.53 9.07 0.33 0.33 0.67 41 CARA 81 — 8.38 8.38 1.00 1.00 41 CARA 1 7.11 7.11 0.33 0.33 28 ACRI 9 5.64 — 5.64 0.33 0.33 41 CURC 2 — 5.52 5.52 0.33 0.33 39 CERC 1 5.45 5.45 2.00 2.00 41 ELAT 1 — 5.38 5.38 1.67 1.67 28 TETR 7 4.49 4.49 0.33 0.33 41 CURC 4 2.91 oT73 3.63 1.33 0.33 1.67 28 TETR 5 — 3.59 3.59 0.33 0.33 39 CICA 5 0.72 2.83 3.55 0.67 2.00 2.67 41 CURC 5 — 3.51 3.51 1.67 1.67 4 SALT 507 — 3.36 3.36 0.33 0.33 252 — 38 BERY I CM 3.05 3.05 1.00 1.00 4 ARAN 102 2.94 0.67 0.67 TABLE 18. CONTINUED. PER10D=A-1A SEPTEMBER 1978 PL0T=75B ORDER FAMILY MORPH HBIO LBIO BIOMASS HDEN LDEN DENSITY A THOM 3 2 .8 5 — 2 .8 5 0 .3 3 __ 0 .3 3 A6 TABA 50A — 2 .6 6 2 .6 6 0 .3 3 0 .3 3 A CLUB 7 1 .0 1 1 .1 9 2 .2 0 0 .3 3 0 .3 3 0 .6 7 A1 CARA 8 — 2 .1 5 2 .1 5 0 .3 3 0 .3 3 10 JULI 1 2 .0 9 — 2 .0 9 0 .3 3 0 .3 3 A1 CURC 6 — 1 .8 8 1 .8 8 A. 33 A. 33 Ai BYRR 1 — 1 .5 0 1 .5 0 — 2 .0 0 2 .0 0 A8 FORM 12 — 1.3A 1.3A — 7 .3 3 7 .3 3 Al STAP 132 — 1 .2 9 1 .2 9 — 0 .3 3 0 .3 3 A5 NOCT 513 — 1 .2 8 1 .2 8 — 0 .6 7 0 .6 7 A THOM 502 — 1 .0 6 1 .0 6 — 1 .3 3 1 .3 3 Al CANT 506 — l.O A l.O A — 0 .6 7 0 .6 7 A THOM 508 — 0 .9 6 0 .9 6 — 1 0 .3 3 0 .3 3 Al STAP 206 — 0 .7 9 0 .7 9 — 0 .3 3 0 .3 3 38 NABI 1 0 .6 6 — 0 .6 6 0 .3 3 0 .3 3 Al CHRY 6 0 .2 7 0 .3 0 0 .5 8 0 .3 3 0 .3 3 0 .6 7 A5 MICR 517 — 0 .3 8 0 .3 8 0 .3 3 0 . 33

PERIOD*A-lA SEPTEMBER 1978 PL3T=CVA ORDER FAMILY MORPH HBIO LBIO BIOMASS HDEN LOEN DENSITY 5 PORC 1 0 .5 0 1 6 5 .7 0 166.20 0.33 35.3A 3 5 .6 7 A6 STRA 501 0.88 153.62 15A.51 0 .6 7 6 3 . 3A 6A .00 10 JULI 1 1 .0 6 1A0.68 IA1.75 2 .3 3 1 1 7 .OA 1 1 9 .3 8 9 CLEI 1 - A 5.10 A 5.10 — 7 .3 3 7 .3 3 A5 NOCT 576 3.81 A1.09 AA.90 1 .0 0 A .00 5 .0 0 28 ACRI 1 A l. 61 — A1.61 0 .3 3 0 .3 3 Al CURC 5 0.70 33.71 3A.A1 0 .3 3 1 6 .0 0 1 6 .3 3 39 ACAN 1 2 9 .2 2 3 .9 0 3 3 .1 2 5 .0 0 0 .6 7 5 .6 7 A ARAN 1 10.A2 13.53 2 3 .9 5 0 .6 7 0 .6 7 1 .3 3 28 GRYK A 1 9 .3 2 — 19 .3 2 2 .6 7 2 .6 7 10 BLAN 2 — 1 7 .6 9 1 7 .6 9 — I a 767 1A .67 A5 NOCT 512 0 .2 9 1 1 .A7 1 1 .7 7 0 .3 3 3 .6 7 A. 00 Al CARA 25 — 1 1 .3 2 1 1 .3 2 — 0 .3 3 0 .3 3 A5 NOCT 529 0 .0 1 1 0 .3 1 10.32 0.33 2A.60 2A .93 17 LITH A — 9.A5 9.A 5 — 3 5 .0 1 3 5 .0 1 38 NABI 1 2 .6 3 6 .5 9 9 .2 2 1 .3 3 3 .3 3 A .67 253 Al COCC 1 3 .1 8 5 .3 0 8.A 9 1 .0 0 1 .6 7 2 .6 7 Al STAP 132 0 .9 3 6 . A3 7 .3 5 0 .3 3 1 .3 3 1 .6 7 Al CARA 30 — 7 .1 8 7 .1 8 - 6 .0 0 6 .0 0 TABLE 18. CONTINUED. PER I0D =4-14 SEPTEMBER 1978 PLOT=CVA ORDER FAMILY MORPH HBIO LBIO BIOMASS HDEN LDEN DENSITY 41 ■CARA 84 — 7.09 7.09 3.67 3.67 41 CARA 19 — 6.17 6.17 _ 1.33 1.33 41 LAMP 502 — 5.73 5.73 — 7.33 7.33 39 CERC 1 5.45 — 5.45 2.00 2.00 46 STRA 504 — 4.93 4.93 — U 6 7 1.67 48 FORM 6 — 4.61 4.61 — 25.33 25.33 41 PHAL 5 0.20 3.73 3.93 0.67 12.67 13.33 45 NOCT 537 — 3.63 3.63 — 0.33 0.33 39 CICA 517 0.02 3.37 3.39 0.33 12.59 12.92 4 THOM 3 3.38 — 3.38 0.33 0.33 45 NOCT 532 — 3.23 3.23 - 0.67 0.67 41 CARA 83 — 3.19 3.19 — 0.67 0.67 39 CICA 12 2.36 0.79 3.14 4.00 1.33 5.33 8 POLY 2 — 3.02 3.02 — 0.67 0.67 41 CARA 39 — 2.74 2.74 — 0.33 0.33 41 STAP 401 — 2.43 2.43 - 3.33 3.33 41 CARA 8 — 2.22 2.22 — 0.33 0.33 4 CLUB 801 - 2.17 2.17 — 0.33 0.33 39 CICA 36 1.54 0.59 2.13 1.00 0.33 1.33 45 MICR 502 — 2.10 2.10 — 1.33 1.33 39 CICA 1 2.08 — 2.08 1.00 1.00 48 ICHN 34 2.02 — 2.02 0.33 — 0.33 41 CARA 503 — 1.98 1.98 — 4 .0 0 4.00 46 DROS 7 1.97 — 1.97 15.67 15.67 2 PHAJ 8 1.93 — 1.93 0.67 — 0.67 45 NOCT 4 1.70 — 1.70 0.33 — 0.33 45 ARCT 503 1.60 — 1.60 0.33 — 0.33 41 CARA 82 — 1.49 1.49 — 0.33 0.33 46 SYRP 15 1.30 — 1.30 0.33 — 0.33 46 STRA 507 — 1.26 1.26 — 0.33 0.33 45 NOCT 547 0.07 1.07 1.14 0.33 1.00 1.33 4 THOM 801 1.13 — 1.13 0.33 0.33 39 CICA 5 — 1.08 1.08 — oT33 0.33 4 LYCO 510 1.01 — 1.01 3.33 3. 33 46 CALL 14 0.99 — 0.99 0.33 — 0.33 45 NOCT 13 0.88 — 0.88 0.33 — 0.33 48 HAL I 1 0.86 — 0.86 0.33 — 0.33 41 STAP 149 - 0.48 0.48 0.33 0.33 254 TABLE IB. CONTINUED. PERIOD=A-lA SEPTEMBER 1978 PLDT*CVB ORDER FAMILY MORPH HBIO LBIO BIOMASS HDEN LDEN DENSITY 5 PORC 1 1.07 112.7A 113.81 0.67 17.00 17.67 28 ACRI 1 8 3 .2 2 83.22 0.67 — 0.67 10 JULI 1 — 58767 58.67 — 67.00 67.00 *8 APID 5 5 0 .0 0 — 50.00 0.67 — 0.67 28 GRYK A 3 8 . A3 — 38.A3 5.00 — 5.00 Al CURC 5 — 2A .58 2A.58 — 11.67 11.67 28 TETT 3 1 8 .6 9 — 18.69 0.33 — 0.33 Al CARA AO 7 .8 1 9.A 6 17.28 0.33 0.33 0.67 39 ACAN 1 1 3 . 6A 1 .9 5 15.58 2.33 0.33 2.67 A ARAN 2 1 1 . A5 — 11. A5 0.33 — 0.33 A ARAN 1 8.0A — 8.0A 0.67 — 0.67 38 PENT 3 6 .0 5 — 6.05 0.33 — 0.33 A SALT 8 — 5 .6 9 5.69 — 0.33 0.33 Al CURC 2 — 5 .5 2 5.52 — 0.33 0.33 A6 STRA 501 — 5 .1 2 5.12 — 2.00 2.00 Al CANT 501 — A .88 A . 88 — 3.00 3.00 38 PENT 8 — A. 53 A. 53 — 0.33 0.33 38 PENT 805 A .53 A . 53 0.33 — 0.33 A8 TENT 502 A. 38 — A . 38 0.67 — 0.67 A 5 NOCT 512 A. 32 A.32 — 1.67 1.67 39 CICA 803 All5 0.16 A. 31 6.00 0.33 6.33 A5 NOCT 529 — A. 09 A . 09 — 7.00 7.00 A5 NOCT 900 3 .8 2 — 3.82 0.33 — 0.33 A6 TIPU 1 3 .5 9 — 3.59 1.67 — 1.67 Al LANG 2 — 3.A 8 3.A8 — 2 . 0 0 2 . 0 0 A SALT 16 3 .3 6 3.36 0.33 — 0.33 A6 TIPUA 3 .2 6 — 3.26 1.33 — 1.33 Al CARA 30 — 3.2A 3.2A — 2.67 2.67 A THOM 505 — 3 .2 0 3.20 - 0.33 0.33 Al CHRY 17 — 2 .1 9 2.19 — 0.33 0.33 A CLUB 102 — 2 .1 7 2.17 — 0.33 0.33 A5 MICR 502 — 1 .9 6 1.96 — 0.67 0.67 A5 NOCT 576 - 1 .6 0 1.60 — 2.79 2.79 Al STAP 132 — 1 .5 9 1.59 — 0.33 0.33 9 CLEI 1 — 1 .5 7 1.57 — 0.33 0.33 A5 NOCT 532 — 1.A2 1.A2 — 0.67 0.67 38 PENT 501 1 .3 5 1.35 0.67 — 0.67 Al CURC . 1 — 1 .3 3 1.33 — 0.33 0.33 A CLUB A 0 .5 1 0 .7 8 1.29 0.67 0.33 1.00 39 CICA 12 0 .9 8 0 .2 0 1.18 1.67 0.33 2.00 255 Al COCC 1 — 1 .0 6 1.06 — 0.33 0.33 A8 HAL I 9 - 1 .0 6 1.06 — 0.33 0.33 TABLE 18. CONTINUED. ------PERIODS-!* SEPTEMBER 1978 PL3T=CVB------ORDER FAMILY MORPH HBIO LBIO BIOMASS HDEN LDEN DENSITV 39 CICA 1 0.69 — 0.69 0.33 — 39 DELP 11 0.59 — 0.59 0.67 — 39 CICA ** 0.56 — 0.56 0.33 —

PERIOD**-!* SEPTEMBER 1978 PL3T=0F ORDER FAHILV MORPH HBIO LBIO BIOMASS HDEN LOEN DENSITY 28 ACRI 1 76.12 76.12 0.67 0.67 5 PORC 1 3. *3 68.48 71.91 0.67 16.67 17.3* 10 JULI 1 0. *8 6*. 72 65.20 0.33 63.02 63.35 — 28 GRVK * 35. *1 CO 0 0 35.*1 2.67 2.67 *8 FORM 38 16.22 • 35.06 10.33 12.00 22.33 28 GRYK 3 33. *0 — 33.*0 0.33 0.33 28 ACRI 505 32. *9 — 32.*9 0.33 — 0.33 *8 APID 3 25.17 — 25.17 1.00 — 1.00 *1 CHRY 57 3.0* 21.55 2*.59 0.33 5.67 6.00 8 POLY 1 — 23.80 23.80 6.00 6.00 *5 NOCT 21 18.*0 — 18.*0 0.33 0.33 39 CICA 22 16.35 0.81 17.16 19.33 0.67 20.00 *1 CURC 16 — 16.17 16.17 6.33 6.33 *1 CANT 10 15.31 — 15.31 0.67 0.67 *8 APID I 15.00 — 15.00 0.33 — 0.33 28 ACRI 507 10.13 — 10.13 2.33 — 2.33 38 PENT 8 5.26 *.53 9.79 0.33 0.33 0.67 39 CICA 1 9.01 0.69 9.70 *•33 0.33 *•67 * ARAN 1 9.25 — 9.25 0.33 0.33 *5 SATY 3 8.69 — 8.69 0.33 — 0.33 *5 NOCT 5*2 2.39 6.25 8.6* 0.33 0.33 0.67 *8 TENT 501 7.09 0.66 7.76 1.00 0.33 1.33 *1 CARA 31 — 6.36 6.36 0.33 0.33 *6 BIBI 501 — 6.12 6.12 — 20.67 20.67 39 CERC 2 5.83 — 5.83 1.33 1.33 9 CLEI 1 - 5.53 5.53 — *•67 *.67 *1 PTIJ 801 0.03 *.79 *.82 0.33 12.3* 12.67 8 POLY 2 — *.79 * .7 9 — 2.00 2.00 *5 NOCT 20 *.71 — *•71 0.67 0.67 28 TETR 7 3.85 — 3.85 0.33 — 0.33 2 PHAJ 8 3.76 — 3.76 0.67 — 0.67 256 39 CERC 1 3.63 — 3.63 1.33 — 1.33 *8 HALI 9 3. *7 — 3. *7 1.33 - 1.33 TABLE 18. CONTINUED. PERI0D=4-14 SEPTEMBER 1978 PL0T=DF ORDER FAMILY MORPH HBIO LBIO BIOMASS HDEN LDEN DENSITY 4 LYCO 25 3.36 3 .3 6 0 .3 3 _ 0 .3 3 *5 NOCT 13 3.07 — 3 .0 7 0 .3 3 — 0 .3 3 CHRY 23 0.82 2.20 3 .0 2 1 .0 0 2 .6 7 3 .6 7 *1 STAP 150 — 2.87 2 .8 7 — 0 .6 7 0 .6 7 41 CURC 25 — 2.75 2 .7 5 — 1 .3 3 1 .3 3 28 GRYK 502 2.66 2 .6 6 0 .3 3 — 0 .3 3 38 LYGA 2 1.22 1.22 2 .4 5 0 .3 3 0 .3 3 0 .6 7 41 CURC 14 — 2.36 2 .3 6 — 0 .3 3 0 .3 3 41 CARA 28 — 2.29 2 .2 9 — 0 .3 3 0 .3 3 39 CICA 47 2.23 2 .2 3 0 .3 3 — 0 .3 3 4 THOM 502 2.20 2 .2 0 — 3 .0 0 3 .0 0 41 CURC 40 1.95 1 .9 5 0 .3 3 — 0 .3 3 39 ACAN 1 1.95 — 1 .9 5 0 .3 3 — 0 .3 3 48 ANDR 4 1.93 — 1 .9 3 0 .3 3 — 0 .3 3 48 FORM 17 1.73 1 .7 3 — 3 .3 3 3 .3 3 48 HALI 1 1. 72 1 .7 2 0 .6 7 — 0 .6 7 41 LAGR 502 0.57 1.05 1 .6 2 1 .6 7 1 .6 7 3 .3 3 43 PANO 2 1.60 1 .6 0 0 .3 3 — 0 .3 3 4 AGEL 2 1.48 1 .4 8 — 0 .3 3 0 . 33 39 CICA 41 1.47 1 .4 7 3 .0 0 — 3 .0 0 39 CICA 5 1.47 1 .4 7 — 1 .0 0 1 .0 0 38 LYGA 8 — 1.44 1 .4 4 — 2 .6 7 2 .6 7 41 CURC 27 — 1.43 1 .4 3 — 0 .3 3 0 .3 3 39 CERC 3 1.42 1 .4 2 0 .3 3 — 0 .3 3 48 FORM 6 0.06 1.33 1 .3 9 0 .3 3 7 .3 3 7 .6 7 41 CHRY 58 1.35 1 .3 5 — 0 .6 7 0 .6 7 39 CICA 822 1.22 1 .2 2 2 .0 0 — 2 .0 0 48 POMP 2 — 1.14 1 .1 4 - 0 .3 3 0 .3 3 48 FORM 11 — L. 13 1 .1 3 — 1 .6 7 1 .6 7 43 PANO 502 0.01 1.01 1.02 0.33 3.46 3 .7 9 46 TACK 14 0.97 0 .9 7 0 .3 3 — 0 .3 3 41 CHRY 22 0.92 — 0 .9 2 0 .3 3 — 0 .3 3 45 MICR 52L 0.91 — 0 .9 1 0 .6 7 — 0 .6 7 41 CARA 32 — 0.76 0 .7 6 - 0 .6 7 0 .6 7 46 SCIA 21 0.73 0 .7 3 3 .0 0 — 3 .0 0 46 SYRP 509 0.71 — 0 .7 1 1 .0 0 — 1 .0 0 45 NOCT 539 0.08 0.58 0 .6 7 0 .3 3 1 .0 0 1 .3 3 38 NABI 1 0.66 0 .6 6 0 .3 3 — 0 .3 3 45 NOCT 552 0.61 — 0 .6 1 0 .3 3 — 0 .3 3 45 MICR 503 0.59 0 .5 9 — 0 .6 7 0 .6 7 257 45 NOCT 573 — 0.43 0 .4 3 - 0 .3 3 0 .3 3 4 1 CURC 506 — 0.17 0 .1 7 - 0 .3 3 0 .3 3 TABLE 18. CONTINUED. PERIOD*!* HAY-* JUNE 1979 PL3T=77A ORDER FAHILY MORPH HBIO LBIO BIONASS HDEN LDEN DENSI TY *1 CURC 1 2.66 29.2* 3 1 .8 9 0 .6 7 7 .3 * 8 . 00 *5 NOCT 515 — 2 * . 15 2 * . 15 * •3 3 *• 33 *6 STRA 501 — 1 8 .8 7 1 8 .8 7 — 8 .3 3 8 . 33 39 CICA 809 1 5 .5 2 0 .6 9 1 6 .2 2 2 0 .0 0 0 .3 3 2 0 . 33 39 CICA 1 1 3 .8 5 — 1 3 .8 5 6 .6 7 6 . 67 *1 CARA I — 7 .1 1 7 .1 1 — 0 .3 3 0 . 33 * THON 3 — 6 .1 3 6 .1 3 — 0 .3 3 0 . 33 * LYCO 10 * .8 5 — * .8 5 2 .0 0 2 . 00 10 PARA 6 — * .3 2 * .3 2 0 .3 3 0 . 33 * THON 8 — 3 .7 6 3 .7 6 — 0 .3 3 0 . 33 *6 TIPU 502 — 3 .6 5 3 .6 5 — 0 .3 3 0. 33 * LYCO 7 1 .1 8 2 . *6 3.6* 1.33 3.67 5 . 00 * LYCO 5 3 .6 1 — 3 .6 1 0 .3 3 0 . 33 *6 TIPU 1 3 .3 6 — 3 .3 6 1 .0 0 — 1. 00 *5 NOCT * 2 .8 2 — 2 .8 2 0 .6 7 — 0 . 67 2 PHAJ 1 2 .5 8 — 2 .5 8 0 .6 7 — ■ 0 . 67 *6 TIPU 501 — 2 .* 9 2 .* 9 — 1 .0 0 1. 00 *6 STRA 1 0 .8 1 1 .6 1 2 .* 2 0 .6 7 1 .3 3 2 . 00 * CLUB * 0 . *7 1 .6 7 2 .1 5 0 .3 3 0 .6 7 1. 00 *1 COCC 1 2.12 — 2 .1 2 0 .6 7 — 0 . 67 *5 NOCT 5 1 .7 6 — 1 .7 6 0 .3 3 — 0. 33 39 CICA * 1 .6 * — 1 .6 * * .3 3 — *• 33 39 CICA 517 — 1 .6 0 1 .6 0 — * .0 0 *. 00 *8 FORN 8 1 .5 9 — 1 .5 9 0 .3 3 — 0 . 33 *1 STAP 253 — 1 .5 8 1 .5 8 — 1 .6 7 1 . 67 *1 CARA 8 — 1 .5 * 1 .5 * — 0 .3 3 0 . 33 *1 CURC 5 — l . * 0 l . * 0 — 0 .6 7 0 . 67 *1 ELAT 1 — 1 .2 1 1 .2 1 — 0 .3 3 0. 33 *1 CARA 19 — 1 .1 * 1 .1 * — 0 .3 3 0. 33 *1 CARA 51 — 0 .7 8 0 .7 8 - 0 .3 3 0. 33 258

y TABLE 18. CONTINUED. PERI0D*14 MAY-4 JUNE 1979 PL3T*77B FAMILY MORPH HB10 LBIO BIOMASS HDEN LDEN STRA 501 _ 19.62 19.62 9.67 NOCT 501 — 15.04 15.04 — 0.33 39 CICA 809 11.85 0.64 12.49 12.67 0.33 45 NOCT 515 — 10.74 10.74 2.00 41 CURC 4 — 9.45 9.45 — 4.33 46 TIPU 1 7.86 — 7.86 2.03 — 41 CARA 1 7.11 — 7.11 0.33 — 46 TIPU 501 — 6.85 6.85 — 1.67 46 STRA 1 2.82 3.62 6.44 2.33 3.00 39 CICA 1 5.54 0.69 6.23 2.67 0.33 4 ARAN 101 3.27 2.31 5.59 0.33 0.33 4 LYCO 8 4.47 — 4.47 3.00 41 CARA 19 — 4.14 4.14 1.00 41 STAP 253 — 3.71 3.71 — 3.67 41 ELAT 1 — 3.37 3.37 — 0.67 28 ACRI 501 2.06 0.92 2.99 0.67 0.33 41 CURC 1 — 2.66 2.66 — 0.67 46 LAUX 2 2.56 — 2.56 7.00 39 CICA 13 1.89 0.63 2.52 3.03 iT oo 46 STRA 2 0.66 1.45 2.11 0.67 1.67 2 PHAJ 1 2.07 — 2.07 0.33 4 LYCO 7 0.42 1.36 1.78 0.67 3.67 45 NOCT 5 1.50 — 1.50 0.33 — 41 SCAR 6 — 1.22 1.22 0.67 4 LYCO 5 1.08 — 1.08 0.33 45 COL J 502 — 1.07 1.07 0.67 4 CLUB 4 1.03 — 1.03 0. 67 — 4 LYCO 9 0.87 — 0.87 0.33 — 28 TRID 1 — 0.83 0.83 0.33 4 LYCO 10 0.64 — 0.64 0.33 41 STAP 1 - 0.56 0.56 - 1.67 TABLE 18. CONTINUED. PERI0D=14 HAY-4- JUNE 1979 PL0T=75A ORDER FAMILY MORPH HB 10 LBIO BIOMASS HDEN LDEN DENSITY 10 PARA 6 80.29 8 0 .2 9 — 6 .6 7 6 .6 7 39 CICA 809 21.42 0.18 2 1 .6 0 2 5 .0 0 2 .1 3 2 7 .1 3 39 CICA 1 10.39 — 1 0 .3 9 5 .0 0 — 5 .0 0 38 PENT I 9.47 — 9 .4 7 0 .3 3 — 0 .3 3 10 JULI I — 9.28 9 .2 8 — 2 .0 0 2 .0 0 *8 TENT 504 7.65 — 7 .6 5 0 .3 3 — 0 .3 3 46 TIPU 4 6.98 — 6 .9 8 1 .0 0 — 1 .0 0 46 STRA 501 1.21 4.97 6 .1 8 0 .3 3 5 .2 5 5 .5 9 41 SCAR 503 4.06 4 .0 6 — 0 .3 3 0 .3 3 28 ACRI 501 3.64 — 3 .6 4 1 .3 3 — 1 .3 3 — 45 NOCT 4 3.43 3 .4 3 0 .6 7 . — 0 .6 7 38 MIRI 803 3.28 — 3 .2 8 4 .0 0 — 4 .0 0 48 FORM 6 — 2.85 2 .8 5 — 1 5 .6 7 1 5 .6 7 2 PHAJ 1 2.69 2 .6 9 0 .3 3 — 0 .3 3 46 TIPU 501 2.43 2 .4 3 — 0 .6 7 0 .6 7 46 STRA 503 — 2.43 2 .4 3 — 5 .1 3 5 .1 3 41 STAP 207 — 2.12 2 .1 2 — 0 .6 7 0 .6 7 45 NOCT 499 2.10 2 . 10 0 .3 3 — 0 .3 3 43 PANO 1 2.05 — 2 .0 5 0 .3 3 — 0 .3 3 48 FORM 11 0.23 1.58 1 .8 1 0 .3 3 2 .3 3 2 .6 7 4 CLUB - 4 1.68 1 .6 8 1 .0 0 — 1 .0 0 46 TACK 900 1.52 1 .5 2 — 0 .3 3 0 .3 3 41 CURC 4 — 1.45 1 .4 5 — 0 .6 7 0 .6 7 41 STAP 253 — 1.38 1 .3 8 — 1 .6 7 1 .6 7 39 CICA 899 0.61 0.75 1 .3 6 0 .3 3 0 .3 3 0 .6 7 4 CLUB 7 — 1.19 1 .1 9 — 0 .6 7 0 .6 7 46 TIPU 1 1.12 1 .1 2 0 .3 3 — 0 .3 3 46 DOLI 501 1.06 1 .0 6 — 1 .0 0 1 .0 0 4 LYCO 502 — 1.05 1 .0 5 — 2 . 67 2 .6 7 4 LYCO 10 0.86 0 .8 6 0 .3 3 — 0 .3 3 41 CLER 1 0.77 0 .7 7 — 0 .3 3 0 .3 3 4 SALT 506 — 0.73 0 .7 3 — 0 .3 3 0 .3 3 4 SALT 2 — 0.49 0 .4 9 — 0 .3 3 0 .3 3 45 NOCT 542 — 0.43 0 .4 3 — 0 .3 3 0 .3 3 / 48 FORM 12 — 0.37 0 .3 7 — 2 .0 0 2 .0 0 41 STAP 306 — 0.30 0 .3 0 — 0 .3 3 0 .3 3 38 LYGA 3 - 0.17 0 .1 7 - 0 .3 3 0 .3 3 260 TABLE 18. CONTINUED. PERI0D=14 MAY-4 JUNE 1979 PL0T*75B ORDER FAMILY MORPH HBIO LBIO BIOMASS HDEN LDEN DENSITY 39 CICA 809 4 2 .5 7 1 .5 1 44.09 51.67 1.33 53.00 48 FORM 6 3 .4 6 2 2 .5 0 25.95 19.00 123.69 142.69 10 PARA 6 — 2 3 .5 8 23.58 — 1.67 1.67 46 TIPU 4 1 3 .9 6 13.96 2.00 — 2.00 4 LYCO 25 — 1 3 .6 3 13.63 — 0.33 0.33 4 THOM 12 1 2 .0 5 12.05 0.67 — 0.67 41 CHRY 502 9 .5 6 9.56 — 6.79 6.79 48 FORM 11 2 .0 3 6 .3 3 8.37 3.00 9.33 12.33 39 CERC 801 7 .7 5 0 .5 5 8.30 4.67 0.33 5.00 38 MIRI 803 7 .2 0 1 .0 9 8.29 12.33 1.33 13.67 38 MIRI 3 7 .9 2 7.92 4.33 — 4.33 10 JULI 1 — 7 . 50 7.50 — 1.00 1.00 4 THOM 8 7 .4 5 — 7.45 0.67 — 0.67 41 CARA 1 — 7 .1 1 7.11 — 0.33 0.33 46 STRA 501 - 6 .8 8 6.88 — 3.00 3.00 4 CLUB 4 3 .9 1 0 .3 4 4.25 1.33 0.33 1.67 39 CICA 1 3 .4 6 0 .6 9 4.16 1.67 0.33 2.00 46 TIPU 1 4 .1 4 4.14 1.00 — 1.00 41 CURC 13 4 .0 3 4.03 - 0.33 0.33 45 MICR 519 — 3 .5 1 3.51 — 6.67 6.67 41 STAP 132 — 3 .5 0 3.50 — 1.00 1.00 41 CANT 5 3 .3 9 3.39 0.33 0.33 45 NOCT 515 — 3 .1 5 3.15 — 0.67 0.67 4 GNAP 4 2 .1 7 0 .7 3 2.90 0.67 0.33 1.00 41 COCC 11 2 .8 9 2.89 1.00 — 1.00 46 STRA 1 2 .8 2 — 2.82 2.33 — 2.33 4 ARAN 5 2 .0 3 — 2.03 0.33 — 0.33 41 BYRR I 1 .2 5 0 .7 5 2.00 1.67 1.00 2. 67 46 STRA 2 1 .5 2 0 .2 6 1.78 1.67 0.33 2.00 38 MIRI 16 1 .5 1 1.51 1.00 — 1.00 39 CICA 13 1 .2 6 — 1.26 2.00 — 2.00 48 FORM 12 0 .3 0 0 .7 3 1.04 1.67 4.00 5.67 41 ELAT 1 — 1 .0 3 1.03 — 0.33 0.33 41 CLER 1 1 .0 3 1.03 0.33 — 0.33 46 EMPI 4 0 .5 4 - 0.54 0.33 — 0.33 TABLE 18. CONTINUED. PERIOD*14 HAT-4 JUNE 1979 PLOT=CVA ORDER FAHILT MORPH HBIO LBIO BIOMASS HDEN LDEN DENSITY 10 JULI 1 2.16 204.02 206.18 5 .6 7 2 0 7 .3 9 2 1 3 .0 5 5 PORC 1 — 41.88 41.88 — 1 5 .0 0 1 5 .0 0 41 CARA 1 — 35.56 35.56 — 1 .6 7 1 .6 7 46 STRA 501 1.61 26.61 28.23 0 .6 7 1 6 .3 8 1 7 .0 5 8 POLY 2 — 26.24 26.24 — 5 .3 3 5 .3 3 48 FORM 6 — 16.01 16.01 — 8 8 .0 2 8 8 .0 2 41 CURC 5 — 11.24 11.24 — 5 .3 3 5 .3 3 46 STRA 505 1.03 — 11.03 0 .3 3 —■ 0 .3 3 41 CARA 25 — 9.46 9.46 — 0 .3 3 0 .3 3 41 CARA 75 — 9.46 9.46 — 0 .3 3 0 .3 3 48 APID 3 8.39 — 8.39 0 .3 3 — 0 .3 3 41 LAMP 502 - 8.29 8.29 — 7 .6 7 7 .6 7 41 CARA 40 — 7.81 7.81 — 0 .3 3 0 .3 3 41 ELAT 4 — 7.31 7.31 — 1 .0 0 1 .0 0 41 CURC 14 - 6.78 6.78 — 0 .6 7 0 .6 7 41 STAP 132 — 6.50 6.50 — 2 .0 0 2 .0 0 4 THOM 504 — 6.28 6.28 — 2 .3 3 2 .3 3 2 PHAJ 1 6.07 — 6.07 0 .6 7 — 0 .6 7 9 CLEI 1 — 5.95 5.95 — 1 .6 7 1 .6 7 39 CICA 836 4.21 1.43 5.64 4 .6 7 2 .6 7 7 .3 3 48 FORM 17 0.35 5.19 5.54 0 .6 7 1 0 .0 0 1 0 .6 7 4 LYCO 10 4.55 — 4.55 2 .0 0 — 2 .0 0 39 CICA 809 3.77 0.13 3.91 2 .6 7 0 .6 7 3 .3 3 4 CLUB 4 2.20 0.68 2.88 1 .0 3 0 .6 7 1 .6 7 48 FORM 18 — 2.83 2.83 — 1 1 .0 0 1 1 .0 0 45 NOCT 542 - 2.72 2.72 — 6 .3 4 6 .3 4 39 CICA 28 0.74 1.85 2.59 0 .6 7 1 .6 7 2 .3 3 45 NOCT 515 — 2.56 2.56 — 1 .0 0 1 .0 0 46 TIPU 4 2.51 — 2.51 0 .3 3 — . 0 .3 3 41 cocc 1 1.06 1.06 2.12 0 .3 3 0 .3 3 0 .6 7 41 CARA 8 — 1.65 1.65 — 0 .3 3 0 .3 3 39 CICA 12 1.57 — 1.57 2 .6 7 — 2 .6 7 4 LYCO 5 1.47 — 1.47 0 .3 3 — 0 .3 3 38 NABI 1 1.32 — 1.32 0 .6 7 — 0 .6 7 46 SCIA 18 0.57 0.61 1.17 9 .3 3 7 .3 3 1 6 .6 7 38 MIRI 18 1.06 — 1.06 2 .0 0 — 2 .0 0 39 CICA 13 0.84 0.21 1.05 1 .3 3 0 .3 3 1 .6 7 46 STRA 503 — 0.78 0.78 — 1 .3 3 1 .3 3 28 ACRI 501 0.54 — — 0.54 0 .3 3 0 .3 3 262 48 HAL I 3 0.47 — 0.47 0 .3 3 — 0 .3 3 TABLE 18. CONTINUED. PERI0D=14 MAY-4 JUNE 1979 PLOT=CVB ORDER FAMILY MORPH HBIO LBIO BIOMASS HDEN LOEN DENSITY 10 JULI 1 4.57 113.98 118.55 1 9 .0 0 9 9 .6 9 1 1 8 .6 9 5 PORC 1 - 56.80 56.80 — 1 1 .3 4 1 1 .3 4 41 CARA 1 — 21.34 21.34 — 1 .0 0 1 .0 0 8 POLY 2 — 13.65 13.65 — 3 .6 7 3 .6 7 *1 CURC 5 — 11.24 11.24 — 5 .3 3 5 .3 3 *1 CARA 40 ■ — 9.46 9.46 — 0 .3 3 0 .3 3 48 FORM 6 0.06 9.04 9.10 0 .3 3 4 9 .6 7 5 0 .0 1 39 CICA 809 6.17 0.42 6.60 8 .0 0 0 .6 7 8 .6 7 46 STRA 501 — 5.03 5.03 — 7 .3 8 7 .3 8 48 ICHN 7 4.88 — 4.88 0 .3 3 — 0 .3 3 4 LYCO 10 4.74 — 4.74 1 .6 7 — 1 .6 7 41 LAMP 502 — 2.86 2.86 — 2 .3 3 2 .3 3 4 CLUB 4 1.78 0.92 2.70 0 .6 7 0 .6 7 1 .3 3 41 CURC 1 — 2.66 2.66 — 0 .6 7 0 .6 7 41 ELAT 4 — 2.44 2.44 — 0 .3 3 0 .3 3 46 RHAG 2 2.41 — 2.41 0 .3 3 — 0 .3 3 41 CURC 13 — 2.36 2.36 — 0 .3 3 0 . 33 4 LYCO 5 2.29 — 2.29 0 .3 3 — 0 .3 3 41 STAP 206 — 2.18 2.18 — 1 .6 7 1 .6 7 39 CICA 1 2.08 — 2.08 1 .0 3 — 1 .0 0 27 COEN 8 2.00 — 2.00 0 .3 3 — 0 .3 3 46 DROS 1 1.63 — 1.63 1 3 .6 7 — 1 3 .6 7 2 PHAJ 1 1.58 — 1.58 0 .6 7 — 0 .6 7 39 CICA 28 0.74 0.74 1.48 0 .6 7 0 .6 7 1 .3 3 28 ACRI 501 1.44 — 1.44 0 .3 3 — 0 .3 3 41 CARA 8 — 1.38 1.38 — 0 .3 3 0 .3 3 48 FORM 11 — 1.23 1.23 — 1 .3 3 1 .3 3 46 STRA 1 1.21 — 1.21 1 .0 0 — 1 .0 0 48 TENT 502 — 1.20 1.20 - 0 .3 3 0 .3 3 41 CARA 19 — 1.10 1.10 — 0 .3 3 0 .3 3 45 MICR 506 0.88 — 0.88 0 .6 7 — 0 .6 7 40 CHRJ 1 0.77 — 0.77 0 .3 3 — 0 .3 3 41 CARA 11 - 0.54 0.54 — 1 .0 0 1 .0 0 263 TABLE L8. CONTINUED. 5 ER13D=14 MAY-4 JUNE 1979 PL3T=0F------ORDER FAMILY MORPH HB10 LBIO BIOMASS HDEN LDEN DENSITY 10 JULI I — 60.80 60.80 153.70 153.70 39 CICA 809 35.32 0.78 36.10 26.33 1.33 27.67 41 CHRY 28 11.80 11.80 23.60 0.33 0.33 0.67 9 CLEI 1 0.09 18.64 18.73 0.33 27.67 28.01 41 CURC 16 — 17.02 17.02 — 6.67 6.67 39 CICA 36 13.50 0.91 14.42 9.00 0.67 9.67 48 FORM 5 1.19 11.10 12.29 4.33 40.33 44.67 28 TETT 804 7.38 4.30 11.67 0.33 0.33 0.67 5 PORC 1 — 11.65 11.65 — 3.67 3.67 41 ELAT 5 — 10.14 10.14 — 0.67 0.67 45 NOCT 564 — 9.98 9.98 — 0.33 0.33 4 LYCO 26 — 8.42 8.42 — 0.33 0.33 41 CURC 11 — 8.32 8.32 — 2.33 2.33 48 FORM 17 0.52 7.44 7.96 1.00 14.33 15.33 2 PHAJ 1 7.12 0.02 7.14 3.00 0.67 3.67 41 CURC 13 — 6.75 6.75 — 1.00 1.00 41 CURC 14 — 6.65 6.65 — 0.67 0.67 39 CICA 1 6.23 — 6.23 3.00 3.00 48 TENT 505 — 6.11 6.11 — 0.33 0.33 41 CURC 29 — 4.66 4.66 - 2.00 2.00 41 STAP 132 — 4.31 4.31 — 1.33 1.33 39 CICA 517 — 3.99 3.99 — 10.00 10.00 17 LITH 4 0.38 3.52 3.90 1.67 11.13 12.79 45 MI CR 900 3.82 — 3.82 0.67 — 0.67 38 REDJ 504 — 3.60 3.60 — 0.33 0.33 48 FORM 29 2.41 1.05 3.46 1 .0 0 0.67 1.67 41 CANT 501 — 2.82 2.82 — 2.33 2.33 28 ACRI 803 2.76 — 2.76 0.33 0.33 48 FORM 6 — 2.61 2.61 — 14.33 14.33 45 MI CR 999 2.20 — 2.20 0.33 — 0.33 45 MICR 510 2.17 — 2.17 0.33 — ' 0.33 39 MEMB 2 2.16 — 2.16 0.33 — 0.33 4 LYCO 5 2.10 — 2.10 0.33 — 0.33 45 NOCT 515 — 1.89 1.89 — 0.33 0.33 41 LAMP 502 — 1.72 1.72 — 1.33 1.33 39 CERC 801 1.03 0.66 1.69 0.33 0.33 0.67 39 CICA 4 1.64 — 1.64 4.33 — 4.33 43 PANO 2 1.60 — 1.60 0.33 — 0.33 — — 46 TABA 4 1.57 1.57 0.33 0.33 264 45 NOCT 551 1.48 — 1.48 0.33 — 0.33 41 CARA 50 — 1.38 1.38 0.33 0.33 41 LASR I — 1.35 1.35 - 0.33 0.33 TABLE 18. CONTINUED. PERI0D*14 MAY-4 JUNE 1979 PL3T=0F ORDER FAMILY MORPH HBIO LBIO BIOMASS HDEN LDEN DENSITY 41 c o c c 11 1 .1 9 — 1 .1 9 0 .3 3 0 .3 3 41 CARA 49 1 .1 4 — 1 .1 4 0 .3 3 — 0 .3 3 8 POLY 2 — 1 .0 3 1 .0 3 0 .6 7 0 .6 7 46 RHAG 1 0 .7 4 — 0 .7 4 o733 — 0 .3 3 4 PISA 601 0 .7 3 — 0 .7 3 0 .3 3 — 0 .3 3 48 CHRK 1 — 0 .5 3 0 .5 3 — 0 .3 3 0 .3 3 46 ANTV 1 0 .3 4 — 0 .3 4 0 .3 3 0 .3 3 46 ACAB 1 0 .2 4 — 0 .2 4 I . 00 1 .0 0

PERIOD«lO-22 JUNE 1979 PLDT»77A ORDER FAMILY MORPH HBIO LBIO BIOMASS HDEN LDEN DENSITY 39 CICA 9 34.11 _ 34.11 6.67 6 .6 7 28 ACRI 1 22.91 — 22.91 0.33 0.33 28 ACRI 501 10.50 — 10.50 4.67 — 4.67 41 SCAR 503 — 7.38 7.38 0.33 0.33 39 CICA I 5.54 — 5.54 2767 2.67 4 THOM 3 1.04 4.39 5.43 0.33 0733 0.67 4 THOM 12 5.33 — 5.33 0.33 0.33 41 CURC I — 5.31 5.31 1.33 1.33 41 CARA 8 — 3.61 3.61 — 0.67 0.67 10 PARA 6 — 3.48 3.48 — 0.33 0.33 41 CURC 5 0.70 2.11 2.81 0.33 1.00 1.33 39 CERC 1 2.72 — 2.72 1.00 1.00 2 PHAJ 1 2.69 — 2.69 0.33 — 0.33 39 CICA 805 0.26 2.15 2.41 0.33 2.33 2.67 41 CARA 19 — 1.96 1.96 0.33 0.33 46 STRA 501 0.01 1.91 1.92 0. 33 1.33 1.67 39 CICA 46 1.79 — 1.79 6.33 6.33 4 LYCO 10 1.79 — 1.79 0.67 — 0.67 28 TETT 803 1.61 0.07 1.68 2.33 0.67 3.00 4 LYCO 8 1.59 — 1.59 0.67 — 0.67 46 LAUX 1 1.34 — 1.34 1.33 — 1.33 41 BYRR 1 — 1.25 1.25 — 1.67 1.67 46 TIPU I 1.12 — 1.12 0.33 0.33 48 ICHN 12 0.33 0.68 1.00 0.33 0.33 0.67 — — 38 MIRI 2 0.99 0.99 0.67 0.67 265 41 CARA 51 — 0.93 0.93 — 0.33 0.33 38 MIRI 1 0.89 — 0.89 0.33 0. 33 46 STRA 503 - 0.87 0.87 0.33 0.33 TABLE 18. CONTINUED. ------PERIO D -lO -22 JUNE L979 PLOT=77A ------ORDER FAMILY MORPH HBIO LBIO BIOMASS HDEN LOEN DENSITY 4 CLUB 7 — 0.59 0.59 — 0.33 0.33

7 7 Q PERI0D*10-22 JUNE 1979 PLOT= r i d • • • • “ •■ ORDER FAMILY MORPH HBIO LBIO BIOMASS HDEN LDEN DENSITY 39 CICA 9 51.16 51.16 10.00 10.00 41 CURC 1 — 25.25 25.25 — 6.34 6.34 28 ACRI 501 13.70 — 13.70 2.67 2.67 39 CERC 1 12.71 0.91 13.62 4.67 0.33 5.00 28 GRYK 502 2.12 9.15 11.27 8.67 39.68 48.35 LO PARA 6 — 7.43 7.43 — 0.33 0.33 46 STRA 501 1.04 6.11 7.16 0.33 2.67 3.00 38 NAB I 3 5.57 — 5.57 0.67 — 0.67 A THOM 3 — 4.85 4.85 — 0.33 0.33 A ARAN 101 4. 84 — 4.84 0.33 0.33 4 LYCO 7 4.05 0.78 4.83 7.00 1.67 8.67 39 CICA 46 4.33 0.09 4.42 15.33 0.33 15.67 39 CICA 805 — 4.34 4.34 5.00 5.00 41 BYRR 1 0.25 4.00 4.25 0.33 5.33 5.67 4 LYCO 8 2.99 0.87 3.86 0.67 0.33 1.00 39 CICA 1 2.77 — 2.77 1.33 1.33 41 CARA 8 — 2.56 2.56 0.67 0.67 38 MIRI 2 2.48 — 2.48 1.67 • — 1.67 41 CURC 4 0.73 1.45 2.18 0.33 0.67 1.00 46 STRA 503 — 1.88 1.88 — 2.67 2.67 39 CICA 5 0.56 0.98 1.54 0.33 1.00 1.33 46 TIPU 1 1.50 — 1.50 0.33 — 0.33 39 CICA 809 1.45 — 1.45 0.67 — 0.67 46 TIPU 501 — 1.42 1.42 — 0.33 0.33 41 CARA 19 1.14 — 1.14 0.33 — 0.33 45 MICR 579 1.06 — 1.06 0.33 — 0 .3 3 48 ICHN 30 0.97 — 0.97 0.33 — 0.33 39 CICA 42 0.64 — 0.64 1.33 — 1.33 41 CARA 42 0.17 0.43 0.60 0.33 1.33 1.67 38 MIRI 899 0.46 — 0.46 0.33 — 0.33 39 CICA 13 0.21 0.21 0.42 0.33 0.33 0. 67 - -

41 STAP 253 0.30 0.30 0.33 0.33 266 TABLE 18. CONTINUED. PERIOD=lO-22 JUNE 1979 PL3T=75A ORDER FAMILY MORPH HBIO LBIO BIOMASS HDEN LDEN DENSITY 39 CICA 9 1 0 7 .4 4 3 .4 1 110.85 21.00 0.67 21.67 46 STRA 501 0 .6 8 2 7 .8 4 28.52 0.33 9.67 10.00 39 CICA 48 1 2 .6 0 0 .2 8 12.88 15.00 0.33 15.33 4 THON 3 1 1 .8 4 11.84 1.00 — 1.00 45 NOCT 547 11 .5 1 11.51 — 0.67 0.67 41 CARA 76 — 1 1 .3 2 11.32 — 0.33 0.33 41 BYRR 502 — 9 .8 7 9.87 — 1.67 1.67 2 PHAJ 1 .9.38 9.38 0.67 — ' 0.67 4 LYCO 10 1 .4 0 7^75 9.15 0.33 5.67 6.00 28 ACRI 501 8 .1 3 0 .7 0 8.83 4.00 0.33 4.33 45 NOCT 8 8 .6 6 — 8.66 0.33 — 0.33 39 CERC 1 7 .2 6 0 .9 1 8.17 2.67 0.33 3.00 39 CICA 805 — 7 .9 3 7.93 — 18.79 18.79 10 JULI I 0 . 06 7 .5 6 7.62 3.33 21.01 24.34 41 NITI 2 1 .2 1 5 .4 5 6.66 3.33 15.00 18.33 39 CICA 848 5 .7 5 0 .1 1 5.86 15.00 0.33 15.33 28 TETR . 7 5 .8 0 5.80 0.33 — 0.33 48 FOR* 11 0 .2 3 4752 4.75 0.33 6.67 7.00 39 CICA 28 3 .3 3 1 .1 1 4.44 3.00 1.00 4.00 46 OROS 1 3 .6 6 3.66 30.67 30.67 46 STRA 1 3 .2 2 0 .4 0 3.62 2.67 0.33 3.00 45 PIER 2 3 .5 3 3.53 0.33 — 0.33 39 CICA 1 3 .4 6 — 3.46 1.67 — 1.67 39 CICA 809 2 .5 4 — 2.54 1.33 — 1.33 41 CURC 13 — 2 .3 6 2.36 — 0.33 0.33 41 CHRY 11 2 .1 7 2.17 1.33 — 1.33 41 CARA 28 — 1 .9 6 1.96 - 0.33 0.33 4 GNAP 1 1 .8 9 1.89 0.33 — 0.33 41 LANG 2 1 . 82 1.82 - 0.67 0.67 41 STAP 132 — 1 .2 9 1.29 — 0.33 0.33 4 LYCO 8 1 .1 4 1.14 0.33 — 0.33 46 STRA 503 1 .1 3 1.13 — 1.67 1.67 41 STAP 206 - 1 .0 9 1.09 — 0.67 0.67 38 MIRI 505 0 .8 1 0.81 0.67 — 0.67 41 CURC 4 — 0 .7 3 0.73 — 0.33 0.33 48 FORM 12 — 0 .5 5 0.55 — 3 .0 0 3.00 41 BYRR 1 - 0 .2 5 0.25 - 0.33 0.33 267 TABLE 18. CONTINUED. PERIOD»lO-22 JUNE 1979 PL3T=75B ORDERFAMILY MORPH HBIO LBIO BIOMASS HDEN LDENDENSITY 39 CICA 9 2 0 8 .0 6 5 .1 2 213.18 40.67 1.00 41.67 *5 ARCT 531 4 5 .8 7 — 45.87 0.33 — 0.33 48 FORM 6 5 .0 3 2 0 .3 1 25.35 27.67 111.68 139.35 39 CICA 805 0.31 21.74 22.05 1.00 56.80 57.80 39 CICA 809 1 4 .8 1 0 .3 6 15.17 5.33 0.33 5.67 46 STRA 501 0 .7 6 1 1 .7 5 12.51 0.33 6.13 6.46 48 FORM 11 1 .1 3 9 .9 5 11.08 1.67 14.67 16.33 4 THOM 12 — 1 0 .1 2 10.12 — 6.00 6.00 28 ACRI 501 9 .2 9 0 .4 3 9.72 4.00 0.33 4.33 39 CERC 1 7 .2 6 1 .8 2 9.08 2.67 0.67 3.33 38 MIRI 1 8 .0 3 8.03 3.00 — 3.00 38 MIRI 3 7 .9 9 — 7.99 1.67 — 1.67 41 CARA 1 — 7 .1 1 7.11 — 0.33 0.33 — — 10 JULI 1 CO in 6 .9 9 6.99 1.33 1.33 39 CICA 1 • — 4.85 2.33 — 2.33 45 NOCT 539 — 4 .8 2 4.82 — 0.67 0.67 4 SALT 808 4 .3 5 0 .1 8 4.53 4.00 0.33 4. 33 41 STAP 132 — 4 .0 9 4.09 - 1.33 1.33 28 TETT 501 3 .4 7 — 3.47 1.00 — 1.00 48 FORM 12 0 .3 0 2 .9 2 3.23 1.67 16.00 17.67 46 DROS I 2 .6 6 2.66 22.33 — 22.33 38 MIRI 2 2 .4 8 — 2.48 1.67 — 1.67 4 LYCO 5 2 .2 9 — 2.29 0.33 — 0.33 4 LYCO 10 2 .1 3 — 2.13 0.67 — 0.67 41 CARA 8 — 2 .0 2 2.02 —• 0.33 0.33 41 CARA 28 - 1 .8 3 1.83 — 0.33 0.33 46 TIPU 501 — 1 .7 6 1.76 — 0.33 0.33 4 SALT 5 1 .5 8 1.58 0.33 — 0.33 41 PTIJ 1 — 1. 25 1.25 — 0.67 0.67 39 CICA 30 1 .1 9 1.19 0.33 — 0.33 41 CLER I 1 .1 7 — 1.17 0.33 — 0.33 41 BYRR 1 — 1 .0 0 1.00 — 1.33 1.33 10 PARA 6 — 0 .8 7 0.87 — 0.33 0.33 48 HALI 1 0 .8 6 0.86 0.33 — 0.33 46 TIPU 1 0 .8 1 — 0.81 0.33 — 0.33 46 STRA 1 0 .8 1 — 0.81 0.67 — 0.67 41 CURC 5 0 .7 0 0.70 — 0.33 0.33 46 DOLI 11 0 .5 4 0.54 0.33 — 0.33 41 CHRY 50 — 0 .5 1 0.51 - 0.33 0.33 268 TABLE L8. CONTINUED. ------PERI0D=10-22 JUNE 1979 PL3T=CVA ------ORDERFAMILYMORPH HBIO LBIO BIOMASS HDEN LDEN DENSITY 10 JULI 1 0 .6 3 123.72 124.35 4.00 194.06 198.06 5 PORC 1 — 4 5 .1 1 4 5 .1 1 — 9.67 9.67 2 PHAJ 1 1 6 .1 9 6 .8 2 2 3 .0 2 2.67 0.67 3.33 VI CARA 1 — 1 4 .2 2 1 4 .2 2 — 0.67 0.67 38 MIRI 5 1 .1 0 9 .9 4 1 1 .0 5 0.67 6.00 6.67 41 CARA 25 — . 9 .4 6 9 .4 6 — 0.33 0.33 41 CURC 5 0 .7 0 7 .7 3 8 .4 3 0.33 3.67 4.00 39 CICA 28 2 .5 9 5 .1 8 7 .7 7 2.33 4.67 7.00 41 CURC 14 — 7 .4 7 7 .4 7 — 0.67 0.67 45 NOCT 515 — 7 .1 0 7 .1 0 — 0.67 0.67 41 NITI 2 2 .1 8 4 .7 3 6 .9 1 6.00 13.00 19.00 10 PARA 6 — 6 .8 5 6 .8 5 — 0.33 0.33 48 FORM 6 3 .0 3 3 .7 0 6 .7 3 16.67 20.33 37.00 8 POLY 2 — 6 .2 6 6 .2 6 — 1.67 1.67 46 STRA 501 - 6 .0 1 6 .0 1 — 12.76 12.76 48 ANDR 1 5 .6 3 — 5 .6 3 0.33 — 0.33 39 CERC 1 3.63 1.82 5.45 1.33 0.67 2.00 46 DROS 1 4 .8 9 — 4 .8 9 41.00 — 41.00 9 CLE1 1 0 .6 6 4 .1 9 4 .8 6 0.33 2.00 2.33 38 MIRI 1 4 . 46 — 4 .4 6 1.67 — 1.67 41 CARA 8 — 3 .6 7 3 .6 7 — 0.67 0.67 39 CICA 805 - 3 .5 8 3 .5 8 — 3.00 3.00 41 CARA 19 — 3 .4 2 3 .4 2 - 1.00 1.00 45 NOCT 542 2 .9 6 0 .2 3 3 .1 9 0.33 2.13 2.46 41 ELAT 4 — 2 .4 4 2 .4 4 — 0.33 0. 33 48 FORM 11 — 2 .2 6 2 .2 6 — 3.33 3.33 41 CHRY 51 — 2 .1 9 2 .1 9 — 0.33 0.33 46 STRA 1 2 .0 1 — 2 .0 1 1.67 — 1.67 39 CICA 36 1 .3 1 — 1 .3 1 0.67 — 0.67 41 cocc 1 1 .0 6 — 1 .0 6 0.33 — 0.33 38 C YON 1 — 0 .9 4 0 .9 4 — 0.67 0.67 41 CURC 4 — 0 .7 3 0 .7 3 — 0.33 0.33 38 NABI 1 0 .6 6 — 0 .6 6 0.33 — 0.33 41 LAMP 2 - 0 .6 3 0 .6 3 - 0.33 0.33 4 LYCO 27 0 .6 0 — 0 .6 0 0.33 — 0.33 4 AGEL 711 0 .3 4 — 0 .3 4 0.33 — 0.33 4 LYCO 8 0 .3 1 — 0 .3 1 0.33 — 0.33 269 TABLE 18. CONTINUED. PERIOD*lO-22 JUNE 1979 PL3T=CVB ORDER FAHILf MORPH HBIO LBIO BIOMASS HDEN LDEN DENSITY 10 JULI 1 0.88 137.39 138.27 0 .6 7 5 8 .6 8 5 9 .3 4 5 PORC 1 — 31.79 31.79 — 9 .3 4 9 .3 4 41 CURC 5 — 10.53 10.53 — 5 .0 0 5 .0 0 9 ABAC 8 — 9.94 9.94 — 0 .3 3 0 .3 3 38 PENT 1 9.47 — 9.47 0 .3 3 — 0 .3 3 41 CARA 25 9.46 — 9.46 0 .3 3 — 0 .3 3 8 POLY 2 — 7.73 7.73 — 2 .0 0 2 .0 0 39 CICA 36 5.59 1.83 7.42 4 .0 3 1 .3 3 5 .3 3 45 GEOM 505 — 7.41 7.41 — 0 .3 3 0 .3 3 39 CERC 1 6.36 0.91 7.26 2 .3 3 0 .3 3 2 .6 7 39 CICA 9 6.82 — 6.82 1 .3 3 — 1 .3 3 48 FORM 11 0.23 5.20 5.43 0 .3 3 7 .6 7 8 .0 0 41 COCC 1 2.12 1.06 3.18 0 .6 7 0 .3 3 1 .0 0 39 CICA 41 3.11 — 3.11 6 .3 3 — 6 .3 3 46 DROS 1 3.02 — 3.02 2 5 .3 3 — 2 5 .3 3 38 NABI 3 2.79 — 2.79 0 .3 3 — 0 .3 3 39 CICA 28 0.37 2.22 2.59 0 .3 3 2 .0 0 2 .3 3 kl ELAT k — 2.44 2.44 — 0 .3 3 0 .3 3 k8 FORM b — 2.36 2.36 — 1 3 .0 0 1 3 .0 0 k THOM 50k — 2.34 2.34 — 1 .3 3 1 .3 3 k LYCO 10 2.05 — 2.05 1. 03 — 1 .0 0 39 CICA 805 — 2.00 2.00 — 5 .3 3 5 .3 3 41 PTIJ I — 1.87 1.87 — 1 .0 0 1 .0 0 46 STRA 8 1.74 — 1.74 0 .3 3 — 0 .3 3 41 CHRY 52 — 1.68 1.68 — 0 .3 3 0 .3 3 kl STAP 132 - 1.62 1.62 — 0 .6 7 0 .6 7 39 ACAN 801 1.35 0.16 1.52 1 1 .6 7 3 .5 9 1 5 .2 5 41 CARA 19 — 1.33 1.33 — 0 .3 3 0 .3 3 kb SYRP 1 0.62 — 0.62 0 .6 7 — 0 .6 7 k5 MI CR 515 — 0.58 0.58 — 0 .6 7 0 .6 7 k5 MICR 508 0.55 — 0.55 0 .3 3 — 0 .3 3 38 MIRI 5 — 0.55 0.55 — 0 .3 3 0 .3 3 41 CHRY 14 — 0.55 0.55 — 0 .3 3 0 .3 3 270 TABLE 18. CONTINUED. PERI0D*10- JUNE 1979 PLOT = 0 F ------ORDER FAMILY MORPH HBIO LBIO BIOMASS HDEN LDEN DENSITY 39 CICA 9 8 6 .9 8 1.71 88.68 17.00 0.33 17.33 28 TETT 804 6 2 .4 3 — 62.43 0.67 0.67 10 JULI 1 0 .7 3 43.35 44.07 2.00 76.01 78.01 9 CLEI 1 1 .1 7 18.45 19.62 0.67 24. 34 25.00 10 PARA 6 1 1 .6 7 5.74 17.41 1.00 17.34 18.34 48 FORM 5 2 .1 1 15.23 17.34 7.67 55.34 63.01 4 ARAN 811 1 3 .9 3 — 13.93 0.33 — 0.33 48 FORM 18 — 11.67 11.67 — 45.35 45.35 A SALT 13 1 1 .0 3 — 11.03 0.33 — 0.33 41 CURC 15 9.33 9.33 - 0.67 0.67 9 ABAC 8 0 .0 7 8.83 8.90 3.33 8.34 11.67 28 TETT 508 8 .5 4 — 8.54 1.33 — 1.33 39 CICA 36 8 .4 4 — 8.44 3.33 — 3.33 41 CHRY 14 4 .3 8 3.83 8.20 2.67 2.33 5.00 45 PIER 501 7 .4 2 — 7.42 0.33 0.33 2 PHAJ I 3 .8 7 3.42 7.28 1.33 0.67 2.00 39 CERC 1 4 .5 4 2.72 7.26 1.67 1.00 2.67 39 CICA 32 6 .0 2 — 6.02 8.00 — 8.00 39 CICA 48 4 .7 6 0.28 5.04 5.67 0.33 6.00 45 MICR 982 4 .7 9 — 4.79 I.00 — 1.00 41 CURC 16 — 4.25 4.25 - 1.67 1.67 39 CICA 28 1 .8 5 2.22 4.07 1.67 2.00 3.67 41 PTIJ 1 0 .5 9 3.03 3.62 0.33 1.33 1.67 48 FORM 1 2 .1 1 1.39 3.50 1.33 1.00 2.33 39 CICA 809 3 .4 1 — 3.41 1.33 1.33 8 POLY 1 3.29 3.29 — 8.00 8.00 5 PORC 1 — 3.15 3.15 — 1.33 1.33 28 ACRI 501 3 .1 4 — 3.14 1.00 — 1.00 48 HALI 9 3 .1 1 — 3.11 0.67 — 0.67 41 CHRY 501 — 2.91 2.91 - 2.79 2.79 38 NABI 3 2 .7 9 — 2.79 0.33 0.33 39 CICA 1 2 .7 7 — 2.77 1.33 — 1.33 39 CICA 4 2 .5 2 — 2.52 6.67 — 6.67 41 CHRY 22 2.49 2.49 — 0.67 0.67 48 HYME 977 — 2.33 2.33 — 8.33 8.33 41 CHRY 55 1 .1 9 1.05 2.25 0.33 0.33 0.67 17 LITH 4 — 2.14 2.14 - 5.00 5 .0 0 41 CARA 50 — 2.11 2.11 — 0.67 0.67 — — 48 FORM 17 2.08 2.08 4.00 4.00 271 41 STAP 132 — 2.04 2.04 — 0.67 0.67 41 CARA 64 — 1.98 1.98 — 3 .3 3 3 .3 3 41 CURC 13 - 1.86 1.86 - 0.33 0.33 TABLE 18. CONTINUED. PERI0D=l0-22 JUNE 1979 PL3T=0F ORDER FAMILY MORPH HBIO LBIO BIOMASS HDEN LDEN DENSITY *8 TENT 2 1 .7 4 1.74 0.33 _ 0.33 *6 TABA 3 1 .5 7 — 1.57 0.67 — 0.67 41 CURC 25 — 1 .5 5 1.55 - 0.67 0.67 41 CURC 29 — 1 .5 5 1.55 — 0.67 0.67 39 CICA 41 1 .4 7 — 1.47 3.00 — 3.00 4 LYCO 4 — 1 .4 0 1.40 - 0.33 0.33 4 GNAP 502 — 1 .3 3 1.33 — 0.33 0.33 41 CURC 1 1 .3 3 — 1.33 0.33 0.33 41 STAP 206 — 1 .1 8 1.18 — 0.67 0.67 4 ARAN 7 1 .1 8 — 1.18 0.33 — 0.33 41 CHRY 11 1 .0 9 1.09 — 0.67 0.67 41 ELAT 503 — 1.0 2 1.02 — 2.79 2.79 38 LYGA 5 — 0 .9 7 0.97 — 1.00 1.00 46 MUSC 13 0 .9 5 — 0.95 0.33 — 0.33 38 RHOP 2 — 0 .8 6 0.86 — 0.33 0.33 41 CURC 12 — 0 .7 8 0.78 — 0.33 0.33 45 NOCT 518 — 0 .6 1 0.61 — 0.33 0.33 39 CICA 11 0 .4 2 — 0.42 0.33 — 0.33 41 ELAT 504 *• 0 .4 1 0.41 - 0.33 . 0.33

• PER 100=10 -22 JUNE 1979 PL0T=78 ORDER FAMILY MORPH HBIO LBIO BIOMASS HDEN LDEN DENSITY 39 CERC 1 8 1 1 .8 5 6 6 .2 9 8 7 8 .1 4 2 9 8 .0 0 2 4 .3 3 3 2 2 .3 3 41 CURC 2 1 1 .0 5 1 3 2 .5 4 1 4 3 .5 9 0 .6 7 8 .0 0 8 .6 7 41 CURC I 2 5 .2 4 7 4 .4 1 9 9 .6 5 6 .3 3 1 8 .6 7 . 2 5 .0 0 39 CERC 801 6 2 .5 8 6 .4 1 6 8 .9 9 3 2 .3 3 4 .0 0 3 6 .3 3 28 ACRI 501 23.34 1 6 .2 2 3 9 .5 6 3 .6 7 1 .3 3 5 .0 0 41 CURC 501 32.11 4.49 3 6 .6 0 2 5 .6 7 4 .7 9 3 0 .4 6 48 APID 3 3 3 .5 6 — 3 3 .5 6 1 .3 3 — 1 .3 3 41 CURC 901 3 3 .2 6 — 3 3 .2 6 1 8 .3 3 — 1 8 .3 3 46 DROS 1 2 4 .3 0 0 .8 7 2 5 .1 7 2 0 3 .6 7 7 .3 3 2 1 1 .0 0 48 APID 5 2 5 .0 0 — 2 5 .0 0 0 .3 3 — 0 .3 3 38 PENT 503 1 7 .3 0 6 .3 5 2 3 .6 4 5 .0 0 1 .0 0 6 .0 0 41 CANT 7 2 1 .9 9 — 2 1 .9 9 1 .0 0 — 1 .0 0 39 APHI 2 1 3 .7 9 3 .0 3 1 6 .8 2 2 1 8 .3 3 6 4 .1 5 2 8 2 .4 8 38 MIRI 5 1 3 .2 5 1 .6 6 14.91 8 .0 0 1 .0 0 9 .0 0 41 CURC 3 4 . 83 6 .9 0 1 1 .7 4 2 .3 3 3 .3 3 5 .6 7 39 CICA 805 5 .2 0 5 .1 2 1 0 .3 2 4 .6 7 4 .0 0 8 .6 7 48 ANDR I 1 0 .0 9 1 0 .0 9 0 .3 3 0 .3 3 TABLE 18. CONTINUED. ■ PERI0D*10-22 JUNE 1979 PLOT = 7 8 ------ORDER FAMILY MORPH HBIO LBIO BIOMASS HDEN LDEN DENSITY 41 CURC 903 8.17 0.63 8.80 8.67 0.67 9.33 THOM 1 — 7.63 7.63 — 0.33 0.33 41 CURC 4 2.91 4.36 7.27 1.33 2.00 3.33 45 NOCT 523 6.79 0.43 7.22 1.67 0.33 2.00 38 MIRI L 6.25 0.89 7.14 2.33 0.33 2.67 46 LAUX I 7.03 — 7.03 7.00 7.00 46 SCHC 501 0.40 6.62 7.03 1.00 16.67 17.67 46 STRA 501 1.49 4.96 6.45 7.33 234.08 241.42 46 TIPU L 6.36 — 6.36 1.67 1.67 39 CICA I 6.23 — 6.23 3.00 — 3.00 4 THOM 3 — 6.13 6.13 — 0.33 0.33 45 ARCT 509 5.26 — 5.26 0.33 0.33 41 CURC 902 4.94 — 4.94 0.33 — 0.33 39 CICA 13 4.20 0.21 4.41 6.67 0.33 7.00 38 NASI 801 3.33 1.04 4.37 5.33 2.00 7.33 4 ARAN 3 4.15 — 4.15 0.33 0.33 48 HYME 901 3.71 — 3.71 13.67 — 13.67 41 STAP 507 0.01 3.59 3.60 0.33 9.67 10.00 46 STRA 1 3.22 — 3.22 2.67 2.67 41 cocc 1 1.06 2.12 3.18 0.33 0.67 1.00 48 ICHN 38 — 2.58 2.58 0.33 0.33 46 TACK 9 2.12 — 2.12 0. 33 0.33 41 STAP 206 — 1.86 1.86 0.67 0.67 41 CHRY 40 0.77 1.03 1.80 1.00 1.33 2.33 45 NOCT 3 1.50 — 1.50 0.33 0.33 46 TIPJ 4 1.50 — 1.50 0.33 — 0.33 38 NABI 1 0.66 0.66 1.32 0.33 0.33 0.67 41 CURC 5 — 0.70 0.70 0.33 0.33

P E R I0D = l2-20 JULY 1979 PLQT=77A ORDER FAMILY MORPH HBIO LBIO BIOMASS HDEN LDEN DENSITY 28 ACRI 501 131.98 1 7 .7 7 149.76 15.00 0 .6 7 1 5 .6 7 39 CICA 9 3 0 .7 0 — 3 0 .7 0 6 .0 0 6 .0 0 4 THOM 12 1 3 .5 9 — 1 3 .5 9 0 .3 3 — 0 .3 3 28 GRYK 502 7 .7 8 1.2 1 8 .9 9 9 .0 0 1 .6 7 1 0 .6 7 28 TETT 803 8 .2 9 — 8 .2 9 1 .3 3 1 .3 3 39 APHI 2 7 .0 2 0 .2 9 7 .3 1 9 7 .3 3 6 .7 1 1 0 4 .0 5 N> 46 STRA 505 - 7 .0 7 7 .0 7 — 0 .6 7 0 .6 7 U> 41 CARA 8 — 6 .9 1 6 .9 1 - 1 .3 3 1 .3 3 TABLE 18. CONTINUED. PERIOD=12-20 JULY 1979 PL0T=77A ORDER FAMILY MORPH HBIO LBIO BIOMASS HDEN LDEN DENSITY 1 0 PARA 6 6.29 6.29 0.33 0.33 39 CICA 5 0.56 5.18 5.74 0.33 6.67 7.00 A LYCO 1 0 3.80 — 3.80 1 . 0 0 — 1 . 0 0 39 CERC 1 3.63 — 3.63 1.33 — 1.33 28 GRYK 803 3.56 — 3.56 0.33 — 0.33 4 ARAN 3 — 1.95 1.95 — 0.33 0.33 41 CARA 19 — 1.65 1.65 — 0.33 0.33 41 STAP 206 — 1.39 1.39 — 0.67 0.67 41 ELAT 1 — 1.25 1.25 — 0.33 0.33 4 CLUB 4 0. 13 1 . 0 1 1.14 0.33 0.33 0.67 41 cocc I 1.06 — 1.06 0.33 0.33 46 MUSC 7 1.05 — 1.05 0.33 — 0.33 46 DOLI 1 1 0.95 — 0.95 0.33 — 0.33 41 BYRR 1 — 0.50 0.50 - 0.67 0.67

PER I0D *12-20 JULY 1979 PLOT*77B ORDER FAMILY MORPH HBIO LBIO BIOMASS HDEN LDEN DENSITY 28 ACRI 501 2 5 1 .4 6 1 6 .5 4 2 6 8 .0 0 3 2 .3 3 1 .0 0 3 3 .3 3 39 APHI 2 58.52 21.44 79.96 941.00 262.65 1203.65 28 GRYK 502 27.94 1.56 2 9 .5 0 2 3 .0 0 2 .6 7 2 5 .6 7 39 CERC 1 1 7 .2 5 — 1 7 .2 5 6 .3 3 — 6 .3 3 39 CICA 9 1 7 .0 5 — 1 7 .0 5 3 .3 3 — 3 .3 3 46 STRA 501 — 1 3 .9 4 1 3 .9 4 5 .0 0 5 .0 0 4 LYCO 23 1 3 .6 3 — 1 3 .6 3 0 .3 3 — 0 .3 3 45 NOCT 524 1 1 .4 5 0 .8 0 1 2 .2 6 0 .6 7 0 .6 7 1 .3 3 4 SALT 8 1 1 .0 3 — 1 1 .0 3 0 .3 3 0 .3 3 45 NOCT 7 8 .6 6 — 8 .6 6 0 .3 3 — 0 .3 3 28 TETT 803 7 .6 2 — 7 .6 2 1 .0 3 — 1 .0 0 39 CICA 801 6 .1 8 0 .5 4 6 .7 2 1 3 .0 0 1 .0 0 1 4 .0 0 45 NOCT 11 5 .9 8 — 5 .9 8 0 .3 3 — 0 .3 3 41 CURC 2 — 5 .5 2 5 .5 2 0 .3 3 0 .3 3 41 CURC 1 2 .6 6 2 .6 6 5 .3 1 0 .6 7 0 .6 7 1 .3 3 39 CICA 5 1 .6 9 3.37 5.06 0.67 3 .6 7 4 .3 3 45 NOCT 542 4 .7 6 — 4 .7 6 0 .6 7 — 0 .6 7 39 CICA 1 4 .1 6 — 4 .1 6 2 .0 3 — 2 . 00 4 ARAN 501 3 .8 1 — 3 .8 1 4 .0 3 — 4 .0 0 45 NOCT 539 0.06 3.29 3.35 0 .3 3 2 .4 6 2 .7 9 41 CANT 7 2 .9 6 — 2 .9 6 0 .3 3 0 .3 3 39 CICA 517 — 2 .2 9 2 .2 9 - 9 7 13 9 .1 3 TABLE 18. CONTINUED. — PE R I0D = l2-20 JULY 1979 PL3T»77B FAMILY MORPH HBIO LBIO BIOMASS HDEN LOEN 4 THOM 2 — 2 .1 1 2 .1 1 _ 0 .3 3 41 CURC 5 — 2 .1 1 2 .1 1 — 1 .0 0 41 BYRR L — 2 .0 0 2 .0 0 — 2 .6 7 45 NOCT 529 — 1 .4 8 1 .4 8 — 0 .3 3 41 CARA 8 — 1 .3 8 1 .3 8 — 0 .3 3 39 ISSI I 1 .3 7 — 1 .3 7 1 .6 7 48 ICHN 40 1 .2 5 — 1 .2 5 0 .3 3 — 41 PTIJ 1 — 0 .9 9 0 .9 9 — 0 .3 3 41 ELAT 1 — 0 .8 4 0 .8 4 — 0 .3 3 4 LYCO 7 0 .2 0 0 .6 0 0 .8 0 0 .3 3 1 .0 0 48 FORM 11 — 0 .7 8 0 .7 8 — 0 .6 7 38 NABI i — 0 .6 6 0 .6 6 - 0 .3 3 45 NOCT 515 — 0 .3 7 0 .3 7 - 0 .3 3

-- PERI0D =12-20 JULY 1979 PL0T=75A ER FAMILY MORPH HBIO LBIO BIOMASS HDEN LOEN 28 ACRI 501 1 8 9 .9 0 15.73 205.63 3 4 .3 3 2 .3 3 28 TETT 508 5 7 .6 9 — 5 7 .6 9 0 .3 3 45 NOCT 547 — , 5 6 .9 4 5 6 .9 4 9 .5 9 28 ACRI 1 5 4 .4 0 — 5 4 .4 0 0 .6 7 39 CICA 9 3 9 .2 2 5 .1 2 4 4 .3 4 7 .6 7 1 .0 0 28 ACRI 802 3 8 .8 8 — 3 8 .8 8 0 .3 3 45 NOCT 502 — 1 8 .9 5 1 8 .9 5 1 .3 3 41 CURC 5 0 .7 0 1 7 .5 6 1 8 .2 6 0 . 33 8 .3 3 39 CERC 1 1 5 .4 4 1 .8 2 1 7 .2 5 5 .6 7 0 .6 7 28 TETT 501 1 6 .7 3 — 1 6 .7 3 0 .6 7 39 CICA 5 — 1 5 .2 3 1 5 .2 3 1 7 .3 3 10 PARA 6 — 1 3 .8 4 1 3 .8 4 — 1 .3 3 L0 JULI 1 0 .2 9 12 .3 1 1 2 .6 0 6 .6 7 6 0 .3 5 38 PENT I 9 .4 7 — 9 .4 7 0 .3 3 45 NOCT 529 — 9 .1 2 9 . 12 4 .6 7 48 FORM 6 — 8 .4 9 8 .4 9 — 4 6 .6 7 2 PHAJ I 7 .9 0 — 7 .9 0 0 .3 3 46 STRA 501 — 7 .8 7 7 .8 7 2 4 .3 9 46 DROS 1 5 .2 1 0 .1 2 5 .3 3 4 3 .6 7 1 .0 0 46 SVRP 1 4 .0 2 0 .6 2 4 .6 4 4 .3 3 0 .6 7 48 HALI I 1 .7 2 2 .5 8 4 .3 0 0 .6 7 1 .0 0 28 GRYK 803 — 4 .2 8 4 .2 8 0 .6 7 4 SALT 8 4 .1 0 — 4 .1 0 o7 67 TABLE 18. CONTINUED. - PERI0D=12-20 JULY 1979 PL0T*75A ORDER FAMILY MORPH H8I0 LBIO BIOMASS HDEN LOEN DENSITY VI SCAR 503 _ V. 06 V. 06 0 .3 3 0 .3 3 V8 ICHN VI V.01 — V .01 0 .3 3 0 .3 3 39 CICA 27 3.9V — 3.9V 2 2 .3 3 — 2 2 .3 3 V5 NOCT 55V — 3 .5 8 3 .5 8 0 .6 7 0 .6 7 38 NIRI 1 2 .6 8 0 .8 9 3 .5 7 1 .0 0 0 .3 3 1 .3 3 V6 DIPT 903 3.V 3 — 3.V 3 3 .3 3 — 3 .3 3 39 CICA V8 3 .0 8 0 .2 8 3 .3 6 3 .6 7 0 .3 3 V .00 VI CARA 8 — 3 .2 7 3 .2 7 — 0 .6 7 0 .6 7 39 MEMB V 1 .6 1 1.61 3 .2 2 0 .3 3 0 .3 3 0 .6 7 V5 ARCT 509 3 .1 3 — 3 .1 3 0 .3 3 0 .3 3 28 TETT 803 2 .9 8 — 2 .9 8 0 .6 7 — 0 .6 7 V6 SYRP 50V 2 .3 7 0 .3 3 2 .7 0 5 .3 3 1 .0 0 6 .3 3 VI CARA 69 — 2 .5 1 2 .5 1 0 .3 3 0 .3 3 28 ACRI 50V 2.V 6 — 2.V 6 0 .3 3 0 .3 3 VI CURC IV — 2 .3 6 2 .3 6 0 .3 3 0 .3 3 V LYCO 10 2 .3 3 — 2 .3 3 0 .6 7 0 .6 7 VI CURC I - 1 .3 3 1 .3 3 — 0 .3 3 0 .3 3 V LYCO 7 — 0 .9 1 0 .9 1 — 1 .3 3 1 .3 3 V6 SARC 10 0 .8 6 0 .8 6 0 .3 3 0 .3 3

PERIQD=12—20 JULY ]L979 PLOT® 7Co ______ORDER FAMILY MORPH HBIO L 8 I0 BIOMASS HDEN LDEN DENSITY 39 CICA 9 7 3 .3 3 3 . VI 76.7V I V .33 0 .6 7 1 5 .0 0 28 ACRI 501 57.96 0.97 5 8 .9 3 2 8 .3 3 0 .3 3 2 8 .6 7 39 CERC 1 1 9 .0 7 — 1 9 .0 7 7 .0 0 7 .0 0 28 ACRI 50V 1 7 .7 5 — 17 .7 5 2 .0 0 — 2 .0 0 28 TETT 501 IV. 30 — I V .30 0 .3 3 — 0 .3 3 39 CICA V8 1 3 .VV 0.8V IV . 29 1 6 .0 0 1 .0 0 1 7 .0 0 39 CICA 5 0 .9 8 1 2 .3 3 1 3 .3 1 1 .0 0 I V .33 1 5 .3 3 39 CICA 801 1 1 .9 2 0 .6 1 1 2 .5 3 2 3 .6 7 2 .7 9 2 6 . V6 V8 FORM 11 1 .8 1 9 .9 5 1 1 .7 6 2 .6 7 IV . 67 1 7 .3 3 2 PHAJ 1 1 1 .6 0 — 1 1 .6 0 0 .3 3 0 .3 3 V8 FORM 17 2.9V 7 .9 6 1 0 .9 0 5 .6 7 1 5 .3 3 2 1 .0 0 28 GRYK 801 9 .7 3 — 9 .7 3 2 .6 7 2 .6 7 28 GRYK 502 5 .1 8 2 .2 1 7 .3 9 7 .6 7 2 .0 0 9 .6 7 V8 FORM 6 — 6 .1 2 6 .1 2 — 3 3 .6 7 3 3 .6 7 V THOM 12 5 .8 7 — 5 .8 7 0 .6 7 0 .6 7 28 TETT 803 5 .0 2 — 5 .0 2 3 .0 0 — 3 .0 0 39 CICA 27 V.VO — V.VO 2 5 .0 0 - 2 5 .0 0 TABLE L8. CONTINUED. PERI0D=l2-20 JULY 1979 PL3T=75B ORDER FAMILY MORPH HBIO LBIO BIOMASS HDEN LDEN DENSITY 4 ARAN 102 3 .7 5 _ 3 .7 5 1 .0 0 1 .0 0 4 THOM 8 — 2 . 85 2 .8 5 — 0 .3 3 0 .3 3 48 FORM 12 0 .0 6 1 .9 5 2.01 0.33 10.67 1 1 .0 0 28 GRYK 803 — 1 .8 3 1 .8 3 - 0 .3 3 0 .3 3 38 MIRI 1 1 .7 9 — 1 .7 9 0 .6 7 — 0 .6 7 41 BYRR 502 — 1 .7 0 1 .7 0 — 0 .3 3 0 .3 3 41 CURC 1 — 1 .3 3 1 .3 3 — 0 .3 3 0 .3 3 39 CICA 43 1 .3 1 — 1 .3 1 2 .3 3 — '• 2 .3 3 41 COCC 1 1.06 — 1 .0 6 0 .3 3 — 0 .3 3 45 NOCT 539 — 0 .9 8 0 .9 8 — 1 .3 3 1 .3 3 41 CARA 51 — 0 .9 7 0 .9 7 — 0 .3 3 0 .3 3 48 ICHN 32 0 .8 1 — 0 .8 1 0 .3 3 0 .3 3

PERI0 9 = 1 2 -2 0 JULY 1979 PL3T=*CVA ORDER FAMILY MORPH HBIO LBIO BIOMASS HDEN LDEN DENSITY 45 NOCT 547 • 149.44 149.44 8 .0 0 8.0G 10 JULI 1 6 .2 2 7 9 .9 8 8 6 .2 0 2 3 .2 7 1 1 0 .0 2 1 3 3 .2 9 46 STRA 501 4 .4 0 6 9 .0 7 7 3 .4 7 2 .3 3 6 5 .0 1 6 7 .3 4 38 MIRI I 4 6 .4 2 — 4 6 .4 2 1 7 .3 3 — 1 7 .3 3 45 NOCT 542 — 3 9 .0 5 3 9 .0 5 — 5 .7 9 5 .7 9 39 ACAN 801 19.65 0.70 2 0 .3 5 1 6 .6 7 2 .0 0 1 8 .6 7 46 OROS 1 1 8 .0 5 0 .4 4 1 8 .4 9 1 5 1 .3 3 3 .6 7 1 5 5 .0 0 38 MIRI 6 9 .3 2 8 .3 4 1 7 .6 6 1 9 .0 0 1 7 .0 1 3 6 .0 1 9 CLEI 1 — 1 6 .3 5 1 6 .3 5 — 2 0 .6 7 2 0 .6 7 38 PENT 5 — 1 5 .1 8 1 5 .1 8 — 0 .3 3 0 .3 3 39 CICA 12 9.43 2.75 12.18 16.00 4 .6 7 2 0 .6 7 41 CARA 25 — 1 1 .3 2 1 1 .3 2 - 0 .3 3 0 .3 3 2 PHAJ 1 6 .4 3 3 .5 4 9 .9 7 1 .6 7 0 .3 3 2 .0 0 41 NITI 802 3 .5 5 5 .3 2 8 .8 7 3 6 .3 3 5 9 .2 5 9 5 .5 8 41 CARA 19 1 .6 5 6 .7 3 8 .3 8 0 .3 3 1 .6 7 2 .0 0 5 PORC 1 - 7 .4 1 7 .4 1 — 1 .6 7 1 .6 7 41 CURC 5 2 .1 1 4 .9 2 7 .0 2 1 .0 0 2 .3 3 3 .3 3 4 THOM 3 — 6 .1 3 6 .1 3 — 0 .3 3 0 .3 3 45 NOCT 529 — 5 .7 3 5 .7 3 — 1 .3 3 1 .3 3 4 LYCO 10 5 .2 0 — 5 .2 0 2 .0 0 2 .0 0 48 FORM 6 — 4 .7 9 4 .7 9 — 2 6 .3 3 2 6 .3 3 39 CERC 1 2 .7 2 0 .9 1 3 .6 3 1 .0 0 0 .3 3 1 .3 3 45 ARCT 503 1.60 1.77 3 .3 7 0 .3 3 0 .6 7 1 .0 0 277 48 ICHN 38 — 3 .2 4 3 .2 4 — 0 .3 3 0 .3 3 TABLE 13. CONTINUED. - PERI0D=l2-20 JULY 1979 PLOT=CVA - ORDER FANILY MORPH HBIO LBIO BIOMASS HDEN LDEN DENSITY VI CURC IV — 2 .9 3 2 .9 3 0 .3 3 0 .3 3 VI ELAT 50V — 2 .8 6 2 .8 6 — 0 .3 3 0 .3 3 39 CICA 5 1 .0 1 1 .6 5 2 .6 6 0 .3 3 0 .6 7 1 .0 0 V6 STRA 503 — 2 .6 0 2 .6 0 — 3.V 6 3.V 6 VI STAP 526 — 2 .1 1 2 .1 1 — 3 .3 3 3 .3 3 28 ACRI 501 2 .0 V — 2.0V 0 .3 3 0 .3 3 38 MIRI 505 1 .6 2 o.vo 2 .0 2 2 .0 0 0 .3 3 2 .3 3 V5 NOCT 10 1 .7 6 — 1 .7 6 0 .3 3 0 .3 3 V6 STRA 1 0 .8 1 0 .8 1 1 .6 1 0 .6 7 0 .6 7 1 .3 3 VI CARA 503 — 1.3V 1.3V — 2 6 .8 0 2 6 .8 0 VI STAP 137 — 1 .2 9 1 .2 9 — 2 .6 7 2 .6 7 VI cocc 1 1 .0 6 — 1 .0 6 0 .3 3 0 .3 3 VI STAP 13 6 — 1 .0 3 1 .0 3 0 .6 7 0 .6 7 8 POLY 2 — 1 .0 0 1 .0 0 — 0 .3 3 0 .3 3 VI STAP 536 - 0 .8 1 0 .8 1 — 0 .3 3 0 .3 3

PERIOD*12-20 JULY 1979 PL0T=CV8 ORDER FAMILY MORPH HBIO LBIO BIOMASS HDEN LDEN DENSITY V5 NOCT 5V7 • 111.57 111.57 8 .3 3 8 .3 3 5 PORC 1 - 3 3 .6 3 3 3 .6 3 — 7 .0 0 7 .0 0 10 JULI I 2.V 3 2 8 .9 1 31.3V 6 .6 7 5V .35 6 1 .0 1 28 ACRI 501 2 8 .0 9 1 .8 0 2 9 .8 9 9 .3 3 1 .0 0 1 0 .3 3 28 TETT 503 2V .57 — 2V .57 0 .3 3 0 .3 3 38 MIRI 1 1 8 .7 5 0 .8 9 19.6V 7 .0 3 0 .3 3 7 .3 3 39 ACAN 801 15.V 7 1 .5 8 1 7 .0 5 2 2 .6 7 5 .3 3 2 8 .0 0 39 CERC 1 1 0 .9 0 V.5V 1 5 . VV V .00 1 .6 7 5 .6 7 VI CARA 25 — 1 3 .3 9 1 3 .3 9 - 0 .3 3 0 .3 3 39 APHI 10 8 .2 3 V. 10 1 2 .3 3 101.67 56.99 1 5 8 .6 6 V6 DROS 1 10.62 0.16 10.78 8 9 .0 0 1 .3 3 9 0 .3 3 V5 NOCT 55V 0.0V 1 0 .0 6 1 0 .1 0 0 .3 3 1 .3 3 1 .6 7 V5 NOCT 539 — 9 .9 8 9 .9 8 0 .3 3 0 .3 3 VI CURC 13 — 9.V 2 9.V 2 — 1 .3 3 1 .3 3 V8 FORM 6 — 9 .1 0 9 .1 0 — 5 0 .0 1 5 0 .0 1 VI CURC 5 — 7 .0 2 7 .0 2 — 3 .3 3 3 .3 3 39 CICA 9 6 .8 2 — 6 .8 2 1 .3 3 1 .3 3 39 CICA 5 2 .2 3 3 .9 9 6 .2 3 1 .0 3 3 .3 3 V. 33 — 38 PENT 802 6 .0 5 6 .0 5 0 .3 3 0 .3 3 278 39 DELP 11 V. 23 — V. 23 5 .3 3 — 5 .3 3 38 MIRI 6 3 .7 6 0.16 3.92 7.67 0 .3 3 8 .0 0 TABLE 18. CONTINUED. PERI00=12-20 JULY 1979 PLOT=CVB ORDER FAMILY MORPH HBIO LBIO BIOMASS HDEN LDEN DENSITY 38 MIRI 505 2 .7 8 0 .5 0 3 .2 7 6 .6 7 3 .9 2 1 0 .5 9 *5 NOCT 13 3 .0 7 — 3 .0 7 0 .3 3 0 .3 3 41 ELAT 4 — 2 .4 4 2 .4 4 — 0 .3 3 0 .3 3 46 SARC 15 2 .2 6 — 2 .2 6 0 .3 3 — 0 .3 3 41 CHRY 44 2 .1 9 — 2 .1 9 0 .3 3 — 0 .3 3 41 CURC 27 — 2 .1 5 2 .1 5 — 0 .3 3 0 .3 3 39 CICA 36 1 .1 2 0 .8 9 2 .0 2 0 .6 7 0 .6 7 1 .3 3 46 MUSC 21 1 .9 7 — 1 .9 7 0 .6 7 — 1 0 .6 7 • 4 LYCO 10 1 .7 3 — 1 .7 3 0 .6 7 — 0 .6 7 45 NOCT 10 1 .7 0 — 1 .7 0 0 .3 3 — 0 .3 3 39 DICT 801 1 .6 2 — 1 .6 2 0 .6 7 — 0 .6 7 39 HEMB 4 1.6 1 — 1 .6 1 0 .3 3 — 0 .3 3 48 FORM 18 — 1 .5 4 1 .5 4 — 6 .0 0 6 .0 0 4 THOM 504 — 1 .4 6 1 .4 6 — 0 .6 7 0 .6 7 45 GEOM 505 0 .2 0 1 .2 0 1 .4 0 0 .3 3 0 .3 3 0 .6 7 41 STAP 132 — 1 .2 9 1 .2 9 — 0 .3 3 0 .3 3 41 ELAT 504 — 1 .2 4 1 .2 4 — 2 .1 3 2 .1 3 41 cocc I — 1 .0 6 1 .0 6 — 0 .3 3 0 .3 3 46 MUSC 16 1 .0 5 — 1 .0 5 0 .3 3 — 0 .3 3 46 STRA 501 0 .1 0 0 .8 5 0 .9 5 0 .3 3 1 .3 3 1 .6 7

• PERIDD=12- 20 JULY 1979 PL3T=0F ORDER FAMILY MORPH HBIO LBIO BIOMASS HDEN LDEN DENSITY 10 JULI 1 9 5 .1 7 9 5 .1 7 4 7 .6 8 4 7 .6 8 9 CLEI 1 — 4 0 .7 7 4 0 .7 7 — 4 3 .3 5 4 3 .3 5 45 ARCT 901 3 6 .1 3 — 3 6 .1 3 0 .3 3 — 0 .3 3 41 CHRY 14 9 .3 0 2 1 .3 3 3 0 .6 3 5 .6 7 1 3 .0 0 1 8 .6 7 39 CICA 9 2 2 .1 7 1.7 1 23.88 4.33 0.33 4 .6 7 39 CICA 801 1 4 .4 2 0 .8 7 1 5 .2 9 2 1 .3 3 3 .1 3 2 4 .4 6 5 PORC 1 — 1 4 .1 6 1 4 .1 6 — 2 5 .1 3 2 5 .1 3 41 CURC 11 2 .3 8 7 .1 3 9 .5 1 0 .6 7 2 .0 0 2 .6 7 2 PHAJ 9 4 .7 6 4 .2 5 9 .0 0 3 .0 0 0 .3 3 3 .3 3 41 CURC 8 — 7 .6 5 7 .6 5 — 4 .0 0 4 .0 0 46 BIBI 501 — 6 .1 7 6 .1 7 - 3 2 .7 7 3 2 .7 7 4 THOM 8 — 6 .1 3 6 .1 3 — 0 .3 3 0 .3 3 39 CICA 32 5 .8 6 — . 5 .8 6 5 .0 0 — 5 .0 0 39 CERC 504 0 .7 0 5 .0 2 5 .7 3 0 .3 3 - 4 .0 0 4 .3 3 279 41 CHRY 13 3 .7 8 1 .7 8 5 .5 6 1 .0 0 0 .3 3 1 .3 3 41 CURC 2 - 5 .5 2 5 .5 2 0 .3 3 0 .3 3 TABLE 18. CONTINUED. PERI3D =12-20 JULY 1979 PL3T=OF ORDER FAMILY MORPH HBIO LBIO BIOMASS HDEN LDEN DENSI TY 8 POLY 1 _ 5 .3 6 5 .3 6 0 .3 3 0 . 33 48 FORM 6 — 5 .2 2 5 .2 2 — 2 8 .6 7 2 8 . 67 41 CHRY 11 2 .1 7 2 .7 2 4 .8 9 1 .3 3 1 .6 7 3 . 00 39 CERC 1 3 .6 3 0 .9 1 4 .5 4 1 .3 3 0 .3 3 1. 67 4 ARAN 507 4 .4 9 — 4 . 49 2 .6 7 — 2. 67 4 LYCO 5 4 .0 1 — 4 .0 1 0 .3 3 — 0 . 33 4 THOM 504 — 3 .8 8 3 .8 8 — 2 .3 3 2 . 33 4 LYCO 24 3 .6 9 — 3 .6 9 0 .6 7 0. 67 41 CURC 14 — 3 .1 2 3 .1 2 — 0 .3 3 0 . 33 39 CICA 27 3 .1 1 — 3 .1 1 1 7 .6 7 1 7 . 67 48 FORM 5 — 3 .0 9 3 .0 9 — 8 . 00 8 . 00 39 CICA 22 2 .9 4 — 2 .9 4 3 .6 7 3. 67 48 FORM 18 — 2 .5 7 2 .5 7 — ioToo 1 0 . 00 27 COEN 9 2 .4 3 — 2 .4 3 0 .3 3 0 . 33 28 GRYK 803 1 .0 7 1.32 2.38 0.67 0 . 67 1. 33 41 LAMP 5 — 2 .2 6 2 .2 6 — 0 .3 3 0 . 33 2 PHAJ 10 2 .0 7 — 2 .0 7 0 .3 3 — 0 . 33 48 TENT 510 — 1 .6 3 1 .6 3 — 0 .3 3 0 . 33 28 TETT 803 1 .5 4 — 1 .5 4 0 .6 7 0 . 67 46 TABA 3 1 .5 0 — . 1 .5 0 0 .6 7 — 0 . 67 45 NOCT 14 1 .5 0 — 1 .5 0 0 .3 3 — 0 . 33 4 SALT 8 • 1 .4 1 1 .4 1 — 0 .3 3 0 . 33 41 CURC 1 — 1 .3 3 1 .3 3 - 0 .3 3 0 . 33 41 PTIJ I - 1 .2 8 1 .2 8 — 0 .6 7 0 . 67 41 CARA 50 — 1 .1 4 1 .1 4 — 0 .3 3 0 . 33 39 CERC 5 1 .1 2 — 1 .1 2 0 .3 3 0 . 33 45 HI CR 30 1 .0 2 — 1 .0 2 0 .6 7 — 0 . 67 4 LYCO 10 0 .8 7 — 0 .8 7 0 .3 3 — 0 . 33 39 CIXI 1 0 .7 4 — 0 .7 4 0 .3 3 — 0 . 33 46 SYRP 1 0 .3 1 — 0 .3 1 0 .3 3 — 0 . 33 280 TABLE 18* CONTINUED. PERI3D*l-8 SEPTEMBER 1979 PL3T*77A ORDER FAMILY MORPH HBIO LBIO BIOMASS HDEN LOEN DENSITY _ 28 ACRI I 4 5 5 .8 4 4 5 5 .8 4 4 .3 3 4 .3 3 28 GRYK 4 1 4 0 .2 5 7 4 .5 5 2 1 4 .8 0 1 1 .3 3 6 .0 0 1 7 .3 4 28 TETT 3 8 1 .5 5 — 8 1 .5 5 2 .3 3 2 .3 3 28 ACRI 2 7 5 .7 5 — 7 5 .7 5 0 .3 3 _ 0 .3 3 28 ACRI 501 58.47 — 5 8 .4 7 1 .0 0 — 1 .0 0 28 GRYK 3 3 7 .7 6 — 3 7 .7 6 0 .3 3 — 0 .3 3 28 TETR 6 1 2 .7 7 7 .7 1 2 0 .4 8 0 .3 3 0 .3 3 0 .6 7 28 GRYK 502 12w44 — 1 2 .4 4 2 .0 0 2 .0 0 4 .ARAN I 1 1 .5 0 — 1 1 .5 0 1 .6 7 — 1 .6 7 39 CICA L 9 .7 0 0 .6 9 1 0 .3 9 4 .6 7 0 .3 3 5 .0 0 46 STRA 505 — 8 .5 7 8 .5 7 — 0 .3 3 0 .3 3 28 TETR 502 — - 7 .7 1 7 .7 1 — 0 .3 3 0 .3 3 41 CARA 48 6 .2 3 — 6 .2 3 0 .3 3 0 .3 3 41 CJRC 2 — 5 .5 2 5 .5 2 0 .3 3 0 .3 3 39 CERC 1 4.54 0.91 5 .4 5 1 .6 7 0 .3 3 2 .0 0 48 FORM 6 — 4 .5 5 4 .5 5 2 5 .0 1 2 5 .0 1 38 PENT 8 — 4 .3 8 4 .3 8 — 0 .3 3 0 .3 3 28 TETR 4 — 4 .2 5 4 .2 5 - 0 .3 3 0 .3 3 39 CICA 5 — 4 .1 9 4 .1 9 — 1 8 .6 7 1 8 .6 7 41 CURC 1 — 2 .6 6 2 .6 6 — 0 .6 7 0 .6 7 41 CQCC 9 2 .4 4 — 2 .4 4 0 .3 3 0 .3 3 9 LYCO 807 0 .6 1 1 .5 8 2 .2 0 9 .0 0 2 9 .3 4 3 8 .3 4 41 ELAT I — 1 .2 5 1 .2 5 0 .3 3 0 .3 3 46 OOLI 501 — 1 .1 4 1 .1 4 — 6 .2 5 6 .2 5 48 FORM 11 — 1 .1 3 1 .1 3 — 1 .6 7 1 .6 7 46 STRA 504 — 0 .7 5 0 .7 5 — 0 .3 3 0 .3 3 28 TETR 503 — 0 .4 1 0 .4 1 - 2 .3 3 2 .3 3

PERIDD-l-8 SEPTEMBER 1979 PL0T=77B ORDER FAMILY MORPH H8I0 LBIO BIOMASS HDEN LDEN DENSITY 28 ACRI 1 4 9 4 .0 4 — 4 9 4 .0 4 4 .3 3 4 . 33 28 ACRI 2 3 4 7 .0 9 — 3 4 7 .0 9 1 .6 7 — 1 .6 7 28 GRYK 4 1 8 8 .1 4 4.70 192.84 13.67 0 .3 3 1 4 .0 0 28 TETT 3 8 0 .9 3 — 8 0 .9 3 2 .0 0 2 .0 0 4 ARAN 1 4 1 .5 3 — 4 1 .5 3 2 .6 7 — 2 .6 7 28 TETR 6 1 7 .7 3 2 2 .7 9 4 0 .5 2 0 .6 7 0 .6 7 1 .3 3 — 46 STRA 505 — 3 4 .2 7 3 4 .2 7 1 .3 3 1 .3 3 281 28 GRYK 502 3 0 .3 7 1 .7 3 3 2 .0 9 4 .6 7 0 .3 3 5 .0 0 41 CURC 4 2 .9 1 2 6 .1 7 2 9 .0 8 1 .3 3 1 2 .0 0 1 3 .3 3 TABLE 18. CONTINUED. PE R I0D = l-8 SEPTEMBER 1979 PLOT= 7 7 B ------ORDER FAMILY MORPH HBIO LBIO BIOMASS HDEN LDEN DENSITY 46 STRA 501 — 2 5 .2 0 2 5 .2 0 1 2 .6 7 1 2 .6 7 39 CICA 1 1 4 .5 5 — 1 4 .5 5 7 .0 0 7 .0 0 39 CERC 1 12.71 — 12 .7 1 4 .6 7 — 4 .6 7 4 LYCO 25 8 .4 2 — 8 .4 2 0 .3 3 — 0 .3 3 28 TETR 7 — 7 .2 6 7 .2 6 0 .6 7 0 .6 7 *1 CURC I 1.33 5.31 6.64 0 .3 3 1 .3 3 1 .6 7 41 ELAT 1 — 4 .6 9 4 .6 9 — 1 .3 3 1 .3 3 A LYCO 807 1.84 2.47 4 .3 1 1 3 .6 7 1 2 .3 3 2 6 .0 0 45 NOCT 8 3 .9 0 — 3 .9 0 0 .3 3 0 .3 3 41 CURC 5 — 3 .5 1 3 .5 1 1 .6 7 1 .6 7 41 COCC 1 1 .0 6 2 .1 2 3 .1 8 0 . 33 0 .6 7 1 .0 0 48 FORM 6 — 2 .3 6 2 .3 6 — 1 3 .0 0 1 3 .0 0 39 CICA 5 — 2 .3 5 2 .3 5 — 2 .3 3 2 .3 3 41 CARA 19 2 .0 2 — 2 .0 2 0 .3 3 0 .3 3 41 CARA 8 — 1 .7 7 1 .7 7 0 .3 3 0 .3 3 41 BYRR 1 — 1 .7 5 1 .7 5 — 2 .3 3 2 .3 3 48 FORM 11 — 1 .5 8 1 .5 8 — 2 .3 3 2 .3 3 45 MICR 33 1 .5 5 — 1 .5 5 0 .6 7 0 .6 7 45 NOCT 529 — 1 .4 8 1 .4 8 0 .3 3 0 .3 3 41 STAP 507 0 .0 0 1 .0 5 1 .0 5 0 .3 3 2 .0 0 2 .3 3 41 COCC 3 0 .9 5 0 .9 5 0 .3 3 0 .3 3

i a n i nr_ 7Ci »E R I0D *l-8 SEPTEMBER 1 7 f7 r L J 1 * f!>A ORDER FAMILY MORPH HBIO LBIO BIOMASS HDEN LDEN DENSITY 28 ACRI 1 9 1 1 .4 1 34.68 946.09 8 .3 3 0 .3 3 8 .6 7 28 ACRI 501 2 2 1 .8 1 — 2 2 1 .8 1 2 .6 7 2 .6 7 28 GRYK 4 117.83 12.97 1 3 0 .7 9 8 .0 0 iloo 9 .0 0 ID PARA 6 0 .2 0 4 8 .2 7 4 8 .4 7 0 .3 3 7 7 .0 3 7 7 .3 6 28 TETR 6 2 1 .6 3 — 2 1 .6 3 1 .0 0 1 .0 0 38 PENT 1 9 .4 7 9 .4 7 1 8 .9 5 0 .3 3 0 .3 3 0 .6 7 4 ARAN 1 1 3 .7 1 — 1 3 .7 1 2 .0 0 2 .0 0 45 NOCT 532 — 1 1 .5 0 1 1 .5 0 - 0 .3 3 0 .3 3 28 TETT 3 1 0 .4 8 — 1 0 .4 8 0 .3 3 0 .3 3 45 NOCT 529 0 .0 0 9 .7 4 9 .7 4 0 .3 3 3 .6 7 4 .0 0 28 TETR 4 8 .5 0 — 8 .5 0 0 .6 7 0 .6 7 46 STRA 501 — 7 .6 4 7 .6 4 — 3 .3 3 3 .3 3 10 JULI 1 — 7 .5 7 7 .5 7 — 4 .6 7 4 .6 7 39 CERC I 4 .5 4 2 .7 2 7 .2 6 1 .6 7 1 .0 0 2 .6 7 28 ACRI 9 6 .8 6 - 6 .8 6 0 .3 3 0 .3 3 TABLE 18. CONTINUED. PE R I0D = l-8 SEPTEMBER 1979 PLOT 75 A ORDER FAMILY MORPH HBIO LBIO BIOMASS HDEN LDEN DENSITY 4 LYCO 25 6 .4 0 — 6 .4 0 0 .3 3 — 0 .3 3 28 TETR 7 5 .8 0 — 5 .8 0 0 .3 3 — 0 .3 3 41 CURC 5 — 5 .6 2 5 .6 2 — 2 .6 7 2 .6 7 41 CURC 6 1 .8 8 3 .3 3 5 .2 0 4 .3 3 7 .6 7 1 2 .0 0 39 CICA 5 0 .4 5 4 .6 7 5 .1 2 0 .3 3 5 .0 0 5 .3 3 45 NOCT 512 — 4 .6 3 4 .6 3 — 6 .3 4 6 .3 4 4 PISA 602 4 .4 8 — 4 .4 8 0 .6 7 — 0 .6 7 48 ICHN 6 4 .0 1 — 4 .0 1 0 .3 3 — • 0 .3 3 4 THOM 808 — 3 .7 1 3 .7 1 — 0 .6 7 0 .6 7 39 CICA 1 3 .4 6 — 3 .4 6 1 .6 7 — 1 .6 7 38 PENT 801 3 .0 6 — 3 .0 6 0 .3 3 — 0 .3 3 39 CICA 12 1 .3 7 1 .5 7 2 .9 5 2 .3 3 2 .6 7 5 .0 0 48 FORM 6 - 2 .9 1 2 .9 1 — 1 6 .0 0 1 6 .0 0 41 CARA 19 — 2 .5 2 2 .5 2 — 0 .6 7 0 .6 7 48 FORM 11 0 .4 5 2 .0 3 2 .4 9 0 .6 7 3 .0 0 3 .6 7 41 ELAT 1 - 2 .4 8 2 .4 8 — 0 .6 7 0 .6 7 38 PENT 805 2 .0 2 — 2 .0 2 0 .3 3 — 0 .3 3 41 STAP 207 — 1 .5 9 1 .5 9 — 0 .3 3 0 .3 3 39 MEM8 503 — 1 .2 4 1 .2 4 — 1 .0 0 I . 00 41 COCC 1 — 1 .0 6 1 .0 6 — 0 .3 3 0 .3 3 38 MIRI 1 0 .8 9 — 0 .8 9 0 .3 3 — 0 .3 3 4 SALT 14 - 0 .7 3 0 .7 3 - 0 .3 3 0 .3 3

PER lO D »l-8 SEPTEMBER 1979 PLDT 75B ORDER FAMILY MORPH HBIO LBIO BIOMASS HDEN LDEN DENSITY 28 ACRI 1 5 5 5 .7 6 165.52 721.28 5 .0 0 1 .3 3 6 .3 3 28 ACRI 501 1 4 7 .9 0 1 9 9 .9 6 3 4 7 .8 6 3 .3 3 8 .0 0 1 1 .3 4 41 CURC 5 1 .4 0 1 2 7 .1 2 1 2 8 .5 3 0 .6 7 6 0 .3 3 6 1 .0 0 28 GRYK 4 5 9 .5 6 5 9 .5 6 3 .6 7 — 3 .6 7 — 28 TETT 3 2 7 .5 3 2 7 .5 3 0 .6 7 — 0 .6 7 38 PENT 3 1 7 .8 1 7 .8 5 2 5 .6 6 0 .6 7 0 .3 3 1 .0 0 45 NOCT 900 8 .9 2 1 4 .7 0 2 3 .6 2 0 .3 3 0 .3 3 0 .6 7 10 JULI 1 — 2 2 .7 3 2 2 .7 3 — 2 8 .3 4 2 8 .3 4 46 STRA 501 — 2 2 .1 6 2 2 .1 6 — 9 .6 7 9 .6 7 45 ARCT 501 1 8 .0 2 1 8 .0 2 0 .6 7 — 0 .6 7 48 FORM 6 — 1 1 .5 2 1 1 .5 2 — 6 3 .3 5 6 3 .3 5 46 TACK 12 6 .3 6 3 .6 7 1 0 .0 3 0 .3 3 0 .3 3 0 .6 7 45 NOCT 529 — 9 .9 8 9 .9 8 — 4 .1 3 4 .1 3 38 PENT 805 — 7 .8 5 7 .8 5 - 0 .3 3 0 .3 3 TABLE 18. CONTINUED. PERI0D*l-8 SEPTEMBER 1979 PL0T=75B ORDER FAMILY MORPH HB 10 LBIO BIOMASS HDEN LDEN DENSITY 3 9 CICA 1 5 . 5 4 1 . 3 9 6 . 9 3 2 . 6 7 0 . 6 7 3 . 3 3 4 8 FORM 1 2 - 6 . 5 2 6 . 5 2 — 3 5 . 6 7 3 5 . 6 7 2 8 T E T R 4 5 . 8 1 — 5 . 8 1 0 . 6 7 — 0 . 6 7 4 5 N O C T 5 1 2 5 . 5 9 5 . 5 9 — 3 . 0 0 3 . 0 0 A ARAN 1 5 . 4 4 5 . 4 4 0 . 3 3 — 0 . 3 3 4 5 N O C T 1 6 3 . 9 0 — 3 . 9 0 0 . 3 3 — 0 . 3 3 3 9 C E R C 1 3 . 6 3 — 3 . 6 3 1 . 3 3 — 1 . 3 3 3 9 CICA 9 3 . 4 1 — 3 . 4 1 0 . 6 7 — ' 0 . 6 7 3 9 CICA 5 3 . 1 9 3 . 1 9 — 3 . 3 3 3 . 3 3 4 5 NOCT 1 0 2 . 9 7 2 . 9 7 0 . 6 7 — 0 . 67 4 5 ARCT 5 0 8 2 . 0 5 — 2 . 0 5 0 . 3 3 — 0 . 3 3 2 8 T E T R 8 0 4 1 . 9 7 — 1 . 9 7 0 . 3 3 — 0 . 3 3 4 CLUB 1 . 7 8 1 . 7 8 — 0 . 6 7 0 . 6 7 4 1 E L A T 1 — 1 . 7 1 1 . 7 1 — 0 . 3 3 0 . 3 3 4 1 CURC 1 1 . 3 3 1 . 3 3 0 . 3 3 — 0 . 3 3 5 PORC 1 1 . 3 1 1 . 3 1 — 1 . 0 0 I . 00 4 1 STAP 1 3 2 — 1 . 0 2 1 . 0 2 — 0 . 3 3 0 . 3 3 4 1 LANG 2 — 0 . 8 8 0 . 8 8 — 0 . 3 3 0 . 3 3 4 1 C U R C 4 - 0 . 7 3 0 . 7 3 - 0 . 3 3 0 . 3 3

PER 100=1-8 SEPTEMBER 1979 PLOT=CVA ORDERFAMILY MORPHHBIQ LBIO BIOMASS HOEN LOENDENSITY 4 6 STRA 5 0 1 1 0 1 . 9 4 1 0 1 . 9 4 — 5 3 . 1 3 5 3 . 1 3 3 9 ACAN 1 8 5 . 7 2 1 3 . 6 4 9 9 . 3 5 1 4 . 6 7 2 . 3 3 1 7 . 0 0 4 1 CURC 0 . 7 0 9 6 . 2 2 9 6 . 9 2 0 . 3 3 4 5 . 6 7 4 6 . 0 0 1 0 JULI 1 — 9 5 . 4 5 9 5 . 4 5 — 1 1 1 . 0 4 1 1 1 . 0 4 5 P O R C 1 — 8 5 . 3 9 8 5 . 3 9 — 1 8 . 0 0 1 8 . 0 0 2 8 TETT 1 4 4 . 5 6 — 4 4 . 5 6 0 . 3 3 — 0 . 3 3 2 8 A C R I 1 3 4 . 6 8 — 3 4 . 6 8 0 . 3 3 — 0 . 3 3 2 8 TETT 8 0 1 2 8 . 8 5 — 2 8 . 8 5 0 . 3 3 — 0 . 3 3 3 9 C E R C 5 . 45 1 7 . 2 6 2 2 . 7 1 2 . 0 0 6 . 3 4 8 . 3 4 4 5 NOCT 5 2 9 — 2 2 . 2 7 2 2 . 2 7 — 3 . 6 7 3 . 6 7 4 THOM 5 0 4 0 . 3 4 1 4 . 3 2 1 4 . 6 5 0 . 3 3 5 . 1 3 5 . 4 6 4 1 CARA 1 — 1 4 . 2 2 1 4 . 2 2 — 0 . 6 7 0 . 6 7 4 1 C U R C 1 4 — 1 2 . 8 1 1 2 . 8 1 — 1 . 3 3 1 . 3 3 2 8 G R Y K 4 1 0 . 1 0 2 . 6 1 1 2 . 7 0 1 . 3 3 0 . 3 3 1 . 6 7 4 5 NOCT 5 1 2 — — 1 2 . 6 6 1 2 . 6 6 5 . 6 7 5 . 6 7 284 3 9 CICA 1 2 8 . 0 5 3 . 3 4 1 1 . 3 9 1 3 . 6 7 5 . 6 7 1 9 . 3 3 4 ARAN 1 8 . 2 7 2 . 6 1 1 0 . 8 8 1 . 0 3 0 . 3 3 1 . 3 3 TABLE 18. CONTINUED. PERIOD*1 -8 SEPTEMBER 1979 PLOT* CVA ------ORDER FAMILY MORPH HBIO LBIO BIOMASS HDEM LDEN DENSITY *5 NOCT 532 — 1 0 .2 9 1 0 .2 9 0 .6 7 0 .6 7 41 CARA 25 — 7 .8 1 7 .8 1 — 0 .3 3 0 .3 3 41 SCAR 503 — 6 .4 4 6 .4 4 — 0 .3 3 0 .3 3 38 PENT 3 — 6 .0 5 6 .0 5 — 0 .3 3 0 .3 3 10 PARA 6 — 3 .8 9 3 .8 9 — 0 .3 3 0 .3 3 41 CARA 8 — 3 .6 6 3 .6 6 — 0 .6 7 0 .6 7 41 LAMP 501 — 3 .1 4 3 .1 4 • 0 .6 7 0 .6 7 46 SARC 1 — 3 .1 3 3 .1 3 - 0 .6 7 0 .6 7 4 ARAN 3 2 .9 3 — 2 .9 3 0* 33 0 .3 3 41 CARA 19 — 2 .7 9 2 .7 9 lloo 1 .0 0 45 SIR? 511 — 2 .6 7 2 .6 7 — 0 .3 3 0 .3 3 39 CICA 5 — 2 .5 5 2 .5 5 — 2 .3 3 2 .3 3 48 FORM 6 — 2 .4 9 2 .4 9 — 1 3 .6 7 1 3 .6 7 2 PHAJ 8 2 .3 6 — 2 .3 6 0*33 0 .3 3 41 CURC 13 — 2 .3 6 2 .3 6 0 .3 3 0 .3 3 39 CICA 1 1 .3 9 — 1 .3 9 0*67 0 .6 7 41 cocc 1 1 .0 6 — 1 .0 6 0*33 — 0 .3 3 41 STAP ' 132 • 0 .7 9 0 .7 9 0 .3 3 0 .3 3

PERIOD*1-8 SEPTEMBER 1979 PLOT* rUVO v/ q ————____ ORDER FAMILY MORPH HBIO LBIO BIOMASS HDEN LDEN DENSITY 39 ACAN 1 7 7 .9 2 7 .7 9 8 5 .7 2 1 3 .3 3 1 .3 3 1 4 .6 7 46 STRA 501 1 .5 3 7 6 .1 3 7 7 .6 6 0 .6 7 3 6 .0 0 3 6 .6 7 5 PORC 1 — 5 9 .1 5 5 9 .1 5 — 2 9 .3 4 2 9 .3 4 28 ACRI 1 4 1 .6 1 — 4 1 .6 1 0 .3 3 0 .3 3 28 ACRI 501 3 9 .8 9 — 3 9 .8 9 0 .6 7 — 0 .6 7 10 JULI 1 3 .1 0 3 0 .2 4 3 3 .3 4 0.33 33.68 34.01 41 CARA 19 1 .0 1 2 1 .5 4 2 2 .5 5 0 .3 3 7 .3 4 7 .6 7 45 NOCT 512 — 1 5 .8 5 1 5 .8 5 — 8 .0 0 8 .0 0 4 ARAN 1 1 5 .7 7 — 1 5 .7 7 0 .3 3 0 .3 3 38 PENT 3 9 .9 6 — 9 .9 6 0 .3 3 — 0 .3 3 41 CURC 5 — 9 .1 3 9 .1 3 — 4 .3 3 4 .3 3 39 CICA 12 4 .9 1 2 .1 6 7 .0 7 8 .3 3 3 .6 7 1 2 .0 0 38 PENT 6 — 6 .5 1 6 .5 1 0 .3 3 0 .3 3 39 CICA 803 5 .7 4 0 .0 9 5 .8 3 1 1 .6 7 0 .3 3 1 2 .0 0 41 COCC 1 4 .2 4 1 .0 6 5 .3 0 1 .3 3 0 .3 3 1 .6 7 48 FORM 6 — 4 .2 4 4 .2 4 2 3 .3 3 2 3 .3 3 28 GRYK 4 3 .5 6 3 .5 6 0 .3 3 0 .3 3 4 SALT 808 3 .3 3 0 .0 9 3 .4 2 2 .6 7 0 . 33 3 .0 0 TABLE 18. CONTINUED. PE R I0D = l-8 SEPTEMBER 1979 PL3T=CVB ORDER FAMILY MORPH HBIO LBIO BIOMASS HOEN LOEN DENSITY 38 PENT 503 3 .2 8 3 .2 8 0 .3 3 0 .3 3 2 PHAJ 8 2 .9 3 — 2 .9 3 0 .6 7 — 0 .6 7 38 PENT 806 2 .7 5 2 .7 5 — 0 .3 3 0 .3 3 39 CICA 5 — 2 .7 1 2 .7 1 — 2 .3 3 2 .3 3 4 THOM 504 — 2 .6 9 2 .6 9 — 1 .6 7 1 .6 7 38 NABI 1 0 .6 6 1 .9 8 2 .6 3 0 .3 3 1 .0 0 1 .3 3 41 LAMP 501 — 2 .3 7 2 .3 7 — 2 .3 3 2 .3 3 41 CURC 14 — 2 .3 6 2 .3 6 — 0 .3 3 0 .3 3 41 STAP 151 — 2 .3 0 2 .3 0 — 0 .3 3 0 .3 3 8 POLY 2 — 2 .1 7 2 .1 7 — 2 .6 7 2 .6 7 39 CERC 1 1 .8 2 1 .8 2 0 .6 7 — 0 .6 7 41 PHAL 5 0 .2 0 1 .5 7 1 .7 7 0 .6 7 5 .3 3 6 .0 0 45 NOCT 529 1 .6 4 1 .6 4 — 1 .0 0 1 .0 0 4 THOM 505 1.2 1 0 .4 2 1 .6 3 0 .3 3 0 .3 3 0 .6 7 39 CICA 517 — 1 .5 9 1 .5 9 — 1 4 . 30 1 4 .3 0 38 PENT 507 1 .1 8 1 .1 8 0 .3 3 — 0 .3 3 39 CICA 36 0 .4 0 0 .7 7 1 .1 7 0 .3 3 0 .6 7 1 .0 0 4 ARAN 2 1 .0 5 1 .0 5 0 .3 3 — 0 .3 3 41 CARA 30 — 1 .0 4 1 .0 4 — 1 .0 0 1 .0 0 39 CICA 41 0 .8 2 0 .8 2 1 .6 7 — 1 .6 7 41 STAP 132 — 0 . 75 0 .7 5 — 0 .3 3 0 .3 3 41 CURC 4 — 0 .7 3 0 .7 3 - 0 .3 3 0 .3 3 39 CICA I 0 .6 9 0 .6 9 0 .3 3 — 0 .3 3 48 HALI 5 0 .6 5 — 0 .6 5 0 .6 7 — 0 .6 7

: P E R I0D *i-8 SEPTEMBER 1979 PLOT=OF ORDER FAHILY MORPH HBIO LBIO BIOMASS HDEN LDEN DENSITY 28 GRYK 3 4 7 .8 6 4 7 .8 6 0 .6 7 _ 0 .6 7 8 XYST 1 — 4 2 .3 9 4 2 .3 9 — 1 .3 3 1 .3 3 10 JULI 1 0 .1 2 2 7 .2 6 2 7 .3 8 0 .3 3 2 2 .6 7 2 3 .0 1 8 POLY I 2 2 .3 0 2 .1 7 2 4 .4 7 3 .6 7 1 .0 0 4 .6 7 48 TENT 511 4 . 74 1 7 .0 1 2 1 .7 5 0 .3 3 6 .0 0 6 .3 4 28 GRYK 4 1 7 .7 9 3 .5 6 2 1 .3 5 1 .6 7 0 .3 3 2 .0 0 46 BIBI 501 0 .0 4 2 1 .0 3 2 1 .0 7 0 .3 3 3 1 .0 1 3 1 .3 4 4 LYCO 25 2 0 .3 4 2 0 .3 4 1 .0 0 — 1 .0 0 39 CICA 22 1 3 .2 5 — 1 3 .2 5 1 6 .0 0 — 1 6 .0 0 38 PENT 2 1 2 .7 9 — 1 2 .7 9 0 .3 3 — 0 .3 3 286 39 CICA 1 1 0 .3 9 — 1 0 .3 9 5 .0 0 — 5 .0 0 9 CLEI 1 1 .5 7 8 .6 0 1 0 .1 7 0 .3 3 8 .0 0 8 .3 3 TABLE 18. CONTINUED. PERIQD=l-8 SEPTEMBER 1979 PLOT*OF ORDER FAMILY MORPH HBIO LBIO BIOMASS HDEN LDEN DENSITY 41 CURC 11 9 .5 1 9 .5 1 2 .6 7 2 .6 7 41 CURC 16 • 9 .3 6 9 .3 6 — ' 3 .6 7 3 .6 7 48 APID 3 8 .3 9 — 8 .3 9 0 .3 3 0 .3 3 45 NOCT 18 7 .2 4 — 7 .2 4 0 .3 3 — 0 .3 3 41 CARA 1 — 7 .1 1 7 .1 1 0 .3 3 0 .3 3 48 FORM 17 0 .1 7 6 .9 2 7 .0 9 0 .3 3 1 3 .3 3 1 3 .6 7 *5 NOCT 574 — 6 .8 7 6 .8 7 — 3 .0 0 3 .0 0 48 FORM 11 — 6 .8 6 6 .8 6 — 9 .3 3 9 .3 3 5 PORC 1 — 6 .0 0 6 .0 0 — 4 .0 0 4 .0 0 41 CHRY 57 3 .4 7 2 .3 0 5 .7 6 0 .3 3 0 .3 3 0 .6 7 41 CHRY 58 — 5 .7 4 5 .7 4 — 4 .6 7 4 .6 7 48 PAMP 501 5 .4 0 — 5 .4 0 0 .3 3 0 .3 3 4 SALT 8 4 .7 0 — 4 .7 0 0 .3 3 — 0 .3 3 48 FORM 6 — 4 .3 3 4 .3 3 — 2 3 .3 3 2 3 .3 3 39 CERC 3 4 .2 7 — 4 .2 7 1 .0 0 1 .0 0 39 CICA 822 3.37 0.44 3 .8 1 8 .3 3 1 .3 3 9 .6 7 41 CHRY 23 0 .5 0 3 .2 2 3 .7 2 0 .6 7 4 .0 0 4 .6 7 38 REDU 504 3.60 0.09 3 .6 9 0 .3 3 0 .6 7 1 .0 0 41 CURC 14 3 .5 9 — 3 .5 9 0 .3 3 0 .3 3 4 THOM 505 — 3 .4 5 3 .4 5 1 .0 0 1 .0 0 41 CARA 53 — 3 .2 9 3 .2 9 — 1 .0 0 1 .0 0 41 CHRY 55 0 .7 0 2 .2 2 2 .9 2 0 .3 3 1 .0 0 1 .3 3 4 CLUB 1 2 .8 1 — 2 .8 1 0 .6 7 0 .6 7 39 CICA 5 1 .0 8 1 .5 6 2 .6 4 0 .3 3 2 .0 0 2 .3 3 41 ELAT 503 — 2 .5 1 2 .5 1 3 .0 0 3 .0 0 45 MICR 20 2 .3 7 — 2 .3 7 0 .3 3 0 .3 3 18 CRYX 501 — 2 .3 7 2 .3 7 — 2 .7 9 2 .7 9 41 COCC 2 1 .1 6 1 .1 6 2 .3 2 0 .3 3 0 .3 3 0 .6 7 4 LYCO 26 — 2 .2 0 2 .2 0 — 0 .3 3 0 .3 3 9 ABAC 8 — 2 .1 5 2 .1 5 — 0 .6 7 0 .6 7 41 STAP 132 — 2 .0 4 2 .0 4 - 0 .6 7 0 .6 7 17 LITH 4 — 2 .0 3 2 .0 3 — 4 .3 3 4 .3 3 48 ICHN 43 — 2 .0 2 2 .0 2 — 0 .3 3 0 .3 3 4 ARAN 102 — 1 .9 5 1 .9 5 — . 0 .3 3 0 .3 3 48 TENT 501 - 1 .9 3 1 .9 3 — 0 .6 7 0 .6 7 4 THOM 504 - 1 .91 1 .9 1 — 2 .3 3 2 .3 3 28 GRYK 502 1 .8 7 1 .8 7 1 .3 3 1 .3 3 48 FORM 5 0 .0 9 U 7 4 1 .8 3 0 .3 3 6 .3 3 6 .6 7 41 LAMP 501 — 1 .7 3 1 .7 3 0 .6 7 0 .6 7

4 SALT 15 1 .7 2 — 1 .7 2 0 .6 7 — 0 .6 7 287 41 HELO 2 — 1 .5 5 1 .5 5 — 4 .0 0 4 .0 0 2 PHAJ 8 1 .4 6 - 1 .4 6 0 .3 3 — 0 .3 3 TABLE 18. CONTINUED. PERI0D=l-8 SEPTEMBER 1979 PLOT=OF RDER FAMILY MORPH HBIO LBIO BIOMASS HDEN LDEN DENSITY 43 PANO 502 1 .4 0 1 .4 0 — 3 .0 0 3 .0 0 4 5 MICR 511 1 .3 7 1 .3 7 0 .3 3 — 0 .3 3 41 CURC 25 1 .3 6 1 .3 6 — 0 .6 7 0 .6 7 4 SALT 808 U 2 5 1 .2 5 0 .3 3 — 0 .3 3 41 CHRY 506 1 .2 2 1 .2 2 — 0 .3 3 0 .3 3 41 TENE 502 — 1 .2 0 1 .2 0 - 0 .3 3 0 .3 3 41 CHRY 59 — 1 .0 5 1 .0 5 — 0 .3 3 0 .3 3 39 CERC 1 0 .9 1 0 .9 1 0 .3 3 0 .3 3 46 MUSC 21 0 .8 8 — 0 .8 8 0 .3 3 — 0 .3 3 38 LYSA 8 — 0 .7 5 0 .7 5 — 1 .6 7 1 .6 7 41 CURC 4 — 0 .7 3 0 .7 3 — 0 .3 3 0 .3 3 28 BLAT 501 — 0 .7 3 0 .7 3 — 0 .6 7 0 .6 7 39 CICA 59 0 .6 7 0 .6 7 0 .3 3 — 0 .3 3 39 CICA 60 - 0 .4 5 0 .4 5 - 0 .3 3 0 .3 3

g Refer to Table 17, Appendix E, for definition of order and family codes and codes of identified morphotypes.

^Biomass in the herbaceous layer, c Biomass in the litter layer.

^Total biomass (both layers).

0 Density in the herbaceous layer.

^Density in the litter layer. CT Total density (both layers). 288 2 Table 19. Density (individuals/m ) of family/life form groups according to sampling period and study area in Harrison County, Ohio, 1978-79.

------PERI3D*29 MAY-10 JUNE 1978 AREA= 7 7 ------ORDER3 FAMILY3 LIFEFORM HDENb LDENC DENSITYd 41 CURC LARVA 0 1082.17 866.17 1 9 4 8 .3 4 37 THRI AD/NYM e 2 1 9 .8 3 2 6 9 .1 5 4 8 8 .9 8 39 CERC AD/NYM 1 7 2 .6 7 130.34 303.01 46 DROS AD/NYM 2 7 4 .3 3 8 .3 3 2 8 2 .6 7 46 SCHA LARVA 6 .5 0 1 9 9 .5 0 2 0 6 .0 0 46 SCHB LARVA 8 .6 7 1 3 1 .3 2 1 3 9 .9 9 39 CICA AD/NYM 8 3 .5 0 31.56 115.06 23 SHIN AD/NYM 41.33 61.86 103.19 41 CUCJ LARVA 8.83 88.35 9 7 .1 8 41 CURC PUPA 7 9 .6 7 1 7 .0 0 9 6 .6 7 41 STAP LARVA 1.17 70.18 71.35 46 CHIR LARVA 1.00 44.37 45.37 46 DIPT PUPA 7.83 33.05 40.88 38 MIRI AD/NYM 2 3 .3 3 5 .7 9 2 9 .1 3 39 APHI AD/NYM 2 2 .6 7 3 .1 9 2 5 .8 6 41 LATH LARVA 1 .5 0 2 3 .8 1 2 5 .3 1 41 NITI AD/NYM 22.50 2.67 25.17 46 SCIA AD/NYM 16.67 5.33 22.00 41 CURC AD/NYM 4 .5 0 1 7 .0 0 2 1 .5 0 46 CECI AD/NYM 1 9 .3 3 2 .0 6 2 1 .4 0 46 CECI LARVA 2 .6 7 1 7 .0 3 1 9 .7 0 41 LATH AD/NYM 3 .3 3 1 4 .6 7 1 8 .0 0 46 SCIA PUPA 3 .6 7 7 .2 3 1 0 .9 0 46 EPHY AD/NYM 8 .6 7 1 .6 7 1 0 .3 3 41 LANG AD/NYM 3 .0 0 7 .1 7 1 0 .1 7 41 STAP AD/NYM 2 .8 3 7 .3 3 1 0 .1 7 46 CHLO AD/NYM 9 .0 0 0 .1 7 9 .1 7 48 MYMA AD/NYM 5 .6 7 3 .5 0 9 .1 7 46 SPHA AD/NYM 7 .3 3 1 .6 7 9 .0 0 46 CERQ AD/NYM 8 .5 0 0 .1 7 8 .6 7 46 CHIR PUPA — 8 .3 3 8 .3 3 37 ALED AD/NYM 6.67 1.33 8.00 48 BRAC AD/NYM 6 .1 7 1 .1 7 7 .3 3 46 CHIR AD/NYM 5 .8 3 1 .0 0 6 .8 3 48 EULO AD/NYM 1 .1 7 5 .3 3 6 .5 0 23 ENTD AD/NYM 1 .1 7 5 .3 2 6 .4 8 4 LINY AD/NYM 4.33 2.00 6.33 46 STRA LARVA 0 .8 3 5 .3 8 6 .2 1 46 LONC AD/NYM 4 .5 0 0 .5 0 5 .0 0 41 COCC LARVA 1.83 3.00 4.83 48 TRIJ AD/NYM 3.50 1.33 4.83 39 DELP AD/NYM 2 .8 3 1 .7 9 4 .6 3 48 APHE AD/NYM 3 .6 7 0 .8 3 4 .5 0 41 COCC AD/NYM 1.67 2.83 4.50 46 ACAL AD/NYM 0.17 4.17 4.33 41 PHAL AD/NYM 1 .6 7 2 .5 0 4 .1 7 46 TIPU AD/NYM 4 .1 7 — 4 .1 7 38 PENT AD/NYM 2 .5 0 1 .5 0 4 .0 0 45 NOCT LARVA 2 .5 0 1 .3 3 3 .8 3 46 MYCJ AD/NYM 3 .5 0 — 3 .5 0 4 LYCO AD/NYM 3 .1 7 0 .1 7 3 .3 3 48 FORM AD/NYM 2.50 0.83 3.33 46 ANTX AD/NYM 3 .1 7 — 3 .1 7 48 PTER AD/NYM 2 .1 7 1 .0 0 3 .1 7 46 CECI PUPA 0 .8 3 2 .1 7 3 .0 0 41 PTIL AD/NYM 0.83 2.00 2.83 46 LAUX AD/NYM 2 .8 3 — 2 .8 3 48 SCEL AD/NYM 0 .6 7 2 .1 7 2 .8 3 45 MICR LARVA 0 .B 3 1 .9 6 2 .7 9 41 ANTK AD/NYM — 2 .6 9 2 .6 9 38 NABI AD/NYM 2 .0 0 0 .6 7 2 .6 7 41 CRYP AD/NYM 0 .8 3 1 .5 0 2 .3 3 41 CARA LARVA 0 .1 7 2 .0 6 2 .2 3 48 CERK AD/NYM — 1 .8 3 1 .8 3 48 CYNI AD/NYM 1 .6 7 — 1 .6 7 46 LONC LARVA 1 .1 7 0 .3 3 1 .5 0 TABLE 19. CONTINUED. 290 PERI3D=29 MAY-10 JUNE 1978 AREA=77 FAMILY LIFEFORM HDEN LDENDENSITY 48 PLAT AD/NYM 0 .1 7 1 .1 7 1 .3 3 39 COCJ AD/NYM I . 00 0 .1 7 1 .1 7 46 ANTV AD/NYM 1 .1 7 — 1 .1 7 46 SCIA LARVA — 1 .0 6 1 .0 6 38 ANT J AD/NYM 1 .0 0 — 1 .0 0 46 SI MU AD/NYM 1 .0 0 — 1 .0 0 46 EMPI LARVA — 0 .9 0 0 .9 0 4 THER AD/NYM 0 .8 3 — 0.B 3 34 PSEJ AD/NYM 0 .8 3 — 0 .8 3 38 ENIC AD/NYM — 0 .8 3 0 .8 3 41 CARA PUPA — 0 .8 3 0 .8 3 41 CORY AD/NYM — 0 .8 3 0 .8 3 45 MICR AD/NYM 0 .6 7 0 .1 7 0 .8 3 48 DIAP AD/NYM 0 .3 3 0 .5 0 0 .8 3 48 EURY AD/NYM 0 .8 3 — 0 .8 3 48 HYME PUPA 0 .6 7 0 .1 7 0 .8 3 48 ICHN AD/NYM 0 .6 7 — 0 .6 7 48 MEGJ AD/NYM 0 .5 0 0 .1 7 0 .6 7 4 ARAJ AD/NYM 0 .5 0 — 0 .5 0 28 ACRI AD/NYM 0 .5 0 — 0 .5 0 4 THOM AD/NYM 0 .1 7 0 .1 7 0 .3 3 41 ANTK LARVA — 0 .3 3 0 .3 3 41 CHRY AD/NYM 0 .3 3 — 0 .3 3 41 ELAT AD/NYM — 0 .3 3 0 .3 3 41 SCAP AD/NYM — 0 .3 3 0 .3 3 46 PHOR AD/NYM 0 .3 3 — 0 .3 3 46 STRA AD/NYM 0 .1 7 0 .1 7 0 .3 3 48 ENCY AD/NYM 0 .3 3 — 0 .3 3 49 ARTH LARVA 0 .3 3 — 0 .3 3 1 NEOB AD/NYM — 0 .1 7 0 .1 7 4 ARAN AD/NYM 0 .1 7 — 0 .1 7 4 CLUB AD/NYM 0 .1 7 — 0 .1 7 23 HYPO AD/NYM — 0 .1 7 0 .1 7 37 PHLO AD/NYM — 0 .1 7 0 .1 7 38 BERY AD/NYM — 0 .1 7 0 .1 7 38 LYGA AD/NYM — 0 .1 7 0 .1 7 41 BYRR AD/NYM — 0 .1 7 0 .1 7 41 CANT AD/NYM 0 .1 7 — 0 .1 7 41 CARA AD/NYM 0 .1 7 — 0 .1 7 41 COLE PUPA — 0 .1 7 0 .1 7 41 CUCU AD/NYM — 0 .1 7 0 .1 7 41 HIST AD/NYM — 0 .1 7 0 . 17 41 PSEL AD/NYM — 0 .1 7 0 .1 7 41 SCOL AD/NYM — 0 .1 7 0 .1 7 45 GEOM LARVA 0 .1 7 — 0 .1 7 45 NOCT AD/NYM 0 .1 7 — 0 .1 7 46 EMPI AD/NYM 0 .1 7 — 0 .1 7 46 MUSC AD/NYM 0 .1 7 - 0 .1 7 46 PSYC AD/NYM 0 .1 7 - 0 .1 7 46 SCHD LARVA 0 .1 7 - 0 .1 7

— PERI0D=29 MAY-10 JUNE 1978 AREA= 7 5 ------ER FAMILY LIFEFORM HDEN LDEN DENSI TY 41 CURC LARVA 1 9 4 .3 3 2 2 3 .6 4 4 1 7 . 98 23 ENTD AD/NYM 1 3 1 .1 7 8 2 .5 7 2 1 3 . 74 39 CERC AD/NYM 9 1 .8 3 1 0 4 .5 1 1 9 6 . 34 37 THRI AD/NYM 7 2 .3 3 9 7 .8 4 170. 17 46 CECI LARVA 8 .3 3 1 5 6 .8 9 1 6 5 . 23 39 CICA AD/NYM 5 8 .1 7 1 0 5 .0 2 1 6 3 . 19 46 CHIR LARVA 2.00 1 4 5 .1 5 147. 15 46 SCHA LARVA 3 .5 0 1 1 0 .9 6 1 14. 46 23 SMIN AD/NYM 1 5 .0 0 7 9 .9 6 9 4 . 96 46 DR OS AD/NYM 8 8 .8 3 6 .0 0 9 4 . 83 TABLE 19. CONTINUED. 291 ------PERI 30=29 MAY-10 JUNE 1978 AREA=75 - ORDER FAMILY LIFEFORM HDEN LDEN DENSITY 41 CUCJ LARVA 9.67 78.66 88.32 23 HYPO AD/NYM — 5 6 .1 7 5 6 .1 7 41 STAP LARVA 0 .8 3 4 7 .1 5 4 7 .9 9 48 FORM AO/NYM 6 .3 3 3 4 .3 3 4 0 .6 7 46 CHLO AD/NYM 3 1 .5 0 7 .3 3 3 8 .8 3 46 DIPT PUPA 3 .3 3 3 5 .1 7 3 8 .5 0 46 STRA LARVA 3 .5 0 3 4 .3 4 3 7 .8 4 39 APHI AD/NYM 2 8 .1 7 9 .1 3 3 7 .2 9 41 LATH LARVA — 3 7 .2 6 3 7 .2 6 46 SCHB LARVA — 3 5 .6 4 3 5 .6 4 10 JUL I AD/NYM 0 .8 3 3 3 .3 3 3 4 .1 7 23 ISOT AD/NYM 1 .6 7 3 1 .7 2 3 3 .3 8 4 LINY AD/NYM 2 .5 0 2 9 .4 2 3 1 .9 2 41 LATH AD/NYM 7 .6 7 2 4 .1 7 3 1 .8 3 46 CECI AD/NYM 1 7 .1 7 1 3 .8 3 3 1 .0 0 46 SCIA AD/NYM 1 4 .3 3 1 5 .3 3 2 9 .6 7 41 NIT I AD/NYM 2 0 .5 0 6 .1 7 2 6 .6 7 38 MIRI AD/NYM 2 0 .1 7 5 .2 3 2 5 .4 0 1 NEDB AD/NYM — 2 5 .0 0 2 5 .0 0 46 CECI PUPA 0 .8 3 2 1 .7 9 2 2 .6 3 4 ARAJ AD/NYM 0 .8 3 2 1 .2 6 2 2 .1 0 37 PHLO AD/NYM 1 .6 7 1 8 .6 1 2 0 .2 7 41 LANS AD/NYM 4 .1 7 1 4 .3 3 1 8 .5 0 23 ONYC AD/NYM — 1 7 .0 3 1 7 .0 3 41 COCC LARVA 7 .5 0 8 .2 3 1 5 .7 3 41 STAP AD/NYM 2.67 12.67 15.33 48 SCEL AD/NYM 1 .5 0 1 3 .1 7 1 4 .6 7 46 CHIR AD/NYM 5 .1 7 8 .3 3 1 3 .5 0 41 CURC PUPA 1 0 .0 0 2 .8 3 1 2 .8 3 45 MICR LARVA 4 .0 0 8 .4 8 1 2 .4 8 48 CERK AD/NYM 6 .0 0 5 .3 3 1 1 .3 3 4 LYCO AD/NYM 2 .5 0 8 .5 0 1 1 .0 0 46 SCIA LARVA 1 .3 3 9 .6 3 1 0 .9 6 48 MYMA AD/NYM 5 .3 3 5 .3 3 1 0 .6 7 46 ANTX AD/NYM 1 0 .3 3 0 .1 7 1 0 .5 0 41 CURC AD/NYM 3 .6 7 6 .6 7 1 0 .3 3 39 I SSI AO/NYM 6 .3 3 1 .9 6 8 .2 9 46 STRA AD/NYM 7 .6 7 0 .1 7 7 .8 3 38 PENT AD/NYM 4 .8 3 2 .6 7 7 .5 0 41 CARA AD/NYM 0 .3 3 7 .0 0 7 .3 3 34 PSEJ AD/NYM 5 .3 3 1 .5 0 6 .8 3 41 BYRR AD/NYM — 6 .8 3 6 .8 3 46 SPHA AD/NYM 4 .3 3 2 .0 0 6 .3 3 46 TIPU AD/NYM 6 .3 3 — 6 .3 3 38 ANT J AD/NYM 1 .5 0 4 .6 7 6 .1 7 41 PHAL AD/NYM 2 .5 0 3 .0 0 5 .5 0 46 CERQ AD/NYM 5 .3 3 0 .1 7 5 .5 0 48 BRAC AD/NYM 4 .3 3 0 .8 3 5 .1 7 46 LAUX AD/ NYM 4 .8 3 — 4 .8 3 48 EULO AD/NYM 4 .0 0 0 .8 3 4 .8 3 48 PLAT AD/NYM 2 .8 3 2 .0 0 4 .8 3 41 CRYP AD/NYM 0 .1 7 4 .5 0 4 .6 7 48 APHE AD/NYM 1 .6 7 3 .0 0 4 .6 7 41 CARA LARVA 1 .6 7 2 .9 6 4 .6 3 37 ALEO AD/NYM 4 .1 7 0 .1 7 4 .3 3 41 BYRR PUPA — 4 .1 7 4 .1 7 46 OOL I AD/NYM 4 .1 7 — 4 .1 7 48 EURY AD/NYM 3 .3 3 0 .8 3 4 .1 7 38 NAB I AD/NYM 2 .5 0 1 .3 3 3 .8 3 45 NOCT LARVA 1 .0 0 2 .8 3 3 .8 3 48 TRIJ AD/NYM 0 .1 7 3 .6 7 3 .8 3 39 COCJ AD/NYM — 3 .3 6 3 .3 6 41 cocc AD/NYM 1 .5 0 1 .8 3 3 .3 3 48 PTER AD/NYM 2 .5 0 0 .8 3 3 .3 3 46 ANTV AD/NYM 3 .1 7 — 3 .1 7 46 EPHY AD/NYM 3 .1 7 — 3 .1 7 TABLE 19 . CONTINUED. 292 ------PERI3D=29 MAY-13 JUNE 1978 AREA= 7 5 ------ORDER FAMILY LIFEFORM HDEN LDEN DENSITY 41 CHRY LARVA — 3 .1 3 3 .1 3 5 PORC AD/NYM • 2 .8 3 2 .8 3 41 ELAT AD/NYM 0 .3 3 2 .5 0 2 .8 3 46 SCHD LARVA 0 .1 7 2 .5 6 2 .7 3 41 ANTK AD/NYM — 2 .6 9 2 .6 9 4 ARAN AD/NYM 2 .6 7 — 2 .6 7 41 CANT LARVA — 2 .6 3 2 .6 3 46 MYCJ AD/NYM 2 .5 0 — 2 .5 0 46 SIMU AD/NYM 2 .5 0 — 2 .5 0 48 DIAP AD/NYM 0 .3 3 2 .0 0 2 .3 3 41 CUCJ LARVA — 2 .2 9 2 .2 9 46 PHOR AD/NYM 1 .8 3 0 .3 3 2 .1 7 46 SCIA PUPA 1 .8 3 0 .3 3 2 .1 7 28 ACRI AD/NYM 2 .0 0 — 2 .0 0 17 LITH AD/NYM — 1 .9 0 1 .9 0 39 OELP AD/NYM 1 .0 0 0 .9 0 1 .9 0 4 SALT AD/NYM 1 .5 0 0 .3 3 1 .8 3 41 SCAP AD/NYM — 1 .8 3 1 .8 3 48 HYME PUPA 0 .3 3 1 .5 0 1 .8 3 41 NITI LARVA — 1 .7 9 1 .7 9 28 GRYK AD/NYM 0 .8 3 0 .5 0 1 .3 3 45 MI CR AD/NYM 1 .3 3 — 1. 33 45 MICR PUPA 0 .1 7 1 .1 7 1 .3 3 4 THER AD/NYM 1 .1 7 — 1 .1 7 41 COLE LARVA — 1 .0 6 1 .0 6 46 OOLI LARVA 0 .8 3 0 .1 7 1 .0 0 46 MUSC AD/NYM I . 00 — 1 .0 0 41 CHRY AD/NYM 0 .8 3 0 .1 7 1 .0 0 48 ENCY AD/NYM 1 .0 0 — 1 .0 0 48 ICHN AD/NYM 0 .8 3 0 .1 7 1 .0 0 46 CHIR PUPA — 0 .9 0 0 .9 0 4 CLUB AD/NYM 0 .3 3 0 .5 0 0 .8 3 34 PSOC AD/NYM — 0 .8 3 0 .8 3 41 ANTK LARVA 0 .8 3 — 0 .8 3 46 PHOR LARVA — 0 .8 3 0 .8 3 46 SEPS AD/NYM 0 .8 3 — 0 .8 3 46 SYRP LARVA — 0 .8 3 0 .8 3 46 LONC AD/NYM 0 .6 7 — 0 .6 7 48 EUPE AD/NYM 0 .3 3 0 .1 7 0 .5 0 48 TENT LARVA 0 .3 3 0 .1 7 0 .5 0 41 EUCI AD/NYM — 0 .5 0 0 .5 0 41 MORO AD/NYM 0 .5 0 — 0 .5 0 4 THOM AD/NYM — 0 .3 3 0 .3 3 28 TETT AD/NYM 0 .1 7 0 .1 7 0 .3 3 39 MEMB AD/NYM 0 .1 7 0 .1 7 0 .3 3 41 ELAT LARVA — 0 .3 3 0 .3 3 41 MELY LARVA — 0 .3 3 0 . 33 41 MORD LARVA — 0 .3 3 0 .3 3 45 ARCT LARVA — 0 .3 3 0 .3 3 48 CYNI AD/NYM 0 .3 3 — 0 .3 3 48 HAL I AD/NYM 0 .3 3 — 0 .3 3 48 MEGJ AD/NYM 0 .3 3 — 0 .3 3 4 AGEL AD/NYM — 0 .1 7 0 .1 7 4 OICJ AD/NYM — 0 .1 7 0 . 17 4 GNAP AD/NYM — 0 .1 7 0 .1 7 38 SALD AD/NYM — 0 .1 7 0 .1 7 41 ANOB AD/NYM 0 .1 7 — 0 .1 7 41 BYRR LARVA — 0 .1 7 0 .1 7 41 CANT AD/NYM 0 .1 7 — 0 .1 7 41 CLAM AD/NYM — 0 .1 7 0 .1 7 41 CORY AD/NYM — 0 .1 7 0 .1 7 41 LAGR AD/NYM 0 .1 7 — 0 .1 7 41 SCOL AD/NYM — 0 .1 7 0 .1 7 41 THRO AD/NYM — 0 .1 7 0 .1 7 46 CALL AD/NYM 0 .1 7 — 0 .1 7 46 CUL I AD/NYM 0 .1 7 — 0 .1 7 293 TABLE 19. CONTINUED. ocDTnns9Q ya v.in JUNE 1978 ftigr Kt A™ i . 7c —. _ _ ORDER FAMILY LIFEFORM HDEN LDEN DENSITY 46 EMPI AD/NYM 0 .1 7 _ 0 .1 7 46 PIPU AD/NYM 0 .1 7 — 0 .1 7 48 TORY AD/NYM 0 .1 7 — 0 .1 7 49 ARTH LARVA • 0 .1 7 0 .1 7

---- PERI00=29 MAY-13 JUNE 1978 AREA=CV ------ORDER FAMILY LIFEFORM HDEN LDEN DENSITY 23 HYPO AD/NYM 0 .1 7 3 5 9 .4 9 3 5 9 .6 6 23 ENTO AD/NYM 3 4 .1 7 8 3 .4 7 1 1 7 .6 4 39 CICA AD/NYM 4 8 .0 0 2 8 .0 6 7 6 .0 6 10 JULI AD/NYM 2 .5 0 6 8 .7 5 7 1 .2 5 1 NEOB AD/NYM 1 .6 7 6 8 .2 1 6 9 .8 7 46 CECI LARVA 0 .1 7 6 9 .2 0 6 9 .3 7 41 CUCJ LARVA 1.67 67.08 68.75 48 FORM AD/NYM 1 .1 7 3 4 .0 0 3 5 .1 7 41 CURC LARVA 5.17 27.94 33.10 23 SHI N AD/NYM 0 .8 3 2 9 .5 9 3 0 .4 2 38 MIRI AD/NYM 7 .5 0 2 1 .7 6 2 9 .2 6 41 LATH LARVA 0.33 23.81 2 4 .1 4 37 THR I AD/NYM 1 .5 0 2 1 .8 5 2 3 .3 5 37 PHLO AD/NYM 1 .6 7 2 0 .0 6 2 1 .7 2 46 CECI PUPA 0 .8 3 2 0 .2 1 2 1 .0 4 45 MICR PUPA 0.83 18.58 1 9 .4 1 46 SCHA LARVA 1 .6 7 1 7 .5 3 1 9 .2 0 41 LANG AD/NYM 1 .8 3 1 7 .3 3 1 9 .1 7 41 STAP LARVA 0.83 17.47 1 8 .3 0 48 EURY AD/NYM 1 .6 7 1 3 .3 3 1 5 .0 0 39 APHI AD/NYM 0 .5 0 1 3 .9 5 1 4 .4 5 46 STRA LARVA — 1 4 .1 9 1 4 .1 9 46 DIPT PUPA 0.83 1 3 .3 3 1 4 .1 7 46 DROS AD/NYM 1 4 .0 0 0 .1 7 1 4 .1 7 41 LATH AD/NYM 1 .0 0 1 3 .0 0 1 4 .0 0 39 DELP AD/NYM 1 .8 3 1 0 .9 6 1 2 .7 9 41 STAP AD/NYM 1 .6 7 9 .3 3 11.00 23 ONYC AD/NYM - 1 0 .7 6 1 0 .7 6 41 NITI AD/NYM 6 .8 3 3 .8 3 1 0 .6 7 41 CURC AD/NYM 0 .1 7 1 0 .3 3 1 0 .5 0 4 LYCO AD/NYM 0 .1 7 1 0 .2 3 1 0 .4 0 48 EUPE AD/NYM 0 .5 0 8 .5 0 9 .0 0 46 SCIA LARVA — 8 .8 2 8 .8 2 41 CARA LARVA 0 .8 3 7 .7 9 8 .6 3 46 CECI AD/NYM 4 .3 3 4 .0 0 8 .3 3 39 ACAN AD/NYM 6 .0 0 2 .1 7 8 .1 7 45 MICR LARVA 1 .6 7 5 .3 2 6 .9 8 46 CHIR LARVA — 6 .8 8 6 .8 8 46 SCIA PUPA 0 .8 3 5 .9 0 6 .7 3 46 ANTX AD/NYM 3 .0 0 3 .5 0 6 .5 0 48 CERK AD/NYM 1 .6 7 4 .6 7 6 .3 3 4 LINY AD/NYM 0 .8 3 4 .7 9 5 .6 3 5 PORC AD/NYM — 5 .5 0 5 .5 0 4 SALT AD/NYM 3 .0 0 1 .8 3 4 .8 3 46 SCIA AD/NYM 1 .6 7 2 .8 3 4 .5 0 48 BRAC AD/NYM 2 .5 0 1 .8 3 4 .3 3 28 GRYK AD/NYM — 4 .1 7 4 .1 7 46 SYRP LARVA — 4 .1 7 4 .1 7 48 EULO PUPA — 4 .1 7 4 . 17 46 SCHD LARVA 4 .0 0 — 4 .0 0 46 SPHA AD/NYM 2 .5 0 0 .6 7 3 .1 7 37 ALEO AD/NYM 2 .3 3 0 .6 7 3 .0 0 48 HYME PUPA — 2 .8 3 2 .8 3 46 MYCJ AD/NYM 2 .8 3 — 2 .8 3 41 CUCU LARVA — 2 .6 9 2 .6 9 41 CARA AD/NYM 0 .3 3 2 .3 3 2 .6 7 294 TABLE 19. CONTINUED. ------PERIOD =29 MAY-10 JUNE 1978 AREA=CV ------ORDER FAMILY LIFEFORM HDEN LDEN DENSITY 41 MORD AD/NYM 1 .8 3 0 .6 7 2 .5 0 8 POLY AD/NYM — 2 .4 0 2 .4 0 46 CERQ AD/NYM 2 .3 3 — 2 .3 3 41 CRYP AD/NYM — 2 .1 7 2 .1 7 34 PSEJ AD/NYM 0.83 1.23 2.06 41 PSEL AD/NYM — 2 .0 0 2 .0 0 46 CHLO AD/NYM 0 .6 7 1 .3 3 2 .0 3 4 ARAN AD/NYM 1 .5 0 0 .3 3 1 .8 3 38 NABI AD/NYM I. 00 0.83 1.83 45 NOCT LARVA 1 .1 7 0 .6 7 1 .8 3 48 SCEL AD/NYM 1 .1 7 0 .6 7 1 .8 3 41 HIST AD/NYM — 1 .6 7 1 .6 7 46 CHIR AD/NYM 1 .6 7 — 1 .6 7 46 PHOR AD/NYM 0 .3 3 1 .3 3 1 .6 7 48 DIAP AD/NYM — 1 .6 7 1 .6 7 9 OLE I AD/NYM — 1 .5 0 1 .5 0 41 PHAL AD/NYM 0 .3 3 1 .1 7 1 .5 0 17 LITH AO/NYM — 1 .5 0 1 .5 0 46 STRA AD/NYM 1 .3 3 0 .1 7 1 .5 0 4 CLUB AD/NYM 0 .5 0 0 .8 3 1 .3 3 4 THOM AD/NYM 0 .1 7 1 .1 7 1 .3 3 46 EPHY AD/NYM 1 .0 0 0 .1 7 1 .1 7 4 THER AD/NYM 0 .8 3 0 .1 7 1 .0 0 34 PSOC AD/NYM 0 .8 3 0 .1 7 1 .0 0 46 SCIO AD/NYM 1 .0 0 — 1 .0 0 48 TRI J AD/NYM 0 .5 0 0 .5 0 1 .0 0 41 COCC LARVA — 1 .0 0 1 .0 0 46 TIPU AD/NYM 1 .0 0 — I . 00 48 PTER AD/NYM 1 .0 0 — 1 .0 0 41 ANTK LARVA — 0 .9 0 0 .9 0 41 LANG LARVA — 0 .9 0 0 .9 0 46 TIPU LARVA — 0 .9 0 0 .9 0 48 HYME LARVA — 0 .9 0 0 .9 0 48 MYM A AD/NYM 0 .3 3 0 .5 0 0 .8 3 39 CERC AD/NYM 0 .6 7 — 0 .6 7 41 COCC AD/NYM 0 .1 7 0 .5 0 0 .6 7 41 MORD LARVA — 0 .6 7 0 .6 7 41 SCAP AD/NYM — 0 .6 7 0 .6 7 48 APHE AD/NYM — 0 .6 7 0 .6 7 48 EULO AD/NYM 0 .6 7 — 0 .6 7 46 PHOR LARVA — 0 .5 0 0 .5 0 48 PLAT AO/NYM 0 .3 3 0 .1 7 0 .5 0 38 PENT AD/NYM 0 .5 0 — 0 .5 0 41 CHRY LARVA 0 .5 0 — 0 .5 0 28 ACRI AD/NYM 0 .3 3 — 0 .3 3 39 MEMB AD/NYM — 0 .3 3 0 .3 3 41 cucu AD/NYM — 0 .3 3 0 .3 3 45 MICR AD/NYM 0 .3 3 — 0 .3 3 46 LAUX AD/NYM 0 .3 3 — 0 . 33 46 LONC AD/NYM 0 .3 3 — 0 .3 3 46 MUSC AD/NYM 0 .3 3 — 0 .3 3 48 ENCY AD/NYM 0 .1 7 0 .1 7 0 .3 3 2 PHAJ AD/NYM 0 .1 7 — 0 .1 7 4 AGEL AD/NYM — 0 .1 7 0 . 17 4 MIME AD/NYM — 0 .1 7 0 .1 7 10 BLAN AD/NYM — 0 .1 7 0 .1 7 24 ANA J AD/NYM — 0 .1 7 0 .1 7 28 TETT AD/NYM 0 .1 7 — 0 .1 7 41 ANTK AD/NYM — 0 .1 7 0 .1 7 41 CLER AD/NYM 0 .1 7 — 0 .1 7 41 ELAT AD/NYM — 0 .1 7 0 .1 7 41 ELAT LARVA — 0 .1 7 0 .1 7 41 EUCI AD/NYM — 0 .1 7 0 .1 7 41 MYCE AD/NYM — 0 .1 7 0 .1 7 41 PTIL AD/NYM — 0 .1 7 0 .1 7 45 NOCT AD/NYM 0 .1 7 — 0 .1 7 295 TABLE 1 9 . CONTINUED. ------PERI 30=29 MAY-10 JUNE 1978 AREA=CV ------ORDER FAMILY LIFEFORM HDEN LDEN DENSITY 46 AGRO AD/NYM 0 .1 7 _ 0 .1 7 46 ANTV AD/NYM 0 .1 7 — 0 .1 7 46 BIBI AD/NYM 0 . 1 7 — 0 .1 7 46 CHIR PUPA 0 .1 7 — 0 .1 7 46 OOLI AD/NYM 0 .1 7 —■ 0 .1 7 46 DDL I LARVA — 0 .1 7 0 .1 7 46 EMPI AD/NYM 0 .1 7 — 0 .1 7 46 TACK AD/NYM 0 .1 7 — 0 .1 7 48 ICHN AD/NYM — 0 .1 7 0 .1 7 48 MEG J AD/NYM — 0 .1 7 0 .1 7 48 TENT LARVA — 0 .1 7 0 .1 7

------PERI 30=30 JJNE-9 JULY 1978 AREA=77 ------ORDER FAMILY LIFEFORM HDEN LDEN DENSITY 39 APHI AD/NYM 3 3 3 .5 0 23.99 357.49 46 CECI LARVA 6 .1 7 171.28 177.44 41 CURC AD/NYM 3 5 .1 7 9 2 .1 7 1 2 7 .3 3 39 CICA AO/NYM 8 0 .0 0 35.05 115.05 46 SCHA LARVA 2 .1 7 1 0 5 .6 7 1 0 7 .8 3 37 THRI AD/NYM 1 3 .0 0 8 1 .7 5 9 4 .7 5 41 STAP LARVA 1 3 .1 7 8 1 .1 4 9 4 .3 0 46 STRA LARVA 8.00 67.65 75.65 46 SCIA AD/NYM 64.00 7.50 71.50 46 DIPT PUPA 14.50 47.31 61.81 41 STAP AD/NYM 8 .0 0 5 2 .5 0 6 0 .5 0 46 CHIR LARVA — 4 9 .4 8 4 9 .4 8 46 DROS AD/NYM 4 2 .5 0 1 .5 0 4 4 .0 0 46 SCIA PUPA 4.50 39.21 4 3 .7 1 39 CERC AD/NYM 3 7 .6 7 2 .1 7 3 9 .8 3 46 CHLO AD/NYM 2 6 .3 3 1 .1 7 2 7 .5 0 38 MIRI AD/NYM 2 1 .3 3 5 .8 2 2 7 .1 5 23 ISOT AD/NYM 1 1 .5 0 1 5 .2 4 2 6 .7 4 41 CUCJ LARVA 1 2 .1 7 1 3 .7 8 2 5 .9 5 46 SPHA AD/NYM 18.67 6.17 24.83 41 NITI LARVA 6.33 18.26 2 4 .6 0 41 LANG AD/NYM 1 2 .1 7 1 1 .0 0 2 3 .1 7 48 HYME PUPA 3 .1 7 1 9 .0 4 2 2 .2 1 41 CURC LARVA 3 .3 3 1 7 .2 4 2 0 .5 7 46 CECI AD/NYM 13.33 1.40 14.73 41 LATH AD/NYM 4 .1 7 1 0 .3 3 1 4 .5 0 4 LINY AD/NYM 1 0 .1 7 2 .4 0 1 2 .5 6 45 NOCT LARVA 3 .3 3 8 .9 8 1 2 .3 2 46 MYCJ AD/NYM 1 1 .8 3 — 1 1 .8 3 28 ACRI AD/NYM 1 0 .6 7 0 .6 7 1 1 .3 3 46 TIPU LARVA — 1 1 .0 5 1 1 .0 5 41 CRYP AD/NYM 1.50 9.33 10.83 48 BRAC AD/NYM 9 .6 7 0 .5 0 1 0 .1 7 48 SCEL AD/NYM 6 .5 0 3 .5 0 1 0 .0 0 41 COCC LARVA 7 .6 7 2 .1 3 9 .7 9 38 ANT J AD/NYM 8 .5 0 1 .0 6 9 .5 6 48 ENCY AD/NYM 8 .5 0 0 .8 3 9 .3 3 46 ANTX AD/NYM 8 .6 7 — 8 .6 7 41 CURC PUPA 8.17 0.17 8.33 23 ENTO AD/NYM 2 .6 7 5 .3 8 8 .0 5 48 CERK AD/NYM 4 .8 3 3 .1 7 8 .0 0 48 DIAP AD/NYM 5 .3 3 2 .5 0 7 .8 3 46 CERQ LARVA 0 .1 7 7 .3 4 7.5 1 46 SCIA LARVA 1 .8 3 5 .3 8 7 .2 1 48 MYMA AD/NYM 5 .8 3 1 .3 3 7 .1 7 46 SCHB LARVA 1 .6 7 5 .3 8 7 .0 5 41 PHAL AD/NYM 2 .8 3 3 .8 3 6 .6 7 41 CHRY AD/NYM 4 .6 7 1 .8 3 6 .5 0 46 CERQ AD/NYM 5.83 0.50 6.33 TABLE 19. CONTINUED. PERI0D=30 JJNE-9 JULY 1978 AREA=77 ORDER FAMILY LIFEFORM HDEN LDEN DENSITY 4 THOM AD/NYM 5 .3 3 _ 5 .3 3 39 DELP AD/NYM 5 .0 0 — 5 .0 0 46 CHIR AD/NYM 4.67 0.17 4.83 48 EULO AD/NYM 4 .6 7 — 4 .6 7 48 PLAT AD/NYM 4 .3 3 0 .3 3 4 .6 7 23 SHIN AD/NYM 0 .1 7 4 .4 8 4 .6 5 37 ALEO AD/NYM 4 .5 0 — 4 .5 0 41 CJCU LARVA 2 .0 0 2 .4 6 4 .4 6 46 CECI PUPA 3 .5 0 0 .9 0 4 .4 0 41 NITI AD/NYM 3 .5 0 0 .8 3 4 .3 3 41 CUCU AD/NYM 3 .5 0 0 .3 3 3 .8 3 4 ARAN AD/NYM 3 .6 7 — 3 .6 7 41 PTIL AD/NYM — 3 .6 7 3 .6 7 46 SYRP AD/NYM 3 .6 7 — 3 .6 7 48 CYNI AD/NYM 3 .3 3 0 .3 3 3 .6 7 48 PTER AD/NYM 3 .5 0 0 .1 7 3 .6 7 37 PHLO AD/NYM 2 .6 7 0 .9 0 3 .5 6 46 EMPI AD/NYM 2 .8 3 0 .6 7 3 .5 0 46 CERQ PUPA 2 .5 0 0 .9 0 3 .4 0 41 CARA LARVA 0 .3 3 3 .0 0 3 .3 3 41 LATH LARVA 0 .5 0 2 .6 9 3 .1 9 41 COCC AD/NYM 3 .0 0 0 .1 7 3 .1 7 46 EPHY AD/NYM 3 .1 7 — 3 .1 7 48 FORM AD/NYM 1 .1 7 1 .8 3 3 .0 0 4 LYCO AD/NYM 2 .6 7 0 .1 7 2 .8 3 46 PHOR AD/NYM 2.00 0.67 2.67 45 MICR LARVA 0 .6 7 1 .9 0 2 .5 6 38 NABI AD/NYM 2 .0 0 0 .5 0 2 .5 0 46 SYRP LARVA L.17 1 .2 3 2 .4 0 48 ICHN AD/NYM 1 .8 3 0 .5 0 2 .3 3 38 PENT AD/NYM 1 .8 3 0 .3 3 2 .1 7 46 LONC LARVA 0 .8 3 1 .0 6 1 .9 0 38 SALD AD/NYM 1 .6 7 0 .1 7 1 .8 3 41 COLE PUPA 1 .8 3 — 1 .8 3 45 MICR AD/NYM 1 .8 3 — 1 .8 3 46 LAUX AD/NYM 1 .8 3 — 1 .8 3 46 TABA LARVA — 1 .7 9 1 .7 9 41 CARA AD/NYM 0 .6 7 0 .8 3 1 .5 0 41 COCC PUPA 1 .5 0 — 1 .5 0 46 ANTV AD/NYM 1 .5 0 — 1 .5 0 28 GRYK AD/NYM 1 .1 7 0 .1 7 1 .3 3 46 SCHO LARVA 0 .1 7 1 .0 6 1 .2 3 48 TRIJ AD/NYM 0.17 1.06 1.23 41 CUCU PUPA 1 .0 0 0 .1 7 1 .1 7 46 MUSC AD/NYM 1 .1 7 — 1 .1 7 48 APID AD/NYM 1 .1 7 — 1 .1 7 48 ICHN PUPA — 1 .0 6 1 .0 6 34 PSEJ AD/NYM 0.83 0.17 1.00 38 LYGA AD/NYM - 0 .9 0 0 .9 0 39 COCJ AD/NYM — 0 .9 0 0 .9 0 41 ELAT LARVA — 0 .9 0 0 .9 0 46 CHIR PUPA — 0 .9 0 0 .9 0 46 DOLI LARVA — 0 .9 0 0 .9 0 41 CUCJ PUPA 0 .8 3 — 0 .8 3 41 PHAL PUPA 0 .8 3 — 0 .8 3 46 DOLI AD/NYM 0 .6 7 — 0 .6 7 46 LONC AD/NYM 0 .6 7 — 0 .6 7 46 SCHC LARVA — 0 .6 7 0 .6 7 38 REOU AD/NYM 0 .1 7 0 .3 3 0 .5 0 46 SEPS AD/NYM 0 .5 0 — 0 .5 0 46 TIPU AD/NYM 0 .5 0 — 0 .5 0 4 SALT AD/NYM 0 .3 3 — 0 .3 3 4 THER AD/NYM 0 .3 3 — 0 .3 3 41 EUCI AD/NYM 0 .3 3 — 0 .3 3 41 MORD AD/NYM 0 .3 3 — 0 .3 3 41 SCAP AD/NYM - 0 .3 3 0 .3 3 TABLE 19. CONTINUED. ------PERIOD =30 JJNE-9 JULY 1978 AREA=77 ------ORDER FAMILY L IFEFORM HDEN LDEN DENSITY 48 APHE AD/NYM 0 .3 3 — 0 .3 3 4 CLUB AD/NYM — 0 .1 7 0 .1 7 27 LI BE AD/ NYM 0 .1 7 — 0 .1 7 3B ALYD AD/NYM 0 .1 7 — 0 .1 7 40 CHRJ LARVA — 0 .1 7 0 .1 7 41 BYRR AD/NYM — 0 .1 7 0 .1 7 41 CLER AD/NYM 0 .1 7 — 0 .1 7 41 ELAT AD/NYM — 0 .1 7 0 .1 7 41 HIST AD/NYM — 0 .1 7 0 .1 7 41 MYCE AD/NYM — 0 .1 7 0 .1 7 41 SCOL AD/NYM — 0 .1 7 0 .1 7 45 GEOM LARVA 0 .1 7 — 0 .1 7 45 NOCT AD/NYM 0 .1 7 — 0 .1 7 46 AGRO AD/NYM 0 .1 7 — 0 .1 7 46 CUL I AD/NYM 0 .1 7 — 0 .1 7 46 MI LI AD/NYM — 0 .1 7 0 .1 7 46 SARC AD/NYM 0 .1 7 — 0 .1 7 46 SCAT AD/NYM — 0 .1 7 0 .1 7 48 BRAC PUPA 0 .1 7 — 0 .1 7 48 DRYI AD/NYM 0 .1 7 — 0 .1 7 48 EURY AD/NYM 0 .1 7 0 .1 7

------PERIOD =30 JJN E -9 JULY 1978 AREA=75 ------ORDER FAMILY LIFEFORM HDEN LDEN DENSITY 46 CECI LARVA 1 0 .1 7 517.97 528.14 39 APHI AD/NYM 2 4 2 .8 1 1 8 .1 1 2 6 0 .9 2 37 THRI AD/NYM 5 8 .0 1 153.35 211.35 46 CHIR LARVA 1 .0 0 1 9 2 .1 9 1 9 3 .1 9 39 CICA AD/NYM 1 0 2 .1 9 4 6 .6 0 1 4 8 .7 9 46 STRA LARVA 2 .8 4 8 3 .0 6 8 5 .9 0 4 LINY AD/NYM 2 0 .5 2 3 9 .4 8 6 0 .0 0 48 FORM AD/NYM 1 9 .3 5 3 9 .5 0 5 8 .8 5 23 HYPO AD/NYM 0 .6 7 5 7 .5 5 5 8 .2 1 41 STAP LARVA 6.34 48.62 5 4 .9 6 41 STAP AD/NYM 9 .8 5 4 3 .3 4 5 3 .1 9 37 PHLO AD/NYM 4 .8 4 4 6 .6 2 5 1 .4 6 46 CHLO AD/NYM 4 7 .1 8 1 .3 3 4 8 .5 2 23 ISOT AD/NYM 2 .6 7 4 5 .7 2 4 8 .3 9 46 SCHA LARVA 0 .8 3 4 7 .0 6 4 7 .8 9 48 SCEL AD/NYM 1 6 .3 3 2 7 .5 0 4 3 .8 3 39 CERC AD/NYM 3 6 .0 0 4 .1 7 4 0 .1 7 41 CUCJ LARVA 1 .3 3 3 7 .7 6 3 9 .0 9 23 ONYC AD/NYM 0 .1 7 3 7 .6 5 3 7 .8 2 41 CURC AD/NYM 3 .6 7 3 3 .5 0 3 7 .1 7 41 NIT I LARVA 9 .0 0 2 6 .3 5 3 5 .3 5 23 ENTO AD/NYM 3 1 .1 7 3 .7 5 3 4 .9 2 46 DROS AD/NYM 3 3 .8 3 0 .6 7 3 4 .5 0 46 CECI PUPA 3 .5 0 2 9 .1 2 3 2 .6 2 41 LATH AD/NYM 1 0 .0 0 1 8 .3 3 2 8 .3 3 46 SCIA AD/NYM 2 1 .3 3 4 .3 3 2 5 .6 7 17 LITH AD/NYM 1 .6 7 2 2 .9 1 2 4 .5 7 45 NOCT LARVA 4 .8 3 1 5 .6 7 2 0 .5 1 48 CERK AD/NYM 7 .8 3 1 2 .5 0 2 0 .3 3 39 COCJ AD/NYM — 1 8 .8 3 1 8 .8 3 38 MIRI AD/NYM 1 3 .6 7 4 .0 2 1 7 .6 9 41 LATH LARVA 0 .1 7 1 7 .2 0 1 7 .3 7 46 CECI AD/NYM 1 2 .6 7 4 .6 7 1 7 .3 3 46 CHIR AD/NYM 1 6 .8 4 0 .3 3 1 7 .1 7 41 CRYP AD/NYM 1 .6 7 1 5 .3 3 1 7 .0 0 48 ENCY AD/NYM 1 3 .6 7 1 .1 7 1 4 .8 4 41 CARA LARVA 0 .8 3 1 3 .7 6 1 4 .5 9 48 CYNI AD/NYM 1 3 .1 8 1 .1 7 1 4 .3 5 46 CERQ AD/NYM 1 4 .3 2 — 1 4 .0 2 298 TABLE 1 9 . CONTINUED.

------PERI3D=30 JJNE-9 JULY 1978 AREA=75 — ORDER FAMILY LIFEFORM HDEN LDEN DENSITY 41 CARA AD/NYM 1 .1 7 1 2 .8 3 1 4 .0 0 23 SMIN AD/NYM 5 .6 7 8 .0 7 1 3 .7 4 26 GRYK AD/NYM 1 0 .3 3 3 .0 6 1 3 .4 0 41 LANG AD/NYM 3 .8 4 9 .0 0 1 2 .8 4 48 BRAC AD/NYM 1 0 .6 7 0 .5 0 1 1 .1 7 41 COCC LARVA 6 .8 3 3 .9 6 1 0 .7 9 46 TIPU LARVA — 9 .9 2 9 .9 2 38 ANT J AD/NYM 5 .6 8 3 .5 9 9 .2 7 45 ACRO LARVA — 9 .1 7 9 .1 7 4 LYCO AD/NYM 5 .1 7 2 .7 3 7 .9 0 46 PHOR AD/NYM 7 .5 2 0 .3 3 7 .8 5 46 DIPT PUPA 5.83 1.79 7.63 37 ALEO AD/NYM 3 .3 3 3 .5 9 6 .9 2 41 PHAL AD/NYM 3 .6 7 2 .8 3 6 .5 0 28 ACRI AD/NYM 6 .3 3 0 .1 7 6 .5 0 48 MYMA AD/NYM 5 .8 3 0 .5 0 6 .3 3 46 DOLI LARVA — 6 .2 8 6 .2 3 41 CUCU LARVA — 6 .1 5 6 .1 5 46 SCIA PUPA 2 .5 0 3 .5 9 6 .0 9 4 ARAN AD/NYM 5 .5 0 0 .5 0 6 .0 0 45 MICR LARVA 0 .6 7 5 .2 5 5 .9 2 46 CERQ LARVA — 5 .3 8 5 .3 8 46 ANTX AD/NYM 5 .1 7 0 .1 7 5 .3 3 46 SCIA LARVA 2 .3 3 2 .8 6 5 .1 9 46 SPHA AD/NYM 2 .6 7 2 .1 7 4 .8 3 48 EULO AD/NYM 4 .0 0 0 .3 3 4 .3 3 4 CLUB AD/NYM 3 .6 7 0 .5 0 4 . 17 41 COCC AD/NYM 2 .8 3 1 .3 3 4 .1 7 41 BYRR AD/NYM 0 .1 7 3 .5 0 3 .6 7 41 ELAT LARVA 0 .1 7 3 .2 9 3 . 46 39 ISSI AD/NYM 3 .0 0 0 .3 3 3 .3 3 46 DOLI AD/NYM 3 .3 3 — 3 .3 3 46 LAUX AD/NYM 3 .3 3 — 3 .3 3 38 PENT AD/NYM 3 .1 7 — 3 .1 7 48 PTER AD/NYM 3 .0 0 0 .1 7 3 .1 7 48 DIAP AD/NYM 1 .8 3 1 .1 7 3 .0 0 48 PLAT AD/NYM 2 .6 7 0 .3 3 3 .0 0 41 ANTK LARVA 1 .6 7 L .0 6 2 .7 4 41 NITI AD/NYM 0 .1 7 2 .3 3 2 .5 0 41 MYCE AD/NYM 0 .1 7 2 .3 3 2 .5 0 46 SCHD LARVA — 2 .4 6 2 . 46 28 TETT AD/NYM 2 .0 0 0 .3 3 2 .3 3 41 CURC PUPA 2 .0 0 0 .3 3 2 .3 3 41 SCAP AD/NYM 0 .8 3 1 .5 0 2 .3 3 46 EPHY AD/NYM 2 .1 7 0 .1 7 2 .3 3 48 BRAC PUPA 0 .1 7 2 .1 7 2 .3 3 34 PSEJ AD/NYM 2 .1 7 — 2 .1 7 45 MICR AD/NYM 2 .0 0 — 2 .0 0 46 MUSC AD/NYM 2 .0 0 — 2 .0 0 48 ICHN AD/NYM 1 .5 0 0 .5 0 2 .0 0 38 LYGA AD/NYM 0 .8 3 1 .0 6 1 .9 0 48 HYME PUPA 0 .6 7 1 .2 3 1 .9 0 39 DELP AD/NYM 1 .8 3 — 1 .8 3 41 COLE PUPA 1 .8 3 — 1 .8 3 46 ANTV AD/NYM 1 .8 3 — 1 .8 3 40 CHRJ LARVA 0 .6 7 1 .0 6 1 .7 3 4 SALT AD/NYM 1 .0 0 0 .6 7 1 .6 7 46 MYCJ AD/NYM 1 .6 7 — 1 .6 7 46 SYRP AD/NYM 1 .5 0 0 .1 7 1 .6 7 46 SYRP LARVA 1 .1 7 0 .5 0 1 .6 7 48 APHE AD/NYM 1 .0 0 0 .6 7 1 . 67 4 THOM AD/NYM 0 .3 3 1 .2 3 1 .5 6 41 COCC PUPA 0 .8 3 0 .3 3 1 .1 7 41 CURC LARVA 1 .0 0 0 .1 7 1 .1 7 46 EMPI AD/NYM 1 .1 7 — 1 .1 7 46 LONC AD/NYM 1 .1 7 — 1 .1 7 PERI3D=30 JJNE-9 JULY 1978 AREA= 75 ------ORDER FAMILY LIFEFORM HDEN LDEN DENSITY S N N S N S S S - > ( N N N - h N N S S N S N « f N h S N m m m O O O O O Q N S ~ f m m m m m O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O Q O O O O Q O O O O O O O - H J ■ o o o o o > »eo o o e o o o « o z z x p o OOO m (Ao Q 3 0 3 Q Q Q a Q 0 0 « Q 0 a Q 0 < Q 0 Q 0 Q Q 3 a 0 Q Q Q < Q Q Q Q Q Q Z < Z < < Z Z Z Z Q 2 Z 2 » Z a Z Z Z Z 0 > Z Z Z O Z Z Z 4 Z 0 Z Z Z Z > Q Z Z Z Z Q Z Z > Z Z Z 4 > Z Z Z uahUviJo£a.za.MO.-jaL -4p40-*0*lA00O'>-4-4-4«-4-4-4lAlA00000000000 _jOQO-ji->a:iiJ-ji_)«aujO-i«txaooujMxzoajooiiJOO

0 p -

0 o o o m s s m o iaia o o p o o o o o - • • I• • • I i a i a i n i a i a i a p a p a p a ^ _ i

OOooo o o OOO O seno ia o • I• • • I• • • I

iapa phpaia . m

PA^l.PAP«-h- i OOO • I • • • —ip*-4 p » p » p - a OOO ili» H I - I I • •• ** a II - —< ■* p - r-f'- o o o O O O O O O O O O O ••lllllll -* ph

N N N N N N N o o o o o o o • ••••• t | I I | | I m* ** « - i . - 4 > -<_ 4 4 p* p* -4 —i ^ —i ••••••••! ••• ••••••••! p^A.r>.p.p»A.p.A. p^A.r>.p.p»A.p.A. I I —4 o • I I I «■< -4 a z z y- y - a - a . p» 0 o* 0 • O 1 ^■-4N0OO>ON0«*-4OmN 0 0**PAO>A»A-0lAIAlAtAPAPA m m o H O N A K o o > o n i H r-Ajy-— tO'or»-^ «* *0O-MO01AI A P IA A 1 0 O M - O 0 .* O A0v0'lfO O'PA00rvi0O'0lAfAOO IA■O(M«OH0O>tSinClN ONmoN-osoom'-Nr'i ONmoN-osoom'-Nr'i 0fAf'JO'P» IA*-IIAlA (M Z L o y u o 3 u y ( a > i k d U G j M a « . A a Q M « < □ M d PA XZnifllOOlUOUUQOJ yuiayLie£Z3MUJZw< •• ••••••••••I • •••••••••••• m i a •>« o> m « a m i r* j m m a p 4O000PA 4 1 0 PA 0 01A p4 p ^O'0(A0»* p A P 0 *

00*1 Z9*0 ££*0 WAN/OV dVIO 8V CO *1 Z I*0 £8*0 WAN/OV INA3 8 V 00*1 ZT *0 £8*0 WAN/OV 8 3 Id 8 V 00*1 00*1 — WAN/OV f l l d TV CO *T OC*T WAN/OV ISSI 6£ 00*1 05*0 0S*0 WAN/GV 18VN 8£ 90*1 90*1 VA8V1 HOG 9*i 90*1 06*0 ZTO WAN/GV TOCO 6£ Z1*T ZT*T WAN/GV 0103 8 V ZT*T — ZT*T WAN/GV TVHd Z £2*1 EZ* 1 VAliVl 0003 TV ££*T ££*T WAN/GV d!3G 6£ OS *T — 0S*1 WAN/GV 0N01 9V OS*I — 0S*T WAN/GV 031V Z£ Z 9*1 — Z9*T WAN/GV dHAS 9* Z9*l — Z9*T v

~ A3*V38V 8Z6T a w 6-3Nrr 0£*GC 1 8 3 d ------•OBONIINOO *61 318V1 301 TABLE 1 9 . CONTINUED. ------PERIOD =30 JJN E -9 JULY 1978 AREA=CV ------ORDER FAMILY LIFEFORM HDEN LDEN DENSITY 48 MYMA AD/NYM 0 .3 3 0 .6 7 1 .0 0 37 PHLO AD/NYM — 0 .9 0 0 .9 0 41 LAGR LARVA — 0 .9 0 0 .9 0 4 THOM AD/NYM 0 .6 7 0 .1 7 0 .8 3 34 PSEJ AD/NYM 0 .8 3 — 0 .8 3 40 CHRJ LARVA 0 .8 3 — 0 .8 3 46 SYRP LARVA 0.50 0.33 0.83 48 SCEL AD/NYM 0.17 0.67 0.83 28 TETT AD/NYM 0 .6 7 — 0 .6 7 41 PTIL AD/NYM — 0 .6 7 0 .6 7 46 CERQ AD/NYM 0 .6 7 — 0 .6 7 46 PHOR LARVA — 0 .6 7 0 .6 7 9 CLEI AD/NYM — 0 .5 0 0 .5 0 19 GEOP AD/NYM — 0 .5 0 0 .5 0 41 CUCU LARVA — 0 .5 0 0 .5 0 41 MORD AD/NYM 0 .1 7 0 .3 3 0 .5 0 41 MYCE AD/NYM — 0 .5 0 0 .5 0 46 TIPU AD/NYM 0 .5 0 — 0 .5 0 48 ENCY AD/NYM 0 .1 7 0 .3 3 0 .5 0 38 ANT J AD/NYM 0 .5 0 — 0 .5 0 46 STRA AD/NYH 0 .3 3 0 .1 7 0 .5 0 28 GRYJ AD/NYM 0 .1 7 0 .1 7 0 .3 3 38 PENT AD/NYM 0 .3 3 — 0 .3 3 41 COCC AD/NYM 0 .1 7 0 .1 7 0 .3 3 45 NOCT AD/NYM 0 .1 7 0 .1 7 0 .3 3 46 ANT V AD/NYM 0 .3 3 — 0 .3 3 48 EUPE AD/NYM 0 .3 3 — 0 .3 3 10 PARA AD/NYM — 0 .1 7 0 .1 7 38 LYGA AD/NYM 0 .1 7 — 0 .1 7 39 MEMB AD/NYM 0 .1 7 — 0 .1 7 41 CHRY AD/NYM 0 .1 7 — 0 .1 7 41 CRYP PUPA — 0 .1 7 0 .1 7 41 ELAT LARVA — 0 .1 7 0 .1 7 41 EUCI AD/NYM — 0 .1 7 0 .1 7 41 LAMP AD/NYM — 0 .1 7 0 .1 7 41 LAMP LARVA — 0 .1 7 0 .1 7 41 SCAP AD/NYM — 0 .1 7 0 .1 7 45 ACRO LARVA — 0 .1 7 0 .1 7 45 MICR AD/NYM 0 .1 7 — 0 .1 7 45 MICR PUPA 0 .1 7 — 0 .1 7 46 CALL AD/NYM 0 .1 7 — 0 . 17 46 DOLI AD/NYM 0 .1 7 — 0 .1 7 46 EPHY AD/NYM 0 .1 7 — 0 .1 7 46 LAUX AD/NYM 0 .1 7 — 0 .1 7 46 MUSC AD/NYM 0 .1 7 — 0 .1 7 46 SCHD LARVA — 0 .1 7 0 .1 7 48 APHE AD/NYM 0 .1 7 — 0 .1 7 48 HAL I AD/NYM 0 .1 7 — 0 .1 7 48 HYME AD/NYM 0 .1 7 — 0 .1 7 48 MEG J AD/NYM — 0 .1 7 0 .1 7 48 TRIJ AD/NYM 0 .1 7 • 0 .1 7

------PER 103= 26 JULY-8 AUGUST 1978 ARE A=77 — ------ORDER FAMILY LIFEFORM HDEN LDEN DENSITY 46 CECI LARVA 2 1 .8 3 3 0 7 .0 3 3 2 8 .8 6 39 CICA AD/NYM 1 3 5 .1 7 3 1 .6 2 1 6 6 .7 8 46 STRA LARVA 9 .6 7 1 5 5 .5 6 1 6 5 .2 2 41 CURC AD/NYM 6 5 .0 0 8 8 .8 3 1 5 3 .8 3 41 STAP AD/NYM 6 3 .5 0 8 3 .8 4 1 4 7 .3 4 41 STAP LARVA 1 6 .3 3 7 2 .0 3 8 8 .3 6 37 THRI AD/NYM 2 5 .3 3 5 2 .5 3 7 7 .8 6 39 APHI AD/NYM 5 7 .6 7 1 5 .6 1 7 3 .2 8 38 MIR1 AD/NYM 6 6 .1 7 4 .1 9 7 0 .3 6 ZI*£ Z1*0 00 *£ WAN/GV A8H3 IV n m£ Z 1 *£ WAN/GV d l3 0 6£ ££*£ ZTO Z 1 *£ VdOd 3WAH 8 V ££*£ Z9*0 Z9*Z WAN/GV A 3N3 8V O V E £Z*1 ZTZ WAN/OV worn V os*£ OS *£ WAN/OV 0833 9V 19 m£ — Z9* £ WAN/GV 3N01 9V Z9 *£ ZI*1 0S*Z WAN/OV 0303 IV Z9*£ Z9 *£ WAN/OV 33C3 IV EZ*E 06*0 £8*Z v

•OSONUNOO *61 3T8V1 304 TABLE 19. CONTINUED. PERIOD 26 JULY-8 AUGUST 1970 AREA=77 ------ORDER FAMILY LIFEFORM HDEN LDEN DENSITY 55 ARCT LARVA 0.17 0.17 *5 GEOM LARVA 0.17 — 0.17 45 NOCT PUPA 0.17 — 0.17 45 PIPU AD/NYM 0.17 — 0.17 46 SCHC LARVA — 0*17 0.17 46 SYRP LARVA 0.17 — 0.17 48 APHE AD/NYM 0.17 — 0.17 48 APID AD/NYM 0.17 — 0.17 48 HYME LARVA 0.17 0.17

PERIOD 25 JULY-8 AUGUST 1978 AREA=75 ------ORDER FAMILY LIFEFORM HDEN LDEN DENSITY 46 CECI LARVA 50.83 1324.03 1374.87 39 CICA AD/NYM 136.83 76.91 213.74 46 CHIR LARVA 0.50 168.48 168.98 46 STRA LARVA 22.50 140.06 162.56 37 THR I AD/NYM 35.83 110.71 146.54 23 ENTO AD/NYM 60.67 53.28 113.94 41 STAP LARVA 3.50 104.91 108.41 37 PHLO AD/NYM 29.33 52.14 81.47 41 STAP AD/NYM 11.67 64.17 75.84 46 CECI PUPA 9.17 62.21 71.38 23 HYPO AD/NYM 0.17 68.14 68.33 48 FORM AD/NYM 9.67 56.34 66.01 41 CUCJ LARVA 23.50 37.76 61.26 4 LINY AD/NYM 26.33 33.47 59.80 38 MI RI AD/NYM 45.00 1.50 46.50 38 ANT J AD/NYM 35.67 10.34 46.03 41 LATH AD/NYM 15.33 26.33 41.67 23 SMIN AD/NYM 7.17 32.25 39.41 48 SCEL AD/NYM 12.83 26.00 38.83 39 APHI AD/NYM 31.50 6.78 38.28 41 CRYP AD/NYM 7.83 30.34 38.17 46 DIPT PUPA 18.17 18.24 36.43 46 SCHA LARVA 1.67 30.65 32.32 41 CURC AD/NYM 5.00 27.17 32.17 48 CERK AD/NYM 11.00 19.50 30.53 23 ISOT AD/NYM 3.00 26.90 29.93 46 SCI A PUPA 0.83 27.52 28.35 39 CERC AD/NYM 24.67 2.33 27.03 46 DROS AD/NYM 26.83 0.17 27.03 4 LYCO AD/NYM 15.17 11.73 26.93 48 PLAT AD/NYM 22.83 3.67 26.50 45 MICR LARVA 4.33 21.01 25.34 41 LANG AD/NYM 13.33 11.50 24.83 46 CECI AD/NYM 15.33 8.06 23.40 23 ONYC AD/NYM — 22.41 22.41 46 SCIA AD/NYM 8.83 10.00 18.84 41 CURC LARVA 0.17 16.49 16.66 39 COCJ AD/NYM 1.17 15.24 16.41 41 PHAL AD/NYM 9.50 4.83 14.33 41 CUCJ LARVA 4.83 7.28 12.11 46 DOLI LARVA — 10.86 10.86 46 LAUX AD/NYM 10.33 0.17 10.53 45 NOCT LARVA 1.33 9.09 10.42 41 CARA AD/NYM 0.67 9.67 10.33 45 MICR PUPA 1.50 8.50 10.00 48 EULO AD/NYM 8.83 0.50 9.33 28 ACRI AD/NYM 8.17 0.67 8.83 48 PTER AD/NYM 8.67 0.17 8.83 41 LATH LARVA 1.00 7.34 8.34 41 NIT I AD/NYM 5.00 3.00 8.00 46 MYCJ AD/NYM 7.67 - 7.67 305 TABLE L9. CONTINUED.

------PERIOD =26 JULY-8 AUGUST 19 7 8 AREA=75 -

ORDER FAMILY LIFEFORM HDEN LDEN OENSI TY

28 GRYK AD/NYM 7 . 3 3 0 . 1 7 7 . 50 6 ARAN AD/NYM 7 . 0 0 0 . 5 0 7 . 50 48 ENCY AD/NYM 6 . 6 7 0 . 6 7 7 . 33 46 PHOR AD/NYM 6 . 8 3 — 6 . 83 46 SPHA AD/NYM 5 . 6 7 1 . 0 0 6 . 67 48 HYME PUPA 6.33 0.33 6 . 67 46 CHLO AD/NYM 6 . 0 0 0 . 5 0 6 . 50 41 BYRR AD/NYM — 6 . 3 3 6 . 33 39 DELP AD/NYM 4 . 5 0 1 . 7 9 6 . 29 41 CARA LARVA 1 . 6 7 4 . 4 2 6 . 09 46 SCIA LARVA 3 . 3 3 2 . 6 9 6 . 02 38 NAB I AD/NYM 5 . 1 7 0 . 3 3 5 . 50 46 CERQ AD/NYM 5 . 1 7 0 . 1 7 5. 33 48 CYNI AD/NYM 4 . 1 7 0 . 8 3 5 . 00 37 ALEO AD/NYM 2 . 3 3 2 . 1 3 4 . 46 38 PENT AD/NYM 4 . 1 7 0 . 1 7 4 . 33 45 MICR AD/NYM 4 . 1 7 0 . 1 7 4 . 33 48 BRAC AD/NYM 4 . 0 0 0 . 3 3 4 . 33 41 MYCE AD/NYM 2 . 5 0 1 . 5 0 4 . 00 41 CUCU AD/NYM 3 . 5 0 0 . 5 0 4 . 00 48 DIAP AD/NYM 1 . 8 3 2 . 1 7 4 . 00 4 THOM AD/NYM 2 . 0 0 1 . 6 7 3 . 67 41 CHRY AD/NYM 3 . 3 3 0 . 3 3 3 . 67 41 SCAR LARVA — 3 . 5 9 3 . 59 41 SCAP AD/NYM — 3 . 5 0 3 . 50 46 ANTX AD/NYM 3 . 5 0 — 3 . 50 48 MYMA AD/NYM 3 . 0 0 0 . 3 3 3 . 33 46 CHIR AD/NYM 3 . 1 7 — 3. 17 41 COCC AD/NYM 2 . 5 0 0 . 5 0 3 . 00 39 IS S I AD/NYM 1 . 8 3 1 . 0 6 2 . 90 48 ICHN AD/NYM 2 . 5 0 0 . 3 3 2 . 83 46 CERQ LARVA — 2 . 6 9 2 . 69 41 COCC LARVA 1 . 0 0 1 . 6 7 2 . 67 4 SALT AD/NYM 1 . 3 3 1 . 1 7 2 . 50 46 DOLI AD/NYM 2 . 3 3 — 2 . 33 34 PS EJ AD/NYM 1 . 0 0 1 . 2 3 2 . 23 41 MORD AD/NYM 2 . 1 7 — 2 . 17 46 EMPI AD/NYM 1 . 6 7 0 . 3 3 2 . 0 0 46 STRA AD/NYM 1 . 8 3 0 . 1 7 2 . 00 28 TETT AD/NYM 1 . 6 7 0 . 1 7 1 . 83 41 CJRC PUPA 1 . 8 3 — 1 . 83 41 ELAT AD/NYM 0 . 5 0 1 . 3 3 1 . 83 41 CLER LARVA 0 . 5 0 1 . 2 3 1 . 73 45 COL J LARVA - 1 . 7 3 1 . 73 46 MUSC AD/NYM 1 . 5 0 0 . 1 7 1 . 67 28 TETR AD/NYM 0 . 8 3 0 . 6 7 1 . 50 48 EURY AD/NYM 1 . 1 7 0 . 3 3 1 . 50 41 ANTK AD/NYM 0 . 8 3 0 . 6 7 1 . 50 46 TIPU LARVA — 1 . 5 0 1. 50 4 CLUB AD/NYM 0 . 8 3 0 . 5 0 1 . 33 41 HELD AD/NYM 0 . 8 3 0 . 5 0 1 . 33 41 COLE LARVA — 1 . 0 6 1 . 06 40 CHRJ LARVA 0 . 8 3 0 . 1 7 1. 00 41 ELAT LARVA — 1 . 0 0 1 . 00 41 N IT I LARVA 0 . 8 3 0 . 1 7 1 . 00 48 APHE AD/NYM 0 . 6 7 0 . 3 3 1 . 00 41 MORD LARVA — 0 . 9 0 0 . 90 39 MEMB AD/NYM 0 . 8 3 — 0 . 83 41 CANT LARVA — 0 . 8 3 0 . 83 41 COLE PUPA 0 . 8 3 — 0 . 83 41 CORY AD/NYM 0 . 8 3 — 0 . 83 41 SCAR AD/NYM 0 . 3 3 0 . 5 0 0. 83 48 HYME LARVA 0 . 8 3 — 0. 83 10 JU LI AD/NYM — 0 . 6 7 0. 67 17 LITH AD/NYM 0 . 1 7 0 . 5 0 0. 67 38 TING AD/NYM 0 . 3 3 0 . 3 3 0. 67 306 TABLE L9. CONTINUED.

------PER 103= 26 JULY-8 AUGUST 1978 AREA=75 —------ORDER FAMILY LIFEFORM HDEN LDEN DENSITY

41 HIST LARVA — 0.67 0.67 46 ACAB AD/NYM 0.67 — 0.67 46 EPHY AD/NYM 0.50 0.17 0.67 46 SYRP AD/NYM 0.67 — 0.67 48 HAL I AD/NYM 0.33 0.33 0.67 48 MEGJ AD/NYM 0.33 0.33 0.67 48 TRIJ AD/NYM 0.67 — 0.67 2 PHAJ AD/NYM 0.50 — 0.50 41 HIST AD/NYM — 0.50 0.50 41 PHAL PUPA 0.50 — 0.50 41 EUCI AD/NYM 0.17 0.33 0.50 41 LA5R LARVA — 0.50 0.50 46 SCHD LARVA — 0.50 0.50 4 GNAP AD/NYM — 0.33 0.33 38 BERY AD/NYM — 0.33 0.33 41 COCC PUPA 0.33 — 0.33 45 ACRO LARVA — 0.33 0.33 46 LONC AD/NYM 0.33 — 0.33 48 BRAC PUPA 0.33 — 0.33 48 EUPE AD/NYM 0.33 — 0.33 4 ARAJ AD/NYM 0.17 — 0.17 38 ALYD AO/NYM 0.17 — 0. 17 38 SALD AD/NYM 0.17 — 0. 17 39 ACAN AD/NYM 0.17 — 0.17 39 DICT AD/NYM 0.17 — 0.17 40 CHRJ PUPA 0.17 — 0.17 41 ANTK LARVA — 0.17 0.17 41 CANT PUPA — 0.17 0.17 41 CLER AD/NYM — 0.17 0.17 41 CJCJ PUPA 0.17 — 0.17 41 LAMP LARVA - 0.17 0. 17 41 LANG LARVA — 0.17 0.17 41 PSEL AD/NYM — 0.17 0.17 41 PTIL AD/NYM — 0.17 0. 17 45 ARCT LARVA — 0.17 0.17 45 NOCT PUPA — 0.17 0. 17 46 ANTV AD/NYM 0.17 — 0. 17 46 CALL AD/NYM 0.17 — 0.17 46 LONC LARVA 0.17 — 0.17 46 SARC AD/NYM 0.17 — 0.17 46 SCHC LARVA — 0.17 0. 17 46 SEPS AD/NYM 0.17 — 0.17 46 STRA PUPA 0.17 — 0.17 48 BETH AD/NYM 0.17 — 0.17 48 CERK PUPA — 0.17 0.17 48 PROC AD/NYM 0.17 — 0.17 48 TENT AD/NYM 0.17 — 0.17

------PERIOD* 26 J J L Y - 8 AUGUST 1978 AREA=CV ------

ORDER FAMILY LIFEFORM HDEN LDEN DENSITY

23 HYPO AD/NYM 0 . 5 0 5 1 0 . 4 6 5 1 0 . 9 6 41 CUCJ LARVA 20.50 361.53 3 8 2 . 0 3 23 ENTO AD/NYM 1 2 0 . 1 7 2 0 1 . 3 9 3 2 1 . 5 6 46 CECI LARVA 1 . 8 3 2 4 0 . 3 1 2 4 2 . 1 4 10 JUL I AD/NYM 7 . 5 0 1 7 2 . 7 9 1 8 0 . 2 9 41 LANG AD/NYM 1 3 . 1 7 1 6 0 . 1 9 1 7 3 . 3 6 41 LATH LARVA 1.67 130.54 132.20 39 CICA AD/NYM 6 7 . 3 3 5 1 . 9 7 1 1 9 . 3 0 37 THRI AD/NYM 1 7 . 5 0 9 9 . 9 2 1 1 7 .4 2 41 LATH AD/NYM 1 9 . 3 3 8 1 . 1 8 1 0 0 .5 1 46 SCHA LARVA 3 . 6 7 8 0 . 8 3 8 4 . 5 0 48 FORM AD/NYM 4 . 1 7 6 5 . 5 1 6 9 . 6 7 1 NEOB AD/NYM 3 . 0 0 5 3 . 11 5 6 . 1 1 Z T £ Z9 *0 os*z NAN/OV INA3 8* Z I * £ 0 5 * 0 Z 9*Z WAN/GV XAX9 8Z £Z *£ £ Z “ Z c s * o WAN/GV WGH1 * £ £ * £ Z 9*0 Z9*Z WAN/GV CIOS 9* C S*£ Z 9 “ 0 £8*Z WAN/GV NVXV * 1 9 * £ Z 9 “ Z 0 0 * 1 WAN/OV VWAW 8* SZ*£ SZ *£ — VAXV1 d h V l 1* £8 *£ 0 5 * 0 ££*£ WAN/GV 3VX8 8 * £8 *£ £ 8 * £ — WAN/OV 1 1 Id 1* CO** £ 8 * 0 Z 1 *£ WAN/GV 3X 33 6£ GO** £ 8 “ £ ZTO WAN/GV NH3I 8* ZT*ZT* — WAN/OV 1 3 S d I * ££ ** £ £ * * — WAN/GV ISIH 1* ZS** ZS** — VA1:V1 1NV3 1* 65 ** 6 5 * * — WAN/OV H i l l Z1 £8 ** 0 5 * 0 £ £ * * WAN/GV C1H3 9* 8£ *5 8£ *5 — Vdfld V I3S 9* 1Z*S 1Z*S — VAXV1 V103 1* Z £*9 Z £ “ S 00 * 1 VAXV1 noro 1* £ £ • 9 Z T O Z 1*9 WAN/GV IWdV 6£ 9 5 * 9 9S * £ 00 *£ WAN/GV XOHd 9* * 8 * 9 00 “9 £8 * 0 V cfld 3WAH 8* SZ *Z Z**S £ 8 * 1 V A iV l 3 3 0 3 1* £8 *Z £ £ • 9 05*1 WAN/GV 1 3 3 S 8* £8 *Z Z 9 “Z ZTO WAN/OV VXV3 1* 5 0 * 8 8£ *5 Z9*Z WAN/aV d !3 G 6£ £Z *8 9 0 * 1 Z T Z WAN/OV T3Sd *£ 9 8 * 8 6 9*Z Z T 9 WAN/GV 031V L£ 8 6 * 8 S 9 “ 9 ££*Z WAN/GV AN 11 * 0 0 * 6 OS *Z 05*1 WAN/OV lVHd 1* £T "6 £ 1 * 6 — WAN/OV r a o 3 6€ CS *6 0 5 * 6 — WAN/GV 3X0d S Z8 *6 Z£ *9 C S*£ WAN/GV 11VS * £ 8 * 6 0 0 “ £ £ 8 * 9 WAN/GV I i IN 1* * 8 * 6 *8 “6 — WAN/GV NV19 01 Z l* 0 1 Z 1 *9 0 0 * * WAN/GV 13 3 3 9* * £ * 1 1 * 8 * 6 05 * 1 WAN/GV 8 0 1 3 * * z * n Z 0*8 Z 9*£ WAN/GV NIWS €Z ££ “ZT £ £ • 9 0 0 * 9 WAN/GV V I3S 9* SS*Z1 SS*Z1 — VA1V1 XJNV 1* *6* Z 1 8 Z“ Z Z1*S VAfcVl X3IW S * S* *£ T S * * £ l — WAN/GV 3 ANO £Z 9Z *£1 6 0 * Z 1 Z9*1 VdOd 9NV1 I* ZZ**1 88 *£1 £ £ * 0 V cfld 1 3 3 3 9* ZZ**1 ZZ*ZI 00*Z WAN/GV O lH d Z£ Z T S 1 0 0 * * 1 Z 1 * 1 WAN/GV dV IS 1* 9 * * S 1 9 * * Z 1 00 *£ WAN/aV I8VN 8£ * € • 9 1 * £ * S 1 0 0 * 1 WAN/GV dVIG 8* z c * z i *Z *6 ££*Z WAN/GV 03A 1 * CS *81 0 S * * 1 0 0 * * WAN/OV >X33 8* Z9 “81 Z9* 1 C O 'Z I WAN/GV NV3V 6£ 15*61 8 9 * 8 1 £8 * 0 VAXV1 VXV3 I* 9 £ “0Z 61 *£ Z1*Z1 WAN/GV m w 8£ 10*1Z 10*Z1 CO** VdOd i d I G 9* Z9 * 1 Z * 8 * 8 1 £8 *Z WAN/GV dAX3 1* C**£Z * Z *£Z ZTO WAN/GV 13 1 3 6 CS**Z 0 5 * 0 0 0 * * Z WAN/GV SOXG 9* CO“SZ £8 *ZZ Z T Z WAN/GV 3XP3 I* S Z “SZ SZ*SZ — VAXV1 d V iS 1* ***SZ ZZ*SZ ZTO WAN/GV IOSI £Z €8 “ZZ Z l* 0 1 Z9*Z1 WAN/GV VHdS 9* 09 “8Z Z Z "8Z £ £ * 0 VAXV1 V I3S 9* ZO **£ Z0"*£ — VAXVl XIH3 9* 11 *9£ 11**£ o o * z VAliVl VX1S 9* IS *8£ 1 0 * * £ OS** VdOd 3 1 0 3 1* C9 “6£ 01 *6£ 0 5 * 0 VAXVl 130N S*

A1ISN3G N301 N3GH W X 0d3311 AllW V d H3CX0

------A3=V3XV 8 Z 6 i isran v 8-Ainr 9Z= 0G IX 3d — zoe * 0 3 fN I1 N 0 3 *61 318V 1 308 TABLE 19. CONTINUED.

------PERIOD =26 JU LY -8 AUGUST 1 9 7 8 AREA=CV ------

ORDER FAMILY LIFEFORM HDEN LDEN DENSITY

38 PENT AD/NYM 0 . 1 7 2 . 9 6 3 . 1 3 *5 MICR PUPA 0 . 1 7 2 . 8 3 3 . 0 0 48 PTER AD/NYM 2 . 6 7 0 . 3 3 3 . 0 0 46 ANTX AD/NYM 2 . 8 3 — 2 . 8 3 48 PLAT AD/NYM 2 . 6 7 — 2 . 6 7 38 ANT J AD/NYM 1 . 5 0 1 . 0 6 2 . 5 6 46 SYRP LARVA 1 . 0 0 1 . 4 0 2 . 4 0 46 CHIR AD/NYM 2 . 1 7 0 . 1 7 2 . 3 3 46 CERQ AD/NYM 2 . 1 7 — 2 . 1 7 45 MICR AD/NYM 2 . 0 0 — 2 . 0 0 41 LAGR LARVA — 1 . 9 6 1 . 9 6 46 LAUX AD/NYM 1 . 8 3 — 1 . 8 3 28 ACRI AD/NYM 1 . 3 3 0 . 1 7 1 . 5 0 41 COCC AD/NYM 0 . 8 3 0 . 5 0 1 . 3 3 38 LYGA AD/NYM 0 . 1 7 1 . 0 6 1 . 2 3 41 CHRY AD/NYM — 1 . 1 7 1 . 1 7 48 ENCY AD/NYM 0 . 6 7 0 . 5 0 1 . 1 7 48 EULO AD/NYM 1 . 1 7 — 1 . 17 41 ELAT LARVA — 1 . 0 6 1 . 0 6 2 PHAJ AD/NYM 0 . 8 3 0 . 1 7 1 . 0 0 41 C JC J AD/NYM — 1 . 0 0 1 . 0 0 8 POLY AD/NYM — 0 . 9 0 0 . 9 0 34 PSOC AD/NYM — 0 . 9 0 0 . 9 0 41 MORD LARVA — 0 . 9 0 0 . 9 0 41 N IT I LARVA — 0 . 9 0 0 . 9 0 41 PTI J LARVA — 0 . 9 0 0 . 9 0 46 DOLI LARVA — 0 . 9 0 0 . 9 0 41 EUCI AD/NYM — 0 . 8 3 0 . 8 3 41 LANG LARVA 0 . 8 3 — 0 . 8 3 46 STRA AD/NYM 0 . 8 3 — 0 . 8 3 46 SYRP AD/NYM 0 . 8 3 — 0 . 8 3 41 CORY AD/NYM — 0 . 6 7 0 . 6 7 45 ARCT LARVA 0 . 6 7 — 0 . 6 7 39 ISSI AD/NYM 0 . 5 0 — 0 . 5 0 45 ACRO LARVA — 0 . 5 0 0 . 5 0 46 LONC AD/NYM 0 . 5 0 — 0 . 5 0 38 REDU AO/NYM — 0 . 5 0 0 . 5 0 45 GEOM LARVA — 0 . 3 3 0 . 3 3 46 EPHY AD/NYM 0 . 3 3 — 0 . 3 3 46 SCAT AD/NYM 0 . 1 7 0 . 1 7 0 . 3 3 46 SCHC LARVA — 0 . 3 3 0 . 3 3 46 TACK AD/NYM 0 . 3 3 — 0 . 3 3 48 MEG J AD/NYM 0 . 1 7 0 . 1 7 0 . 3 3 28 GRYJ AD/NYM 0 . 1 7 — 0 . 1 7 28 TETT AD/NYM 0 . 1 7 — 0 . 1 7 38 SALD AD/NYM 0 . 1 7 — 0 . 1 7 39 MEMB AD/NYM — 0 . 1 7 0 . 1 7 41 CLER LARVA — 0 . 1 7 0 . 1 7 41 CDCC PUPA — 0 . 1 7 0 . 1 7 41 CRYP PUPA - 0 . 1 7 0 . 1 7 41 PHAL PUPA — 0 . 1 7 0 . 1 7 45 NOCT AD/NYM 0 . 1 7 — 0 . 1 7 45 NOCT PUPA 0 . 1 7 — 0 . 17 46 ANTV AD/NYM 0 . 1 7 — 0 . 1 7 46 CULI AD/NYM 0 . 1 7 — 0 . 1 7 46 DOLI AD/NYM 0 . 1 7 — 0 . 1 7 46 EMPI AD/NYM 0 . 1 7 — 0 . 1 7 46 MUSC AD/NYM 0 . 1 7 — 0 . 1 7 46 MYCJ AD/NYM 0 . 1 7 — 0 . 1 7 46 P I P J AD/NYM — 0 . 1 7 0 . 1 7 48 APHE AD/NYM — 0 . 1 7 0 . 1 7 48 EUPE AD/NYM 0 . 1 7 — 0 . 1 7 ££*£ 00*1 ££*2 HAN/OV G3AT 9 9 9*£ 99*£ VA8V1 dHVl 19 6 S*£ 65 *£ — VA8V1 v ins 99 19 *£ ££*1 ££*2 HAN/OV dVIG 89 Z6 *e Z6 *£ — VA8V1 VH3S 99 CO*9 — 00*9 HAN/GV NV8V 9 E£*9 19*1 19*2 VA1V1 1N31 89 ££*9 00*1 ££*£ HAN/GV 01P3 89 65*9 65*9 VA8V1 nuns 19 19*9 ££*1 ££*£ HAN/GV m r n 19 19*9 19*0 00*9 HAN/GV 31130 6 £ 00*5 19*0 €£*9 HAN/GV SG8G 99 GO'S 00*9 00*1 HAN/0 V dVIS 19 00*5 ££*! 19 *£ HAN/GV H1V1 19 ££*S 19*0 19*9 HAN/GV 18VN 8£ ££*S ££*£ 00*2 HAN/GV VGA! 8£ 19 *5 00*1 19*9 HAN/GV VHdS 99 19*5 00*9 19*1 HAN/GV OliCd 5 11*5 11*5 — VA8V1 8313 19 CO *9 ££*0 19*5 HAN/GV 3V88 89 00*9 00*9 HAN/GV dANV 9 ££*9 ££*1 00*5 HAN/GV lVHd 19 19*9 19*9 v833 89 £6 *0£ 92*81 19*21 HAN/OV OlHd 1£ 61 *9£ 61 *9£ — HAN/GV 3AN0 £2 19 *6 £ 10*22 19*11 HAN/GV ANI1 9 01*E9 £0 * £9 19*0 HAN/GV GdAH £2 56*09 29*99 ££*91 HAN/OV NIHS £2 £1*99 61 *£5 ££*01 VAVV1 1333 99 00*11 00*2 00*69 HAN/OV IHdV 6 £ 9£ *58 £0*£JL ££*21 NAN/OV dOSI 5 £0*591 01*16 ££*19 HAN/OV 18H1 1£ £0*612 1£*11Z 19*19 HAN/GV H803 89 88*982 22* £6 19*161 HAN/GV V3 I0 6 E A1 ISN30 N3G1 N3GH H8G333I1 AHHV 3 83080 — ------3G*V38V 8161 isnsnv 8 - A lf ir 92 =GCI83d --- 60E *G3f NI1N03 *61 3T8V1 TABLE 19. CONTINUED. 310

------PER 100= 26 JULY-8 AUGUST 1978 AREA=OF ------ORDER FAMILY LIFEFORM HDEN LDEN DENSITY 48 HVME PUPA 3.33 — 3.33 *8 PTER AD/NYM 2.33 1.00 3.33 46 MUSC AD/NYM 3.00 — 3.00 18 CRYX AD/NYM — 2.79 2.79 41 cocc LARVA 1.00 1.79 2.79 41 LAMS AD/NYM 1.67 1.00 2.67 40 CHRJ LARVA 0.67 1.79 2.46 28 GRYK AD/NYM 2.33 — 2.33 41 CHRY LARVA 1.67 0.67 2.33 46 CHLO AD/NYM 2.00 0.33 2.33 45 MICR PUPA 0.33 1.79 2. 13 9 CLEI AD/NYM 0.33 1.67 2.00 41 CARA AD/NYM 0.33 1.67 2.00 41 SCYD AD/NYM — 2.00 2.00 48 ICHN AD/NYM 2.00 — 2.00 41 CANT LARVA - 1.79 1.79 41 MORD LARVA — 1.79 1.79 46 PIPU PUPA — 1.79 1.79 41 CORY AD/NYM 1.67 — 1.67 41 SCYD LARVA 1.67 — 1.67 48 CYNI AD/NYM I. 00 0.67 1.67 48 DRY I AD/NYM 1.67 — 1.67 38 MI RI AD/NYM 1.33 — 1.33 43 PANO LARVA — 1.33 1.33 46 CHIR AD/NYM 1.33 — 1.33 48 APHE AD/NYM 0.33 1.00 1.33 28 ACRE AD/NYM 1.00 — 1.00 38 PENT AD/NYM 0.33 0.67 1.00 39 CIXI AD/NYM 1.00 — 1.00 46 EMPI AD/NYM 1.00 — 1.00 46 SYRP LARVA 0.33 0.67 1.00 48 ENCY AD/NYM 1.00 — 1.00 48 TRIJ AD/NYM 1.00 — 1.00 4 CLUB AD/NYM 0.33 0.33 0.67 39 ISSI AD/NYM 0.67 — 0.67 39 PSYL AD/NYM 0.67 — 0.67 41 CLER AD/NYM 0.67 — 0.67 41 ELAT LARVA — 0.67 0.67 41 n i t i AD/NYM 0.33 0.33 0.67 43 PANO AD/NYM 0.67 — 0.67 46 ANTV AD/NYM 0.67 — 0.67 46 LAUX AD/NYM 0.67 — 0.67 46 TEPH AD/NYM 0.67 — 0.67 48 MEGJ AD/NYM 0.33 0.33 0.67 4 PISA AD/NYM 0.33 — 0.33 8 POLY AD/NYM — 0.33 0.33 9 ABAC AD/NYM — 0.33 0.33 27 COEN AD/NYM 0.33 — 0.33 28 TETT AD/NYM 0.33 — 0.33 38 ANT J AD/NYM 0.33 — 0.33 38 RHOP AD/NYM — 0.33 0.33 39 ACAN AD/NYM 0.33 — 0.33 39 MEMB AD/NYM — 0.33 0.33 41 CARA LARVA — 0.33 0.33 41 COCC AD/NYM 0.33 — 0.33 41 cocc PUPA 0.33 — 0.33 41 CRYP AD/NYM — 0.33 0.33 41 HELD AD/NYM — 0.33 0.33 41 MORD AD/NYM — 0.33 0.33 41 PHAL PUPA 0.33 — 0.33 45 GEOM LARVA 0.33 — 0.33 45 Nocr AD/NYM 0.33 — 0.33 45 NOCT PUPA 0.33 — 0.33 45 SATY LARVA — 0.33 0.33 46 ANTX AD/NYM 0.33 — 0.33 46 BIBI LARVA - 0.33 0.33 311 TABLE 19. CONTINJED.

------PERIOD* 26 J J L Y - 8 AUGUST 1 9 7 8 AREA=OF ------

ORDER FAMILY LIFEFQRH HDEN LDEN DENSITY

46 CECI PJPA _ 0 . 3 3 0 . 3 3 46 MYCJ AD/NYM 0 . 3 3 — 0 . 3 3 46 PSYC AD/NYM — 0 . 3 3 0 . 3 3 46 SARC AD/NYM 0 . 3 3 — 0 . 3 3 46 SEPS AD/NYM 0 . 3 3 — 0 . 3 3 66 STRA LARVA 0 . 3 3 — 0 . 3 3 66 SYRP AD/NYM 0 . 3 3 — 0 . 3 3 46 TACK AD/NYM 0 . 3 3 — 0 . 3 3 46 T IP J AD/NYM 0 . 3 3 — 0 . 3 3 48 CHAL AD/NYM 0 . 3 3 — 0 . 3 3 48 EUPE AD/NYM 0 . 3 3 — 0 . 3 3 48 HAL I AD/NYM 0 . 3 3 • 0 . 3 3

C U D C D 1070 _ _ _ _ _ d c d v in - t ' l t j c r i tnours i 7 i u A O C A -77

ORDER FAMILY LIFEFORM HDEN LDEN DENSITY

46 CECI LARVA 6 . 5 0 450.40 456.90 39 CICA AD/NYM 341.33 56.33 3 9 7 . 6 6 23 ENTD AD/NYM 245.17 39.19 2 8 4 . 3 6 46 STRA LARVA 5 1 . 6 7 212.39 264.06 46 CHIR LARVA — 7 6 . 2 9 7 6 . 2 9 41 STAP AD/NYM 1 8 . 6 7 5 0 . 8 4 6 9 . 5 0 4 LINY AD/NYM 2 1 . 3 3 3 2 . 5 0 5 3 . 8 3 41 CJRC AD/NYM 2 1 . 6 7 3 0 . 0 0 5 1 . 6 7 41 STAP LARVA 4 . 0 0 4 0 . 1 5 4 4 . 1 5 41 C JC J LARVA 2 3 . 3 3 1 6 . 8 8 4 0 . 2 2 37 PHL3 AD/NYM 2 0 . 6 7 1 8 . 7 0 3 9 . 3 7 41 CARA LARVA 1 . 6 7 3 6 . 8 3 3 8 . 5 0 61 C JC J LARVA 1 6 . 5 0 2 0 . 5 6 3 7 . 0 6 37 THRI AD/NYM 1 2 . 6 7 1 9 . 7 2 3 2 . 3 9 46 CECI AD/NYM 2 5 . 8 3 3 . 8 3 2 9 . 6 7 46 SCHA LARVA 5 . 1 7 2 1 . 2 9 2 6 . 4 5 41 C JC J AD/NYM 1 2 . 0 0 1 3 . 6 7 2 5 . 6 7 46 CECI PJPA 7 . 0 0 1 6 . 5 7 2 3 . 5 7 46 CHIR AD/NYM 1 6 . 8 3 5 . 6 7 2 2 . 5 0 48 SCEL AD/NYM 1 2 . 5 0 9 . 6 7 2 2 . 1 7 41 PHAL AD/NYM 7 . 0 0 1 4 . 6 7 2 1 . 6 7 66 DIPT PJPA 9 . 6 7 1 1 . 3 4 2 1 . 0 0 4 6 CHIR P Jf» A — 1 8 . 3 7 1 8 . 3 7 39 DELP AD/NYM 1 4 . 8 3 3 . 3 6 1 8 . 1 9 46 DROS AD/NYM 1 5 . 0 0 0 . 5 0 1 5 . 5 0 28 ACR I AD/NYM 14.83 0.17 15.00 4 LYCO AD/NYM 9 . 8 3 4 . 5 6 1 4 . 4 0 46 SCIA AD/NYM 1 1 . 5 0 1 . 1 7 1 2 . 6 7 48 MYMA AD/NYM 1 1 . 0 0 1 . 5 0 1 2 . 5 0 48 CERK AD/NYM 7 . 5 0 4 . 6 7 1 2 . 1 7 38 MI RI AD/NYM 1 1 . 5 0 0 . 3 3 1 1 . 8 3 41 LANG AD/NYM 8 . 0 0 3 . 6 7 1 1 . 6 7 4 6 CHLD AD/NYM 1 1 . 1 7 0 . 3 3 1 1 . 5 0 45 NOCT LARVA 2 . 6 7 8 . 7 9 1 1 . 4 6 41 CHRY AD/NYM 1 . 5 0 9 . 8 4 1 1 . 3 4 39 APHI AD/NYM 4 . 3 3 6 . 7 8 11.11 4 6 T I P J LARVA — 1 0 . 8 0 1 0 . 8 0 48 PTER AD/NYM 1 . 8 3 8 . 8 4 1 0 . 6 7 4 6 SCIA LARVA 1 . 6 7 8 . 5 0 1 0 . 1 7 41 LATH AD/NYM 6 . 6 7 2 . 5 0 9 . 1 7 17 LITH AD/NYM — 9 . 0 0 9 . 0 0 39 COCJ AD/NYM 2 . 0 0 6 . 2 8 8 . 2 8 41 CARA AD/NYM 1 . 5 0 5 . 8 3 7 . 3 3 68 ENCY AD/NYM 6 . 1 7 I . 0 0 7 . 1 7 4 6 SCIAPJOA 6 . 6 7 — 6 . 6 7 41 CRYP AD/NYM 0 . 1 7 5 . 8 3 6 . 0 0 48 HYME PJPA 6 . 0 0 — 6 . 0 0 38 NABI AO/NYM 3 . 0 0 2 . 7 3 5 . 7 3 312 TABLE 1 9 . CONTINJED.

------PERI30=4-14 SEPTEMBER 1978 AREA=77 ------

ORDER FAMILY LIFEFORM HDEN LDEN DENSITY

46 SPHA AD/ NYM 4 . 0 0 1 . 6 7 5 . 6 7 39 CERC AO/NYM 5 . 3 3 — 5 . 3 3 4 ARAM AD/NYM 5 . 1 7 — 5 . 1 7 23 ISOT AO/NYM 0 . 3 3 4 . 4 8 4 . 8 2 48 0 1 AP AD/NYM 2 . 1 7 2 . 0 0 4 . 1 7 48 EULO AO/NYM 3 . 1 7 0 . 8 3 4 . 0 0 45 MI CR LARVA 2 . 1 7 1 . 5 6 3 . 73 4 6 EMPI LARVA — 3 . 5 9 3 . 5 9 41 MYCE AO/NYM 1 . 8 3 1 . 6 7 3 . 5 0 41 PHAL PO»A 3 . 5 0 — 3 . 5 0 38 SALO AO/NYM 2 . 0 0 1 . 4 0 3 . 4 0 41 P T IL AO/NYM 1 . 0 0 2 . 3 3 3 . 3 3 46 EMPI AO/NYM 2 . 3 3 0 . 5 0 3 . 3 3 48 PLAT AO/NYM 2 . 6 7 0 . 6 7 3 . 3 3 4 THOM AO/NYM 1 . 1 7 2 . 0 0 3 . 17 38 ANTJ AD/NYM 2 . 1 7 0 . 9 0 3 . 0 6 41 SCAR AO/NYM 0 . 1 7 2 . 8 3 3 . 0 0 48 BRAC AD/NYM 2 . 8 3 - 2 . 8 3 46 LAUX AO/NYM 2 . 6 7 - 2 . 6 7 45 MI CR AO/NYM 2 . 5 0 — 2 . 5 0 28 GRYK AD/NYM 2 . 3 3 — 2 . 3 3 41 ELAT LARVA — 2 . 2 9 2 . 2 9 48 CYNI AD/NYM 1 . 1 7 0 . 8 3 2 . 0 0 46 ANTX AD/NYM 1 . 6 7 0 . 3 3 2 . 0 0 41 COLE PUPA 1 . 8 3 — 1 . 8 3 41 COCO PUPA 1 . 8 3 — 1 . 8 3 46 PHQR AO/NYM 1 . 6 7 0 . 1 7 1 . 8 3 46 EPHY AD/NYM 1 . 6 7 — 1 . 6 7 4 CLOB AD/NYM 1 . 3 3 0 . 1 7 1 . 5 0 4 THER AD/NYM 1 . 1 7 — 1 . 1 7 28 TETT AO/NYM 1 . 1 7 — 1 . 1 7 46 T IPO AO/NYM 1 . 1 7 — 1 . 1 7 48 TRI J AD/NYM 0 . 8 3 0 . 3 3 1 . 1 7 34 PSEJ AO/NYM 0 . 6 7 0 . 3 3 1 . 0 0 48 FORM AD/NYM — 1 . 0 0 1 . 0 0 38 PENT AD/NYM 0 . 8 3 0 . 1 7 1 . 0 0 46 CERQ LARVA — 0 . 9 0 0 . 9 0 41 SCAP AD/NYM — 0 . 8 3 0 . 8 3 41 SCOL AO/NYM — 0 . 8 3 0 . 8 3 41 CJRC PUPA 0 . 6 7 — 0 . 6 7 41 MORD LARVA 0 . 5 0 0 . 1 7 0 . 6 7 45 ARCT LARVA 0 . 6 7 — 0 . 6 7 46 LONC AD/NYM 0 . 6 7 — 0 . 6 7 48 ICHN AD/NYM 0 . 6 7 — 0 . 6 7 4 SALT AD/NYM 0 . 3 3 0 . 1 7 0 . 5 0 46 CERQ AD/NYM 0 . 5 0 — 0 . 5 0 41 CANT LARVA — 0 . 5 0 0 . 5 0 45 MI CR PUPA 0 . 5 0 — 0 . 5 0 45 NOCT AD/NYM 0 . 5 0 — 0 . 5 0 46 MYCJ AD/NYM 0 . 5 0 — 0 . 5 0 46 SCHC LARVA 0 . 3 3 0 . 1 7 0 . 5 0 4 ARAJ AD/NYM 0 . 3 3 — 0 . 3 3 5 PORC AD/NYM 0 . 3 3 — 0 . 3 3 23 SMIN AD/NYM 0 . 3 3 — 0 . 3 3 38 LYGA AD/NYM 0 . 1 7 0 . 1 7 0 . 3 3 41 ANTK AD/NYM 0 . 1 7 0 . 1 7 0 . 3 3 41 BYRR AD/NYM — 0 . 3 3 0 . 3 3 41 CLER LARVA 0 . 3 3 — 0 . 3 3 41 COCC AD/NYM 0 . 3 3 — 0 . 3 3 46 MOSC AD/NYM 0 . 3 3 — 0 . 3 3 48 APHE AD/NYM 0 . 1 7 0 . 1 7 0 . 3 3 48 EORY AD/NYM 0 . 3 3 — 0 . 3 3 2 PHAJ AD/NYM 0 . 1 7 — 0 . 1 7 4 ANYP AD/NYM 0 . 1 7 — 0 . 1 7 10 JOLI AD/NYM — 0 . 1 7 0 . 1 7 26 TRIK AD/NYM 0 . 1 7 — 0 . 1 7 TABLE 19. CONTINUED.

PERI3D=4-14 SEPTEMBER 1978 AREA=77

FAMILYLIFEFORM HDEN LOEN DENSITY

37 ALEO AD/NYM 0 . 1 7 — 0 . 1 7 4 1 CHRV LARVA 0 . 1 7 — 0 . 1 7 41 COCC LARVA — 0 . 1 7 0 . 1 7 41 CJRC LARVA — 0 . 1 7 0 . 1 7 41 LATH LARVA 0 . 1 7 — 0 . 1 7 41 MELD AD/NYM 0 . 1 7 — 0 . 1 7 41 THRO AD/NYM — 0 . 1 7 0 . 1 7 45 CTEN AD/NYM 0 . 1 7 — 0 . 1 7 45 GEOM LARVA — 0 . 1 7 0 . 1 7 46 LONC LARVA 0 . 1 7 — 0 . 17 46 SCHD LARVA — 0 . 1 7 0 . 1 7 46 SCIO AD/NYM 0 . 1 7 - 0 . 1 7 46 TABA LARVA — 0 . 1 7 0 . 17 48 EJPE AD/NYM 0 . 1 7 • 0 . 1 7

— PERI30=4-14 SEPTEMBER 1978 AREA=75 ------iER FAMILY LIFEFORM HDEN LDEN DENSITY

23 ENTO AD/NYM 9 9 9 . 6 7 1 2 3 . 5 0 1 1 2 3 . 1 6 39 CICA AD/NYM 359.33 55.05 4 1 4 . 3 8 23 ISOT AD/NYM 3 0 . 1 7 1 3 5 . 3 8 1 6 5 . 5 4 37 THRI AD/NYM 2 9 . 8 3 79.06 108.90 46 CECI LARVA 7 . 8 3 1 0 0 . 1 2 1 0 7 . 9 5 4 LINY AD/NYM 3 0 . 8 3 6 8 . 6 9 9 9 . 5 3 46 CHIR LARVA 1 . 8 3 9 4 . 9 7 9 6 . 8 0 37 PHLO AD/NYM 6 1 . 6 7 3 2 . 2 1 9 3 . 8 8 48 FORM AD/NYM 1 4 . 3 3 6 1 . 8 4 7 6 . 1 8 41 STAP AD/NYM 6 . 6 7 3 8 . 1 7 4 4 . 8 4 41 CARA AD/NYM 5 . 1 7 3 8 . 0 0 4 3 . 1 7 4 LYCO AD/NYM 2 1 . 5 0 1 4 . 9 8 3 6 . 4 8 46 CHIR AD/NYM 1 2 . 6 7 1 9 . 1 7 3 1 . 8 4 48 SCEL AD/NYM 1 3 . 5 0 1 7 . 8 3 3 1 . 3 3 39 COCJ AD/NYM 8 . 5 0 1 9 . 7 2 2 8 . 2 2 4 6 STRA LARVA 3 . 0 0 2 4 . 5 0 2 7 . 5 0 23 HYPO AD/NYM — 2 6 . 0 0 2 6 . 0 0 41 LATH AD/NYM 4 . 6 7 1 6 . 6 7 2 1 . 3 4 39 DELP AD/NYM 7 . 6 7 9 . 4 0 1 7 . 0 7 23 ONYC AD/NYM — 1 7 . 0 3 1 7 . 0 3 23 SMIN AD/NYM 0 . 3 3 1 2 . 5 5 1 2 . 8 8 4 SALT AD/NYM 1 1 . 5 0 0 . 6 7 1 2 . 1 7 4 8 HYME PUPA 0 . 1 7 1 1 . 3 4 1 1 . 5 0 48 CERK AD/NYM 6 . 5 0 5 . 0 0 1 1 . 5 0 46 TIPJ LARVA — 1 0 . 2 3 1 0 . 2 3 41 CJRC AD/NYM 3 . 0 0 7 . 1 7 1 0 . 1 7 48 MYMA AD/NYM 8 . 8 3 1 . 0 0 9 . 8 3 41 LANG AD/NYM 6 . 6 7 3 . 0 0 9 . 6 7 46 SCHA LARVA 1 . 0 0 8 . 4 0 9 . 4 0 28 ACRI AD/NYM 9 . 3 3 — 9 . 3 3 4 THER AD/NYM 9 . 0 0 0 . 1 7 9 . 1 7 39 APHI AD/NYM 5 . 1 7 3 . 5 9 8 . 7 5 45 MI CR LARVA 4 . 3 3 3 . 9 6 8 . 2 9 46 CECI AD/NYM 6 . 8 3 1 . 1 7 8 . 0 0 28 GRYK AD/NYM 7 . 0 0 0 . 5 7 7 . 6 7 45 NOCT LARVA 1 . 6 7 5 . 9 6 7 . 6 3 41 CRYP AD/NYM 0 . 8 3 6 . 6 7 7 . 5 0 46 DDL I LARVA — 7 .1 1 7 . 1 1 41 PHAL AD/NYM 3 . 1 7 3 . 6 7 6 . 8 3 46 CHLO AD/NYM 6 . 3 3 0 . 5 0 6 . 8 3 41 CJCJ LARVA 2 . 0 0 4 . 6 5 6 . 6 5 4 6 DROS AD/NYM 6 . 3 3 — 6 . 3 3 4 ARAN AD/NYM 5 . 0 0 0 . 5 0 5 . 5 0 46 CHIRPUPA — 5 . 3 8 5 . 3 8 46 CECI PUPA 4 . 1 7 0 . 9 0 5 . 0 6 41 STAP LARVA 1 . 8 3 3 . 1 9 5 . 0 2 £€*C — ££*0 WAN/OV 1V0S 99 £€*0 — ££*0 WAN /OV osow 99 ££*0 — £E*0 vdnd nano 19 ££*0 ZT*0 z r o WAN/QV oooo 19 ££ *0 ££*0 — HAN/GV >1NV 19 ££*0 ££*0 WAN/GV I8IW 8£ ££*0 Z1*0 Z1"C HAN/OV 0A1V 8£ 06*0 05*0 WAN/GV 8CHd 99 05*0 0S*0 — WAN/GV iSIH 19 05*0 05*0 — VA1V1 V8V0 19 05*0 ££*0 Z T *0 WAN/GV 8W3W 6£ cs*o ££*0 Z1*0 WAN/GV n n r 01 OS *0 05*0 - WAN/GV A838 8£ Z9*0 Z9*0 WAN/GV 3NdV 89 Z9 *0 Z1*0 05*0 WAN/GV 80IW 59 £9*0 Z9*0 — WAN /av hvio 19 Z9 *0 0S*0 ZT'O VA8V1 1NVD 19 £8*0 £8*0 VdOd I NAD 89 £8 *0 — £8*0 WAN/OV xovi 99 £8*0 — £8*0 V dOd 3100 19 £8*0 ZT'O Z9 *0 VA8V1 8310 19 00*1 00*1 - WAN/OV 0IN3 8£ 00*1 00*1 WAN/OV TVHd Z 90*1 90*1 — VA8V1 0830 99 Zl*l Zl*l WAN/GV 831d 89 Z1 *T os-o Z9 *0 WAN/GV 8131 8Z E£“l ££*0 00*1 WAN/GV lVld 89 ££•1 ££*1 — WAN/GV 1V13 19 05*1 z r o ££*1 WAN/GV AHd3 99 OS *1 05*0 00*1 VA8V1 80V1 19 05*1 00*1 05*0 WAN/GV A8H0 19 05*1 05*1 WAN/aV riNv 8£ 05*1 — OS * T WAN/OV rv8v 9 £9*1 — Z9*1 WAN/GV 1131 8Z £Z * T 06*0 £8*0 VdOd VIOS 99 £8*1 ZI*1 Z9 *0 WAN/GV INAO 89 £8*1 Z1*0 Z9 *1 Vdfld IdlO 99 £8*1 £8*0 00*1 WAN/GV lN3d 8£ £8*1 £8*1 WAN/OV 031V Z£ £8*1 — £8*1 WAN/GV dVNO 9 CG*Z z r o £8*1 WAN/OV levN 8£ 90 *Z 06*1 z r o VA8V1 IV13 19 ZT*Z ££ *T £8*0 WAN/GV dVIO 89 ££*Z ££*Z — WAN/GV 88A8 19 CS*Z cs*z WAN/OV 0830 99 OS*Z ££*0 z r z WAN/GV I dW3 99 Z9*Z Z9*Z WAN/OV 0V88 89 Z9*Z £8*1 £8*0 WAN/OV 3 CAH 19 19 *Z 0S*0 Z1*Z WAN/GV 0830 6£ £8 *Z ££*1 05*1 WAN/OV 8010 9 CO *£ CO *£ WAN/GV C103 89 00 *£ Z T 1 £8*1 WAN/GV 0000 19 00 *£ 0S*0 OS*Z VA8V1 0000 19 CO *£ 00 *£ — WAN/OV 080d 5 ££*£ 05*0 £8 *Z WAN/GV ri8i 89 ££*£ ££*0 00*£ WAN/QV VHdS 99 £Z*E £Z* I CS*Z VA8V1 08CH 19 £8 *£ £8 “£ WAN/OV ISSI 6£ 05*9 — 05*9 WAN/GV A0N3 89 CS*9 0S*£ 00*1 WAN/OV dVOS 19 CSV? Z1*0 £ £ * 9 WAN/OV T3Sd 9£ 95 *9 95 "Z 00*Z WAN/GV VSA1 8£ Z9*9 00*1 Z9*£ WAN/GV VIOS 99 £8*9 Z9*T Z I *£ WAN/GV W0H1 9 98*9 61 *£ Z9 *1 VA8V1 VIOS 99 06** 90"£ £8*1 WAN/GV Hill ZT A1ISN30 N301 K30H *8033311 A1IWV3 83080 r i - w3viM 8Z61 uaaLi3iJ3c i. i.i.-nr IM3J _ ___ •Q30NUN00 *61 318V1 VIE TABLE 19. CONTINUED.

PERI30=4-14 SEPTEMBER 1978 AREA=75

FAMILYLIFEFORM HDEN LDEN DENSITY

48 EUPE AD/NYM 0 . 3 3 0 . 3 3 48 EURY AD/NYM 0 . 3 3 — 0 . 3 3 48 MEGJ AD/NYM — 0 . 3 3 0 . 3 3 4 OXYO AD/NYM 0 . 1 7 — 0 . 1 7 10 PARA AD/NYM 0 . 1 7 0 . 1 7 38 CORE AO/NYM 0 . 1 7 — 0 . 1 7 39 DICT AD/NYM 0 . 1 7 — 0 . 1 7 41 COCC LARVA — 0 . 1 7 0 . 1 7 41 LAND PUPA 0 . 1 7 — 0 . 1 7 41 LATH LARVA 0 . 1 7 — 0 . 1 7 41 MELY LARVA 0 . 1 7 — 0 . 1 7 41 PSEL AD/NYM — 0 . 1 7 0 . 1 7 41 PTIJ LARVA — 0 . 1 7 0 . 1 7 41 SCYO AD/NYM — 0 . 1 7 0 . 1 7 41 THRO AD/NYM — 0 . 1 7 0 . 1 7 45 MI CR PUPA — 0 . 1 7 0 . 1 7 45 N3CT AD/NYM 0 . 1 7 — 0 . 1 7 46 AGRO AD/NYM 0 . 1 7 — 0 . 1 7 46 ANTX AD/NYM 0 . 1 7 — 0 . 1 7 46 OOLI AD/NYM 0 . 1 7 — 0 . 1 7 46 LONC AD/NYM 0 . 1 7 — 0 . 17 46 MVCJ AD/NYM 0 . 1 7 — 0 . 1 7 46 PIPU AD/NYM 0 . 1 7 — 0 . 1 7 46 PLAJ AD/NYM 0 . 1 7 — 0 . 1 7 46 SYRP AD/NYM 0 . 1 7 — 0 . 1 7 46 TABA LARVA — 0 . 1 7 0 . 1 7 46 T IP J AD/NYM 0 . 1 7 — 0 . 1 7 46 TIPU PUPA 0 . 1 7 — 0 . 1 7 48 BETH AD/NYM 0 . 1 7 — 0 . 1 7 48 HAL I AD/NYM 0 . 1 7 — 0 . 1 7

— PERI 30=4-14 SEPTEMBER 1978 AREA=CV ------iER FAMILYLIFEFORM HDEN LDEN DENSITY

23 ENTO AD/NYM 1 1 4 . 6 3 524.49 639.13 41 LANG AD/NYM 20.67 190.54 211.21 23 HYPO AD/NYM — 1 4 7 . 9 3 1 4 7 .9 3 4 6 CECI LARVA 2 . 0 0 1 2 8 . 2 1 1 3 0 .2 1 1 NEOB AD/NYM 1 . 1 7 1 1 2 . 6 8 1 1 3 . 8 4 10 J J L I AD/NYM 1 . 1 7 9 0 . 1 0 9 1 . 2 7 41 CJCJ LARVA 0 . 5 0 8 5 .6 1 8 6 . 1 1 41 LATH AD/NYM 14.17 69.67 83.83 39 CICA AD/NYM 3 9 . 5 0 2 3 . 8 8 6 3 . 3 8 4 6 SCIA LARVA 2 . 5 0 5 9 . 4 8 6 1 . 9 8 41 CRYP AD/NYM 0 . 3 3 5 1 . 7 7 5 2 .1 1 48 FORM AD/NYM 5 . 8 3 4 5 . 8 3 5 1 . 6 7 46 CHIR LARVA 0 . 3 3 4 4 . 1 0 4 4 . 4 3 46 SPHA AD/NYM 2 4 . 1 7 1 9 . 5 0 4 3 . 6 7 45 MICR LARVA 5 . 0 0 3 8 . 3 8 4 3 . 3 8 46 SCIA PUPA 2 . 5 0 3 6 . 4 0 3 8 . 9 3 46 SCHA LARVA 8 . 3 3 3 0 . 0 6 3 8 . 3 9 41 STAP AD/NYM 0 . 6 7 3 7 . 5 0 3 8 . 1 7 46 STRA LARVA 0 . 3 3 3 5 . 6 7 3 6 . 0 0 45 NOCT LARVA 2 . 1 7 3 0 . 8 0 3 2 . 9 7 48 MYMA AD/NYM 1 . 1 7 3 1 . 7 7 3 2 .9 3 23 ISOT AD/NYM 3 1 . 3 8 3 1 . 3 8 4 SALT AD/NYM 4 . 8 3 2 3 . 2 2 2 8 . 0 5 4 LYCO AD/NYM 7 . 6 7 2 0 . 0 1 2 7 . 6 7 5 PORC AD/NYM 0 . 5 0 2 7 . 1 7 2 7 . 6 7 41 LATH LARVA — 2 6 . 1 7 2 6 . 1 7 37 THRI AD/NYM 2 . 0 0 2 3 . 7 4 2 5 . 7 4 41 MYCE AO/NYM 0 . 6 7 2 3 . 5 0 2 4 . 1 7 23 SMIN AD/NYM 1 . 1 7 2 2 . 7 5 2 3 .9 1 39 COCJ AD/NYM — 2 1 . 5 2 2 1 . 5 2 Z 9*0 Z 9*0 - WAN/OV >1NV 19 €8*0 Z1*0 Z 9*0 WAN/OV iN 3 d 8£ £8 *0 £ 8 * 0 — WAN/GV 139V 9 0 6 * 0 0 6 * 0 — VAHV1 V109 I t 06 *0 0 6 * 0 — WAN/OV dVN9 9 00*1 0 0 * 1 — WAN/OV AlOd 8 00*1 — 00*1 WAN/OV 0 1 0 3 89 9 0 * 1 9 0 * 1 - WAN/GV V9A1 8£ ZIM — ZIM WAN/GV 9H39 6£ ZIM £ £ * 0 £ 8 * 0 WAN/GV TVHd Z e z * i £Z* 1 VA8V1 r i i d 19 £ £ • 1 ££*T — WAN/OV AH09 19 C 9 M 0 6 * 0 c s * o WAN/GV 031V Z£ C S M 00*1 o s * o WAN/GV 9 9 0 0 19 OS * I — OS*T WAN/GV r i N v 8£ CSM ££*0 Zl*l WAN/GV 9VH8 89 CS *1 — CS*T WAN/GV O d l i 99 95*1 06*0 Z9 *0 VAiVl 9H09 19 Z9* 1 Z9* 1 - VA1V1 1NV9 19 £8*1 Z I * 0 Z 9 * l WAN/OV H9IW S9 C6 *1 0 6 * 0 00 * 1 VdOd 1939 99 C O M Z.9* 0 ££*T WAN/OV I V l d 89 CC*Z 00*Z WAN/GV x r v i 99 Z l* Z 0 5 * 0 Z9 "1 WAN/GV H i d 19 Z1*Z Z1*Z - VAHV1 VHV9 19 ££ *Z £ £ * Z - WAN/GV 13Sd 19 £9 *Z 96 * 1 Z9 *0 WAN/GV P3Sd 98 Z9 *Z £ £ * 0 ££*Z WAN/GV C1H9 9 9 £Z *Z £Z*Z o s * o VAHV1 99 0 9 19 £8 *Z 0S * 0 ££ *Z WAN/GV H31d 89 00 *£ Z1*0 £8*Z WAN/OV HIH9 99 6 1*£ 98*Z £ £ * 0 WAN/GV 83H1 9 6Z *£ 96* T £ £“ T WAN/GV d i 3 a 6£ £ £ * £ ££*1 00*Z WAN/GV INA9 89 £ £ * £ 0 0 * 1 ££*Z WAN/GV NVHV 9 OS *£ 0 0 * £ 0 5 * 0 WAN/GV 1HIW 8£ —

£8 *£ £8 *£ UJ GO • VAHV1 dWVl 19 £8 *E — WAN/GV >AH9 8Z 0 0 * 9 0 0 * 9 - WAN/GV 1319 6 Z 1*9 Z9*Z OS* T WAN/GV 19VN 8£ £ £ * 9 0S *0 £ 8 * £ WAN/GV NV9V 6£ 8 9 * 9 8 9 * 9 — WAN/GV IHdV 6£ Z8 *9 Z8 *9 — VAHV1 n o a 99 £8 *9 Z l * 9 Z9 *0 WAN/GV WOHl 9 OS'S Z9*Z £8*Z WAN/OV HOHd 99 ££ *Z E£*Z — WAN/GV NV18 01 £ £*1 Z l* £ ZIM VdOd I d 10 99 CO *8 0S * 1 OS *9 WAN/GV 1939 99 6Z *8 6 Z*£ 0 S * 9 WAN/GV 8 0 1 9 9 Z9 *8 0 S " 8 ZTO WAN/GV VHV9 19 Z9 *8 OS *8 Z I *0 VdOd 3109 19 ZO *6 Z 0*8 0 0 * 1 WAN/GV ClHd Z £ Z 1 *6 0 0 * 6 ZTO WAN/GV dV 10 89 9 8 * 6 9 8 * 6 — WAN/OV 9AN0 £Z 0 0 * 0 1 00*Z 0 0 *£ WAN/GV V19S 99 €0 * 0 1 £ 0 * 0 1 — VA HV1 d VIS 19 1Z*01 8 £ * 6 £ £ * 1 WAN/OV AN11 9 Z1*Z1 Z I “ Z1 — WAN/GV 0 9 0 9 19 £8*91 Z 9 * 9 l ZTO WAN/GV 9H09 19 Z9*S1 Z9*ST — WAN/GV IS 1H 19 C0*Z1 £ £ * £ 1 Z 9*£ WAN/GV 139S 89 Z9*Z1 Z 9 * 9 l 0 0 *£ WAN/GV A9N3 89 Z8*Z1 £ 8 “ ZT £ 0 “S WAN/OV IVHd 19 E£ *81 Z9*£I Z9*9 WAN/GV > 839 89 Z9 *8T Z9*8T — WAN/GV H i l l Z1 C0*1Z E£*0 Z9*0Z WAN/aV SOHO 99

Ai ISN3G N301 N 30H WHO33311 A1IWV3 H3GH0

------A3=V3HV 8Z61 H38H3id3S 91-9=G0IH3d ------•GBONIINOO -61 318V1 9ie TABLE 19. CONTINJED. 317

------PERI 3D = 4 - 1 4 SEPTEMBER 19 7 8 AREA=CV - - ORDER FAMILY LIFEFORM HDEN LDEN DENSITY

45 NOCT PUPA 0 . 1 7 0 . 5 0 0 . 6 7 48 HYME PUPA 0 . 1 7 0 . 5 0 0 . 6 7 48 ICHN PUPA 0 . 6 7 — 0 . 6 7 41 ELAT LARVA — 0 . 5 0 0 . 5 0 46 ANTX AO/NYM 0 . 5 0 — 0 . 5 0 28 ACRI AO/NYM 0 . 5 0 — 0 . 5 0 41 CrtRY AD/NYM 0 . 3 3 0 . 1 7 0 . 5 0 48 ICHN AO/NYM 0 . 5 0 — 0 . 5 0 26 TRIK AO/NYM 0 . 3 3 — 0 . 3 3 41 EUC I AD/NYM — 0 . 3 3 0 . 3 3 45 NOCT AD/NYM 0 . 3 3 — 0 . 3 3 46 CERQ AD/NYM 0 . 3 3 — 0 . 3 3 48 APHE AD/NYM — 0 . 3 3 0 . 3 3 48 APID AD/NYM 0 . 3 3 — 0 . 3 3 48 HAL I AD/NYM 0.17 0.17 0.33 4 8 TENT LARVA 0 . 3 3 — 0 . 3 3 28 TETT AD/NYM 0 . 1 7 — 0 . 1 7 38 CYDN AD/NYM — 0 . 1 7 0 . 17 38 REDU AD/NYM 0 . 1 7 — 0 . 1 7 41 CLER LARVA 0 . 1 7 — 0 . 1 7 41 CJCJ LARVA — 0 . 1 7 0 . 1 7 41 SCAP AD/NYM — 0 . 1 7 0 . 17 45 ARCT LARVA 0 . 1 7 — 0 . 17 45 MICR PUPA — 0 . 1 7 0 . 1 7 4 6 AGRO AD/NYM 0 . 1 7 — 0 . 1 7 46 CALL AD/NYM 0 . 1 7 — 0 . 1 7 46 DDL I AD/NYM 0 . 1 7 — 0 . 1 7 46 EPHY AD/NYM 0 . 1 7 — 0 . 1 7 4 6 MYCJ AD/NYM 0 . 1 7 — 0 . 1 7 46 PSYC AD/NYM — 0 . 1 7 0 . 1 7 46 SYRP AD/NYM 0 . 1 7 — 0 . 1 7 46 TACK AD/NYM 0 . 1 7 — 0 . 1 7 48 BETH AD/NYM — 0 . 1 7 0 . 1 7 48 EJRY AD/NYM 0 . 1 7 — 0 . 1 7 48 FORM PUPA 0 . 1 7 — 0 . 1 7 48 HYME LARVA - 0 . 1 7 0 . 1 7

------PERI 3D =4-14 SEPTEMBER 1978 AREA=OF ------— ——

ORDER FAMILY LIFEFORM HDEN LDEN DENSITY

48 FORM AD/NYM 1 3 0 . 0 0 2 1 8 . 3 5 3 4 8 . 3 5 5 ISOP AD/NYM 5 . 0 0 2 9 8 . 4 5 3 0 3 . 4 5 39 CICA AD/NYM 1 2 2 . 0 0 30.98 152.98 23 HYPO AD/NYM — 1 2 2 . 2 6 1 2 2 . 2 6 37 PHLO AD/NYM 2 8 . 3 3 6 7 . 5 5 9 5 . 8 8 2 3 ENT3 AD/NYM 8 1 . 3 3 1 3 . 5 5 9 4 . 8 8 3 7 THRI AD/NYM 1 1 . 6 7 7 5 . 3 1 8 6 . 9 8 46 CECI LARVA 5 . 0 0 6 9 . 9 3 7 4 . 9 3 23 ISOT AD/NYM — 6 6 . 3 4 6 6 . 3 4 10 J J L I AD/NYM 0 . 3 3 6 3 . 0 2 6 3 . 3 5 39 COCJ AD/NYM 1 . 0 0 6 0 . 9 6 6 1 . 9 6 9 CLEI AD/NYM 1 1 . 6 7 4 7 . 3 5 5 9 . 0 1 4 THER AD/NYM 3 6 . 3 3 7 . 8 4 4 4 . 1 7 38 TING AD/NYM 5 . 3 3 3 7 . 4 0 4 2 . 7 3 23 SMIN AD/NYM 2 . 0 0 2 8 . 6 9 3 0 . 6 9 39 APHI AD/NYM 1 2 . 0 0 1 7 . 9 3 2 9 . 9 3 46 SCHA LARVA — 2 7 . 7 7 2 7 . 7 7 45 MICR LARVA 6 . 0 0 1 8 . 6 8 2 4 . 6 8 4 6 CECI AD/NYM 5 . 6 7 1 9 . 0 1 2 4 . 6 7 46 SCIA PU5 A 1 . 6 7 1 9 . 1 3 2 0 . 8 0 4 6 BIBI LARVA — 2 0 . 6 7 2 0 . 6 7 17 LITH AD/NYM — 1 8 . 3 4 1 8 . 3 4 38 LYGA AD/NYM 1 . 0 0 1 7 . 3 3 1 8 . 3 3 5 PORC AD/NYM 0 . 6 7 1 6 . 6 7 1 7 . 3 4 318 TABLE 19. CONTINUED.

PERI30*4-14 SEPTEMBER 1978 AREA*OF IER FAMILY LIFEFORM HDEN LDEN DENSI TV

<►8 CERK AD/NYM 5.33 12.00 17. 33 4 8 SCEL AD/NYM 2.00 15.33 17. 33 48 PLAT AD/NYM 12.33 4.67 17. 0 0 46 SCIA LARVA — 14.22 14. 22 46 SCIA AD/NYM 13.00 0.67 13. 67 41 CHRY AD/NYM 3.67 9.67 13. 34 4 LINY AD/NYM 1.00 12.17 13. 17 41 PTI J LARVA 0.33 12.34 12. 67 45 NOCT LARVA 2.00 10.51 12. 51 41 STAP AD/NYM — 11.33 11. 33 4 SALT AD/NYM 6.33 3.92 10. 25 46 SPHA AD/NYM 9.67 0.33 10. 00 1 NEOB AD/NYM — 9.63 9. 63 4 LYCO AD/NYM 4.33 5.13 9. 46 46 PHOT AD/NYM 8.00 1.33 9. 33 22 PROT AD/NYM — 8.97 8. 97 46 CECI PUPA — 8.97 8. 97 41 CURC AD/NYM 0.33 8.33 8. 67 8 POLY AD/NYM — 8.00 8. 0 0 4 THOM AD/NYM 4.33 3.33 7. 67 39 DELP AD/NYM 7.33 0.33 7. 57 48 EULO AD/NYM 6.67 0.67 7. 33 46 CHLO AD/NYM 6.67 — 6. 67 46 CHIR LARVA 3.33 2.46 5. 79 39 PSYL AD/NYM 0.33 5.38 5. 71 46 EMPI LARVA — 5.71 5. 71 48 HYME PUP A 3.67 1.79 5. 45 23 ONYC AD/NYM — 5.38 5. 38 39 CIXI AD/NYM 1.67 3.59 5. 25 4 ANYP AO/NYM 4.67 0.33 5. 0 0 41 SCYD AD/NYM — 5.00 5. 00 39 CERC AD/NYM 3.00 1.79 4. 79 48 BRAC AD/NYM 4.33 0.33 4. 67 48 MYMA AD/NYM 2.00 2.67 4. 67 4 CLUB AD/NYM 3.67 0.67 4. 33 46 DROS AD/NYM 4.33 — 4. 33 48 PTER AD/NYM 2.67 1.67 4. 33 46 DIPT PUPA 3.67 0.33 4. 00 41 STAP LARVA — 3.92 3. 92 43 PANO LARVA 0.33 3.46 3. 79 41 CURC LARVA 3.33 0.33 3. 67 41 ELAT LARVA — 3.59 3. 59 46 OOLI LARVA — 3.59 3. 59 19 GEOP AD/NYM 0.33 3.13 3. 46 28 ACRI AD/NYM 3.33 — 3. 33 28 GRYK AD/NYM 3.33 — 3. 33 41 CANT LARVA 0.33 3.00 3. 33 41 CARA AD/NYM 0.33 3.00 3. 33 41 LAGR LARVA 1.67 1.67 3. 33 41 CLER LARVA 2.00 0.67 2. 67 41 LAMP LARVA — 2.67 2. 67 48 CYNI AD/NYM 1.33 1.33 2. 67 48 FORM LARVA — 2.46 2. 46 4 ARAN AD/NYM 2.33 — 2. 33 48 EURY AD/NYM 2.33 — 2. 33 41 CHRY LARVA 0.33 1.79 2. 13 2 PHAJ AD/NYM 2.00 — 2. 00 4 ARAJ AD/NYM 2.00 — 2. 00 41 LATH AD/NYM — 2.00 2. 00 46 ACAB AD/NYM 2.00 — 2. 00 46 CERQ AD/NYM 2.00 — 2. 00 48 HAL I AD/NYM 2.00 — 2. 00 24 ANA J AD/NYM — 1.79 1. 79 41 CJCJ LARVA — 1.79 1. 79 46 CHIR PUPA 1.67 — 1. 67 46 HUSC AD/NYM 1.67 — 1 . 67 319 TABLE 1 9 . CONTINOEO.

------PERI 00*4-14 SEPTEMBER 1978 AREA=OF ------

ORDER FAMILY LIFEFORM HDEN LDEN DENSITY

4 6 STRA LARVA 1 . 6 7 — 1 . 6 7 68 CYNI POPA 1 . 6 7 — 1 . 6 7 38 NABI AD/NYM I . 0 0 0 . 3 3 1 . 3 3 45 GEOM LARVA 0 . 3 3 1 . 0 0 1 . 3 3 45 NOCT AD/NYM 1 . 3 3 — 1 . 3 3 48 APIO AD/NYM 1 . 3 3 — 1 . 3 3 68 TENT LARVA 1 . 0 0 0 . 3 3 1 . 3 3 4 AGEL AD/NYM 0 . 3 3 0 . 6 7 I . 00 4 PISA AD/NYM 1 . 0 0 — I . 00 34 PSEJ AD/NYM 0 . 6 7 0 . 3 3 1 . 0 0 38 MI RI AD/NYM 1 . 0 0 — 1 . 0 0 61 PHAL AD/NYM — 1 . 0 0 I . 00 45 MICR AD/NYM 1 . 0 0 — 1 . 0 0 4 6 SYRP LARVA 1 . 0 0 — 1 . 0 0 48 0 1 AP AD/NYM — 1 . 0 0 1 . 0 0 48 ENCY AD/NYM 1 . 0 0 — 1 . 0 0 38 PENT AD/NYM 0 . 3 3 0 . 3 3 0 . 6 7 39 ISSI AD/NYM 0 . 6 7 — 0 . 6 7 41 CANT AD/NYM 0 . 6 7 — 0 . 6 7 41 PSEL AD/NYM — 0 . 6 7 0 . 6 7 41 SCAP AD/NYM — 0 . 6 7 0 . 6 7 46 EPHY AD/NYM 0 . 6 7 — 0 . 6 7 46 SYRP AD/NYM 0 . 6 7 — 0 . 6 7 48 EUPE AD/NYM 0 . 6 7 — 0 . 6 7 48 HYME LARVA 0 . 3 3 0 . 3 3 0 . 6 7 48 ICHN AD/NYM 0 . 3 3 0 . 3 3 0 . 6 7 48 TRI J AD/NYM — 0 . 6 7 0 . 6 7 4 CTEJ AD/NYM 0 . 3 3 — 0 . 3 3 4 GNAP AD/NYM 0 . 3 3 — 0 . 3 3 26 TRIK AD/NYM 0 . 3 3 — 0 . 3 3 28 TETR AD/NYM 0 . 3 3 — 0 . 3 3 38 REDO AD/NYM — 0 . 3 3 0 . 3 3 39 ACAN AD/NYM 0 . 3 3 — 0 . 3 3 39 MEMB AD/NYM 0 . 3 3 — 0 . 3 3 40 CHRJ LARVA 0 . 3 3 — 0 . 3 3 41 ANTK AD/NYM — 0 . 3 3 0 . 3 3 41 COCC AD/NYM 0 . 3 3 — 0 . 3 3 41 cocc LARVA 0 . 3 3 — 0 . 3 3 41 C JC J AD/NYM — 0 . 3 3 0 . 3 3 41 LATH LARVA 0 . 3 3 — 0 . 3 3 43 PANO AD/NYM 0 . 3 3 — 0 . 3 3 45 SATY AD/NYM 0 . 3 3 — 0 . 3 3 46 CHIR AD/NYM 0 . 3 3 — 0 . 3 3 66 COL I AD/NYM — 0 . 3 3 0 . 3 3 66 DOLI AD/NYM 0 . 3 3 — 0 . 3 3 46 EMPI AD/NYM 0 . 3 3 — 0 . 3 3 4 6 MYCJ AD/NYM 0 . 3 3 — 0 . 3 3 66 RHAS AD/NYM 0 . 3 3 — 0 . 3 3 4 6 TACK AD/NYM 0 . 3 3 — 0 . 3 3 48 ANDR AD/NYM 0 . 3 3 — 0 . 3 3 68 APfJE AD/NYM 0 . 3 3 — 0 . 3 3 68 CI.AL AD/NYM 0 . 3 3 — 0 . 3 3 48 DRYI AD/NYM 0 . 3 3 — 0 . 3 3 4 8 FIGI AD/NYM — 0 . 3 3 0 . 3 3 68 MEG J AD/NYM — 0 . 3 3 0 . 3 3 4 8 POMP AD/NYM — 0 . 3 3 0 . 3 3 48 TIPH AD/NYM - 0 . 3 3 0 . 3 3 TABLE 19. CONTINUED. 320 PERIOD=l4 MAY-4 JUNE 1979 AREA=77 ------

ORDER FAMILY LIFEFORM HDEN LDEN DENSITY

46 CECI LARVA 1 3 . 1 7 2 3 1 9 . 9 9 2 3 3 3 . 1 5 46 CHIR LARVA 6 . 5 0 1868.89 1875.39 23 ISOT AD/NYM 4 . 6 7 444.12 448.79 37 THR I AD/NYM 1 2 2 . 5 0 2 1 5 . 1 7 3 3 7 .6 7 23 SMIN AD/NYM 7 2 . 0 0 182.89 254.89 4 LINY AD/NYM 4 . 6 7 7 4 . 6 9 7 9 . 3 5 39 CICA AD/NYM 5 2 . 1 7 2 6 . 7 9 7 8 . 9 5 45 MICR LARVA 0 . 5 0 5 5 . 0 2 5 5 . 5 2 41 LATH LARVA 0 . 1 7 5 2 . 0 0 5 2 . 1 7 41 STAP LARVA 0 . 1 7 4 9 . 4 5 4 9 . 6 2 46 STRA PUPA 0 . 1 7 3 6 . 8 5 3 7 .0 1 41 CURC LARVA 1 . 1 7 3 0 . 8 2 3 1 . 9 8 23 ENTO AD/NYM 1 . 6 7 2 9 . 5 9 3 1 . 2 5 46 CECI AD/NYM 2 5 . 3 3 4 . 3 3 2 9 . 6 7 41 STAP AD/NYM 0 . 1 7 2 6 . 5 0 2 6 . 6 7 41 CUCJ LARVA l.O D 2 5 . 4 4 2 6 . 4 4 4 LYCO AD/NYM 7 . 6 7 1 4 . 0 7 2 1 . 7 3 37 PHLO AD/NYM 3 . 6 7 1 5 . 5 7 1 9 . 2 4 39 DELP AD/NYM 2 . 6 7 1 4 . 3 4 1 7 .0 1 46 DIPT PUPA 1 7 .0 1 1 7 .0 1 23 ONYC AD/NYM 0 . 3 3 1 3 . 4 5 1 3 . 7 8 46 CECI PUJ A 0 . 8 3 1 2 . 0 9 1 2 .9 2 46 SCHA LARVA — 1 2 . 5 5 1 2 . 5 5 46 SCIA AD/NYM 9 . 5 0 2 . 0 0 1 1 . 5 0 41 BYRR LARVA — 1 1 . 3 0 1 1 . 3 0 38 MIR I AD/NYM 5 . 5 0 5 . 7 1 1 1 .2 1 23 HYPO AD/NYM 0 . 1 7 1 0 . 7 6 1 0 . 9 3 38 NABI AD/NYM 1 . 0 0 9 . 5 0 1 0 . 5 0 46 STRA LARVA 9 . 3 3 9 . 3 3 48 SCEL AD/NYM 1 . 8 3 7 . 5 0 9 . 3 3 41 CURC AD/NYM 0 . 3 3 8 . 5 0 8 . 8 3 38 REDU AD/NYM — 8 . 5 0 8 . 5 0 45 MICR PUPA — 8 . 5 0 8 . 5 0 48 CERK AD/NYM 1 . 8 3 6 . 0 0 7 . 8 3 41 LATH AD/NYM 0 . 1 7 7 . 5 0 7 . 6 7 46 STRA AD/NYM 2 . 1 7 3 . 5 0 5 . 6 7 41 CARA AD/NYM 1 . 1 7 4 . 1 7 5 . 3 3 41 CARA LARVA 5 . 0 2 5 . 0 2 4 ARAN AD/NYM 3 . 6 7 1 . 0 6 4 . 7 3 46 LAUX AD/NYM 4 . 5 0 0 . 1 7 4 . 6 7 45 NOCT LARVA — 4 . 0 0 4 . 0 0 41 LANS AD/NYM — 3 . 6 7 3 . 6 7 39 CERC AD/NYM 3 . 3 3 — 3 . 3 3 37 ALEO AD/NYM 3 . 1 7 — 3 . 1 7 46 EMPI LARVA 2 . 6 9 2 . 6 9 46 SCIA LARVA — 2 . 6 9 2 . 6 9 41 PHAL AD/NYM — 2 . 6 7 2 . 6 7 39 APHI AD/NYM 0 . 8 3 1 . 7 9 2 . 6 3 46 CERQ AD/NYM 2 . 5 0 — 2 . 5 0 46 ANTX AD/NYM 2 . 1 7 0 . 3 3 2 . 5 0 38 ALYD AD/NYM 0 . 5 0 1 . 9 6 2 . 4 6 48 APHE AD/NYM 0 . 6 7 1 . 6 7 2 . 3 3 4 ARAJ AD/NYM 2 . 1 7 — 2 . 1 7 41 NITI AD/NYM 0 . 5 0 1 . 6 7 2 . 1 7 48 FORM AD/NYM 0 . 1 7 2 . 0 0 2 . 1 7 48 TRI J AD/NYM 1 . 1 7 1 . 0 0 2 . 1 7 46 SPHA AD/NYM 0 . 6 7 1 . 3 3 2 . 0 0 46 TIPU AD/ NYM 2 . 0 0 — 2 . 0 0 48 BRAC AD/NYM 1 . 5 0 0 . 5 0 2 . 0 0 46 SCHB LARVA 0 . 1 7 1 . 7 9 1 . 9 6 46 DOLI LARVA — 1 . 7 9 1 . 7 9 41 CRYP AD/NYM — 1 . 6 7 1 . 6 7 41 MYCE AD/NYM — 1 . 5 0 1 . 5 0 46 TIPU LARVA — 1 . 5 0 1 . 5 0 48 EURY AD/NYM 1 . 0 0 0 . 5 0 1 . 5 0 46 CHL3 AD/NYM 1 . 3 3 - 1 . 3 3 321 TABLE 1 9 . CONTINUED.

ao CA — 7 7 • • • • dcdt JUNE 1979 Cm * 1

ORDER FAMILY LIFEFORM HDEN LDEN DENSITY

*8 MYMA AD/NYM 1 . 1 7 0 . 1 7 1 . 3 3 *8 DIAP AD/NYM 1 . 1 7 1 . 1 7 41 BYRR AD/NYM 0 . 1 7 0 . 8 3 I . 00 4 THOM AD/NYM 0 . 3 3 0 . 6 7 1 . 0 0 4 6 CHIR AD/NYM 1 . 0 0 — 1 . 0 0 17 LITH AD/NYM — 0 . 9 0 0 . 9 0 41 ANTK LARVA — 0 . 9 0 0 . 9 3 4 6 SCIA PUPA — 0 . 9 0 0 . 9 0 4 C L J8 AD/NYM 0 . 5 0 0 . 3 3 0 . 8 3 48 EURY PUPA 0 . 8 3 — 0 . 8 3 28 ACRI AD/NYM 0 . 5 0 0 . 1 7 0 . 6 7 45 NOCT AD/NYM 0 . 6 7 — 0 . 6 7 48 ENCY AD/NYM 0 . 3 3 0 . 3 3 0 . 6 7 4 SALT AD/NYM 0 . 3 3 0 . 1 7 0 . 5 0 48 E JL 3 AD/NYM 0 . 5 0 — 0 . 5 0 2 PHAJ AD/NYM 0 . 5 0 — 0 . 5 0 38 ENIC AD/NYM — 0 . 5 0 0 . 5 0 41 ELAT AD/NYM — 0 . 5 0 0 . 5 0 41 MORD AD/NYM 0 . 3 3 0 . 1 7 0 . 5 3 41 SCAP AD/NYM — 0 . 5 0 0 . 5 0 41 SCAR AD/NYM — 0 . 5 0 0 . 5 0 45 COL J LARVA — 0 . 5 0 0 . 5 0 48 PLAT AD/NYM 0 . 1 7 0 . 3 3 0 . 5 0 38 SALD AD/NYM — 0 . 3 3 0 . 3 3 41 CHRY AD/NYM 0 . 1 7 0 . 1 7 0 . 3 3 41 COCC AD/NYM 0 . 3 3 — 0 . 3 3 41 ELAT LARVA — 0 . 3 3 0 . 3 3 46 DOL I AD/NYM 0 . 3 3 — 0 . 3 3 46 PHDR AD/NYM 0 . 3 3 — 0 . 3 3 48 CYNI AD/NYM — 0 . 3 3 0 . 3 3 10 PARA AD/NYM — 0 . 1 7 0 . 1 7 26 TRIK AD/NYM 0 . 1 7 — 0 . 1 7 28 TETT AD/NYM 0 . 1 7 — 0 . 1 7 28 TRID AD/NYM — 0 . 1 7 0 . 1 7 39 ISSI AD/NYM 0 . 1 7 — 0 . 1 7 41 CHRY LARVA 0 . 1 7 — 0 . 1 7 41 COLE LARVA 0 . 1 7 — 0 . 1 7 41 CJCU AD/NYM 0 . 1 7 — 0 . 1 7 41 MORD LARVA 0 . 1 7 — 0 . 1 7 42 HALK AD/NYM 0 . 1 7 — 0 . 1 7 46 ANT V AD/NYM 0 . 1 7 — 0 . 1 7 46 EPHY AD/NYM 0 . 1 7 — 0 . 1 7 48 EJPE AD/NYM 0 . 1 7 — 0 . 1 7 48 PTER AD/NYM 0 . 1 7 0 . 1 7

------PERI3D=14 MAY-4 JUNE 1979 AREA=75 ------

ORDER FAMILY LIFEFORM HDEN LDEN DENSITY

23 ENTO AD/NYM 2 0 6 . 0 0 1 5 7 . 7 7 3 6 3 . 7 7 23 I SOT AD/NYM 4 . 3 3 301.57 305.90 23 HYPO AD/NYM 1 . 1 7 176.06 177.22 23 SMIN AD/NYM 1 3 . 8 3 1 2 0 . 1 4 1 3 3 .9 7 46 CECI LARVA 1 9 . 0 0 1 0 6 . 6 9 1 2 5 . 6 9 48 FORM AD/NYM 2 0 . 0 0 9 5 . 1 8 1 1 5 .1 8 39 CICA AD/NYM 7 1 . 6 7 2 8 . 4 8 1 0 0 . 1 4 37 THRI AD/NYM 5 2 . 5 0 4 4 . 8 3 9 7 . 3 3 23 ONYC AD/NYM 1 . 1 7 3 8 . 5 5 3 9 . 7 2 41 N IT I AD/NYM 1 1 . 3 3 2 5 . 3 4 3 6 . 6 7 41 CARA AD/NYM 3 . 0 0 2 8 . 1 7 3 1 . 1 7 37 PHL 3 AD/NYM 9 . 1 7 2 1 . 5 2 3 0 . 6 8 38 MI R I AD/NYM 2 5 . 5 0 2 . 2 3 2 7 . 7 3 4 LINY AD/NYM 4 . 5 0 1 9 . 4 4 2 3 . 9 4 4 6 CHIR LARVA 2 . 0 3 2 1 . 6 8 2 3 . 6 8 3 9 APHI AD/NYM 5 . 6 7 1 5 .4 1 2 1 . 0 7 322 TABLE 1 9 . CONTINUED.

------PERIOD = 14 MAY-4 JUNE 1979 AREA=75 ------

ORDER FAMILY LIFEFORM HDEN LDEN DENSITY

41 STAP AD/NYM 1 . 3 3 1 8 . 6 7 2 0 . 0 0 4 LYCO AD/NYM 3 . 1 7 1 3 . 1 7 1 6 . 3 4 41 STAP LARVA — 1 4 . 5 1 1 4 .5 1 4 SALT AD/NYM 4 . 6 7 9 . 3 4 1 4 . 0 3 48 EURY AD/NYM 3.67 8.67 12.34 41 BYRR LARVA — 1 0 . 9 6 1 0 . 9 6 46 AGRD AD/NYM — 8 . 5 0 8 . 5 3 46 SCHA LARVA 1 . 6 7 5 . 3 8 7 . 3 5 46 STRA LARVA 0.17 6.69 6.86 41 LATH AD/NYM 1 . 3 3 5 . 3 3 6 . 6 7 4 ARAM AD/NYM 5 . 3 3 0 . 5 0 5 . 8 3 41 LATH LARVA 0 . 3 3 5 . 3 8 5 .7 1 48 SCEL AD/NYM 1 . 1 7 3 . 8 3 5 . 0 0 45 MICR LARVA 0 . 5 0 4 . 1 7 4 . 6 7 41 CHRY LARVA 0 . 1 7 4 . 4 6 4 . 6 3 10 PARA AD/NYM — 4 . 1 7 4 . 1 7 46 SCIA LARVA — 3 . 5 9 3 . 5 9 39 COCJ AD/NYM 0 . 8 3 2 . 6 9 3 . 5 2 39 CERC AD/NYM 3 . 3 3 0 . 1 7 3 . 5 0 46 SPHA AD/NYM 1 . 8 3 1 . 5 0 3 . 3 3 41 SCAP AD/NYM 0 . 8 3 2 . 3 3 3 . 1 7 41 CJCJ LARVA 0 . 3 3 2 . 6 9 3 . 3 2 41 CANT AD/NYM 0 . 1 7 2 . 8 3 3 . 0 0 46 SCIA AD/NYM 3 . 0 0 - 3 . 3 3 45 MICR PUPA — 2 . 8 3 2 . 8 3 46 STRAPUPA — 2 . 8 3 2 . 8 3 46 CECI AD/NYM 1 . 8 3 0 . 8 3 2 . 6 7 46 DROS AD/NYM 2 . 6 7 — 2 . 6 7 39 DELP AD/NYM 0 . 8 3 1 . 7 9 2 . 6 3 46 EMPI LARVA — 2 . 4 6 2 . 4 6 28 GRYK AD/NYM 0 . 3 3 2 . 0 6 2 . 4 0 41 CRYP AD/NYM 0 . 1 7 2 . 1 7 2 . 3 3 46 STRA AD/NYM 2 . 0 0 0 . 3 3 2 . 3 3 46 TIPU AD/NYM 2 . 3 3 — 2 . 3 3 4 CLUB AD/NYM 1 . 1 7 0 . 8 3 2 . 0 0 41 LANG AO/NYM 1 . 1 7 0 . 8 3 2 . 0 0 48 TRI J AD/NYM 1.57 0.33 2.00 37 ALEO AD/NYM 1 . 0 0 0 . 9 0 1 . 9 0 46 DIPT PUPA 1 . 6 7 0 . 1 7 1 . 8 3 46 LA JX AD/NYM 1 . 8 3 — 1 . 8 3 48 APHE AD/NYM 0 . 6 7 1 . 1 7 1 . 8 3 48 BRAC AD/NYM 1 . 8 3 — 1 . 8 3 4 GNAP AD/NYM 1 . 1 7 0 . 5 0 1 . 6 7 41 BYRR AD/NYM 0 . 8 3 0 . 8 3 1 . 6 7 46 TIPU LARVA — 1 . 5 6 1 . 5 6 4 THOM AD/NYM 1 . 3 3 0 . 1 7 1 . 5 3 10 JU LI AD/NYM — 1 . 5 0 1 . 5 0 46 ANTX AD/NYM 1 . 5 0 — 1 . 5 3 41 PHAL AD/NYM 0.83 0.67 1.50 48 EUL3 AD/NYM 1 . 1 7 0 . 3 3 1 . 5 0 41 CANT LARVA — 1 . 4 0 1 . 4 0 46 DOLI LARVA — 1 . 4 0 1 . 4 3 48 MYMA AD/NYM 1 . 1 7 0 . 1 7 1 . 3 3 39 MEMB AD/NYM 0 . 1 7 1 . 0 6 1 . 2 3 34 PSEJ AD/NYM 1 . 0 0 0 . 1 7 1 . 1 7 38 ALYD AD/NYM 1 . 1 7 — 1 . 1 7 41 CJRC AD/NYM — 1 . 1 7 1 . 1 7 48 DIAP AD/NYM — 1 . 1 7 1 . 1 7 17 LITH AD/NYM — 1 . 0 6 1 . 0 6 41 CJRC LARVA — 0 . 9 0 0 . 9 0 41 N IT I LARVA — 0 . 9 0 0 . 9 3 46 CECI PUPA — 0 . 9 0 0 . 9 0 49 ARTH LARVA — 0 . 9 0 0 . 9 0 46 CERQ AD/NYM 0 . 8 3 — 0 . 8 3 46 CHL3 AD/NYM 0 . 6 7 0 . 1 7 0 . 8 3 28 ACRI AD/NYM 0 . 5 7 — 0 . 6 7 TABLE 19. CONTINUED. 323

PERIOD=14 NAT-4 JUNE 1979 AREA=75

ORDER FAMILY LIFEFORM HDEN LDEN DENSITY

41 COCC AD/NYM 0 . 6 7 0 . 6 7 45 NOCT LARVA — 0 . 6 7 0 . 6 7 46 CHI ft AD/NYM 0 . 6 7 — 0 . 6 7 46 PHOR AD/NYM 0 . 5 0 0 . 1 7 0 . 6 7 48 PLAT AD/NYM 0 . 5 0 0 . 1 7 0 . 6 7 4 THER AD/NYM 0 . 5 0 — 0 . 5 0 41 MORD LARVA 0 . 5 0 — 0 . 5 0 45 NOCT AD/NYM 0 . 5 3 — 0 . 5 0 4 8 CERK AD/NYM — 0 . 5 0 0 . 5 3 38 REDJ AD/NYM — 0 . 5 0 0 . 5 0 41 CARA LARVA — 0 . 5 0 0 . 5 3 41 PSEL AD/NYM — 0 . 5 0 0 . 5 3 46 MYCJ AD/NYM 0 . 5 0 — 0 . 5 3 38 LYGA AD/NYM — 0 . 3 3 0 . 3 3 38 NABI AD/NYM 0 . 3 3 — 0 . 3 3 38 PENT AD/NYM 0 . 1 7 0 . 1 7 0 . 3 3 39 ISSI AD/NYM 0 . 3 3 — 0 . 3 3 41 CLER AD/NYM 0 . 1 7 0 . 1 7 0 . 3 3 45 MICR AD/NYM 0 . 3 3 — 0 . 3 3 46 EMPI AD/NYM 0 . 3 3 — 0 . 3 3 46 EPHY AD/NYM 0 . 3 3 — 0 . 3 3 46 MUSC AD/NYM 0 . 3 3 — 0 . 3 3 48 EUPE AD/NYM 0 . 3 3 — 0 . 3 3 48 PTER AD/NYM 0 . 3 3 — 0 . 3 3 2 PHAJ AD/NYM 0 . 1 7 — 0 . 1 7 28 TETT AD/NYM 0 . 1 7 — 0 . 1 7 3 4 PSDC AD/NYM 0 . 1 7 — 0 . 1 7 38 ENIC AD/NYM — 0 . 1 7 0 . 1 7 41 CHRY AD/NYM — 0 . 1 7 0 . 1 7 41 COCC LARVA 0 . 1 7 — 0 . 1 7 41 COLE LARVA 0 . 1 7 — 0 . 1 7 41 cucu AD/NYM 0 . 1 7 — 0 . 1 7 41 ELAT AD/NYM - 0 . 1 7 0 . 1 7 41 ELAT LARVA — 0 . 1 7 0 . 1 7 41 HIST AD/NYM — 0 . 1 7 0 . 1 7 41 LAGR LARVA 0 . 1 7 — 0 . 1 7 41 MORD AD/NYM — 0 . 1 7 0 . 1 7 41 MORD PUPA 0 . 1 7 — 0 . 1 7 41 PTIJ LARVA — 0 . 1 7 0 . 1 7 41 SCAR LARVA — 0 . 1 7 0 . 1 7 41 SCOL AD/NYM — 0 . 1 7 0 . 1 7 43 PANO AD/NYM 0 . 1 7 — 0 . 1 7 45 COL J LARVA — 0 . 1 7 0 . 1 7 46 ANT V AD/NYM 0 . 1 7 — 0 . 1 7 46 DOL I AD/NYM 0 . 1 7 — 0 . 1 7 46 TACK PUPA 0 . 1 7 0 . 1 7 48 DRY I AD/NYM — 0 . 1 7 0 . 1 7 48 ENCY AD/NYM 0 . 1 7 — 0 . 1 7 48 ICHN AD/NYM 0 . 1 7 — 0 . 1 7 48 PROC AD/NYM 0 . 1 7 — 0 . 1 7 4 8 TENT LARVA 0 . 1 7 — 0 . 1 7 48 TORY AD/NYM 0 . 1 7 - 0 . 1 7

------PERI3D=14 MAY-4 JUNE 1 9 7 9 AREA*CV ------— ------—

ORDER FAMILY LIFEFORM HDEN LDEN DENSITY

23 HYPO AD/NYM 1 . 1 7 4 7 7 . 2 9 4 7 8 . 4 6 23 ENTO AD/NYM 4 0 . 3 3 2 3 7 . 8 4 2 7 8 . 1 8 10 JUL I AD/NYM 1 2 . 3 3 1 5 3 . 5 4 1 6 5 . 8 7 23 SMIN AD/NYM 5 . 1 7 9 4 . 1 4 9 9 . 3 0 48 FORM AD/NYM 1 . 6 7 9 5 . 3 5 9 7 .0 1 39 CICA AD/NYM 2 2 . 0 0 5 4 . 5 5 7 6 . 5 5 41 LANG AD/NYM 5 . 0 0 6 0 . 1 7 6 5 . 1 7 46 CECI LARVA 0 . 3 3 5 7 . 3 8 5 7 .7 1 Z I M 0 0 * 1 ZTOHAN/OV 3HdV 8* ZIM £ £ • 0 £8 * 0 WAN/OV A0H3 I* ZIM — Z 1 * 1 WAN/OV d ! 3 0 6£ CSMOS*T — WAN/OV WOHi * Z9 *1 ZIM c s * o WAN/OV 1333 9* Z9 M O S M ZTO WAN/OV lVHd 1* Z 9 M Z 9* 1 — WAN/OV 33AW 1* 6 ZM 6Z * 1 — VA0V1 0 3 0 3 1* 6Z * I 6 Z M — WAN/OV 1 0 8 d ZZ £ 8 * 1 Z 9 M Z T O WAN/OV 133S 8* c o * z £ £ • 0 Z9* 1 WAN/OV 0 1 0 3 8* 00*Z 05*0 0S*1 WAN/OV AHd3 9* CSM — CS*Z WAN/OV 0 IH 3 9* 95 *Z 0 6 * 0 Z 9 * l WAN/OV 031V Z£ Z9 *Z Z9*Z WAN/OV 1 3 S d 1* E8*Z 0 S * 0 €£*Z WAN/OV 3V08 8* 61 *C 61 *£ — VA0V1 1100 9* £ £ * £ £ 8 * 1 CS*1 WAN/OV 8 0 1 3 * 9£ *£ 9£ *£ - VA0V1 V0V3 1* 6S *£ 6 S * £ — VA0V1 A0H3 1* Z6 *£ 6 S * £ £ £ * 0 VA0V1 V I3S 9* 96 *£ 9V*Z C S M WAN/OV 0OHd 9* CO** Z 9 “ 1 ££*Z WAN/OV VHdS 9* CO** — 0 0 * * WAN/OV X1NV 9* 6 0 * * 6 S * £ 0S*0 WAN/OV IHdV 6E z r i r 0 0 * 9 Z1*0 WAN/OV > 033 8* c s * * OS** — WAN/OV AlOd 8 £ £ m*r £8 ** — WAN/OV V0V3 I* £ 8 * * Z I M Z9*£ WAN/QV NV0V * CO *5 0 0 * S — VA0V1 dWVl I* 9 0 * 5 9 0 * S — VA0V1 130N S* S T 'S 8 * * * Z9 *0 WAN/OV NV3V 6£ Z1*S Z1*S — WAN/OV H i d I* Z9*S Z9*S — VdOd V01S 9* 9 0 * 9 0 * * Z Z9*£ WAN/OV n v s * Z9 *9 Z 9 * 9 - WAN/OV 3 0 0 3 1* ZC *8 ZO *8 — VA0V1 HIV1 I* CS *8 0S*8 WAN/GV SO0O 9* ZI "6 0 0 * 6 Z T O WAN/OV VWAW 8* OS “6 £ 8 * 9 Z9*Z WAN/OV 03A1 * £ 8 * 6 Z l * * Z 9*S WAN/OV V I3S 9* C£ *01 0 £ “01 — Vend V I3S 9* C£ *01 0 £ * 0 1 — v e n d 1333 9* * £ • 0 1 ZT *6 Z T 1 WAN/OV A0O3 8* £S *01 £ 0 * 0 1 0 5 * 0 VA0V1 3 0 0 3 1* 60 *T1 6 0 * 1 1 — VA0V1 VH3S 9* 6 Z M 1 6Z *01 00*1 VA0V1 031W S * 91 *Z1 9 l * Z l — VA0V1 dV IS 1* *8 *Z1 Z9*Z1 Z T O WAN/OV m n Z1 Z T E I Z l * £ l — WAN/OV 30Cd S 1Z *£1 1Z*£1 c s * o VA0V1 V0JS 9* CO **l 0 0 * * 1 — WAN/OV d A03 I* £6 **1 9Z *01 ZT* WAN/OV 10N1 Z£ 61 “SI 61**1 00*1 WAN/OV an n * ZS*Z1 ZS *6 0 0 * 8 WAN/OV I0IW 8E ZO *81 ZO *81 — v d n d i d I O 9* Z9 *0Z £8*01 £8*6 WAN/OV 1 1IN 1* 8* *£Z 8**EZ — VA0V1 01H3 9* Z1**Z Z1**Z — WAN/OV dV iS 1* ***SZ 0 l* S Z ££ * 0 VA0V1 T303 1* ***SZ 0 1 * S Z ££ * 0 WAN/OV iosi £Z Z9*9Z Z 9*9Z — WAN/OV 1S1H 1* ZS *0£ 6 9 * 8 Z £ 8 * 1 WAN/OV 8C3N 1 8£* 1£ 8 £ * 1 £ — WAN/OV 3AN0 £Z OS “Z£ 0 S * £ £ 0 0 * * WAN/OV H1V1 1* £8 *S* £8*** 0 0 * 1 WAN/OV O lH d Z£

A11SN30 N 301 N30H W 8 0 3 3 3 I 1 A1IWV3 8 3 0 8 0 ------A3=V30V 6Z61 3N00 *-AVW *1= 0 0 1 8 3 d ------vze •G30NI1N03 *61 318V1 Z l *0 ZTO — VAIV1 1N31 8 t ZTO ZTO WAN/OV A3N3 8* ZTO ZTO — WAN/OV I ADO 8* ZTO ZTO WAN/OV OldV 8 t ZTO — ZTO WAN/OV f d l l 9*> Z T *0 — Z T O WAN/OV SVH8 9*i ZTO — ZTO WAN/OV oson 9 t ZTO — Z T O WAN/OV 3N01 9*> ZTO - Z T O WAN/OV n o o 9*i ZTO — ZTO WAN/OV 18 18 9 t ZTO — ZTO v e n d 831N S t ZTO — Z T O WAN/OV 81NV I t ZTO - ZTO WAN/OV T8H3 Ot ZTO ZTO WAN/OV 3 8 3 0 6£ ZTO ZTO — WAN/OV N0A3 8£ ZTO ZTO WAN/OV GA1V 8£ ZTOZTO WAN/OV > A89 82 Z l *0 Z T O WAN/OV N 303 Z2 ZTO ZTO WAN/OV d 0 3 9 61 £ £ * 0 £ £ * 0 WAN/OV 8 3 1 d 8 t £ £ • 0 — £ £ * 0 WAN/OV n v H 8 t £ £ • 0 ZTOZTO WAN/OV 3 d 0 3 8 t £ £ * 0 £ £ * 0 WAN/OV OIOS 9 t ££ *0 — £ £ * 0 WAN/OV 8 3 IW S t £ £ * 0 ZTO ZTO WAN/OV 3 3 0 3 I t £ £ • 0 E £*0 WAN/OV 1 1 3 1 82 £ £ “0 — £ £ * 0 WAN/OV 183V 82 CS*0 £ £ * 0 ZTO WAN/OV C1H3 9 t CS*0 0 5 * 0 VdOd 130N S t CS*0 £ £ * 0 ZTO WAN/OV 83H1 t CS*0 0 5 * 0 — WAN/OV r i 8 i 8 t CS*0 0 S * 0 — VA8V1 n o o S t c s * o 0 S * 0 — VA8V1 r u d I t ZTO £ £ * 0 £ £ * 0 WAN/OV I V l d 8 t Z9 “0 0 S * 0 Z T O WAN/OV NH3I 8 t ZTO ZTO WAN/OV C 833 9 t ZTO ZTO — WAN/OV 1V13 I t ZTO ZTO — WAN/OV 0 3 0 3 I t ZTO ZTO — WAN/OV NV18 01 £ 8 * 0 0 5 * 0 £ £ * 0 WAN/OV dVIO 8 1 £8 “0 Z T O Z 9 *0 WAN/OV V81S 9 t £ 8 * 0 £ 8 * 0 — VA8V1 80H d 9 t £8 “0 € 8 * 0 VA8V1 A13W I t £8 *0 — £ 8 * 0 WAN/OV ISSI 6£ £ 8 * 0 £ £ * 0 OS*G WAN/OV 18VN 8£ £ 8 * 0 — £ 8 * 0 WAN/OV V9A1 8£ £ 8 * 0 £ 8 * 0 — WAN/OV 1313 6 £ 8 * 0 ZTO Z 9*0 WAN/OV TVHd 2 0 6 * 0 0 6 * 0 — VA8V1 8H3S 9 t € 6 * 0 0 6 * 0 — VdOd 8 IH 3 9 t C6 *0 0 6 * 0 — VA8V1 080W I t 0 6 * 0 0 6 * 0 — VA8V1 X1NV I t 0 6 * 0 0 6 * 0 — WAN/OV 8N3W 6 £ CC*1 Z T O £ 8 * 0 WAN/OV x n v i 9 t 0 0 * 1 ZTO £8 * 0 VdOd 3V88 8 t COM ZTO £ 8 * 0 WAN/OV 080W I t

Ai ISN 30 N 301 N30H N 8 0 3 3 3 I 1 A1IWVJ U 3080

------A3=V38V 6Z61 3Nfir t-AVW tI=CCI83d ------

• 0 3 0 N U N 0 3 *61 318V 1 SEE 6 Z *1 6 Z*1 — WAN 70 V iOdd 22 00*2 Z9 *1 ££*0 WAN /av d31d 89 00*2 00*2 WAN/OV 3dD3 89 GC*2 ££*0 Z9 * I HAN/OV 0103 89 00*2 £ £ * ! Z9*0 WAN/OV W0H1 9 €1*2 £1*2 WAN/OV d039 61 ££*Z Z9*0 Z9 *1 WAN/OV VIOS 99 EC *2 00*2 ££*0 VAdVl 100N 59 €£*Z ££*2 WAN/OV dOIW 59 ££*2 _ ££*2 WAN/OV 031V Z£ 99*2 99*2 VAdVl 1V13 19 Z9 *2 Z9*0 00*2 WAN/OV IVld 89 Z9 *Z ££*0 ££*2 WAN/OV dlHO 99 Z9 *2 ££*0 ££*2 WAN/OV 1030 99 Z9 *2 Z9*2 VAdVl 1NV0 19 Z9 *Z Z9*2 WAN/OV dANV 9 6 Z*2 6 Z *2 VAdVl AdHO 19 00 *£ Z 9*2 ££*0 WAN/OV VdVO T9 00 *£ ££* T Z9“l WAN/OV C0A1 9 Z9 *€ ££*2 £ £ * ! WAN/OV 3HdV 89 19 *£ Z9 *£ WAN/OV OdOd 5 Z9 *£ Z9 *0 0 0 *£ WAN/OV rvHd 2 CC*9 00*2 00*2 WAN/OV AdHO 19 oc*9 Z 9*0 £ £ * £ WAN/OV 8 no 9 52*9 65 *£ Z9 *0 WAN/OV IXIO 6 € Z9*9 ££*1 £ £ * £ WAN/OV 0Vd8 89 6 Z*9 £1*2 Z9*Z WAN/OV IdlW 8£ SZ *5 65 *£ Z9 *1 WAN/OV 903N 1 ££*S 0 0 ** £€ * I WAN/OV 130S 89 8E *5 8£*S VAdVl VIOS 99 65*5 Z6 *£ Z9 *I WAN/OV dl30 6 £ Z9 *S Z9 *S WAN/OV 0 AOS 19 TZ*S 8£ *5 ££*0 VAdVl Wd03 89 50*9 IZ*S ££*0 VdOd 3WAH 89 ££•9 £ £ * ! 00*5 WAN/OV 11VS 9 SC*Z IZ *9 ££*C VAliVl dViS 19 TZ*Z 1Z*Z — VAdVl VdVO 19 98 *Z 1S*Z ££*0 WAN/OV rooo 6 £ CO *8 Z9*S ££*2 WAN/OV >d30 89 Zl *8 Zl *8 VAIV1 noa 99 Z9 *8 ££*0 ££*8 WAN/OV NVdV 9 Z9*6 ££*6 ££*0 WAN/OV V9A1 8£ Z9 *01 Z9*0 0C*0I WAN/OV AdP3 89 TZ “I T 8£ *9 ££*S WAN/OV AN 11 9 15*21 Zl*ll £ £ * ! VA1V1 doiw 59 6 Z*2 T £1*11 Z9 * 1 WAN/OV H i n Zl CE*91 £9*6 Z9 *9 WAN/OV lASd 6 £ 91*91 91*91 — WAN/QV IHdV 6 £ 10*ZI IO*ZI — WAN/OV 139V 9 Z9 *81 Z9 *91 00*9 HAN/OV OdflO 19 £6*61 92*81 Z9* I VAkVl VHOS 99 90*12 90*12 VAdVl dlHO 99 58*12 25*12 €£*0 WAN/OV OlHd Z£ Z9 *Z2 Z9*9Z 00*1 WAN/OV dVIS 19 10*82 Z9*ZZ ££*C WAN/OV 1310 6 8 9*IE 89*0£ 00*1 WAN/OV OdAH £2 Z9 *9£ Z9*61 00*51 WAN/OV d3Hl 9 61 *9£ 98 *S£ ££*0 WAN/OV OANO £2 99*96 9 9*ZZ C0 *ZI WAN/OV IdHl Z£ 8Z*96 59*16 €£ * £ WAN/OV NIWS £2 65*66 65 *ZI 00*28 WAN/OV VOIO 6 £ 86 *Z£I I£*ZZI Z9“S VAtVl 1030 99 CZ *£SI 0Z*£S1 — WAN/OV nnr 01 IZ *Z9I 8£*I9T £ £ " ! WAN/OV 10SI £2 29*991 56*66 Z9*99 WAN/OV 01N3 £2 Z9 *Z9£ 9£*1T£ ££“9E WAN/OV WdGd 89 A11SN30 N301 N30H Wd0333Il A1 IWV3 d30d0 i._ ft wu j. i.nr I U 3 J _____ Jflf M3M H 6 Z61 3NflT v a vn vi^viviojo

92£ *03flNIIN00 *61 318V1 ££•0 ££•0 — WAN/GV >nno 8V ££#0 ££*0 WAN/GV V8V1 99 ££•0 — ££*0 WAN/OV dVAS 99 ££ *0 — ££*0 WAN/GV VHdS 99 ££•0 — ££*0 WAN/GV OV H8 99 ££•0 — E£*0 WAN/GV 80Hd 99 ££•0 — ££*0 WAN/GV TN01 99 ££'0 ££•0 — WAN/GV AHd3 99 ££•0 — ££*0 WAN/GV 1 dW3 99 ££•0 — ££*0 WAN/GV C833 99 ££•0 — ££*0 WAN/GV AiNV 99 ££“0 — ££*0 WAN/GV 089V 99 ££*0 — ££*0 WAN/GV ONVd £9 ££*0 — ££*0 WAN/GV avow 19 ££•0 ££•0 VA8V1 89V1 19 ££*0 ££•0 — WAN/GV 89vi 19 ££•0 ££•0 — WAN/GV ISIH 19 ££•0 ££*0 WAN/OV 0300 19 ££•0 — ££*0 WAN/GV 1NV3 19 ££'0 ££•0 — WAN/GV 88A8 19 ££•0 ££*0 WAN/GV 8H3W 6£ ££•0 — ££*0 WAN/GV 1SS1 6£ ££•0 — ££*0 WAN/OV NVOV 6£ ££•0 — ££*0 WAN/GV 9NI1 8£ ££*0 — ££*0 WAN/GV IQVN 8£ ££•0 — ££*0 WAN/GV OOSd 9£ ££•0 — ££*0 WAN/GV 183V 8Z ££•0 ££*0 — WAN/GV Advr 92 ££•0 ££•0 — WAN/GV 1SAX 8 ££'0 ££*0 WAN/GV VS Id 9 ££•0 — ££*0 WAN/GV OAXO 9 ££•0 — ££*0 WAN/GV T310 9 49*0 ££•0 £E*0 V/UV1 1N31 89 49*0 49*0 WAN/GV osnw 99 49*0 ££•0 ££*0 WAN/GV xnvi 99 Z9”0 49*0 WAN/QV SG8G 99 49*0 49*0 — WAN/GV l l l d 19 •

19 *0 £€•0 O WAN/GV lVHd 19 19 "0 49*0 — WAN/GV 1003 19 49*0 49*0 — WAN/GV 1V13 19 19 *0 49*0 — WAN/GV rono 19 4 9*0 ££•0 ££*0 VA8V1 8310 19 19 *0 ££•0 ££"0 WAN/GV 0930 6£ / 9*0 49*0 WAN/GV T3Sd 9 £ 49 *0 49*0 — WAN/OV XA89 82 49 *0 49*0 — WAN/OV AlOd 8 49 "0 49*0 WAN/GV rv9v 9 COM ££•0 49*0 WAN/GV VWAW 89 COM 49*0 ££*0 WAN/GV dVIG 89 COM — 00*1 WAN/GV toaw 99 00*1 — 00*1 WAN/GV 8V3V 99 00*1 — 00*1 vend 90IW 59 OOM 00*1 — WAN/GV 9NV1 19 CO * T OOM — WAN/GV 013H 19 ££•1 £ E M — WAN/OV 13Sd 19 ££•1 £ £ M — WAN/GV 0131 19 £€•1 £ £ • ! — VA8V1 dWVl 19 ££•1 £ £ • 0 0 0 * 1 WAN/GV 0A1V 8E 49*1 49*1 — WAN/OV dVOS 19 49-1 00*1 49*0 WAN/GV 0G39 8£ 49*1 ££*0 ££*1 WAN/GV 1131 82 64*1 64*1 — VAIVI V91S 99 64*1 64*1 — vdnd Id 10 9 9 64*1 6 4 * 1 — VA8V1 H1V1 19 64*1 6 4 * 1 — VA8V1 0900 19 6 4 * 1 64*1 — WAN/GV lN3d 8£ A11SN30 N3G1 N3GH WXG333I1 A l l WV3 83080 ------30=V38V 6461 3Nflr 9-AVW 91=G0I«3d ------LZZ •G3PNI1NOO *61 318V1 TABLE 19. CONTINUED.

------PERIOD * 1 4 MAY-4 JUNE 19 7 9 AREA=OF ------

ORDER FAMILY LIFEFORM HDEN LDEN DENSITY

A 8 ENCY AD/NYM 0 . 3 3 — 0 . 3 3 48 ICHN AD/NYM — 0 . 3 3 0 . 3 3 48 MEGJ AD/NYM — 0 . 3 3 0 . 3 3 48 TRIJ AD/NYM 0 . 3 3 0 . 3 3

------PERI 00=13-22 JUNE 19 7 9 AREA=77 ------

ORDER FAMILY LIFEFORM . HDEN LDEN DENSITY

46 CECI LARVA 6 . 6 7 365.79 372.45 37 THRI AD/NYM 1 0 3 . 5 3 214.68 318.18 46 CHIR LARVA 2 . 3 3 141.65 143.99 39 COCJ AD/NYM 4 . 5 3 104.90 109.40 37 PHLO AD/NYM 3 . 5 0 8 2 . 1 9 8 5 . 6 9 39 CICA AD/NYM 6 1 . 5 3 1 1 . 7 8 7 3 . 2 8 23 ISOT AD/NYM 9 .5 D 5 8 . 2 8 6 7 . 7 8 23 ENTO AD/NYM 3 1 . 3 3 3 6 . 3 0 6 7 . 6 3 23 SMIN AD/NYM 3 . 8 3 4 3 . 0 3 4 6 . 8 7 39 DELP AD/NYM 3 8 . 8 3 3 . 9 2 4 2 . 7 5 41 LATH AD/NYM 2 . 6 7 3 4 . 8 4 3 7 . 5 1 28 GRYK AD/NYM 6 . 8 3 2 9 . 8 4 3 6 . 6 8 46 CHLO AO/NYM 3 1 . 3 3 2 . 8 3 3 4 . 1 7 41 STAP AD/NYM 1 . 00 3 0 . 3 4 3 1 . 3 4 4 LINY AD/NYM 7 . 1 7 2 4 . 1 6 3 1 . 3 3 48 SCEL AD/NYM 1 . 5 3 1 9 . 6 7 2 1 . 1 7 4 LYCO AD/NYM 8 . 6 7 1 1 . 5 7 2 0 . 2 3 41 LATH LARVA 1.17 17.03 18.23 4 ARAN AD/NYM 1 6 . 6 7 0 . 3 3 1 7 . 0 3 39 APHI AD/NYM 1 1 . 5 0 3 . 9 2 1 5 . 4 2 41 CJCJ LARVA 0 . 6 7 1 4 .7 2 1 5 . 3 8 46 DIPT PU3 A 3 . 3 3 8 . 5 0 1 1 . B4 41 HYDR LARVA — 1 1 . 2 0 1 1 . 2 0 46 CECI AD/NYM 1 0 . 5 0 0 . 6 7 1 1 . 1 7 38 NABI AD/NYM 2 .0 D 8 . 6 7 1 0 . 6 7 23 ONYC AD/NYM 0 . 3 3 9 . 8 6 1 0 . 2 0 48 PLAT AD/NYM 6 . 3 3 3 . 5 0 9 . 8 3 46 EMPI AD/NYM 7 . 5 0 2 . 1 7 9 . 6 7 17 LITH AD/NYM D .1 7 8 . 6 7 8 . 8 4 48 SCEL PUPA — 8 . 5 0 8 . 5 3 41 STAP LARVA — 7 . 3 8 7 . 3 8 41 COLE PU3 A 5 . 3 3 0 . 9 0 6 . 2 3 48 APHE AD/NYM 3 . 8 3 2 . 0 0 5 . 8 3 46 SCIA AD/NYM 5 . 3 3 0 . 3 3 5 . 6 7 41 CURC AD/NYM 0 . 3 3 5 . 1 7 5 . 5 3 41 CURC LARVA 0 . 3 3 5 . 1 5 5 .4 B 41 CARA LARVA 0 . 1 7 4 . 9 2 5 . 0 9 41 MYCE AD/NYM — 4 . 5 0 4 . 5 3 48 CERK AD/NYM 1 . 1 7 3 . 3 3 4 . 5 0 46 DOLI LARVA — 4 . 4 8 4 . 4 8 46 EPHY AD/NYM 4 . 0 0 0 . 1 7 4 . 1 7 45 MICR LARVA 0 . 3 3 3 . 5 9 3 . 9 2 28 ACRI AD/NYM 3 . 8 3 — 3 . 8 3 41 CARA AD/NYM 0 . 3 3 3 . 5 0 3 . 8 3 46 STRA LARVA 0 . 3 3 3 . 5 0 3 . 3 3 41 BYRR AD/NYM 0 . 1 7 3 . 5 0 3 . 6 7 37 ALEO AD/NYM 2 . 6 7 0 . 9 0 3 . 5 6 48 FORM AD/NYM — 3 . 1 7 3 . 17 39 CERC AD/NYM 2 . 8 3 0 . 1 7 3 . 3 0 38 MI RI AD/NYM 2 . 5 0 0 . 1 7 2 . 6 7 39 IS S I AD/NYM 2 . 5 0 0 . 1 7 2 . 6 7 4 CLUB AD/NYM 2 . 3 3 0 . 1 7 2 . 5 3 45 NOCT LARVA 0 . 1 7 2 . 2 9 2 . 4 6 41 PHAL AD/NYM — 2 . 0 0 2 . 0 3 46 DROS AD/NYM 2 . 0 0 - 2 . 3 0 46 T I P J LARVA — 1 . 9 6 1 . 9 6 329 TABLE 19. CONTINUED. PERIDD=10-22 JUNE 1979 AREA=77

ORDER FAMILY LIFEFORM HDEN LDEN DENSITY

28 TETT AD/NYM 1.33 0.50 1.83 48 HYME PUPA 1.83 — 1.83 41 LATH PUPA 1.67 — 1.67 46 SPHA AD/NYM 1.50 0.17 1.67 48 TRIJ AD/NYM 1.50 0.17 1.67 46 ANTX AD/NYM 1.50 — 1.50 46 CHIR AD/NYM 1.17 0.17 1.33 41 SCAP AD/NYM — 1.17 1.17 45 MICR AD/NYM 1.17 — 1.17 23 HYPO AD/NYM — 1.06 1.06 41 COCC LARVA 0.17 0.90 1.06 45 ACRO LARVA — 1.06 1.06 46 LAUX AD/NYM 1.00 — 1.00 48 I CHN AD/NYM 0.83 0.17 1.00 48 PTER AD/NYM 1.00 — 1.00 41 ANTK LARVA — 0.90 0.90 46 CERQ LARVA - 0.90 0.90 46 SCHA LARVA — 0.90 0.90 46 SCIA LARVA — 0.90 0.90 46 SCIA PUPA — 0.90 0.90 4 THOM AD/NYM 0.50 0.33 0.83 46 CECI PU* A 0.83 — 0.83 48 EJLO AD/NYM 0.83 — 0.83 41 LANS AD/NYM 0.17 0.50 0.67 46 CERQ AD/NYM 0.67 — 0.67 48 ENCY AD/NYM 0.50 0.17 0.67 46 PHOR AD/NYM 0.50 — 0.50 46 DOLI AD/NYM 0.33 0.17 0. 50 4 SALT AD/NYM — 0.33 0.33 LO PARA AD/NYM — 0.33 0.33 41 CURC PUPA 0.33 — 0.33 46 ANT V AD/NYM 0.33 — 0.33 46 MUSC AD/NYM 0.33 — 0.33 46 TIPU AD/NYM 0.33 — 0.33 48 CYNI AD/NYM - 0.33 0.33 2 PHAJ AD/NYM 0.17 — 0.17 4 THER AD/NYM 0.17 — 0.17 28 TETR AD/NYM 0.17 — 0.17 34 PSEJ AD/NYM 0.17 — 0.17 38 PENT AD/NYM 0.17 — 0.17 39 MEMB AD/NYM — 0.17 0. 17 41 CANT LARVA — 0.17 0.17 41 COCC AD/NYM 0.17 — 0.17 41 CJCU LARVA 0.17 — 0.17 41 ELAT AD/NYM - 0.17 0.17 41 ELAT LARVA — 0.17 0.17 41 NITI LARVA — 0.17 0.17 41 SCAR LARVA — 0.17 0. 17 46 LONC AD/NYM 0.17 — 0.17 48 DIAP AD/NYM — 0.17 0.17 48 ICHN PUa A 0.17 — 0.17 48 MYMA AD/NYM 0.17 — 0.17 48 SPEC AD/NYM 0.17 — 0.17

------PERI00=10-22 JUNE 1979 AREA=75 ------______ORDER FAMILY LIFEFORM HDEN LDEN DENSITY 23 ENTO AD/NYM 603.33 804.19 1407.52 23 ISOT AD/NYM 10.67 221.32 231.98 39 CICA AD/NYM 120.00 63.69 183.69 37 THRI AD/NYM 43.00 78.00 121.00 23 HYPO AD/NYM 0.50 120.14 120.64 48 FORM AD/NYM 24.83 92.51 117.34 23 ONYC AD/NYM 1.83 80.69 82.52 COM Z9*0 ££*0 HAN/OV 8013 9 9C*1 90*1 — VAIV1 Odll 99 90 *1 06*0 Z1*0 HAN/OV V3A1 8£ Z 1*1 — Z 1 * 1 HAN/OV 3N01 99 ZTI — Zl *1 HAN/OV xnvi 99 £Z*i £Z*1 HAN/OV Hill Zl ££ * 1 Z9 *0 Z9 *0 HAN/OV IVld 89 Z9 * I — Z9*l HAN/OV rvnv 9 6Z*1 6Z * I — VA8V1 >1NV 19 £8*1 — £8*1 v833 89 £8 *£ — £8 *£ HAN/OV 031V Z£ ££•9 ££*0 00*9 HAN/OV I83V 8Z £€•5 ££*S — HAN/OV mvi 19 Z9 *S oo*z Z9 *£ HAN/OV 3HdV 89 Z9 *S Z9*S — V cfld V81S 99 8Z*9 8Z *9 — VAliVl VI3S 99 ££•9 0S*1 £8*9 HAN/OV I dH3 99 £8 *Z 00*1 £8*9 HAN/OV 11VS 9 09 *8 Z0*8 ££*0 VAliVl T3P3 19 CS *8 OS *8 — VdOd VI3S 99 CS *8 0S*8 — HAN/OV riNV 8£ 9S *8 £Z* 1 ££*Z HAN/OV d!30 6£ £1 *6 Z 6*8 ZTO VA1V1 H1V1 19 £Z *6 06*8 ££*0 VAIV1 V81S 99 Z T *01 Zl *8 CC*Z HAN/OV 11 IN 19 ZI*0I Zl*Ol — HAN/OV dA83 19 CS*01 98*8 Z9 * I HAN/OV 8IH3 99 96*01 £1*9 £8*9 HAN/OV >A89 8Z Z T*ZI ZTZ1 — NAN/OV dVIS 19 98 *Z1 ZT11 Z9*l HAN/OV nnr Cl CC *£1 £8*0 ZTZ1 HAN/OV I8IH 8£ CS *91 ££*1 Z1 *£ 1 HAN/OV 1333 99 oo-si 00*£ 00*Z1 HAN/OV VI3S 99 C0*Z1 Z9*0 ££*9l HAN/OV NV8V 9 00*81 9E*91 Z9*£ HAN/OV 03A1 9 66*61 66*61 — VA1V1 d VIS 19 9£*9Z 9£*9Z — HAN/OV V8V3 19 Z£*9Z 1Z“9Z ZI*0 VAIV1 VH3S 99 £0 *9Z £S*£Z CS*Z HAN/OV ANI1 9 9£*9Z 1S*SZ £8*0 VdOd idlO 99 C0*8Z — 00 *8Z HAN/OV S080 99 CC *8Z os*o CS *ZZ HAN/OV X1NV 99 9£*6Z Z9*9Z Z9*Z HAN/OV 133S 89 Z8*0£ Z£*Z1 CS*8I HAN/OV IHdV 6£ CS *9£ £8*1 Z9*9£ HAN/OV C1H3 99 86*69 1 £*69 Z9 *0 VAIV1 8IH3 99 Zl *£S 56*99 Z1 *9 HAN/OV GINd Z£ ZO *89 9Z*Z9 £8*0 HAN/OV T303 6£ £0*69 £0* £9 00*9Z HAN/OV NIHS £Z Z 9*69 Z9*69 — VAIV1 1333 99 1£ *0Z 18*85 05*11 VA1V1 I1IN 19 A1ISN30 N301 N3GH HUG 33311 AlIHVd 83080 ------SZ=V38V 6Z61 3Nflf ZZ-01=0OI83d------*03flNIlN03 *61 318V1 11*0 ZTO - WAN/OV rs3w 8 V Z T O — Z T O NAN/OV i i v h 8V ZTO — Z T O NAN/OV fid ii 9V ZTO — Z T O VAXV1 dXAS 9V ZTO - ZTO WAN/OV rwis 9V ZTO ZTO — NAN/OV OASd 9*1 Z T O Z T O NAN/OV roAw 9*> ZTO — ZTO WAN/GV CX30 9*7 ZT *0 — Z T O NAN/OV A1NV 9*i ZTO — Z T O NAN/OV X3Id 9*i ZT *0 — Z T *0 HAN/OV 10CN 9*1 ZT *0 ZTO — Vdfld XOIW 9*i ZT *0 — Z T *0 VAXV1 10XV 9*i ZTO — Z T O WAN/OV dWVl TV ZTO ZT *0 — NAN/OV 3000 TV ZT *0 — ZTO WAN/OV lASd 6£ Z T O ZT *0 — WAN/OV VXVd OT ZT "0 Z T O WAN/OV VSld V Z T *0 — Z T O WAN/OV d VN9 V £€*0 ZTOZTO WAN/OV A0N3 8V £ £ •0 £ £ • 0 — WAN/OV d v ia 8 V £ £ • 0 £ £ • 0 — WAN/OV 1NA0 8V £ £ •0 — £ £ • 0 WAN/OV dXAS 9V £ £ • 0 Z T O Z T O WAN/OV XGHd 9 V ££*0 — £ £ • 0 WAN/OV 0X9V 9 V £ £ •0 £ £ •0 — WAN/OV n i d TV £ £ •0 £ £ •0 — WAN/OV 13Sd TV £ £ •0 £ £ • 0 — WAN/GV 1SIH TV £ £ •0 £ £ “0 — VAXV1 o x r o TV £ £ •0 £ £ •0 — WAN/OV n o ro TV £ £ • 0 — £ £ • 0 WAN/OV 8W3W 6£ ££*0 ZT *0 Z T O NAN/OV lN 3d 8£ £ £ •0 — £ £ • 0 WAN/OV 1;131 82 CS*0 — 0S*0 NAN/OV AXCI3 8 V o s - o — o s - o WAN/OV Glfl3 8V c s - o — 0S*0 WAN/OV % 0 IN sv c s - o o s - o — WAN/OV dVOS TV Cfi'O £ £ • 0 Z T *0 WAN/OV cxcw TV c s - o — c s - o WAN/OV >1310 TV CS*0 ZT *0 £ £ • 0 WAN/OV 10VN 8£ OS “0 — o s - o WAN/OV rvwd 2 ZTO ZTO c s - o WAN/OV 3dfl3 8V £8*0 05*0 £ £ • 0 WAN/OV X31d 8 V £8*0 £ £ • 0 c s - o NAN/OV NHOI 8 V £8*0 ZTO Z 9*0 HAN/OV AXHO TV £8 *0 £8*0 — VAXV1 XXA8 TV £8*0 £8*0 — WAN/OV XDA8 TV 06 *0 06*0 — VATV1 0N01 9 V C6 "0 06*0 — Vdfld X 1H0 9 V C6 *0 06*0 — VA1iVl r o r o TV 06 *0 06*0 — VAXV1 V100 IV CO M £ £ • 0 Z 9- 0 WAN/OV VHAH 8 V COM OOM — VATV1 100N SV COMOOM — NAN/OV oxno TV COM — CC-T WAN/OV AHd3 9 V CO M OOM — NAN/OV lVHd TV A1ISN3G N301 N3QH WX0 33 3 I1 A1IWV3 X30X0

— — s z =V3U V 6Z6T 3Nf1T 2 2 - 0 1 = 0 0 l X 3 d ------ice *Q3flNI1N00 -61 318V1 TABLE 19. CONTINUED • 332

------PER IOD=iO-22 JUNE 1979 AREA=CV ------

ORDER FAMILY LIFEFORM HDEN LDEN DENSITY

23 ENTO AD/NYM 2 6 . 3 3 2 1 9 . 4 1 2 4 5 . 7 5 23 HYPO AD/NYM 1 . 1 7 1 3 4 . 9 2 1 3 6 .0 8 LO JULI AD/NYM 2 . 3 3 1 2 6 . 3 7 1 2 8 .7 0 41 CJCJ LARVA 1 . 1 7 1 0 7 . 9 2 1 0 9 .0 8 1 NEOB AD/NYM 5 . 0 0 8 1 . 1 7 8 6 . 1 7 37 THRI AD/NYM 8 . 6 7 6 8 . 1 4 7 6 . 8 0 39 CICA AD/NYM 2 5 . 0 0 3 7 . 2 3 6 2 . 2 3 46 CECI LARVA 0 . 3 3 4 3 . 2 0 4 3 . 5 3 4B FORM AD/NYM 1 1 . 3 3 3 2 . 1 7 4 3 . 5 0 38 MIR I AD/NYM 16.67 24.85 41.51 41 LATH LARVA — 3 8 . 5 5 3 8 . 5 5 46 ANT X AD/NYM 37.67 0.67 38.33 46 SCHA LARVA — 3 5 . 8 6 3 5 . 8 6 46 OROS AD/NYM 3 3 . 5 0 — 3 3 . 5 0 39 ACAN AD/NYM 1 9 . 0 0 6 . 7 8 2 5 . 7 8 41 STAP LARVA — 2 5 . 5 4 2 5 . 5 4 23 SMIN AD/NYM 5 . 1 7 1 8 . 1 0 2 3 . 2 6 23 ONYC AD/NYM 0 . 5 0 2 2 . 4 1 2 2 . 9 1 41 LATH AD/NYM 1 . 0 0 2 0 . 6 7 2 1 . 6 7 46 CHIR LARVA 0 . 8 3 1 9 . 2 6 2 0 . 1 0 41 NIT I LARVA L . 83 1 7 . 2 0 1 9 . 0 3 41 CARA LARVA 0 . 8 3 1 4 . 7 6 1 5 . 5 9 46 DIPT PU* A 2 . 5 0 1 2 . 5 7 1 5 . 0 7 41 NITI AD/NYM 3 . 5 0 9 . 9 6 1 3 . 4 6 41 LANS AD/NYM 1 . 0 0 1 2 . 3 3 1 3 .3 3 46 CECI PU»A 0.17 12.99 13.15 46 CECI AD/NYM 10.50 2.17 12.67 4 LYCO AD/NYM 1 . 0 0 1 0 . 5 0 1 1 . 5 0 45 NOCT LARVA 1 . 3 3 1 0 . 1 3 1 1 . 4 7 48 ENCY AD/NYM 2 . 1 7 8 . 5 0 1 0 . 6 7 37 PHLO AD/NYM 0 . 3 3 9 . 8 6 1 0 . 2 0 5 PORC AD/NYM — 9 . 5 0 9 . 5 0 48 EURY AD/NYM 0 . 5 0 8 . 8 4 9 . 3 4 41 CRYP AD/NYM 0 . L 7 9 . 1 7 9 . 3 3 41 CJRC LARVA — 8 . 9 7 8 . 9 7 46 STRA LARVA — 8 . 8 8 8 . 8 8 41 STAP AD/NYM — 8 . 3 3 8 . 3 3 23 ISOT AD/NYM — 7 . 1 7 7 . 1 7 39 APHI AD/NYM 4 . 1 7 1 . 7 9 5 . 9 6 48 SCEL AD/NYM 0.17 5.33 5.50 46 CHLO AD/NYM 4 . 8 3 0 . 5 0 5 . 3 3 41 CJRC AD/NYM 0 . 1 7 4 . 8 3 5 . 0 0 28 GRYK AD/NYM 0 . 8 3 4 . 1 3 4 . 9 6 46 B IB I LARVA — 4 . 4 8 4 . 4 8 46 SPHA AD/NYM 3.50 0.83 4.33 37 ALEO AD/NYM 2 . 3 3 1 . 7 9 4 . 1 3 38 LYGA AD/NYM 0 . 1 7 3 . 8 6 4 . 0 2 41 CANT LARVA — 3 . 5 9 3 . 5 9 41 CHRY LARVA — 3 . 5 9 3 . 5 9 45 MICR LARVA 0 . 5 0 2 . 7 9 3 . 2 9 48 CERK AD/NYM 0 . 1 7 3 . 0 0 3 . 1 7 45 MICR PUPA — 2 . 8 3 2 . 8 3 8 POLY AD/NYM — 2 . 7 3 2 . 7 3 41 ANTIC LARVA — 2 . 6 9 2 . 6 9 41 CJCJ LARVA — 2 . 6 9 2 . 6 9 46 PHOR AD/NYM 2 . 3 3 0 . 3 3 2 . 6 7 4 ARAN AD/NYM 2 . 3 3 — 2 . 3 3 39 CERC AD/NYM 1.83 0.50 2.33 48 BRAC AD/NYM 1 . 5 0 0 . 8 3 2 . 3 3 41 CARA AD/NYM 0 . 1 7 2 . 0 0 2 . 1 7 4 LINY AD/NYM 0 . 5 0 1 . 3 3 1 . 8 3 48 MYMA AD/NYM 0 . 5 0 1 . 3 3 1 . 8 3 2 PHAJ AD/NYM 1 . 3 3 0 . 3 3 1 . 6 7 46 CHIR AD/NYM 1 . 3 3 0 . 3 3 1 . 6 7 39 OELP AD/NYM 1 . 3 3 0 . 1 7 1 . 5 0 41 HIST AD/NYM - 1 . 5 0 1 . 5 0 /TO _ ZTO HAN/OV C103 89 /TO ZTO HAN/OV IA80 8 * /TO Z T *0 HAN/OV 8CNV 89 /TO — Z T *0 HAN/OV n d i i 99 /TO ZTO HAN/OV j s r w 9 9 ZTO Z T *0 HAN/OV 0 0 3 3 99 ZTO — ZTO HAN/OV 003V 99 ZTOZTO VAfcVl H039 59 /TOZTO — V A tV l 130V 59 /TO Z T *0 HAN/OV G8GH T9 ZTO ZTO HAN/OV l d 3 1 T9 ZTO ZTO — HAN/OV dHVl T9 /TO ZTO — HAN/OV H03Q T9 / T *0 ZTO — HAN/OV 0 3 0 3 T9 ZTO ZTO HAN/OV 8 3 1 3 T9 /TO ZTO — HAN/OV 01NV T9 ZTO ZTO HAN/OV IX I3 6£ ZTO — ZTO HAN/OV iN 3 d 8£ /TO ZTO HAN/OV riN V 8E ZTO Z T *0 HAN/OV 03Sd 9£ / 1 *0 — ZTO HAN/OV 1 1 3 1 82 ZTO ZT *0 — HAN/OV V8Vd OT ZTO ZTO — HAN/OV 3 V8V 6 ZTO Z T *0 HAN/OV 03H1 9 /TO — ZTO HAN/OV 3KIH 9 /TO — Z T *0 HAN/OV 0 0 1 3 9 /TO — ZTO HAN/OV 13SV 9 £ € • 0 ZT *0 Z T *0 HAN/OV I V ld 89 £ £ • 0 Z T O Z T O V/UV1 VI3S 99 £ £ • 0 £ £ • 0 VA0V1 0OHd 99 £ £ • 0 £ £ * 0 HAN/OV I dWB 99 £ £ • 0 - £ £ * 0 HAN/OV n o o 99 £ £ • 0 - £ £ * 0 HAN/OV A1NV 99 £ £ • 0 — £ £ * 0 HAN/OV 03IH 59 £ £ • 0 £ £ • 0 — VA0V1 f l i d 19 £ £ * 0 £ £ • 0 — HAN/OV 33AH T9 £ £ • 0 £ £ • 0 — HAN/OV 1V13 T9 £ £ • 0 £ £ • 0 — HAN/OV 0H3H 6£ £ £ • 0 £ £ • 0 — HAN/OV N0A3 8£ CS*0 0 5 * 0 — HAN/OV INA3 89 c s * o c s * o HAN/OV d0AS 99 c s * o - 0 5 * 0 HAN/OV x n v i 99 0 5 * 0 0 5 * 0 HAN/OV l i i d T9 0 5 * 0 0 S * 0 — HAN/OV A0H3 T9 ZTO ZT *0 o s * o HAN/OV 0 3 i d 89 ZTO £ £ * 0 £ £ * 0 HAN/OV 3HdV 89 ZTO Z9 *0 HAN/OV 3N01 99 Z T O Z 9*0 — HAN/OV dV3S T9 ZTO Z 9 " 0 — HAN/OV r i i d T9 Z T O Z 9 * 0 — HAN/OV 13Sd T9 Z T O Z T O 0 S * 0 HAN/OV 3 3 0 3 T9 C6 *0 0 6 * 0 VA0V1 H80d 89 0 6 * 0 0 6 * 0 — VdOd 0 IH 3 99 C6 *0 0 6 * 0 — VA0V1 9NV1 T9 0 6 * 0 0 6 * 0 — Vdfld 3 1 0 3 T9 0 0 * 1 00* T — HAN/OV dVIO 89 00*1 — OOM HAN/OV V01S 99 COM 00* T — HAN/OV IVHd T9 COM 0 5 * 0 o s * o HAN/OV 11VS 9 90 M 0 6 * 0 ZTO VdOd VI3S 99 ZI -1 Z T * T — HAN/OV H i l l ZT £Z M 0 6 * 0 ££*0 HAN/OV T3C3 6 £ ££ M 00 * 1 £ £ * 0 HAN/OV I0VN 8£ £ £ • 1 ZT * T Z T *0 HAN/OV 1313 6 £ £ • 1 OOM £ £ * 0 HAN/OV H0H1 9 C S M ZT *0 £ £ M HAN/OV V I3S 99

A ilS N 3 0 N3G1 N30H H V O d d d ll A lIH V d 0 3 0 8 0

------A3 =V30 V 6Z6T 3Nrr ZZ-OT=OOI83d ------eee *G30NIZN03 *6 T 310V1 TABLE 1 9 . CONTINUED 334

— . . . . near nn*l rt. 5 5 iiim c 1 9 7 9 AAOPA I\uA — a>LV f* l f ______

ORDER FAMILY LIFEFORM HDEN LDEN DENSITY

*8 EUPE AD/NYM — 0 . 1 7 0 . 1 7 48 ICHN AD/NYM — 0 . 1 7 0 . 1 7 48 MEG J AO/NYM • 0 . 1 7 0 . 1 7

------PERI0D=10-22 JUNE 1979 AREA=OF ------

ORDER FAMILY LIFEFORM HDEN LDEN DENSITY

48 FORM AD/NYM 9 2 . 3 3 330.03 422.36 23 I SOT AD/NYM — 1 9 2 . 1 9 1 9 2 . 1 9 23 HYPO AD/NYM 1 . 6 7 1 6 0 . 2 5 1 6 1 .9 2 46 CECI LARVA 1 2 . 0 0 1 2 0 . 1 4 1 3 2 .1 4 39 CICA AD/NYM 7 7 . 3 3 5 3 . 1 6 1 3 0 . 4 9 23 SMIN AD/NYM 3 . 6 7 1 2 4 . 0 6 1 2 7 .7 2 23 ENTO AD/NYM 6 4 . 0 0 4 2 . 9 1 1 0 6 .9 1 38 LYGA AD/NYM 5 . 6 7 8 5 . 1 3 9 0 . 7 9 37 PHLO AD/NYM 1 0 . 3 3 7 5 . 3 9 8 5 . 7 2 10 JJLI AD/NYM 2 . 0 0 7 6 . 0 1 7 8 . 0 1 37 THRI AD/NYM 1 3 . 0 0 6 2 . 7 6 7 5 . 7 6 3 9 CERC AD/NYM 5 . 0 0 5 3 . 3 3 5 8 . 3 3 39 CDCJ AD/NYM — 5 3 . 7 9 5 3 . 7 9 23 ONYC AD/NYM 0 . 6 7 5 0 . 5 4 5 1 . 2 1 46 B IB I LARVA — 5 0 . 5 4 5 0 . 5 4 41 CARA LARVA 0 . 3 3 4 1 . 9 4 4 2 . 2 7 48 SCEL AD/NYM 7 . 6 7 2 9 . 3 3 3 7 . 0 3 48 CERK AD/NYM 4 . 6 7 2 7 . 0 1 3 1 . 6 7 9 CLEI AD/NYM 0 . 6 7 2 8 . 2 6 2 8 . 9 2 46 CHIR LARVA — 2 5 . 1 0 2 5 . 1 3 48 PLAT AD/NYM 5 . 3 3 1 5 . 3 3 2 0 . 6 7 1 NEOB AD/NYM 5 . 3 3 1 5 . 0 1 2 0 . 3 4 46 CHL3 AD/NYM 1 8 . 6 7 0 . 6 7 1 9 . 3 3 10 PARA AD/NYM 1 . 0 0 1 7 . 3 4 1 8 . 3 4 41 CJRC LARVA - 1 8 . 2 6 1 8 . 2 6 41 CHRY LARVA 0 . 3 3 1 7 . 1 4 1 7 . 4 7 38 TING AD/NYM — 1 7 .0 1 1 7 .0 1 41 BYRR LARVA — 1 7 . 0 1 1 7 .0 1 41 CJCJ LARVA — 1 4 . 3 4 1 4 . 3 4 4 LINY AD/NYM 5 . 0 0 8 . 8 4 1 3 . 8 4 28 GRYK AD/NYM 7 . 3 3 5 . 6 7 1 3 . 0 0 22 PROT AD/NYM — 1 2 . 5 5 1 2 . 5 5 41 N i n LARVA — 1 2 . 5 5 1 2 . 5 5 48 HYME PU»A 3 . 3 3 8 . 6 7 1 2 . 0 0 9 ABAC AD/NYM 3 . 3 3 8 . 3 4 1 1 . 6 7 . 39 APHI AD/NYM 2 . 3 3 9 . 3 0 1 1 . 6 3 41 STAP LARVA 1 . 6 7 9 . 8 4 1 1 .5 1 46 SCIA LARVA — 1 0 . 7 6 1 0 . 7 6 41 CHRY AD/NYM 4 . 3 3 5 . 6 7 1 0 . 0 0 41 CORY AD/NYM — 1 0 . 0 0 1 0 . 0 3 41 STAP AD/NYM — 9 . 3 3 9 . 3 3 17 LITH AD/NYM — 8 . 5 9 8 . 5 9 46 CECI AD/NYM 6 . 3 3 2 . 0 0 8 . 3 3 8 POLY AD/NYM - 8 . 0 0 8 . 0 0 39 CIXI AD/NYM 3 . 3 3 4 . 2 5 7 . 5 9 41 MORD AD/NYM 6 . 6 7 0 . 3 3 7 . 0 0 4 THER AD/NYM 6 . 6 7 — 6 . 6 7 39 DELP AD/NYM 4 . 3 3 1 . 7 9 6 . 1 3 38 PENT AD/NYM 0 . 6 7 5 . 3 8 6 . 0 5 5 ISOP AD/NYM — 6 . 0 0 6 . 0 0 38 MIRI AD/NYM 3 . 0 0 2 . 7 9 5 . 7 9 41 CANT LARVA — 5 . 7 1 5 . 7 1 41 CURC AD/NYM 0 . 6 7 5 . 0 0 5 . 6 7 41 SCYD AD/NYM — 5 . 6 7 5 . 6 7 41 CARA AD/NYM — 5 . 3 3 5 . 3 3 48 BRAC AD/NYM 4 . 6 7 0 . 3 3 5 . 0 3 48 PTER AD/NYM 3 . 3 3 1 . 3 3 4 . 6 7 ££ * 0 £ £ • 0 — WAN/OV d0 3 9 61 € € * 0 £ £ • 0 — WAN/OV dVNS 9 £ £ '0 £ £ • 0 — WAN/OV 2 3 1 3 9 ££*0 £ £ “0 — WAN/OV a n a 9 2 9 * 0 2 9 * 0 WAN/OV n v H 8* 29 *0 £ £ • 0 £ £ * 0 HAN/OV INA3 89 29 *0 2 9 * 0 WAN/OV V8V1 99 29 *0 — 2 9 * 0 WAN/OV x o v i 9V 2 9 * 0 — 2 9 * 0 WAN/OV 1100 99 2 9 * 0 — 2 9 * 0 WAN/OV 8V3V 99 2 9 * 0 2.9*0 WAN/OV dV3S 19 29 *0 2 9 * 0 — WAN/OV 1 3 S d 19 2 9 * 0 2 9 * 0 — WAN/OV 1 U N 19 2 9 * 0 £ £ * 0 ££®0 WAN/OV dWVl 19 29 "0 2 9 * 0 WAN/OV 3 3 0 3 19 2 9 * 0 2 9 * 0 WAN/OV 8 8 3 0 6£ 29 “0 — 2 9 * 0 WAN/OV m v 9 COM — 0 0 * 1 WAN/OV 3snw 99 CCM 0 0 * 1 VA8V1 130N 59 00*1 00*1 VdOd 83IW 59 COM — OCM WAN/OV 8 3 IW 59 CCM — CO* I WAN/OV ISSI 6£ OCM — 0 0 * 1 WAN/OV I83V 8Z CO *1 0 0 * 1 WAN/OV 139V 9 £ £ •1 £ £ * 0 00 * 1 WAN/OV 0 1 0 3 89 £ £ • 1 ££* I WAN/OV d v i a 89 £ £ • 1 £ £ * 0 0 0 * 1 VcflcJ l d i o 99 £ € • 1 £ £ * 1 WAN/OV IVHd 19 £ £ • 1 £ £ M WAN/OV 031V 2£ ££ M £ £ M WAN/OV 3 8 0 d 5 ££*1 00*1 £ £ * 0 WAN/OV 03A1 9 £ £ • ! ££*1 WAN/OV dANV 9 2 9 * 1 £ E M E£*0 WAN/OV r i i d 19 62 M 62 M — VA8V1 1N31 89 6 2 M 62® T — V end H803 89 62 “ I 6 2 * 1 — VA8V1 W803 89 62 * 1 62*1 ' — VA8V1 V81S 99 62*1 6 2 * 1 — WAN/OV N0A3 8£ 6 2 * 1 62 M — WAN/OV A d v r 92 GG*Z 2 9 * 0 £ £ M WAN/OV A803 89 o o * z 00*Z WAN/OV X1NV 99 CO *Z — 00*Z WAN/OV 1 1 3 1 8Z CO *Z £ £ M 2 9 * 0 WAN/OV W0H1 9 CO *Z 2 9 * 0 ££*1 WAN/OV rvH d Z ££*Z ££*Z WAN/OV r m 89 ££*Z ££* I O C M WAN/OV 3HdV 89 £ £ • 2 £ £ * 0 OC*Z WAN/OV V I3S 99 ££ *Z ££*Z WAN/OV 8IH 3 99 £ £ • 2 0 0 “ Z ££ * 0 VA8V1 8 3 IH 59 ££*Z £ £ * 0 00*Z WAN/OV 18VN 8£ 29 *Z £ £ * 0 ££*Z WAN/OV IdW3 99 29 *Z 29 * Z WAN/OV H1V1 19 29 "Z 2 9 * 2 — WAN/OV 0 3 0 3 19 29 *Z £ £ * 0 ££*Z WAN/OV lA S d 6£ 29 *Z 29*Z WAN/OV NV8V 9 CO *£ 0 0 * £ — WAN/OV 9NV1 19 € 1 “£ £ ! * £ — VA8V1 1V13 19 £ £ • £ 00 * 1 ££*Z WAN/OV VHAN 89 £ £ • £ £ £ M 00*Z WAN/OV 11VS 9 65 *E 6S * € — VA8V1 VH3S 99 65 *£ 6 S * £ — VdPd 13 3 3 99 65 *£ 6 5 *£ — VA8V1 0A3S 19 65 *£ 6S *£ — VA8V1 H1V1 19 Z6 *£ Z6*£ — VA8V1 1100 99 ££ "9 2 9 * 0 2 9*£ WAN/OV A3N3 89 £E*9 £ £ * 9 WAN/OV VHdS 99

A1ISN30 N3G1 N30H W80333I1 A1IWV3 8 3 0 8 0

------30 =V38V 6261 3NPT ZZ-01=00 1 8 3 d ------

*G30N I1N03 *61 318V1 see TABLE 19. CONTINUED. 336

PERIOD*l0-22 JUNE 1979 ARE A=QF ------

ORDER FAMILY LIFEFORH HDEN LDEN DENSITY

26 TRIK AD/NYM 0 . 3 3 — 0 . 3 3 38 REDU AD/NYM 0 . 3 3 — 0 . 3 3 38 RHDP AD/NYM — 0 . 3 3 0 . 3 3 39 ACAN AD/NYM 0 . 3 3 — 0 . 3 3 39 DICT AD/NYM 0 . 3 3 — 0 . 3 3 41 CHRY PU»A — 0 . 3 3 0 . 3 3 41 CLER AD/NYM 0 . 3 3 - 0 . 3 3 41 HIST AD/NYM — 0 . 3 3 0 . 3 3 41 PTIJ LARVA — 0 . 3 3 0 . 3 3 41 TENE LARVA 0 . 3 3 — 0 . 3 3 45 PIER LARVA 0 . 3 3 — 0 . 3 3 46 CERQ AD/NYM 0 . 3 3 — 0 . 3 3 46 DROS AD/NYM 0 . 3 3 — 0 . 3 3 46 MYCJ AD/NYM 0 . 3 3 — 0 . 3 3 46 RHAS AD/NYM 0 . 3 3 — 0 . 3 3 46 SCHD LARVA — 0 . 3 3 0 . 3 3 48 EUPE AD/NYM 0 . 3 3 — 0 . 3 3 48 ICHN PUPA 0 . 3 3 — 0 . 3 3 48 ME3J AD/NYM — 0 . 3 3 0 . 3 3 48 TENT AD/NYM 0 . 3 3 0 . 3 3

------PERI 00=10-22 JUNE 1979 AREA=78 —

DRDER FAMILY LIFEFORM HDEN LDEN DENSITY

39 APHI AD/NYM 3 1 7 . 0 0 1 2 7 . 9 9 4 4 4 . 9 9 39 CERC AD/NYM 3 3 0 . 3 3 2 8 . 3 3 3 5 8 . 6 7 37 THRI AD/NYM 3 8 . 3 3 2 6 7 . 1 7 3 0 5 . 5 0 46 STRA LARVA 7 . 3 3 2 3 4 . 0 8 2 4 1 . 4 2 46 SCHA LARVA 2 9 . 6 7 1 9 2 . 4 8 2 2 2 . 1 4 46 DROS AD/NYM 2 0 4 . 3 3 7 . 3 3 2 1 1 . 6 7 41 STAP LARVA 1 3 . 6 7 1 7 5 . 4 5 1 8 9 .1 2 kb CECI LARVA 1 3 . 0 0 1 6 5 . 3 0 1 7 8 . 3 0 39 CICA AD/NYM 4 8 . 0 0 6 1 . 7 9 1 0 9 . 7 9 41 CUCJ LARVA 2 5 . 3 3 8 0 . 9 0 1 0 6 . 2 3 kb DIPT PUPA 2 . 6 7 9 1 . 0 8 9 3 . 7 5 38 MIRI AD/NYM 7 7 . 0 0 1 0 . 6 7 8 7 . 6 7 41 CURC LARVA 2 7 . 3 3 5 3 . 1 6 8 0 . 4 9 48 HYME PUPA 1 5 . 0 0 3 4 . 0 1 4 9 . 0 1 41 NIT I LARVA 5 . 6 7 4 1 . 2 4 4 6 . 9 1 41 CURC AD/NYM 1 2 . 6 7 3 4 . 0 0 4 6 . 6 7 46 EPHY AD/NYM 3 6 . 3 3 2.00 3 8 . 3 3 41 CRYP AD/NYM 7 . 0 0 2 8 . 6 7 3 5 . 6 7 48 PLAT AD/NYM 10.00 1 9 . 6 7 2 9 . 6 7 41 CURC PU*A 2 7 . 3 3 1.00 2 8 . 3 3 41 LATH AD/NYM 8 . 6 7 1 7 . 6 7 2 6 . 3 3 41 C JC J LARVA 4 . 0 0 2 2 . 2 6 2 6 . 2 6 41 STAP AD/NYM 1 . 3 3 2 3 . 3 3 2 4 . 6 7 48 BRAC AD/NYM 1 9 . 0 0 5 . 0 0 2 4 . 0 0 41 CARA LARVA 22.68 22.68 45 MICR LARVA 3 . 0 0 1 9 . 1 3 2 2 . 1 3 41 LANS AD/NYM 6.00 1 5 . 3 3 2 1 . 3 3 46 SCHB LARVA 1 . 6 7 1 7 . 3 4 1 9 .0 1 46 ANTX AD/NYM 1 8 . 6 7 0 . 3 3 1 9 . 0 0 46 SCHC LARVA 1.00 1 6 . 6 7 1 7 . 6 7 46 SCIA AD/NYM 1 3 . 3 3 1.00 1 4 . 3 3 46 CHI R LARVA 12.88 12.88 46 TIPU LARVA 1 2 . 5 5 1 2 . 5 5 46 LAUX AD/NYM 12.00 12.00 38 ANT J AD/NYM 4 . 3 3 7 . 5 1 1 1 . 8 4 46 CECI AD/NYM 10.00 1 . 6 7 1 1 . 6 7 48 SCEL AD/NYM 7 . 6 7 4 . 0 0 1 1 . 6 7 41 LATH LARVA 0 . 6 7 1 0 . 7 6 1 1 . 4 3 46 SPHA AD/NYM 1 0 . 3 3 1 0 . 3 3 46 LQNC AD/NYM 9 . 3 3 9 . 3 3 £ £ • 0 £ £ • 0 - HAN/OV 1 3 S d 19 ££*0 £ £ * 0 — HAN/OV 88A9 19 £ £ • 0 — £ £ • 0 HAN/OV T8H3 09 £ £ • 0 £ £ • 0 — HAN/OV PG38 8£ £ £ • 0 — £ £ • 0 HAN/OV T3Sd 9£ £ £ #0 — £ £ • 0 HAN/OV 8A83 82 £ £ • 0 — £ £ • 0 HAN/OV n v s 9 £ £ • 0 — £ £ • 0 HAN/OV TVHd Z 19 *0 Z 9*0 — HAN/OV H 803 89 Z 9* 0 £ £ • 0 ££*C HAN/OV A8f 3 89 Z 9*0 — Z 9*0 HAN/OV T3AH 99 Z 9* 0 — Z 9*0 HAN/OV 1103 99 Z9 *0 — Z9 *0 HAN/OV 8 IH 3 99 Z9*0 — Z9-0 HAN/OV AlNV 99 Z9 *0 — Z9*G VdPd 8 3 IH 59 Z9 *0 £ £ • 0 ££•0 HAN/OV 1V13 T9 Z 9* 0 £ £ • 0 ££•0 HAN/OV A803 19 Z 9*0 Z 9*0 — VA8V1 1NV3 19 Z 9*0 Z 9*0 - HAN/OV H0H1 9 C C M 00*1 - HAN/OV TS3H 89 00*1 £ £ • 0 Z 9 -0 HAN/OV A3N3 89 COM — COM HAN/OV 083V 99 COM Z 9*0 £ £ * 0 HAN/OV 3303 19 COM — CCM HAt./OV INV3 19 CCM — OCM HAN/OV NV8V 9 £ £ • 1 Z 9 - 0 Z 9*0 HAN/OV 3HdV 89 £ £ • 1 £ £ M HAN/OV I dH3 99 £ £ • ! £ £ ' ! — HAN/OV dV35 19 £ E M £ £ • 1 HAN/OV 1 1 3 1 8Z Z 9 M — Z 9 M HAN/OV OldV 89 Z 9 M — Z 9 M HAN/OV C 833 99 Z 9 M Z9 "I — HAN/OV V8V3 19 6 Z M 6 Z M — VA8V1 V I3S 99 6 Z M 6 Z M — VA8V1 3N01 99 6 Z M 6 Z M — HAN/OV 30S d 9£ OCM oo-z — HAN/OV P3P3 19 £1*Z 6 Z M £ £ • 0 HAN/OV 1 0 S I £Z ££ "Z £ £ “Z HAN/OV 031V Z£ ££*Z OCM £ £ M HAN/OV 03A 1 9 Z9 *Z — Z9*Z HAN/OV V81S 99 Z9*Z — Z9*Z Vcfld IVHd 19 Z 9 “Z Z 9 M COMHAN/OV A8H3 19 CC *£ Z 9*0 ££*Z HAN/OV INA3 89 CC *E OO'Z OOMHAN/OV IVHd 19 E T £ 6Z* I £ £ M HAN/OV K INS £Z £ € * £ — £ £ • £ HAN/OV P d U 99 Z9 "£ OO 'Z Z 9 M HAN/OV 8 3 1 d 89 £ 1 * 9 99-Z Z9M VA8V1 130N 59 £ £ • 9 £ £ • 0 0 0 * 9 VA 8V1 d8AS 99 Z9 *9 Z9*0 OC *9 HAN/OV 01H 3 99 Z 9*9 £ £ • 0 £ £ • 9 HAN/OV 8 3 1H 59 CC'fi £ £ • 1 Z 9*£ HAN/OV 183 V 8Z 8£*S 8£ *5 - HAN/OV T3C3 6£ 99 *5 6Z “ 1 Z 9 ’ £ v t n d 3 1 0 3 T9 65 *S SZ*9 £ £ • 1 VA8V1 3 3 0 3 19 Z 9 -S 00 *£ Z9 *Z HAN/OV 11 IN 19 Z9 *5 Z9*Z C 0*£ HAN/OV ANI1 9 CC *9 £ £ • 0 Z9*S HAN/OV C1P3 89 Z 9 " 9 Z9*S OCM HAN/OV 8 8 3 3 89 Z9 *9 £ £ • 1 £ £ • 5 HAN/OV lN 3 d 8£ ££ *Z com £ £ • 9 HAN/OV NH31 89 l 9 mL £ £ • 9 £ £ * £ HAN/OV VHAH 89 9 8 -Z ZTM Z 9 “0 HAN/OV 01N3 £Z CC *8 ££ *Z Z9 *5 HAN/OV 18VN 8£ 9 9 * 8 E1*Z £ £ • 9 HAN/OV d ! 3 0 6 £ 0 0 * 6 £ £ ° 0 Z 9*8 vend 3V88 89

A1ISN30 N3G1 K3CH H 8 0 3 3 3 I 1 A1IHV3 8 3 0 8 0

-H 3U M t.ix.1 niunn -7 - 7 n . n n f v ^ j III C C ” V 1 -u u I 1 3 0 zee •0 3 P N I1 N 0 3 •6 1 318V 1 338 TABLE 1 9 . CONTINJEOi.

------PERIQD=l0-22 JUNE 1 9 7 9 AREA= 7 8 ------

ORDER FAMILYLIFEFORM HDEN LDEN DENSITY

41 SCDL AD/NYM 0 . 3 3 0 . 3 3 *5 ARCT LARVA 0 . 3 3 — 0 . 3 3 45 NDCT AD/NYM 0 . 3 3 — 0 . 3 3 46 OOLI AD/NYM 0 . 3 3 — 0 . 3 3 *6 SCIO AD/NYM 0 . 3 3 — 0 . 3 3 46 SYRP AD/NYM 0 . 3 3 — 0 . 3 3 46 TACK AD/NYM 0 . 3 3 — 0 . 3 3 4 8 ANDR AD/NYM 0 . 3 3 — 0 . 3 3 18 DIAP AD/NYM — 0 . 3 3 0 . 3 3 48 TRI J AD/NYM 0 . 3 3 0 . 3 3

------PERIOD=12-20 JULY 1 9 7 9 AREA=77 ------

ORDER FAMILY LIFEFORM HDEN LDEN DENSITY

39 APHI AD/NYM 9 8 1 . 3 3 293.88 1275.21 46 CECI LARVA 6 2 . 6 7 3 9 4 . 4 8 4 5 7 . 1 4 23 ISOT AD/NYM 3 2 . 6 7 1 6 4 . 2 3 1 9 6 . 9 0 37 THRI AD/NYM 9 4 . 0 0 8 6 . 5 0 1 8 0 . 5 0 23 ENTO AD/NYH 53.50 9 4 . 9 2 1 4 8 . 4 2 4 LYCO AD/NYM 2 1 . 8 3 5 0 . 8 5 7 2 . 6 9 39 CICA AD/NYM 5 5 . 5 0 1 4 . 3 2 6 9 . 8 2 41 LATH AD/NYM 1 0 . 1 7 5 9 . 5 1 6 9 . 6 7 41 LATH LARVA 4 . 5 0 6 0 . 9 6 6 5 . 4 5 48 SCEL AD/NYM 3 . 3 3 6 0 . 6 7 6 4 . 0 0 23 SHIN AD/NYM 2 4 . 6 7 2 6 . 9 0 5 1 . 5 6 23 ONYC AD/NYM — 4 2 . 1 4 4 2 . 1 4 23 HYPO AD/NYM 1 . 8 3 3 7 . 6 5 3 9 . 4 9 39 COCJ AD/NYM 1 0 . 0 0 2 3 . 9 1 3 3 . 9 1 37 PH LJ AD/NYM 1 . 1 7 2 5 . 2 7 2 6 . 4 4 28 ACRI AD/NYM 2 3 . 6 7 0 . 8 3 2 4 . 5 0 28 GRYK AD/NYM 1 6 . 1 7 2 . 1 7 1 8 . 3 3 4 LINY AD/NYM 6 . 5 0 9 . 1 1 1 5 . 6 1 46 CHIR LARVA — 1 3 . 4 5 1 3 . 4 5 41 C JC J LARVA 2 . 8 3 8 . 9 7 1 1 . 8 0 48 CERK AD/NYM 4 . 3 3 6 . 1 7 1 0 . 5 0 48 DIAP AD/NYM — 1 0 . 3 4 1 0 . 3 4 41 STAP AD/NYM 0 . 1 7 9 . 8 3 1 0 . 00 17 LITH AD/NYM 0 . 1 7 9 . 7 3 9 . 9 0 46 CECI AD/NYM 8 . 1 7 1 . 6 7 9 . 8 3 48 BRAC PU* A 9 . 1 7 — 9 . 1 7 4 ARAN AD/NYM 7 . 0 0 0 . 3 3 7 . 3 3 48 PLAT AD/NYM 4 . 5 0 1 . 6 7 6 . 1 7 4 THOM AD/NYM 1 . 8 3 4 . 0 0 5 . 8 3 46 CHLO AD/NYM 5 . 6 7 0 . 1 7 5 . 8 3 45 NOCT LARVA 3 . 0 0 2 . 7 3 5 . 7 3 41 CLER LARVA 1 . 0 0 4 . 4 8 5 . 4 8 41 STAP LARVA 0 . 1 7 4 . 9 8 5 . 1 5 48 CYNI AD/NYM 2 . 0 3 2 . 6 7 4 . 6 7 3 9 DELP AD/NYM 4 . 3 3 — 4 . 3 3 39 CERC AD/NYM 3 . 8 3 — 3 . 8 3 48 BRAC AD/NYM 3 . 5 0 0 . 3 3 3 . 8 3 46 CECI PUPA 2 . 0 0 1 . 7 9 3 . 7 9 46 SCHA LARVA — 3 . 5 9 3 . 5 9 4 THER AD/NYM 3 . 5 0 — 3 . 5 0 41 PHAL AD/NYM 1 . 6 7 1 . 8 3 3 . 5 0 46 DIPT PUPA 3.33 — 3 . 3 3 46 STRA LARVA — 3 . 3 3 3 . 3 3 41 CURC AD/NYM 0 . 6 7 2 . 5 0 3 . 1 7 37 ALED AD/NYM 2 . 0 0 0 . 9 0 2 . 9 0 46 STRA PU’A — 2 . 8 3 2 . 8 3 4 SALT AD/NYM 2 . 8 3 — 2 . 8 3 41 CJRC LARVA — 2 . 6 9 2 . 6 9 46 DDL I LARVA — 2 . 6 9 2 . 6 9 28 TETR AD/NYM 1 . 6 7 1 . 0 0 2 . 6 7 ZTO — Z T *0 HAN/OV 003V 9*i ZTO — z r o VA0V1 M O D S t Z T O Z T *0 — HAN/OV 1 0 0 S Tt ZTO ZTO — HAN/OV r i i d T t ZTO z r o — HAN/OV 1 3 S d T t ZTO z r o — HAN/OV 3NV1 T t z r o z r o — HAN/OV i S I H T t Z 1* 0 — z r o VA0V1 N03G T t zi*o — ZI*0 HAN/OV 3100 Tt z r o — z r o HAN/OV IN VO T t ZT "0 Z T O - VA0V1 X1NV T t Z T O ZT *0 — HAN/OV 083H 8£ Z T O ZT*0 HAN/OV OOSd t £ z r o z r o HAN/OV V0Vd OT Z T *0 z r o — HAN/OV n n r 01 ££ *0 ZTO Z T*0 HAN/OV VHAH 8 t £ £ “0 — £ £ * 0 HAN/OV C1P3 8 t £ £ • 0 ZT *0 Z T *0 HAN/OV H 138 8 1 £ £ • 0 — ££ * 0 HAN/OV OASd 9 t £ £ • 0 — £ £ * 0 HAN/OV OSflH 9 t £ £ * 0 — E£*0 HAN/OV G0OH T t £ £ • 0 £ £ • 0 HAN/QV 1V13 T t £ £ • 0 £ £ • 0 — HAN/OV dA0O Tt € £ • 0 — £ £ * 0 HAN/OV 0 3 1 0 T t £ € • 0 £ £ • 0 — HAN/OV A0HO TV £ £ • 0 — £ £ * 0 VA0V1 T0HO Ot £ £ * 0 £ £ • 0 — HAN/OV VSA1 8£ £ £ • 0 £ £ * 0 HAN/OV T1NV 8£ • — o £ £ • 0 fO HAN/OV dVNS t 0 5 * 0 — 0 5 * 0 HAN/OV ONOI 9 t 0 5 * 0 — 05*0 HAN/OV d0AS 9 t OS *0 — 05 * 0 HAN/OV 10GN S t cs*o 0 5 * 0 — VA0V1 0VOS Tt 19 *0 — Z9*0 HAN/OV 3dfl3 8 t Z 9* 0 Z T O cs*o VA0V1 d0AS 9 t Z 9*0 — Z9*0 HAN/OV VHdS 9 t Z9 *0 — Z9*0 HAN/OV xnvi 9 t Z9 “0 ZT *0 0S *0 HAN/OV 0 0 0 0 Tt Z9 *0 ZT *0 os*o HAN/OV 18VN 8£ Z9 *0 Z 9 *0 HAN/OV T3Sd t £ £ 0 * 0 Z 1*0 Z9 *0 HAN/OV NH01 8 t £ 8 * 0 — £8*0 HAN/OV ISS1 6£ C6 *0 0 6 * 0 — VA0V1 1 i IN I t 00*1 0 0 * 1 - HAN/OV H0CJ 8 t COM — CC *T HAN/OV 0OHd 9 t €0 * 1 — OOMHAN/QV SOHO 9 t OCM — OCMHAN/OV 0IHO 9 t CC *1 00* T — HAN/OV 30AH Tt ZT *1 — ZT M HAN/OV 0030 9 t Z 1 * T — Z I * T HAN/OV 1 1 3 1 8Z £ £ M — ££ * I HAN/OV r i H i 8 t ££M ZT *0 ZT*T HAN/OV A0N3 8 t G t M O t M — VA0V1 V0VO Tt CS M 0 5 * 0 OOM HAN/OV 1 dH3 9 t CSM ZT *0 £ £ M VA0V1 0 0 0 0 T t OS * T ££* I Z1*0 HAN/OV e m o t Z9 M — Z9 * T VA0V1 CHOW Tt Z9 M — Z9*T Vdfld 3 1 0 0 T t Z9 M Z 9 M — HAN/OV V0VO Tt Z 9 M Z 9 M — HAN/OV 00A8 Tt 00*Z — oo*z HAN/OVVIOS 9 t 90 *Z 9 0 * Z — VA0V1 080V S t ZTZ — Z T *Z VA0V1 0OIH S t £ £ • 2 — ££*Z HAN/OV I0 IH 8£ OS*Z — OS*Z HAN/QV AHd3 9 t Z9*Z ZT * 0 OS*Z HAN/OV 0 3 1 d 8 t

A 1ISN 30 N3G1 N30H H 0 O 3 3 3 I 1 A1IHV3 0 3 0 0 0

------ZZ=V38V 6Z6T Ainr CZ-ZT=00103d ------•oanNiiNoo -6i iig v i 340 TABLE 1 9 . CONTINUED.

M m 1_ ------PERI OD*12-20 JULY 1979 AREA= 7 7 ------______

ORDER FAMILY LIFEFORM HDEN LDEN d e n s i n r

4 6 ANTX AD/NYM 0 . 1 7 — 0 . 1 7 kb DDL I AD/NYM 0 . 1 7 — 0 . 1 7 kb MYCJ AD/NYM 0 . 1 7 — 0 . 1 7 kb SARC AD/NYM 0 . 1 7 — 0 . 1 7 kb SCHO LARVA 0 . 1 7 — 0 . 1 7 kb SEPS AD/NYM 0 . 1 7 — 0 . 1 7 48 APHE AD/NYM — 0 . 1 7 0 . 1 7 48 EVAN AD/NYM 0 . 1 7 — 0 . 1 7 48 HAL I AD/NYM 0 . 1 7 — 0 . 1 7 48 PERI AD/NYM 0 . 1 7 — 0 . 1 7

------PERI0DS12-20 JULY 19 7 9 AREA=75 ------— ------

ORDER FAMILY LIFEFORM HDEN LDEN DENSITY

23 ENTO AD/NYM 379.83 1327.43 1 7 0 7 . 2 6 37 THRI AD/NYM 99.50 201.86 3 0 1 . 3 6 39 CICA AD/NYM 110.17 45.58 1 5 5 .7 4 41 CUCJ LARVA 9 . 3 3 9 6 . 2 1 1 0 5 . 5 4 48 FORM AD/NYM 14.17 89.67 103.84 23 HYPO AD/NYM - 8 8 . 0 3 8 8 . 0 3 4 8 CECI LARVA 3 . 3 3 6 3 . 1 9 6 6 . 53 46 SCHA LARVA 0.53 56.02 56.52 2 3 I SOT AD/NYM 7 . 3 3 2 7 . 9 6 3 5 . 2 9 28 ACRI AD/NYM 3 3 . 0 0 1 . 3 3 3 4 . 3 3 41 LATH LARVA 0 . 5 0 3 3 . 1 7 3 3 . 6 7 10 JU LI AD/NYM 3.33 30.18 33.51 39 COCJ AD/NYM 8 . 5 0 2 2 . 9 1 3 1 .4 1 41 LATH AD/NYM 1 . 3 3 2 9 . 5 1 3 0 . 8 4 37 PHL3 AD/NYM 1 2 . 0 0 1 4 .5 1 2 6 . 5 1 23 SMIN AD/NYM 5 . 6 7 1 9 . 7 2 2 5 . 3 9 46 DROS AD/NYM 2 4 . 6 7 0 . 5 0 2 5 . 1 7 39 APHI AD/NYM 1 3 . 6 7 6 . 2 8 1 9 . 9 4 4 LINT AD/NYM 3 . 3 3 1 6 . 2 6 1 9 . 5 9 23 ONYC AD/NYM - 1 7 . 9 3 1 7 . 9 3 41 STAP AD/NYM — 1 7 . 0 0 1 7 . 0 0 41 N ITI AD/NYM 9 . 0 0 7 . 1 7 1 6 . 1 7 41 STAP LARVA — 1 5 . 4 5 1 5 . 4 5 4 8 SCEL AD/NYM 1 . 1 7 1 3 . 5 0 1 4 . 6 7 45 NOCT LARVA 1 . 8 3 1 1 . 7 5 1 3 . 5 9 46 STRA LARVA — 1 2 . 7 0 1 2 . 7 0 46 SYRP LARVA 2 . 6 7 9 . 1 7 1 1 . 8 4 46 SCIA LARVA — 1 1 . 1 9 1 1 . 1 9 48 CYNI AD/NYM 0 . 8 3 1 0 . 0 0 1 0 . 8 4 38 MIRI AD/NYM 1 0 . 1 7 0 . 5 0 1 0 . 6 7 46 CHLO AD/NYM 9 . 1 7 0 . 8 3 1 0 . 0 0 38 LYGA AD/NYM 0 . 1 7 9 . 0 0 9 . 1 7 28 GRYK AD/NYM 7 . 0 0 1 . 6 7 8 . 6 7 4 6 SCIA PUPA — 8 . 5 0 8 . 5 0 4 6 DIPT PUPA 8 . 3 3 — 8 . 3 3 4 LYCO AD/NYM 3.17 4.86 8.02 4 ARAN AD/NYM 8 . 0 0 — 8 . 0 0 34 PSEJ AD/NYM 5 . 1 7 1 . 7 9 6 . 9 6 4 SALT AD/NYM 5.17 1.56 6.73 3 9 CERC AD/NYM 6 . 3 3 0 . 3 3 6 . 6 7 46 ANTX AD/NYM 6 . 3 3 — 6 . 3 3 41 CURC AD/NYM 0 . 3 3 5 . 6 7 6 . 0 0 46 SPHA AD/NYM 4 . 0 0 2 . 0 0 6 . 0 0 41 N IT I LARVA 4 . 6 7 0 . 9 0 5 . 5 6 48 CERK AD/NYM 0 . 5 0 4 . 6 7 5 . 1 7 4 THER AD/NYM 5 . 0 0 — 5 . 0 0 41 CLER LARVA 0 . 3 3 4 . 4 8 4 . 8 2 41 COLE PUPA 3 . 8 3 0 . 9 0 4 . 7 3 4 6 CHIR LARVA — 4 . 4 8 4 . 4 8 37 ALEO AD/NYM 2 . 6 7 1 . 7 9 4 . 4 6 TABLE 19. CONTINUED. ------PERIOD*12-20 JULY 1979 AREA*75

ORDER FAMILYLIFEFORM HDEN LDEN DENSITY

46 PHOR AD/NYM 3 . 8 3 0 . 1 7 4 . 0 0 46 EMPI AD/NYM 3 . 0 0 0 . 5 0 3 . 5 0 46 SYRP AD/NYM 3 . 0 0 0 . 3 3 3 . 3 3 48 APHE AD/NYM 2 . 6 7 0 . 6 7 3 . 3 3 41 CARA AD/NYM 3 . 1 7 3 . 1 7 46 STRA PUPA — 2 . 8 3 2 . 8 3 46 CECI AD/NYM 2 . 0 0 0 . 8 3 2 . 8 3 46 SCIA AD/NYM 2 . 6 7 0 . 1 7 2 . 8 3 4 THOM AD/NYM I . 00 1 . 5 6 2 . 5 6 28 TETT AD/NYM 2 . 5 0 — 2 . 5 0 48 DIAP AD/NYM 0 . 1 7 2 . 3 3 2 . 5 0 45 MICR LARVA 0 . 6 7 1 . 7 3 2 . 4 0 41 cocc LARVA 2 . 0 0 0 . 3 3 2 . 3 3 41 PHAL AD/NYM — 2 . 1 7 2 . 1 7 38 ANT J AD/NYM 2 . 0 0 — 2 . 0 0 41 CRYP AD/NYM — 2 . 0 0 2 . 0 0 46 LAUX AD/NYM 2 . 0 0 — 2 . 0 0 46 CERQ AD/NYM 1 . 8 3 — 1 . 8 3 41 LANS AO/NYM — 1 . 6 7 1 . 6 7 46 CECI PUPA 1 . 6 7 — 1 . 6 7 48 HYME PUPA 1 . 6 7 — 1 . 6 7 48 ME3J AD/NYM 1 . 6 7 — 1 . 6 7 41 cucu LARVA — 1 . 5 6 1 . 5 6 39 DELP AD/NYM 1 . 5 0 — 1 . 5 0 41 MORO AD/NYM 1 . 3 3 0 . 1 7 1 . 5 0 48 PTER AD/NYM 1 . 1 7 0 . 3 3 1 . 5 0 48 TRI J AD/NYM 1 . 1 7 0 . 3 3 1 . 5 0 48 I CHN AD/NYM 1 . 0 0 0 . 3 3 1 . 3 3 4 CL JB AD/NYM 0 . 6 7 0 . 5 0 1 . 1 7 48 BRAC AD/NYM 1 . 0 0 0 . 1 7 1 . 1 7 48 HALI AD/NYM 0 . 6 7 0 . 5 0 1 . 1 7 4 6 LONC LARVA 0 . 1 7 0 . 9 0 1 . 0 6 46 CHIR AD/NYM 1 . 0 0 — 1 . 0 0 41 MELV LARVA — 0 . 9 0 0 . 9 0 28 TETR AD/NYM 0 . 3 3 0 . 5 0 0 . 8 3 48 EUPE AD/NYM 0 . 8 3 — 0 . 8 3 10 PARA AD/NYM — 0 . 6 7 0 . 6 7 39 I S S I AD/NYM 0 . 6 7 — 0 . 6 7 45 MICR AD/NYM 0 . 6 7 — 0 . 6 7 46 DOLI AD/NYM 0 . 5 7 — 0 . 6 7 48 MYMA AD/NYM 0 . 5 0 0 . 1 7 0 . 6 7 38 PENT AD/NYM 0 . 5 0 — 0 . 5 0 41 CARA LARVA — 0 . 5 0 0 . 5 0 41 COCC AD/NYM 0 . 5 0 — 0 . 5 0 46 TIPU AD/NYM 0 . 5 0 — 0 . 5 0 48 ENCY AD/NYM 0 . 5 0 — 0 . 5 0 41 SCAP AD/NYM — 0 . 5 0 0 . 5 0 2 PHAJ AD/NYM 0 . 3 3 — 0 . 3 3 38 NABI AD/NYM 0 . 1 7 0 . 1 7 0 . 3 3 39 MEMB AD/NYM 0 . 1 7 0 . 1 7 0 . 3 3 41 CHRY AD/NYM 0 . 1 7 0 . 1 7 0 . 3 3 41 CLER AD/NYM 0 . 3 3 — 0 . 3 3 41 LANS LARVA — 0 . 3 3 0 . 3 3 41 PTIL AD/NYM — 0 . 3 3 0 . 3 3 46 LONC AD/NYM 0 . 3 3 — 0 . 3 3 46 SARC AD/NYM 0 . 3 3 — 0 . 3 3 4 SNAP AD/NYM — 0 . 1 7 0 . 1 7 39 ALEY AD/NYM 0 . 1 7 — 0 . 1 7 39 PSYL AD/NYM 0 . 1 7 — 0 . 1 7 40 CHRJ LARVA 0 . 1 7 — 0 . 1 7 41 BYRR AD/NYM — 0 . 1 7 0 . 1 7 41 BYRR LARVA — 0 . 1 7 0 . 1 7 41 CHRY LARVA — 0 . 1 7 0 . 1 7 41 CUCJ AD/NYM — 0 . 1 7 0 . 1 7 41 CURC LARVA — 0 . 1 7 0 . 17 41 CURC PUPA 0 . 1 7 — 0 . 1 7 TABLE 19. CONTINUED. PERI00=12-23 JULY 1979 AREA=75 ------

ORDER FAMILY LIFEFORM HDEN LDEN DENSITY

*1 ELAT LARVA 0 . 1 7 0 . 1 7 41 HELD AD/NYM — 0 . 1 7 0 . 1 7 41 SCAR LARVA — 0 . 1 7 0 . 1 7 45 ARCT LARVA 0 . 1 7 — 0 . 1 7 46 EPHY AD/NYM 0 . 1 7 — 0 . 1 7 46 MUSC AD/NYM 0 . 1 7 — 0 . 1 7 46 PSYC AD/NYM 0 . 1 7 — 0 . 1 7 46 SCHC LARVA — 0 . 1 7 0 . 1 7 46 SEPS AD/NYM 0 . 1 7 — 0 . 1 7 48 DRYI AD/NYM 0 . 1 7 — 0 . 1 7 48 EULD AD/NYM 0 . 1 7 — 0 . 1 7 48 EURY AD/NYM 0 . 1 7 — 0 . 1 7

------PERI00=12-23 JULY 1 9 7 9 AREA=CV ------— ------

ORDER FAMILY LIFEFORM HDEN LDEN DENSITY

23 ENTO AD/NYM 1 2 9 . 4 5 5 4 1 . 5 7 6 7 1 . 0 2 41 CJCJ LARVA 8 7 . 2 5 5 6 1 . 7 8 6 4 9 . 0 3 23 HYPO AD/NYM 2 . 0 0 3 5 3 . 7 4 3 5 5 . 7 4 46 SCHA LARVA 2 . 0 0 2 5 9 . 9 3 2 6 1 . 9 3 37 THRI AD/NYM 5 3 . 4 8 1 0 4 . 3 3 1 5 7 . 8 2 46 DIPT PU»A 15.48 113.40 1 2 8 . 8 8 46 DROS AD/NYM 1 2 2 . 5 0 2 . 5 0 1 2 5 . 0 0 1 NEDB AD/NYM — 1 2 3 . 9 7 1 2 3 . 9 7 46 CECI LARVA 0 . 3 3 1 1 6 . 5 5 1 1 6 . 8 8 39 CICA AD/NYM 4 9 . 5 0 5 1 . 8 4 1 0 1 . 3 4 10 JU LI AD/NYM 1 4 . 9 7 8 2 . 1 8 9 7 . 15 39 APHI AD/NYM 5 8 . 5 0 3 4 . 7 7 9 3 . 2 7 48 FORM AD/NYM 9 . 3 3 6 8 . 0 1 7 7 . 3 4 41 STAP LARVA 3 . 3 2 6 5 . 4 0 6 8 . 7 2 41 LANG AD/NYM 7 . 0 0 6 0 . 8 4 6 7 . 8 4 23 SMIN AD/NYM 3 3 . 7 5 2 9 . 5 9 6 3 . 3 4 38 MIRI AD/NYM 3 9 . 1 7 2 2 . 6 6 6 1 . 8 2 41 LATH LARVA 2 . 0 0 5 7 . 3 8 5 9 . 3 8 41 NITI LARVA 2 0 . 5 0 3 0 . 8 5 5 1 . 3 5 46 STRA LARVA 1.33 34.90 3 6 . 2 4 41 CRYP AD/NYM 0 . 5 0 2 5 . 1 7 2 5 . 6 7 45 NOCT LARVA 1 . 1 7 2 3 . 0 3 2 4 . 2 0 41 STAP AD/NYM 0 . 1 7 2 3 . 1 7 2 3 . 3 4 39 ACAN AD/NYM 1 9 . 6 7 3 . 6 7 2 3 . 3 3 46 ANTX AO/NYM 2 0 . 8 3 0 . 3 3 2 1 . 1 7 41 LATH AD/NYM 6 . 3 3 1 2 . 6 7 1 9 . 0 0 46 SPHA AD/NYM 1 5 . 8 3 2 . 3 3 1 8 . 1 7 41 CARA LARVA — 1 7 . 6 6 1 7 . 6 6 23 ONYC AD/NYM — 1 4 . 3 4 1 4 . 3 4 4 LYCO AD/NYM 1 1 . 3 3 1 . 1 7 1 2 . 5 0 4 6 CECI AD/NYM 9 . 5 0 3 . 0 0 1 2 . 5 0 41 LANG LARVA 2 . 5 0 9 . 5 0 1 2 . 0 0 46 CHIR LARVA 0 . 1 7 1 1 . 6 6 1 1 . 8 2 . 48 HYME PUPA — 1 1 . 3 4 1 1 . 3 4 28 GRYK AD/NYM 2 . 5 0 8 . 6 7 1 1 . 1 7 9 CLEI AO/NYM — 1 0 . 3 4 1 0 . 3 4 41 COLA LARVA — 9 . 8 6 9 . 8 6 46 CECI PUPA 1 . 6 7 8 . 0 7 9 . 7 4 38 ANT J AD/NYM 6 . 9 7 1 . 7 9 8 . 7 6 4 6 PHOR PUP A — 8 . 5 0 8 . 5 0 46 SCIA AO/NYM 6 . 5 0 1 . 8 3 8 . 3 3 45 MICR LARVA 3 . 0 0 5 . 3 2 8 . 3 2 23 ISOT AD/NYM — 8 . 0 7 8 . 0 7 46 SCIA LARVA — 7 . 1 7 7 . 1 7 41 CUCU LARVA — 7 . 1 1 7 . 1 1 46 PHOR AD/NYM 5 . 3 3 1 . 5 6 6 . 9 0 48 BRAC AD/NYM 5 . 5 0 1 . 0 0 6 . 5 0 46 CHIR AO/NYM 6 . 0 0 — 6 . 0 0 cs*o — cs*o HAN/OV 130N S9 CS*0 ££*0 £1*0 HAN/GV VSA1 8£ cs*o £1*0 ££*C HAN/OV 8013 9 cs*o 0S*0 — VA8V1 8GHd 99 cs*o 0S*0 HAN/OV AHd3 99 cs*o — os*o HAN/OV 8V3V 99 cs*o — CS*C HAN/OV 83IH S9 CS*0 ££*0 £1*0 VA8V1 138V S9 CS*0 os*o HAN/OV 0303 19 cs*o os*o — HAN/OV N0A3 8£ £9*0 £1*0 0S*0 HAN/OV lVld 89 £9*0 ££*0 ££*0 HAN/OV V81S 99 £9*0 £9*0 HAN/OV 3S0H 99 £9*0 £9*0 — VA8V1 1NV3 19 €8*0 £8*0 VA8V1 8313 19 €8*0 £9*0 £1*0 HAN/OV n in £1 06*0 06*0 VA8V1 V8V1 99 C6 *0 06*0 — VA8V1 0A3S 19 06*0 06*0 — VA8V1 3803 19 06*0 06*0 — VA8V1 >1NV 19 CC *1 £8*0 £1*0 HAN/OV dVIO 89 GO *T £8*0 £1*0 HAN/OV 3HdV 89 OC*I — 00*1 HAN/OV X0V1 99 CO * T £1*0 £8*0 HAN/OV OVHd Z £1*1 £1*0 00*1 HAN/OV 0103 89 £1*1 £1*0 00*1 HAN/OV 3N01 99 ez* i £Z* T — VA8V1 1V13 19 ££*T £1*0 £1*1 HAN/OV 0181 89 ££*T £1*0 £1*1 HAN/OV A3N3 89 ££ * I 05*0 £8*0 HAN/OV 0833 99 ££*1 £ £ * ! — HAN/OV 13Sd 19 ££ *T £1*1 £1*0 HAN/OV IVHd 19 £ £ * ! €8*0 0S*0 HAN/OV A8H3 19 £ £ * ! £ 9*0 £9*0 HAN/OV H0H1 9 CS *T ££*0 £T*T HAN/OV NH31 89 95*1 £Z*I £E*0 HAN/OV 11VS 9 £9*1 05*1 £1*0 HAN/OV V8V3 19 £9*1 £9*1 HAN/OV NV8V 9 £8*1 — £8*1 HAN/OV d8AS 99 96*1 6£*T £1*0 v«m833 89 £8 *Z £8*Z — HAN/OV l l l d 19 £ I *£ £1 *£ — HAN/OV AlOd 8 £ £ * £ £ £ * £ — HAN/OV 33AH 19 89 *£ — 89*£ Vdfld 3103 19 CS *£ 00*1 OS*Z HAN/OV 3833 6£ zs*e Z0*E 0S*0 VA8V1 3303 19 £1*9 £1*0 00*9 HAN/OV 831d 89 £ 1 * 9 £I*Z 00*Z HAN/OV VHAH 89 ££ *9 ££*9 — HAN/OV 380d S CS*9 00*9 05*0 HAN/OV 3803 19 CS*9 0S*£ 0C*1 HAN/OV 133S 89 £ I ‘S £ I *S HAN/OV C1H3 99 ££ *S 0S*0 £ 8 * 9 HAN/OV I83V 8Z 9£*S 69*£ £9*1 HAN/OV AN 11 9 Z9*S S£*E £9*1 HAN/OV 0303 6£ SS*S 8£*S £1*0 HAN/OV C lH d ££ 9S*S 06*0 £9*9 HAN/OV dl30 6£ 6£*S 6£* I 00*9 HAN/OV 031V ££ AiISN30 N3G1 N3GH H8033JI1 A11HV3 83080

A*1 —V38V 6£61 Allnr cz-zi*oo l c 3 a •(J3PNI1N03 *61 318V1 344 TABLE 19. CONTINUED. PERIOD=12-20 JULY 1979 AREA=CV ------

FAMILY LIFEFORM HDEN LDEN DENSITY

48 CYNI AD/NYM 0 . 5 0 _ 0 . 5 0 28 TETT AD/NYM 0 . 3 3 — 0 . 3 3 34 PSOC AD/NYM — 0 . 3 3 0 . 3 3 38 TING AD/NYM 0 . 3 3 — 0 . 3 3 39 DICT AD/NYM 0 . 3 3 — 0 . 3 3 39 MEMB AD/NYM 0 . 3 3 — 0 . 3 3 41 COCC AD/NYM 0 . 1 7 0 . 1 7 0 . 3 3 41 LAMP AD/NYM 0 . 1 7 0 . 1 7 0 . 3 3 41 LAMP LARVA — 0 . 3 3 0 . 3 3 45 GEOM LARVA 0 . 1 7 0 . 1 7 0 . 3 3 46 OOLI AD/NYM 0 . 3 3 — 0 . 3 3 46 EMPI AD/NYM 0 . 3 3 — 0 . 3 3 4 AGEL AD/NYM 0 . 1 7 — 0 . 1 7 4 HAHN AD/NYM — 0 . 1 7 0 . 1 7 4 THER AD/NYM 0 . 1 7 — 0 . 1 7 39 PSYL AD/NYM 0 . 1 7 — 0 . 17 40 CHRJ LARVA 0 . 1 7 — 0 . 1 7 41 CHRY LARVA 0 . 1 7 — 0 . 1 7 41 CORY AD/NYM - 0 . 1 7 0 . 1 7 41 ELAT AD/NYM — 0 . 1 7 0 . 1 7 41 LEPT AD/ NYM — 0 . 1 7 0 . 1 7 41 MORD AD/NYM 0 . 1 7 — 0 . 1 7 45 PIER LARVA 0 . 1 7 — 0 . 1 7 46 AGRO AD/NYM 0 . 1 7 — 0 . 1 7 46 ANTY AD/NYM 0 . 1 7 — 0 . 1 7 46 MYCJ AD/NYM 0 . 1 7 — 0 . 1 7 46 PSYC AD/NYM 0 . 1 7 — 0 . 1 7 46 SARC AD/NYM 0 . 1 7 — 0 . 1 7 46 SCHO LARVA — 0 . 1 7 0 . 1 7 48 BETH AD/NYM — 0 . 1 7 0 . 1 7 48 EURY AD/NYM 0 . 1 7 — 0 . 1 7 48 ICHN PU5 A 0 . 1 7 - 0 . 1 7

PERI00=12-23 JULY 1979 AREA=OF------iER FAMILY LIFEFORM HDEN LDEN DENSITY 48 FORM AD/NYM 72.67 216.70 289.37 37 THRI AD/NYM 72.00 156.33 228.33 23 ENT3 AD/NYM 155.67 72.33 228.00 39 CICA AD/NYM 111.00 29.39 140.39 23 HYPO AD/NYM 0.33 124.06 124.39 5 ISOP AD/NYM 3.33 103.04 106.37 23 ONYC AD/NYM - 59.17 59.17 46 CECI LARVA 13.00 39.45 52.45 10 JULI AD/NYM — 47.68 47.63 39 APHI AD/NYM 39.67 6.38 46.05 9 CLEI AD/NYM — 43.35 43.35 23 SMIN AD/NYM 3.67 39.45 43.11 8 POLY AD/NYM — 34.35 34.35 46 BIBI LARVA — 32.77 32.77 38 LYGA AD/NYM 1.33 31.43 32.77 39 COCJ AD/NYM 7.33 21.85 29.18 37 PHLO AD/NYM 4.00 25.10 29.10 41 CHRY LARVA 0.33 26.90 27.23 41 CHRY AD/NYM 11.33 15.67 27.00 5 PORC AD/NYM — 25.13 25.13 46 PHOR AD/NYM 6.67 17.34 24.01 28 GRYK AD/NYM 1.67 17.67 19.34 46 SCIA LARVA — 18.26 18.26 I NEOB AD/NYM - 17.93 17.93 48 SCEL AD/NYM 0.67 16.00 16.67 48 PLAT AD/NYM 3.67 11.00 14.67 39 DELP AD/NYM 13.33 — 13.33 41 CLER LARVA 11.33 1.79 13.13 TABLE 19. CONTINUED.

PERIOD=12-20 JULY 1979 AREA=OF

FAMILY LIFEFORM HDEN LDEN

41 STAP AD/NYM _ 1 3 . 0 0 41 CUCJ LARVA 0 . 6 7 1 1 . 4 3 48 CYNI AD/NYM 7 . 0 0 4 . 3 3 2 2 PROT AD/NYM — 1 0 . 7 6 45 MICRPUPA 1 0 . 3 3 — 4 LINY AD/NYM 4 . 3 3 5 . 5 9 41 ELAT LARVA — 9 . 5 9 41 CURC AD/NYM 0 . 6 7 7 . 6 7 41 STAP LARVA 0 . 3 3 7 . 7 1 48 EULO AD/NYM 7 . 0 0 0 . 6 7 45 MICR LARVA 1 . 0 0 6 . 3 8 34 PSEJ AD/NYM 7 . 3 3 — 48 CERK AD/NYM 0 . 3 3 7 . 0 0 45 NOCT LARVA 0 . 3 3 6 . 6 7 46 CHLO AD/NYM 6 . 3 3 0 . 3 3 48 FORM LARVA 6 . 6 7 — 39 CERC AD/NYM 2 . 3 0 4 . 3 3 46 ANTX AD/NYM 6 . 3 3 — 46 CECI AD/NYM 5 . 5 7 0 . 6 7 4 THER AD/NYM 5 . 3 3 0 . 6 7 38 CYON AD/NYM — 5 . 7 1 8 XYST AD/NYM — 5 . 6 7 46 EMPI LARVA — 5 . 3 8 4 LYCO AD/NYM 2 . 6 7 2 . 0 0 41 LATH AD/NYM 0 . 3 3 4 . 3 3 48 TENT LARVA — 4 . 2 5 41 SCYO AD/NYM — 4 . 0 0 46 DIPT PU»A 3.67 0.33 46 SPHA AD/NYM 3 . 5 7 0 . 3 3 39 PSYL AD/NYM 1 . 6 7 2 . 1 3 2 PHAJ AD/NYM 3 . 3 3 0 . 3 3 23 ISOT AD/NYM — 3 . 5 9 41 CANT LARVA — 3 . 5 9 41 LATH LARVA — 3 . 5 9 46 CHIR LARVA — 3 . 5 9 4 ANYP AD/NYM 3 . 3 3 — 4 THOM AD/NYM 0 . 3 3 3 . 0 0 46 DOLI AD/NYM 3 . 3 3 — 46 DROS AD/NYM 3 . 0 0 — 46 SCIA AD/NYM 2 . 6 7 0 . 3 3 48 MEG J AD/NYM 0 . 3 3 2 . 6 7 48 PTER PUPA 3 . 0 0 — 4 ARAN AD/NYM 2 . 6 7 — 46 LEPJ AD/NYM 2 . 3 3 — 46 CECI PU»A 0.33 1.79 46 SCHA LARVA 0 . 3 3 1 . 7 9 4 CLUB AD/NYM 1 . 0 0 1 . 0 0 41 CARA LARVA 0 . 3 3 1 . 6 7 46 CHIR AD/NYM 2 . 0 0 — 48 BRAC AD/NYM 1 . 6 7 0 . 3 3 48 HYME PUPA 2 . 0 0 — 41 MORD LARVA — 1 . 7 9 4 SALT AD/NYM 1 . 0 0 0 . 6 7 41 LAMP AD/NYM 0 . 6 7 1 . 0 0 41 LANG AD/NYM 0 . 3 3 1 . 3 3 46 ACAB AD/NYM 1 . 6 7 — 46 EMPI AD/NYM 1 . 3 3 0 . 3 3 17 LITH AD/NYM — 1 . 3 3 38 NABI AD/NYM — 1 . 3 3 45 MICR AD/NYM 1 . 3 3 — 48 APHE AD/NYM 0 . 6 7 0 . 6 7 48 DIAP AD/NYM — 1 . 3 3 48 PTER AD/NYM 1 . 0 0 0 . 3 3 4 PISA AD/NYM 1 . 0 0 — 39 DERB AD/NYM 1 . 0 0 — 46 AGRO AD/NYM 1 . 0 0 — TABLE 1 9 . CONTINUED. 3 AC

o c i f n n . i •% mi \/ i mn aoca . n c ft 4. V# J U'L 1 17 | 7 HIM. H 3u r

ORDER FAMILY LIFEFORM HDEN LDEN DENSITY

48 EUPE AD/NYM 1 . 0 0 — 1 . 0 0 28 TETT AD/NYM 0 . 6 7 — 0 . 6 7 38 MIRI AD/NYM 0 . 3 3 0 . 3 3 0 . 6 7 38 REDU AD/NYM 0 . 3 3 0 . 3 3 0 . 6 7 3 8 TING AD/NYM 0 . 6 7 — 0 . 6 7 3 9 ALEV AD/NYM 0 . 6 7 — 0 . 6 7 41 CARA AD/NYM — 0 . 6 7 0 . 6 7 41 C JC J LARVA — 0 . 6 7 0 . 6 7 41 PTIJ AD/NYM — 0 . 6 7 0 . 6 7 45 ARCT LARVA — 0 . 6 7 0 . 6 7 46 SCIO AD/NYM 0 . 6 7 — 0 . 6 7 4 6 SYRP AD/NYM 0 . 6 7 — 0 . 6 7 4 6 TABA AD/NYM 0 . 6 7 — 0 . 6 7 46 T I P J AD/NYM 0 . 6 7 — 0 . 6 7 48 MYMA AD/NYM 0 . 3 3 0 . 3 3 0 . 6 7 9 ABAC AD/NYM — 0 . 3 3 0 . 3 3 27 COEN AD/NYM 0 . 3 3 — 0 . 3 3 3 8 DIPS AD/NYM — 0 . 3 3 0 . 3 3 38 PENT AD/NYM — 0 . 3 3 0 . 3 3 39 ACAN AD/NYM - 0 . 3 3 0 . 3 3 3 9 CIXI AD/NYM 0 . 3 3 — 0 . 3 3 3 9 MEMB AD/NYM 0 . 3 3 - 0 . 3 3 41 BYRR AD/NYM — 0 . 3 3 0 . 3 3 41 CORY AD/NYM — 0 . 3 3 0 . 3 3 41 LAGR LARVA — 0 . 3 3 0 . 3 3 41 N IT I AD/NYM — 0 . 3 3 0 . 3 3 41 PHAL AD/NYM — 0 . 3 3 0 . 3 3 41 SCAP AD/NYM — 0 . 3 3 0 . 3 3 41 SCOL AD/NYM 0 . 3 3 — 0 . 3 3 45 ARCT PUPA 0 . 3 3 — 0 . 3 3 45 NOCT AD/NYM 0 . 3 3 — 0 . 3 3 46 ACAA AD/NYM 0 . 3 3 — 0 . 3 3 46 CERQ AD/NYM 0 . 3 3 — 0 . 3 3 46 SEPS AD/NYM 0 . 3 3 — 0 . 3 3 48 BETH AD/NYM — 0 . 3 3 0 . 3 3 48 ENCY AD/NYM 0 . 3 3 — 0 . 3 3 48 HYME LARVA 0 . 3 3 — 0 . 3 3

------PERI0D=l~8 SEPTEMBER 1979 AREA=77 ------—

ORDER FAMILY LIFEFORM HDEN LDEN DENSITY

23 I SOT AD/NYM 429.17 296.69 7 2 5 . 8 6 23 HYPO AD/NYM 7 . 8 3 1 4 7 . 0 3 1 5 4 . 8 7 23 ENTO AD/NYM 6 6 . 6 7 7 6 . 9 5 1 4 3 .6 1 41 LATH AD/NYM 4 2 . 3 3 88.34 130.67 39 CICA AD/NYM 63.33 28.37 91.70 46 CECI LARVA 19.83 50.21 70.04 23 SMIN AD/NYM 1 2 .0 0 5 4 . 6 9 6 6 . 6 9 4 6 CHIR LARVA 2 . 1 7 6 2 . 0 3 6 4 . 1 9 4 LVCO AD/NYM 2 8 . 0 0 2 2 . 1 7 5 0 . 1 7 46 DIPT PUPA 2 8 . 3 3 1 7 .0 1 4 5 . 3 4 39 APHI AD/NYM 3 2 . 0 0 0 . 5 0 3 2 . 5 0 48 SCEL AD/NYM 1 1 . 5 0 1 9 . 0 0 3 0 . 5 0 41 STAP AD/NYM 5 . 3 3 2 2 . 8 4 2 8 . 1 7 41 CARA AD/NYM 0 . 6 7 2 5 . 1 7 2 5 . 8 4 48 FORM AD/NYM 3 . 6 7 2 1 . 5 0 2 5 . 1 7 4 LINY AD/NYM 8.00 15.65 23.65 4 6 CECI AD/NYM 2 1 . 0 0 2 . 5 0 2 3 . 5 0 37 PHLO AD/NYM 1 3 . 3 3 1 0 . 0 3 2 3 . 3 6 37 THRI AD/NYM 1 2 . 6 7 8 . 0 7 2 0 . 7 4 28 GRYK AD/NYM 1 6 . 0 0 3 . 3 3 1 9 .3 3 46 DROS AD/NYM 1 7 . 0 0 1 . 3 3 1 8 . 3 3 41 CARA LARVA 0 . 1 7 1 5 . 3 6 1 5 . 5 3 46 CHIR AD/NYM 1 4 . 1 7 — 1 4 . 1 7 ££ *0 — ££•0 HAN/OV 031V Z£ CS "0 — os-o HAN/OV 1100 99 0S*0 os-o HAN /OV 3IN3 8£ os-o — os-o HAN/OV P3Sd 9£ cs-o os-o — HAN/OV 33AH 19 os-o ££•0 ZTO VATV1 0303 19 cs-o zi-o ££*0 HAN/OV 18VN 8£ cs-o — os-o HAN/OV 1TIH 8£ 19-0 ZTO os-o HAN/OV 3V88 89 Z9*0 Z9-0 — VATV1 vavi 99 £8*0 £8*0 — HAN/OV 1V13 19 06 *0 06“0 — V dfld T1H3 99 C6-0 06*0 — VATV1 1NV3 19 OC-T — 00-1 HAN/OV 3HdV 89 co-i ££•0 Z9-0 HAN/OV T31H 59 cc-i ZTO £8*0 HAN/OV VHAH 89 cc-i ££•0 Z9“0 HAN/OV vns 99 /I -1 £8*0 €£•0 VA8V1 130N St £Z * 1 90-1 ZTO VA8V1 3T03 19 ££•1 ZTO ZT1 HAN/OV I dH3 99 ££•1 — ££•1 HAN/OV 01H3 99 09*1 06-0 cs-c VATV1 0833 99 cs-i ZTO ££•1 HAN/OV 3S0H 99 os-i — os-i HAN/OV ridi 89 os-i ££•1 ZTO HAN/OV >1NV 19 os-i Z9-0 €8*0 HAN/OV H0H1 9 Z9M — Z9-1 HAN/OV VHdS 99 Z9*l — Z9-1 HAN/OV d130 6£ £8-1 £8*0 00-T HAN/OV 3303 19 £8*1 £8-1 — HAN/OV 88A8 19 Z T Z — Zl’Z HAN/OV 1131 8Z Z9-Z — Z9-Z HAN/OV TOHd 99 Z9-Z — Z9-Z HAN/OV 0 3 AH 99 Z9-Z — Z9-Z HAN/OV Ahd3 99 £8 #Z £8*0 oc-z HAN/OV >833 89 £8*Z ££•0 os-z HAN/OV 83H1 9 ZO *£ 98*Z ZTO VATV1 VH3S 99 ZI *£ €£*Z £8*0 HAN/OV 8131 8Z ££•£ ZT *0 Z1 *£ HAN/OV 3833 6£ ££•£ — ££•£ HAN/OV NV8V 9 99*£ 6Z*£ ZTO VATV1 d VIS 19 CS *£ OS'! oc-z VAT VI 8313 19 6S *£ 6S *£ — VATV1 1V13 19 Z6*9 Z6*9 — VATV1 1100 99 ZTS Z9-0 OS-9 HAN/OV IVId 89 zi-s ££•0 £8*9 HAN/OV 0833 99 ZTS — ZTS HAN/OV PV8V 9 £ £ - S Z T £ ZTZ HAN/OV IVHd 19 cs-s os-i 00-9 HAN/OV Hin Z1 os-s Z1 *£ £ £ -Z HAN/OV 8013 9 Z9-S ££•0 £ £ * S HAN/OV 1SSI 6£ 69-S zs-s zi-o VA8V1 83IH S9 sz-s 6 S * £ ZTZ VATV1 H1V1 19 00 *9 - CO-9 HAN/OV 183V 8Z Z9-9 Z9-9 - HAN/OV d A83 19 os-z os-z — VA8V1 V81S 99 Z9-Z zi-o os-z HAN/OV nvs 9 Z0-8 ZO *8 — HAN/OV 3 ANO £Z ££•8 ££*9 00*9 HAN/OV SNV1 19 CS-8 OS-8 — VcjRd 3HAH 89 CO "6 ££•0 Z9-8 HAN/OV X1NV 99 Zl-6 Z9-8 os-o HAN/OV A8H3 19 ZT01 £8*8 ££•1 HAN/OV 3803 19 Z9-11 — Z9-1I Vdfld 1333 99 9Z-Z1 9Z-01 os-i VATV1 0303 19 0Z-£1 98*6 £8 *£ HAN/OV 0303 6£ A1ISN30 N3G1 N30H HT0d3dn A11HV3 83080 ------ZZ=V38V 6Z6T 838H31d3S 8-1=00183d ------*030NI1N03 *61 318V1 L\7Z 348 TABLE 19. CONTINUED. ------PERI3D*l—8 SEPTEMBER 1979 AREA=77

ORDER FAMILY LIFEFORM HDEN LDEN DENSITY

41 PTIL AD/NYM _ 0 . 3 3 0 . 3 3 46 SCAT AD/NYM 0 . 1 7 0 . 1 7 0 . 3 3 48 ENCY AD/NYM 0 . 3 3 — 0 . 3 3 4 GNAP AD/NYM 0 . 1 7 — 0 . 1 7 26 TRIK AD/NYM 0 . 1 7 — 0 . 1 7 38 PENT AD/NYM — 0 . 1 7 0 . 1 7 40 HEME AD/NYM 0 . 1 7 — 0 . 1 7 41 COCC LARVA 0 . 1 7 — 0 . 1 7 41 CURC PUPA 0 . 1 7 — 0 . 17 41 EUCI AD/NYM — 0 . 1 7 0 . 1 7 41 H IST AD/NYM — 0 . 1 7 0 . 1 7 41 HYDR AD/NYM — 0 . 1 7 0 . 1 7 41 MORD LARVA — 0 . 1 7 0 . 1 7 41 NOTE AD/NYM — 0 . 1 7 0 . 1 7 41 SCAP AD/NYM — 0 . 1 7 0 . 1 7 45 ARCT LARVA 0 . 1 7 — 0 . 1 7 45 GEOM LARVA — 0 . 1 7 0 . 1 7 45 N3CT AD/NYM 0 . 1 7 — 0 . 1 7 46 AGRO AD/NYM 0 . 1 7 — 0 . 1 7 46 ANTV AD/NYM 0 . 1 7 — 0 . 1 7 46 CULI AD/NYM 0 . 1 7 — 0 . 17 46 SCHD LARVA — 0 . 1 7 0 . 1 7 46 SCIA LARVA 0 . 1 7 — 0 . 1 7 46 SCIO AD/NYM 0 . 1 7 — 0 . 1 7 46 SYRP AD/NYM 0 . 1 7 — 0 . 1 7 48 BETH AD/NYM 0 . 1 7 — 0 . 1 7 48 CHAL AD/NYM — 0 . 1 7 0 . 1 7 48 CYNI AD/NYM 0 . 1 7 — 0 . 1 7 48 DIAP AD/NYM 0 . 1 7 — 0 . 1 7 48 EULO AD/NYM 0 . 1 7 — 0 . 1 7 48 EJPE AD/NYM 0 . 1 7 — 0 . 1 7 48 ICHN AD/NYM 0 . 1 7 0 . 1 7

------PERI0D=1—8 SEPTEMBER 1 9 7 9 AREA=75 -

ORDER FAMILY LIFEFORM HDEN LDEN DENSITY

23 ENTO AD/NYM 5 5 4 . 1 7 4 6 9 . 6 6 1 0 2 3 . 8 3 23 HYPO AD/NYM 2 . 3 3 1 5 4 . 3 7 1 5 6 . 7 0 39 CICA AD/NYM 9 8 . 0 0 4 6 . 0 9 1 4 4 . 0 9 48 FORM AD/NYM 2 9 . 3 3 6 3 . 1 7 9 2 . 5 1 39 COCJ AD/NYM 8.00 7 8 . 9 0 8 6 . 9 0 37 THRI AD/NYM 4 1 . 3 3 4 5 . 2 6 8 6 . 5 9 41 LATH AD/NYM 1 1 . 3 3 7 5 . 1 7 8 6 . 5 0 23 ISOT AD/NYM 2 3 . 0 0 4 8 . 4 1 7 1 . 4 1 46 CECI LARVA 6 . 5 0 3 4 . 9 7 4 1 . 4 7 41 CURC AD/NYM 2 . 8 3 3 7 . 1 7 4 0 . 0 0 10 PARA AD/NYM 0 . 1 7 3 8 . 5 1 3 8 . 6 8 37 PHLO AD/NYM 1 4 . 3 3 2 0 . 6 2 3 4 . 9 5 4 LINY AD/NYM 1 1 . 1 7 2 3 . 1 1 3 4 . 2 8 23 SMIN AD/NYM 2 . 5 0 3 0 . 0 2 3 2 . 5 2 4 LYCO AD/NYM 1 5 . 5 0 1 6 . 7 3 3 2 . 2 3 46 CHIR LARVA 0 . 6 7 2 9 . 5 9 3 0 . 2 5 23 ONYC AD/NYM 2 1 . 5 2 2 1 . 5 2 41 STAP AD/NYM 21.00 21.00 45 MICR LARVA 2 . 6 7 1 7 . 0 7 1 9 . 7 4 41 LANS AD/NYM 4 . 3 3 1 3 . 6 7 1 8 . 0 0 4 6 D IPT PUPA 6 . 8 3 1 0 . 3 0 1 7 . 1 3 48 SCEL AD/NYM 6 . 5 0 1 0 . 3 3 1 6 . 8 3 10 JU LI AD/NYM 1 6 . 5 0 1 6 . 5 0 46 SCHA LARVA 1 . 8 3 1 4 . 3 4 1 6 . 1 8 41 C JC J LARVA 2 . 1 7 1 2 . 5 5 1 4 . 7 2 28 ACRI AD/NYM 9 . 8 3 4 . 8 3 1 4 . 6 7 41 PHAL AD/NYM 2.00 1 2 . 3 4 1 4 . 3 4 4 CLUB AD/NYM 2 . 3 3 9 . 8 4 1 2 . 1 7 06 *0 06*0 — VA8V1 0830 9* C6 *0 06*0 — Vcfld 1030 9* C6 *0 06*0 — VAIiVI 080N I* C6*0 06*0 — VA8V1 dWVI 1* CC *1 ££*0 2 9*0 NAN/OV OOGO I* 00*1 ££*0 29*0 NAN/GV m i 8* 00*1 0S*0 0S*0 NAN/GV NHOl 8* 9C *1 06*0 21*0 Vcfld 3100 I* 90 *1 06*0 21*0 NAN/GV 18 IN 8£ 21*1 21*0 00*1 WAN/OV 83id 8* 21*1 ££*0 £8*0 NAN/GV 8CHd 9* ZIM — 21*1 NAN/GV hog 9* €£*! ££*1 NAN/GV 30AN I* ££•1 ££*1 — WAN/GV IS 1H I* C*M 0**1 — VA8V1 GHOS 9* 0**T 0*M — VA1V1 V8V0 1* CSM ££*0 21*1 NAN/GV VMAN 8* CS*I — OS*I NAN/GV C1H0 9* 0SM — os-i WAN/OV 0830 9* 29*1 — 29-1 VdOd VIOS 9* 29 *1 21*0 os-i NAN/GV 80 IN S* 29*1 — 29*1 NAN/GV 8310 1* 29“l — 29-1 NAN/GV 803N I 62*1 62*1 — VA8V1 H1V1 I* £8*1 29*0 2I-I NAN/GV lN3d 8£ OG’Z £8*0 21-1 NAN/GV VHdS 9* CC'Z 0S*0 o s-i NAN/aV 0830 6£ C0*Z 21*0 £8*1 NAN/GV 0V88 8* 00*Z 21*0 €8-1 NAN/GV riNv 8£ CC*Z oc-z NAN/GV 8131 82 £Z"Z £Z*Z — VA8V1 1NV0 I* ££"Z ££-Z NAN/GV 0103 8* ££ *Z os*o £8-1 NAN/GV AHd3 9* ££ "Z — ££*Z NAN/GV f 3Sd *£ OS*Z — os-z Vdfld 3NAH 8* CS’Z 29*0 £8*1 NAN/GV 0000 I* £9 *Z 9VZ 21*0 NAN/GV H in 21 £8 *Z — £8*2 NAN/GV 3d03 8* £8 “Z - £8*Z NAN/GV VIOS 9* £8*Z — £8*2 NAN/GV d13a 6€ £8 *Z £8 *Z — V dOd NHOI 8* £8 *Z £8*Z - VdOd dvia 8* C6"Z 06*Z — NAN/GV V9A1 8£ 21 *£ 05*1 29*1 NAN/GV A8H0 I* 29 *£ 21*0 0S-£ NAN/GV 8IHO 9* Z9 *£ 21*0 0S*£ NAN/GV X1NV 9* S2 *£ 6S *£ 21-0 VA8V1 VIOS 9* ££ "* ££•* NAN/GV SC8G 9* £I*S 62*1 ££*£ NAN/GV IHdV 6£ 21*S os-i 29 *£ NAN/aV >830 8* OS'S 29*£ £8*1 NAN/GV dvia 8* 29 “S 21*0 os-s NAN/GV NV8V * I2*S I2*S — VA8V1 dVIS I* 00*9 OC-9 NAN/GV 8301 * ££•9 05*0 £8*S NAN/GV >A89 8Z OS *9 21*1 ££-S NAN/GV 1030 9* 29*9 29*9 — VA8V1 V81S 9* 29*9 2 9*Z CO-* NAN/GV hOHl * 00*2 ££*1 29-S NAN/GV n v s * CS *2 OS *2 — NAN/GV d A80 I* 60*8 S2*S ££-Z VA8V1 8310 I* CS *8 OS *8 — V dfld 130S 8* CS"8 0S*8 — NAN/GV A31V 6£ £8*01 21*6 29-1 NAN/GV V8V0 I* £S *11 98*6 29*1 VA8V1 n o a 9* 69*11 61*11 os-o VA8V1 100N S *

A11SN3G N3C1 N3GH N80 333I1 A1IWV3 83080 SZ=V38V 6Z6I 838N31d3S 8-I=CCI83d •Q30NI1N00 *61 318V1 350 TABLE 19. CONTINUED. i a ~ ct%'Tcu AD CA = 7*i DCDTfin *4 —o )cricnoci\ i y i y

ORDER FAMILY LIFEFORM HDEN LDEN DENSITY

*8 APHE AD/NYM 0 . 6 7 0 . 1 7 0 . 8 3 41 BYRR AD/NYM 0 . 6 7 0 . 6 7 45 NOCT AD/NYM 0 . 5 0 0 . 1 7 0 . 6 7 48 CYNI AD/NYM 0 . 5 0 0 . 1 7 0 . 6 7 5 PORC AD/NYM — 0 . 5 0 0 . 53 38 ENIC AD/NYM — 0 . 5 0 0 . 5 0 39 MEMB AD/NYM — 0 . 5 0 0 . 5 0 45 ARCT LARVA 0 . 5 0 — 0 . 5 0 46 TACK AD/NYM 0 . 3 3 0 . 1 7 0 . 5 0 4 ARAJ AD/NYM 0 . 5 0 — 0 . 5 0 28 TETT AD/NYM 0 . 5 0 — 0 . 5 0 38 NABI AD/NYM 0 . 3 3 0 . 1 7 0 . 5 0 39 ISSI AD/NYM 0 . 5 0 — 0 . 5 0 41 ELAT AD/NYM — 0 . 5 0 0 . 5 0 46 LA JX AD/NYM 0 . 5 0 — 0 . 5 0 4 PISA AD/NYM 0 . 3 3 — 0 . 3 3 39 PSYL AD/NYM 0 . 3 3 — 0 . 33 41 ANTK AD/NYM — 0 . 3 3 0 . 3 3 41 COCC LARVA — 0 . 3 3 0 . 3 3 41 LAGR LARVA — 0 . 3 3 0 . 3 3 41 SCAP AD/NYM — 0 . 3 3 0 . 3 3 45 NOCT PUPA 0 . 1 7 0 . 1 7 0 . 3 3 46 EMPI AD/NYM 0 . 3 3 — 0 . 3 3 46 T IP J AD/NYM 0 . 3 3 — 0 . 33 48 ENCY AD/NYM 0 . 1 7 0 . 1 7 0 . 3 3 2 PHAJ AD/NYM 0 . 1 7 — 0 . 1 7 4 GNAP AD/NYM — 0 . 1 7 0 . 1 7 37 ALEO AD/NYM 0 . 1 7 — 0 . 1 7 38 REDLI AD/NYM — 0 . 1 7 0 . 1 7 38 SALD AD/NYM 0 . 1 7 — 0 . 1 7 39 ACAN AD/NYM 0 . 1 7 — 0 . 1 7 41 LANG LARVA — 0 . 1 7 0 . 1 7 41 NITI AD/NYM — 0 . 1 7 0 . 1 7 41 PHAL PUPA 0 . 1 7 — 0 . 1 7 41 SCAR AD/NYM — 0 . 1 7 0 . 1 7 41 STAP PUa A — 0 . 1 7 0 . 1 7 45 GEOM LARVA — 0 . 1 7 0 . 1 7 45 MICR PUPA 0 . 1 7 — 0 . 1 7 45 PIER LARVA 0 . 1 7 — 0 . 1 7 46 AGRO AD/NYM 0 . 1 7 — 0 . 1 7 46 ANT V AD/NYM 0 . 1 7 — 0 . 17 46 SCAT AD/NYM 0 . 1 7 — 0 . 1 7 46 SYRP LARVA 0 . 1 7 — 0 . 1 7 46 TABA LARVA - 0 . 1 7 0 . 1 7 48 BETH AD/NYM — 0 . 1 7 0 . 1 7 48 DRY I AD/NYM — 0 . 1 7 0 . 1 7 48 PLAT AD/NYM 0 . 1 7 — 0 . 1 7

------PERIOD =1-8 SEPTEMBER 1 9 7 9 AREA=CV ------

ORDER FAMILYLIFEFORM HDEN LDEN DENSITY

23 ENTO AD/NYM 69.17 499.20 5 6 8 . 3 7 23 HYPO AD/NYM 1 . 1 7 4 0 8 . 0 9 4 0 9 . 2 6 41 LANG AD/NYM 1 0 . 3 3 257.69 268.02 41 LATH AD/NYM 5 . 1 7 1 8 5 . 5 1 1 9 0 . 6 8 46 CECI LARVA 2 . 6 7 1 3 5 . 3 8 1 3 8 .0 4 41 CRYP AD/NYM 0 . 3 3 7 9 . 8 3 8 0 . 1 7 4 6 SCHA LARVA 5 . 1 7 7 2 . 4 0 7 7 . 5 7 41 CUCJ LARVA 4 . 0 0 6 8 . 7 8 7 2 . 7 8 10 JUL I AD/NYM 0 . 1 7 7 2 . 3 6 7 2 . 5 2 39 CICA AD/NYM 3 3 . 1 7 3 7 . 2 2 7 0 . 3 9 1 NEOB AD/ NYM 1 1 . 6 7 4 7 . 8 2 5 9 . 4 9 48 FORM AD/NYM 3 . 5 0 4 7 . 3 4 5 0 . 8 4 46 STRA LARVA 0 . 5 0 4 8 . 0 9 4 8 . 5 9 TABLE 19. CONTINUED.

------PERI30*1-8 SEPTEMBER 1979 AREA=CV ------

ORDER FAMILY LIFEFORM HDEN LDEN DENSITY

4 8 SCEL AD/NYM 8 . 3 3 3 2 . 5 0 4 0 . 8 4 39 COCJ AD/NYM 0 . 6 7 3 6 . 9 2 3 7 . 5 9 3 7 PHLO AD/NYM 1 . 9 0 2 9 . 7 5 3 0 . 7 5 41 MYCE AD/NYM — 2 9 . 0 0 2 9 . 0 0 41 STAP AD/NYM — 2 7 . 0 0 2 7 . 0 0 41 CURC AD/NYM 0 . 1 7 2 6 . 6 7 2 6 . 8 3 45 MICR LARVA 5 . 5 0 1 9 . 0 3 2 4 . 5 3 5 PORC AD/NYM — 2 3 . 6 7 2 3 . 6 7 4 LVCO AD/NYM 1 . 3 3 2 1 . 4 0 2 2 . 7 4 4 THER AD/NYM 9 . 3 3 1 3 . 2 6 2 2 . 5 9 41 CARA LARVA — 2 1 . 8 0 2 1 . 8 0 23 ONYC AD/NYM — 1 8 . 8 3 1 8 . 8 3 39 ACAN AD/NYM 1 4 . 0 0 1 . 8 3 1 5 . 8 3 37 THRI AD/NYM 5 . 6 7 9 . 8 6 1 5 . 5 3 23 SMIN AD/NYM 3 . 1 7 1 1 . 6 6 1 4 . 8 2 45 NOCT LARVA 0 . 1 7 1 4 . 6 5 1 4 . 8 2 23 ISOT AD/NYM — 1 4 . 3 4 1 4 . 3 4 45 SCIA AD/NYM 8 . 6 7 4 . 1 7 1 2 . 8 3 46 DROS AD/NYM 1 2 . 5 0 0 . 1 7 1 2 . 6 7 17 LITH AD/NYM 0 . 3 3 1 1 . 3 4 1 1 . 6 7 4 6 SCIA LARVA — 1 1 . 6 6 1 1 . 6 6 41 H IST AD/NYM — 1 1 . 3 4 1 1 . 3 4 48 CERK AD/NYM 0 . 1 7 1 0 . 5 0 1 0 . 6 7 41 PHAL AD/NYM 1 . 0 0 9 . 6 7 1 0 . 6 7 48 SCEL PU»A — 8 . 5 0 8 . 5 0 46 PHOR AD/NYM 5 . 5 0 2 . 3 3 7 . 8 3 46 CECI AD/NYM 5 . 6 7 1 . 0 0 6 . 5 7 46 SPHA AD/NYM 4 . 1 7 2 . 5 0 6 . 6 7 41 STAP LARVA — 6 . 4 4 6 . 4 4 45 MICR PUPA 0 . 5 0 5 . 8 4 6 . 3 4 41 CARA AD/NYM 0 . 1 7 5 . 8 3 6 . 0 0 4 6 CECI PUPA 1.67 3.59 5 . 2 5 4 THOM AD/NYM 0 . 8 3 3 . 7 3 4 . 5 6 39 CERC AD/NYM 1 . 3 3 3 . 1 7 4 . 5 0 4 SALT AD/NYM 2 . 8 3 1 . 1 7 4 . 0 0 4 6 CHLO AD/NYM 3 . 8 3 0 . 1 7 4 . 0 0 39 DELP AD/NYM 1 . 0 9 2 . 8 6 3 . 8 6 48 MYMA AD/NYM 2 . 1 7 1 . 5 0 3 . 6 7 41 LATH LARVA — 3 . 5 9 3 . 5 9 46 CHIR LARVA — 3 . 5 9 3 . 5 9 41 CORY AD/NYM 0 . 1 7 3 . 1 7 3 . 3 3 46 DIPT PU® A 3 . 3 3 — 3 . 3 3 45 MICR AD/NYM 3 . 0 0 — 3 . 0 0 46 ANTX AD/NYM 3 . 0 0 — 3 . 0 0 3 4 PS EJ AD/NYM 0 . 1 7 2 . 6 9 2 . 8 6 41 CURC LARVA — 2 . 6 9 2 . 6 9 41 COLE PU® A 2 . 5 0 — 2 . 5 0 48 DIAP AD/NYM - 2 . 5 0 2 . 5 0 41 COCC LARVA 0 . 1 7 2 . 0 6 2 . 2 3 4 LINY AD/NYM 1 . 1 7 1 . 0 0 2 . 1 7 41 PSEL AD/NYM — 2 . 1 7 2 . 1 7 46 CHIR AD/NYM 2 . 1 7 — 2 . 1 7 4 8 CYNI AD/NYM 0 . 1 7 2 . 0 0 2 . 1 7 46 DOL I LARVA — 2 . 1 3 2 . 1 3 41 CJCU AD/NYM — 2 . 0 0 2 . 0 0 4 6 LAUX AD/NYM 2 . 0 0 — 2 . 0 0 48 BRAC AD/NYM 1 . 1 7 0 . 8 3 2 . 0 0 38 ANT J AD/NYM 0 . 8 3 1 . 0 6 1 . 9 9 4 ARAN AD/NYM 1 . 5 0 0 . 3 3 1 . 8 3 38 NABI AD/NYM 0 . 1 7 1 . 6 7 1 . 8 3 4 8 PTER AD/NYM 1 . 5 0 0 . 3 3 1 . 8 3 4 6 SCIA PUPA — 1 . 7 9 1 . 7 9 38 MI RI AD/NYM 0 . 6 7 1 . 0 6 U 73 41 LAMP LARVA — 1 . 6 7 1 . 6 7 4 8 PLAT AD/NYM 1 . 1 7 0 . 5 0 1 . 6 7 2 PHAJ AD/NYM 1 . 1 7 0 . 3 3 1 . 5 0 352 TABLE 19. CONTINUED. PERI3D=l-8 SEPTEMBER 1979 AREA=CV ------

ORDER FAMILY LIFEFORM HDEN LDEN DENSITY

48 APHE AD/NYM 0 . 5 0 1 . 0 0 1 . 5 0 38 PENT AD/NYM 1 . 0 0 0 . 5 0 1 . 5 0 48 HYME PUPA 0 . 1 7 1 . 2 3 1 . 4 0 8 POLY AD/NYM — 1 . 3 3 1 .3 3 4 CL JB AD/NYM 0 . 6 7 0 . 5 0 1 . 1 7 28 GRYK AD/NYM 0 . 8 3 0 . 3 3 1 . 1 7 41 CHRY AD/NYM 0 . 6 7 0 . 5 0 1 . 1 7 48 EUPE AD/NYM 0 . 3 3 0 . 8 3 1 . 1 7 41 COCC AD/NYM 0 . 8 3 0 . 1 7 1 . 0 0 40 CHRJ LARVA — 0 . 9 0 0 . 9 0 41 MORD LARVA — 0 . 9 0 0 . 9 0 41 N IT I LARVA — 0 . 9 0 0 . 9 0 48 ENCY AD/NYM 0 . 8 3 — 0 . 8 3 28 ACRI AD/NYM 0 . 6 7 — 0 . 6 7 48 EUL3 AD/NYM 0 . 3 3 0 . 3 3 0 . 6 7 9 CLEI AD/NYM — 0 . 5 0 0 . 5 0 10 BLAN AD/NYM — 0 . 5 0 0 . 5 0 41 PHAL PU3 A 0 . 3 3 0 . 1 7 0 . 5 0 46 EPHY AO/NYM 0 . 5 0 — 0 . 5 0 28 TETT AD/NYM 0 . 3 3 — 0 . 3 3 37 ALEO AD/NYM 0 . 3 3 — 0 . 3 3 41 CANT LARVA — 0 . 3 3 0 . 3 3 41 CHRY LARVA — 0 . 3 3 0 . 3 3 41 C JC J LARVA 0 . 1 7 0 . 1 7 0 . 3 3 45 GEOM LARVA 0 . 3 3 — 0 . 3 3 46 CER3 AD/NYM 0 . 3 3 — 0 . 3 3 46 C'JLI AD/NYM 0 . 3 3 — 0 . 3 3 46 SARC AD/NYM — 0 . 3 3 0 . 3 3 46 SCHO LARVA — 0 . 3 3 0 . 3 3 48 HAL I AD/NYM 0 . 3 3 — 0 . 3 3 48 ICHN AD/NYM 0 . 1 7 0 . 1 7 0 . 3 3 48 TRI J AD/NYM 0 . 1 7 0 . 1 7 0 . 3 3 4 ARAJ AD/NYM 0 . 1 7 — 0 . 1 7 10 PARA AD/NYM — 0 . 1 7 0 . 1 7 19 GEOP AD/NYM — 0 . 1 7 0 . 1 7 38 LYGA AD/NYM - 0 . 1 7 0 . 1 7 38 TINS AD/NYM — 0 . 1 7 0 . 1 7 39 ALEY AD/NYM 0 . 1 7 — 0 . 1 7 39 APHI AD/NYM 0 . 1 7 — 0 . 1 7 39 IS S I AD/NYM — 0 . 1 7 0 . 1 7 41 CLER LARVA - 0 . 1 7 0 . 1 7 41 ELAT AD/NYM — 0 . 1 7 0 . 1 7 41 ELAT LARVA — 0 . 1 7 0 . 1 7 41 SCAR LARVA — 0 . 1 7 0 . 1 7 45 COL J LARVA — 0 . 1 7 0 . 1 7 4 6 AGRO AD/NYM 0 . 1 7 — 0 . 1 7 46 ANT V AD/NYM 0 . 1 7 — 0 . 1 7 46 EMPI AD/NYM — 0 . 1 7 0 . 1 7 46 MUSC AD/NYM 0 . 1 7 — 0 . 1 7 46 PHOR P U3 A — 0 . 1 7 0 . 17 46 TACK AD/NYM — 0 . 1 7 0 . 1 7 48 DRY I AD/NYM - 0 . 1 7 0 . 1 7 48 EllRY AD/NYM - 0 . 1 7 0 . 1 7

------PERIOD =1-8 SEPTEMBER 1979 AREA=OF ------

ORDER FAMILY LIFEFORM HDEN LDEN DENSITY

39 CQCJ AD/NYM 1 9 . 6 7 4 9 4 . 8 9 5 1 4 . 5 6 23 ENTO AD/NYM 174.00 195.61 3 6 9 .6 1 48 FORM AD/NYM 4 8 . 3 3 2 3 1 . 3 4 2 7 9 . 6 7 4 6 CECI LARVA 15.33 179.31 1 9 4 . 6 4 39 CICA AD/NYM 1 1 8 . 0 0 7 3 . 0 9 1 9 1 . 0 9 23 ISOT AD/NYM I . 00 1 3 8 . 0 7 1 3 9 .0 7 23 HYPO AD/NYM 0 . 6 7 9 8 . 6 2 9 9 . 2 9 352 TABLE 1 9 . CONTINUED.

------PERIOD =1-8 SEPTEMBER 1979 AREA=OF ------

ORDER FAMILY LIFEFORM HDEN LDEN DENSITY

37 THRI AD/NYM 1 9 . 6 7 6 8 . 1 4 8 7 . 8 0 22 PROT AD/ NYM 0 . 3 3 7 8 . 9 0 7 9 . 2 3 4 LINY AD/NYM 2 3 . 6 7 3 0 . 4 3 5 4 . 1 0 48 SCEL AD/NYM 1 2 . 3 3 3 4 . 3 3 4 6 . 6 7 46 SCIA LARVA 0 . 3 3 3 2 . 2 8 3 2 .6 1 45 MICR LARVA 4 . 3 3 2 7 . 7 7 3 2 . 1 0 46 8 1 BI LARVA D. 33 3 1 . 0 1 3 1 . 3 4 38 LYGA AD/NYM 3 . 6 7 2 7 . 1 3 3 0 . 7 9 23 ONYC AD/NYM 3 . 6 7 2 6 . 9 0 3 0 . 5 6 9 CLEI AD/NYM 0 . 6 7 2 7 . 0 1 2 7 . 6 7 39 APHI AD/NYM 2 . 3 3 2 5 . 1 0 2 7 . 4 4 46 EMPI LARVA — 2 5 . 4 4 2 5 . 4 4 8 POLY AD/NYM 3 . 6 7 2 0 . 6 7 2 4 . 3 4 10 JU LI AD/NYM 0 . 3 3 2 2 . 6 7 2 3 .0 1 I NEDB AD/NYM — 2 1 . 5 2 2 1 . 5 2 41 CHRY LARVA 3 . 3 3 1 7 . 8 0 2 1 . 1 4 48 PLAT AD/NYM 1 6 . 0 0 4 . 6 7 2 0 . 6 7 37 PHLO AD/NYM 1 1 . 6 7 8 . 9 7 2 0 . 6 3 4 THER AD/NYM 1 2 . 6 7 7 . 1 7 1 9 . 8 4 41 LANG AD/NYM — 1 9 . 6 7 1 9 . 6 7 41 CHRY AD/NYM 3 . 6 7 1 6 . 0 0 1 9 . 6 7 41 CJCJ AD/NYM — 1 8 . 0 1 1 8 .0 1 45 NOCT LARVA 0 . 3 3 1 7 . 4 3 1 7 . 7 6 48 HYME PUPA 0 . 6 7 1 7 . 0 1 1 7 . 6 7 46 SCIA AD/NYM 9 . 0 0 7 . 6 7 1 6 . 6 7 24 j a p y AD/NYM - 1 6 . 1 4 1 6 . 1 4 48 CERK AD/NYM 5 . 3 3 1 0 . 6 7 1 6 . 0 0 23 SMIN AD/NYM 6 . 3 3 8 . 9 7 1 5 . 3 0 38 TING AD/NYM 5.00 9.51 14.51 41 STAP AD/NYM — 1 3 . 6 7 1 3 . 6 7 41 CJRC AD/NYM 3 . 6 7 9 . 3 3 1 3 . 0 0 41 SCYD AD/NYM — 1 3 . 0 0 1 3 . 0 0 41 CANT LARVA — 1 2 . 3 8 1 2 . 3 8 48 EUL3 AD/NYM 1 0 . 3 3 2 . 0 0 1 2 . 3 3 4 LYCO AD/NYM 4 . 3 3 7 . 0 0 1 1 . 3 3 46 CECI AD/NYM 8 . 6 7 2 . 3 3 1 1 .0 0 46 CHIR LARVA — 1 0 . 7 6 1 0 . 7 6 46 SCIA PUPA 3 . 3 3 7 . 1 7 1 0 .5 1 4 ANYP AD/NYM 1 0 . 0 0 — 1 0 . 0 0 4 SALT AD/NYM 4 . 0 0 5 . 2 5 9 . 2 5 48 TENT LARVA 0 . 3 3 6 . 6 7 7 . 0 0 41 LATH AD/NYM 3 . 6 7 2 . 6 7 6 . 3 3 4 CLUB AD/NYM 4 . 6 7 1 . 3 3 6 . 0 0 39 CERC AD/NYM 2 . 0 0 3 . 9 2 5 . 9 2 39 DELP AD/NYM 3 . 3 3 2 . 1 3 5 . 46 48 FORM LARVA - 5 . 3 8 5 . 3 8 41 ELAT LARVA — 4 . 7 9 4 . 7 9 41 PHAL AD/NYM 0 . 3 3 4 . 3 3 4 . 6 7 4 THOM AD/NYM I . 00 3 . 3 3 4 . 3 3 17 LITH AD/NYM — 4 . 3 3 4 . 3 3 48 MYMA AD/NYM 4 . 3 3 — 4 . 3 3 5 PORC AD/NYM — 4 . 0 0 4 . 0 0 28 GRYK AD/NYM 3 . 6 7 0 . 3 3 4 . 0 0 41 HELD AD/NYM - 4 . 0 0 4 . 0 0 46 PHOR AD/NYM 3 . 0 0 1 . 0 0 4 . 0 0 39 CIX I AD/NYM 0 . 3 3 3 . 5 9 3 . 9 2 45 MICR AD/NYM 3 . 3 3 — 3 . 3 3 39 ALEY AD/NYM 3 . 0 0 — 3 . 0 0 41 CARA AD/NYM - 3 . 0 0 3 . 0 0 43 PANO LARVA — 3 . 0 0 3 . 0 0 46 CHLO AD/NYM 2 . 6 7 0 . 3 3 3 . 0 0 18 CRYX AD/NYM — 2 . 7 9 2 . 7 9 41 PTIJ LARVA — 2 . 7 9 2 . 7 9 46 CHIR AD/NYM 2 . 5 7 — 2 . 6 7 41 ALLE LARVA — 2 . 4 6 2 . 4 6 41 CLER LARVA 0 . 6 7 1 . 7 9 2 . 4 6 TABLE 1 9 . CONTINJED. 354 . 1 —O CCBTCU o c o r n n Jtricnoca 1719 Al\a d c i c HC ___

ORDER FAMILY LIFEFORM HDEN LDEN DENSITY

41 CJRC LARVA 2 . 1 3 2 . 1 3 it OXYD AD/NYM 1 . 6 7 0 . 3 3 2 . 0 0 It 6 ANTX AD/NYM 2 . 0 0 — 2 . 0 0 * 8 APHE AD/NYM 1 . 0 0 1 . 0 0 2 . 0 0 46 CECI PUPA 1 . 7 9 1 . 7 9 46 DDL I LARVA — 1 . 7 9 1 . 7 9 46 SCHA LARVA — 1 . 7 9 1 . 7 9 4 6 THE J LARVA — 1 . 7 9 1 . 7 9 46 TI PU LARVA — 1 . 7 9 1 . 7 9 3 4 PSEJ AD/NYM 1 . 6 7 — 1 . 6 7 46 SPHA AD/NYM 1 . 6 7 — 1 . 6 7 48 BRAC AD/NYM 1 . 6 7 — 1 . 6 7 it ARAN AD/NYM 0 . 6 7 0 . 6 7 1 . 3 3 4 CTEJ AD/NYM 1 . 3 3 — 1 . 3 3 8 XYST AD/NYM — 1 . 3 3 1 . 3 3 3 8 REDD AD/NYM 0 . 3 3 1 . 0 0 1 . 3 3 41 LAMP LARVA — 1 . 3 3 1 . 3 3 46 CER9 AD/NYM 1 . 3 3 — 1 . 3 3 46 MYCJ AD/NYM 1 . 0 0 0 . 3 3 1 . 3 3 48 ENCY AD/NYM 1 . 0 0 0 . 3 3 1 . 3 3 19 GEOP AD/NYM — 1 . 0 0 1 . 0 0 41 COCC AD/NYM 0 . 3 3 0 . 6 7 1 . 0 0 46 DDL I AD/NYM 1 . 0 0 — 1 . 0 0 46 MUSC AD/NYM 1 . 0 0 — 1 . 0 0 48 DIAP AD/NYM — 1 . 0 0 I . 00 48 ICHN AD/NYM 0 . 3 3 0 . 6 7 1 . 0 0 48 PTER AD/NYM 1 . 0 0 — 1 . 0 0 itQ TRIJ AD/NYM — 1 . 0 0 1 . 0 0 2 PHAJ AD/NYM 0 . 3 3 0 . 3 3 0 . 6 7 9 ABAC AD/NYM — 0 . 6 7 0 . 6 7 28 BLAT AD/NYM — 0 . 6 7 0 . 6 7 38 CYDN AD/NYM — 0 . 6 7 0 . 6 7 38 PENT AD/NYM 0 . 6 7 — 0 . 6 7 39 MEMB AD/NYM 0 . 3 3 0 . 3 3 0 . 6 7 41 HIST AD/ NYM — 0 . 6 7 0 . 6 7 41 PSEL AD/NYM — 0 . 6 7 0 . 6 7 41 STAP LARVA 0 . 3 3 0 . 3 3 0 . 6 7 45 ARCT LARVA 0 . 3 3 0 . 3 3 0 . 6 7 45 GEQM LARVA — 0 . 6 7 0 . 6 7 46 ACAB AD/NYM 0 . 6 7 — 0 . 6 7 46 EPHY AD/NYM 0 . 6 7 — 0 . 6 7 46 SYRP AD/NYM 0 . 6 7 — 0 . 6 7 48 BETH AD/NYM 0 . 3 3 0 . 3 3 0 . 6 7 48 EUPE AD/NYM 0 . 6 7 — 0 . 6 7 28 TETR AD/NYM — 0 . 3 3 0 . 3 3 38 CORI AD/NYM — 0 . 3 3 0 . 3 3 38 MIRI AD/NYM 0 . 3 3 — 0 . 3 3 38 NABI AD/NYM 0 . 3 3 — 0 . 3 3 39 ISSI AD/NYM 0 . 3 3 — 0 . 3 3 41 CARA LARVA — 0 . 3 3 0 . 3 3 41 COLB LARVA 0 . 3 3 — 0 . 3 3 41 LAGR LARVA — 0 . 3 3 0 . 3 3 41 LEI 0 AD/NYM — 0 . 3 3 0 . 3 3 41 RHIP AD/NYM — 0 . 3 3 0 . 3 3 41 TENE LARVA — 0 . 3 3 0 . 3 3 45 HESP LARVA 0 . 3 3 — 0 . 3 3 45 NOCT AD/NYM 0 . 3 3 — 0 . 3 3 45 NOCT PUPA — 0 . 3 3 0 . 3 3 46 AGRO AD/NYM 0 . 3 3 — 0 . 3 3 46 CALL AD/NYM 0 . 3 3 — 0 . 3 3 4 6 TACK AD/NYM 0 . 3 3 — 0 . 3 3 48 APID AD/NYM 0 . 3 3 — 0 . 3 3 48 BRAC PUPA 0 . 3 3 — 0 . 3 3 48 HALI AD/NYM 0 . 3 3 — 0 . 3 3 48 ICHN PU® A 0 . 3 3 — 0 . 3 3 4 8 MEGJ AD/NYM — 0 . 3 3 0 . 3 3 TABLE 19. CONTINJED. "■

------PERI 30=1-8 SEPTEMBER 1979 AREA=OF ------

ORDER FAMILY LIFEFORM HDEM LDEN DENSITY

* 8 PAMP LARVA 0 . 3 3 - 0 . 3 3

Refer to Table 17, Appendix E, for definition of codes.

^Density in the herbaceous layer.

cDensity in the litter layer.

^Total density (both layers). g Adults plus nymphs of non-holometabolous arthropods but adults only for holometabolous forms.