Integrative Microbiology —
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Infection and Immunity
INFECTION AND IMMUNITY VOLUME 56 0 JANUARY 1988 0 NUMBER 1 J. W. Shands, Jr., Editor in Chief Dexter H. Howard, Editor (1991) (1989) University of California University ofFlorida, Gainesville Peter F. Bonventre, Editor (1989) Los Angeles, Calif. Phillip J. Baker, Editor (1990) University of Cincinnati Stephen H. Leppla, Editor (1991) National Institute ofAllergy and Cincinnati, Ohio U.S. Army Medical Research Institute Infectious Diseases Roy Curtiss III, Editor (1990) of Infectious Diseases Bethesda, Md. Washington University Frederick, Md. Edwin H. Beachey, Editor (1988) St. Louis, Mo. Stephan E. Mergenhagen, Editor (1989) VA Medical Center National Institute ofDental Research Memphis, Tenn. Bethesda, Md. EDITORIAL BOARD Julia Albright (1989) Stanley Falkow (1988) Jerry R. McGhee (1988) Charles F. Schachtele (1988) Leonard t. Altman (1989) Joseph Ferretti (1989) Floyd C. McIntire (1988) Julius Schachter (1989) Michael A. Apicella (1988) Richard A. Finkelstein (1989) John Mekalanos (1989) Patrick Schlievert (1990) Neil R. Baker (1989) Vincent A. Fischetti (1989) Jiri Mestecky (1989) June R. Scott (1990) Alan Barbour (1989) David FitzGerald (1989) Suzanne M. Michalek (1989) Philip Scott (1988) John B. Bartlett (1988) Robert Fitzgerald (1989) David C. Morrison (1989) Gerald D. Shockman (1989) Joel B. Baseman (1988) James D. Folds (1988) Steven Mosely (1990) W. A. Simpson (1988) Robert E. Baughn (1990) Peter Gemski (1988) Antony J. Mukkada (1990) Phillip D. Smith (1988) Gary K. Best (1988) Robert Genco (1988) Robert S. Munford (1989) Ralph Snyderman (1988) Jenefer Blackwell (1988) Ronald J. Gibbons (1988) Juneann W. Murphy (1990) Maggie So (1989) Arnold S. Bleiweis (1990) Jon Goguen (1989) H. Nikaido (1989) P. Frederick Sparling (1990) William H. -
CURRICULUM VITAE George M. Weinstock, Ph.D
CURRICULUM VITAE George M. Weinstock, Ph.D. DATE September 26, 2014 BIRTHDATE February 6, 1949 CITIZENSHIP USA ADDRESS The Jackson Laboratory for Genomic Medicine 10 Discovery Drive Farmington, CT 06032 [email protected] phone: 860-837-2420 PRESENT POSITION Associate Director for Microbial Genomics Professor Jackson Laboratory for Genomic Medicine UNDERGRADUATE 1966-1967 Washington University EDUCATION 1967-1970 University of Michigan 1970 B.S. (with distinction) Biophysics, Univ. Mich. GRADUATE 1970-1977 PHS Predoctoral Trainee, Dept. Biology, EDUCATION Mass. Institute of Technology, Cambridge, MA 1977 Ph.D., Advisor: David Botstein Thesis title: Genetic and physical studies of bacteriophage P22 genomes containing translocatable drug resistance elements. POSTDOCTORAL 1977-1980 Postdoctoral Fellow, Department of Biochemistry TRAINING Stanford University Medical School, Stanford, CA. Advisor: Dr. I. Robert Lehman. ACADEMIC POSITIONS/EMPLOYMENT/EXPERIENCE 1980-1981 Staff Scientist, Molec. Gen. Section, NCI-Frederick Cancer Research Facility, Frederick, MD 1981-1983 Staff Scientist, Laboratory of Genetics and Recombinant DNA, NCI-Frederick Cancer Research Facility, Frederick, MD 1981-1984 Adjunct Associate Professor, Department of Biological Sciences, University of Maryland, Baltimore County, Catonsville, MD 1983-1984 Senior Scientist and Head, DNA Metabolism Section, Lab. Genetics and Recombinant DNA, NCI-Frederick Cancer Research Facility, Frederick, MD 1984-1990 Associate Professor with tenure (1985) Department of Biochemistry -
Mutation Rates of Escherichia Coli with Different Balanced Growth Rates: a New Fluctuation Test Protocol and Phenotypic Lag Adju
Mutation rates of Escherichia coli with different balanced growth rates: a new fluctuation test protocol and phenotypic lag adjustments by Christian Terry Henderson Barna A thesis presented to the University of Waterloo in fulfilment of the thesis requirement for the degree of Master of Mathematics in Applied Mathematics Waterloo, Ontario, Canada, 2020 c Christian Terry Henderson Barna 2020 Author's Declaration I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners. I understand that my thesis may be made electronically available to the public. ii Abstract Bacteria are the oldest, most abundant life form on the planet, and every other organ- ism's livelihood is dependent on them. The bacteria Escherichia coli (E. coli) is commonly used in microbiology as a model organism to give insight into the functions of bacteria and cells in general. Of particular interest in these studies is the methods with which bacteria grow and evolve. Growth is what propagates a bacteria's species; whereas evolution is what allows them to adapt to the ever-changing world. Evolution is made possible by mutations which change a bacterium's DNA. In 1943, Luria and Delbr¨uck developed a method, called a “fluctuation test", to estimate mutation rates from the number of mutants in a collection of parallel cultures exposed to a selecting agent after growth. The original fluctuation test methodology suffers from two major limitations. First, the bacteria are not in a re- producible, balanced state of growth throughout the test. -
Antimicrobial Resistance and the Role of Vaccines
PROGRAM ON THE GLOBAL DEMOGRAPHY OF AGING AT HARVARD UNIVERSITY Working Paper Series Antimicrobial Resistance and the Role of Vaccines David E. Bloom, Steven Black, David Salisbury, and Rino Rappuoli June 2019 PGDA Working Paper No. 170 http://www.hsph.harvard.edu/pgda/working/ Research reported in this publication was supported in part by the National Institute on Aging of the National Institutes of Health under Award Number P30AG024409. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. SPECIAL FEATURE: INTRODUCTION Antimicrobial resistance and the role of vaccines SPECIAL FEATURE: INTRODUCTION David E. Blooma, Steven Blackb, David Salisburyc, and Rino Rappuolid,e,1 Stanley Falkow (Fig. 1) dedicated his life’s work to being reported (6). These health consequences will the study of bacteria and infectious disease. He have damaging social and economic sequelae, such was a leader in the discovery of the mechanisms as lost productivity due to increased morbidity and of antibiotic resistance and among the first to mortality, and even social distancing, as fear of inter- recognize and raise the alarm about the problem of multidrug resistance. The articles of this Spe- personal contact grows. ’ cial Feature on Antimicrobial Resistance and the Although projections of AMR s future burden Role of Vaccines are dedicated to his memory depend on several assumptions and are therefore (Box 1). uncertain, the idea that the health and economic consequences of AMR will become significant is rea- Rising antimicrobial resistance (AMR) is one of the sonable. In 2014, the Review on Antimicrobial Resis- greatest health challenges the world currently faces. -
Microbiology Immunology Cent
years This booklet was created by Ashley T. Haase, MD, Regents Professor and Head of the Department of Microbiology and Immunology, with invaluable input from current and former faculty, students, and staff. Acknowledgements to Colleen O’Neill, Department Administrator, for editorial and research assistance; the ASM Center for the History of Microbiology and Erik Moore, University Archivist, for historical documents and photos; and Ryan Kueser and the Medical School Office of Communications & Marketing, for design and production assistance. UMN Microbiology & Immunology 2019 Centennial Introduction CELEBRATING A CENTURY OF MICROBIOLOGY & IMMUNOLOGY This brief history captures the last half century from the last history and features foundational ideas and individuals who played prominent roles through their scientific contributions and leadership in microbiology and immunology at the University of Minnesota since the founding of the University in 1851. 1. UMN Microbiology & Immunology 2019 Centennial Microbiology at Minnesota MICROBIOLOGY AT MINNESOTA Microbiology at Minnesota has been From the beginning, faculty have studied distinguished from the beginning by the bacteria, viruses, and fungi relevant to breadth of the microorganisms studied important infectious diseases, from and by the disciplines and sub-disciplines early studies of diphtheria and rabies, represented in the research and teaching of through poliomyelitis, streptococcal and the faculty. The Microbiology Department staphylococcal infection to the present itself, as an integral part of the Medical day, HIV/AIDS and co-morbidities, TB and School since the department’s inception cryptococcal infections, and influenza. in 1918-1919, has been distinguished Beyond medical microbiology, veterinary too by its breadth, serving historically microbiology, microbial physiology, as the organizational center for all industrial microbiology, environmental microbiological teaching and research microbiology and ecology, microbial for the whole University. -
The Era of Microbiology: a Golden Phoenix
RESEARCH REVIEW INTERNATIONAL MICROBIOLOGY (2006) 9:1–7 www.im.microbios.org Stanley Maloy* The era of microbiology: Moselio Schaechter a Golden Phoenix Center for Microbial Sciences, San Diego State University, San Diego, California, USA Summary. The discoveries over the last decade have demonstrated that micro- biology is a central scientific discipline with practical applications in agriculture, medicine, bioremediation, biotechnology, engineering, and other fields. It is clear that the roles of microbes in nature are so diverse that the process of mining this genetic variation for new applications will continue long into the future. Moreover, the rapid rate of microbial evolution ensures that there will be no permanent solu- tion to agricultural, medical, or environmental problems caused by microbes. These problems will demand a continual stream of creative new approaches that evolve along with the microbes. Thus, the excitement of this field will continue Received 10 January 2006 long into the future. However, these opportunities and imperatives demand a deep Accepted 6 February 2006 understanding of basic microbial physiology, genetics, and ecology. Major chal- *Corresponding author: lenges that lay ahead are to impart the broad training needed to entice and enable S. Maloy the next generation of microbiologists, and to educate the public and government Center for Microbial Sciences representatives about the continued and critical importance of this field for health San Diego State University and the economy. [Int Microbiol 2006; 9(1):1-7] 5500 Campanile Drive San Diego, CA 92182-4614, USA Tel. 1- 619-5947123. Fax 1- 619-5945676 Key words: development of microbiology · microbial ecology · microbial cell Email: [email protected] biology · integrative microbiology the natural environment, and to monitor the physiology of sin- Introduction gle cells under defined conditions. -
The NIH Human Microbiome Project Authors: the NIH HMP Working Group (
Downloaded from genome.cshlp.org on October 5, 2021 - Published by Cold Spring Harbor Laboratory Press The NIH Human Microbiome Project Authors: the NIH HMP Working Group (http://nihroadmap.nih.gov/hmp/members.asp) ABSTRACT: The Human Microbiome Project ( HMP), funded as an initiative of the NIH Roadmap for Biomedical Research (http://nihroadmap.nih.gov), is a multi-component community resource. The goals of the HMP are (1) to take advantage of new, high-throughput technologies to characterize the human microbiome more fully by studying samples from multiple body sites from each of at least 250 “normal” volunteers; (2) to determine whether there are associations between changes in the microbiome and health/disease by studying several different medical conditions; and (3) to provide both a standardized data resource and new technological approaches to enable such studies to be undertaken broadly in the scientific community. The ethical, legal, and social implications of such research are being systematically studied as well. The ultimate objective of the HMP is to demonstrate that there are opportunities to improve human health through monitoring or manipulation of the human microbiome. The history and implementation of this new program are described here. INTRODUCTION: It has been known for some time that the human body is inhabited by at least ten times more bacteria than the number of human cells in the body, and that the majority of those bacteria are found in the human gastrointestinal tract (Savage 1977). Throughout the history of microbiology, most human studies have focused on the disease-causing organisms found on or in people; fewer studies have examined the benefits of the resident bacteria. -
Affiliates Letter the Official Newsletter for FEMS Affiliates
ALSO IN THIS ISSUE PUBLICATIONS / GRANTS CORNER / FEMS MEMBERS / OPPORTUNITIES / DEADLINES AFFILIATES LETTER THE OFFICIAL NEWSLETTER FOR FEMS AFFILIATES Meet FEMS Delegate Don’t miss Anastasiya Sidarenka an update Dr. Anastasiya Sidarenka It seems miles away, but soon the is FEMS Delegate of the countdown for FEMS 2019 will will Belarussian Non-governmental begin. Don’t want to miss an update Association of Microbiologists. on everything the Congress has to As an experienced researcher offer? Then sign up now for the FEMS in the area of microbial Congress newsletter. physiology and genetics, she is the principle investigator on the projects aimed at molecular detection of plant pathogenic bacteria and fungi and application of microorganisms for plant protection from diseases. Her research interests also in- clude the study of human gut microbiota and microbiota of extreme Antarctic ecosystems. In 2017, the first time after a long stalemate period in the history of Be- larusian Microbiological Society (BNAM) organized the Congress of Mi- crobiologists of Belarus. This marker event rallied microbiologists from different parts of the country to discuss the current state and identify key trends for the development of microbiological science in Belarus, share successes and challenges facing members in their research work, consolidate the efforts for solving important public problems. BNAM has been a full Member of FEMS since 2010 and is currently led by a group of dedicated Belarussian scientists. We asked Dr Anastasiya Sidarenka what it means -
Biographical Notes on Scientists Involved in the Asilomar Process M.J
International Dimensions of Ethics Education in Science and Engineering Case Study Series: Asilomar Conference on Laboratory Precautions Appendix D: Biographical Notes on Scientists involved in the Asilomar Process M.J. Peterson Version 1, June 2010 Edward A. Adelberg (1920-2009). PhD Yale 1949. Chair of Yale Department of Microbiology 1961-64 and 1970-72; a founding member of Yale Department of Genetics. Deputy Provost for the Biomedical Sciences, 1983-91. Specialist in plasmid biochemistry of E. coli. Ephraim Anderson (1911-2006). M.D., Durham University. Served in the Royal Army Medical Corps during World War II where he developed interests in Epidemiology. Researcher in Enteric Laboratory of the British Public Health Laboratory Service 1947, Deputy Director 1952, Director 1954-1978. Came to public notice for tracing sources of typhoid outbreaks in Zermatt (1963) and Aberdeen (1964). Built on earlier work by Japanese researchers to demonstrate the plasmid-based pathways by which bacteria could spread antibiotic resistance to others and became the world’s leading expert on antibiotic resistance. Also prominent in efforts to limit use of antibiotics in raising animals. Fellow of the Royal Society 1968; Companion of the Order of the British Empire 1976. Eric Ashby, Baron Ashby (1904-1992). Lecturer in Botany, Imperial College London 1931-35; Reader in Botany Bristol University 1935-37; Professor of Botany University of Sydney 1938-1946; Chair of Botany, University of Manchester 1947-50. Turned to administration as President and Vice-Chancellor of Queen's University, Belfast 1950-59; Master of Clare College in Cambridge University 1959-67 and Vice-Chancellor of Cambridge University 1967-1969. -
Honoring the Fundamental Role of Microbes in the Natural History of Our Planet 30 May 2012
Honoring the fundamental role of microbes in the natural history of our planet 30 May 2012 Inspired by a 2009 colloquium on microbial personal style. Consequently, this book is not only evolution convened at the Galapagos Islands, a highly informative, but a great deal of fun to read. new book from ASM Press, Microbes and About half of them had something to say about Evolution: The World That Darwin Never Saw Darwin; the other half, what Darwin would have celebrates Charles Darwin and his landmark said about them," says Moselio Schaechter, publication On the Origin of Species. The editors distinguished professor emeritus, Tufts University compiled 40 first-person essays, written by School of Medicine; adjunct professor emeritus, microbiologists with a passion for evolutionary Department of Biology, San Diego State University; biology, to illuminate how each scientist's thinking and, visiting scholar, University of California at San and career paths in science were influenced by Diego. Darwin's seminal work. Richard Losick, Maria Moors Cabot Professor, at Intended for a general audience, Microbes and Harvard University, describes Microbes and Evolution explores how the evidence of microbial Evolution as "A breathtaking range of topics are evolution deeply and personally affected each woven together under a common theme that takes scientist. Readers can expect to be surprised and the reader from the origin of microbial life to its delighted with these intimate viewpoints on the diversity, from mutualism and competition to efforts importance of evolutionary principles in the study to recapitulate evolution, from the diversity of of a variety of aspects of life science, from bacterial viruses to 'the smallest and most taxonomy, speciation, adaptation, social structure, abundant microorganism in the ocean.'" and symbiosis to antibiotic resistance, genetics, and genomics. -
Nature Medicine Essay
LASKER~KOSHLAND SPECIAL ACHIEVEMENT IN MEDICAL SCIENCE AWARD COMMENTARY I never met a microbe I didn’t like Stanley Falkow At the age of 11, I read Paul de Kruif’s Microbe Hunters, which dramatized the discovery of bacteria and viruses and their roles in human disease. The heroes of Microbe Hunters—Louis Pasteur, Robert Koch and others—became my heroes, and I dreamed of becoming a bacte- riologist, doing research on the bacteria that cause disease. I was lucky enough to fulfill my boyhood dream; however, I could never have imagined the path I eventually followed, or how much my views of microbes and disease would change (and continue to do so) in the process. Of course, I did not make this journey alone. During the five decades I worked as an active scientist, I helped train over 100 graduate Figure 1 Lab alumni reunion in 2004, Falkow/Tompkins home, Hamilton, Montana, USA. Photo students, postdoctoral fellows and clinical fel- courtesy of Manuel Amieva. lows, and collaborated with 75 other scientists (Fig. 1). Each of us, in our own way, wondered, Professor Herman Chase, a mouse geneticist, nicity. I was unable to transfer any gene from “What is a pathogen?” thought about my question and announced Salmonella or Shigella that altered the measur- that he had just the book to start me on my able pathogenicity or host range of another Entering the genetic and molecular world voyage, the just-published compilation The Salmonella species, or that made E. coli K-12 I was a hospital bacteriologist and an autopsy Chemical Basis of Heredity1. -
The Ways of Microbes
In the Company of Microbes Ten Years of Small Things Considered Elio Schaechter Artwork by Judith Schaechter In the Company of Microbes Ten Years of Small Things Considered Washington, DC Copyright © 2016 American Society for Microbiology. All rights reserved. No part of this publication may be reproduced or transmitted in whole or in part or reused in any form or by any means, electronic or mechanical, including photocopying and recording, or by any information storage and retrieval system, without permission in writing from the publisher. Disclaimer: To the best of the publisher’s knowledge, this publication provides information concerning the subject matter covered that is accurate as of the date of publication. The publisher is not providing legal, medical, or other professional services. Any reference herein to any specific commercial products, procedures, or services by trade name, trademark, manufacturer, or otherwise does not constitute or imply endorsement, recommendation, or favored status by the American Soci- ety for Microbiology (ASM). The views and opinions of the author(s) expressed in this publication do not necessarily state or reflect those of ASM, and they shall not be used to advertise or endorse any product. Library of Congress Cataloging-in-Publication Data Names: Schaechter, Moselio, editor. | Schaechter, Judith, 1961- illustrator. Title: In the company of microbes : ten years of Small Things Considered / edited by Elio Schaechter ; artwork by Judith Schaechter. Description: Washington, DC : ASM Press, [2016] | ?2016 | Includes bibliographical references. Identifiers: LCCN 2016011177 | ISBN 9781555819590 (pbk.) Subjects: LCSH: Microbiology–Blogs. | Microorganisms–Blogs. Classification: LCC QR56 .I5 2016 | DDC 576--dc23 LC record available at http://lccn.loc.gov/2016011177 10 9 8 7 6 5 4 3 2 1 All Rights Reserved Printed in the United States of America Address editorial correspondence to ASM Press, 1752 N St., N.W., Washington, DC 20036-2904, USA Send orders to ASM Press, P.O.