Combined Film Catalog, 1972, United States Atomic Energy
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
小型飛翔体/海外 [Format 2] Technical Catalog Category
小型飛翔体/海外 [Format 2] Technical Catalog Category Airborne contamination sensor Title Depth Evaluation of Entrained Products (DEEP) Proposed by Create Technologies Ltd & Costain Group PLC 1.DEEP is a sensor analysis software for analysing contamination. DEEP can distinguish between surface contamination and internal / absorbed contamination. The software measures contamination depth by analysing distortions in the gamma spectrum. The method can be applied to data gathered using any spectrometer. Because DEEP provides a means of discriminating surface contamination from other radiation sources, DEEP can be used to provide an estimate of surface contamination without physical sampling. DEEP is a real-time method which enables the user to generate a large number of rapid contamination assessments- this data is complementary to physical samples, providing a sound basis for extrapolation from point samples. It also helps identify anomalies enabling targeted sampling startegies. DEEP is compatible with small airborne spectrometer/ processor combinations, such as that proposed by the ARM-U project – please refer to the ARM-U proposal for more details of the air vehicle. Figure 1: DEEP system core components are small, light, low power and can be integrated via USB, serial or Ethernet interfaces. 小型飛翔体/海外 Figure 2: DEEP prototype software 2.Past experience (plants in Japan, overseas plant, applications in other industries, etc) Create technologies is a specialist R&D firm with a focus on imaging and sensing in the nuclear industry. Createc has developed and delivered several novel nuclear technologies, including the N-Visage gamma camera system. Costainis a leading UK construction and civil engineering firm with almost 150 years of history. -
British Poetry of the Long Nineteenth Century
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Zea E-Books Zea E-Books 12-1-2019 British Poetry of the Long Nineteenth Century Beverley Rilett University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/zeabook Part of the Literature in English, British Isles Commons Recommended Citation Rilett, Beverley, "British Poetry of the Long Nineteenth Century" (2019). Zea E-Books. 81. https://digitalcommons.unl.edu/zeabook/81 This Book is brought to you for free and open access by the Zea E-Books at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Zea E-Books by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. British Poetry of the Long Nineteenth Century A Selection for College Students Edited by Beverley Park Rilett, PhD. CHARLOTTE SMITH WILLIAM BLAKE WILLIAM WORDSWORTH SAMUEL TAYLOR COLERIDGE GEORGE GORDON BYRON PERCY BYSSHE SHELLEY JOHN KEATS ELIZABETH BARRETT BROWNING ALFRED TENNYSON ROBERT BROWNING EMILY BRONTË GEORGE ELIOT MATTHEW ARNOLD GEORGE MEREDITH DANTE GABRIEL ROSSETTI CHRISTINA ROSSETTI OSCAR WILDE MARY ELIZABETH COLERIDGE ZEA BOOKS LINCOLN, NEBRASKA ISBN 978-1-60962-163-6 DOI 10.32873/UNL.DC.ZEA.1096 British Poetry of the Long Nineteenth Century A Selection for College Students Edited by Beverley Park Rilett, PhD. University of Nebraska —Lincoln Zea Books Lincoln, Nebraska Collection, notes, preface, and biographical sketches copyright © 2017 by Beverly Park Rilett. All poetry and images reproduced in this volume are in the public domain. ISBN: 978-1-60962-163-6 doi 10.32873/unl.dc.zea.1096 Cover image: The Lady of Shalott by John William Waterhouse, 1888 Zea Books are published by the University of Nebraska–Lincoln Libraries. -
SUNSCREEN FILM FESTIVAL 2016 , |FL1 SECTION SECTION SECTION SECTION Table of TABLE OF
11 th ANNUAL SECTION SECTION CONTENT sunscreenCONTENT FILM FESTIVAL Presented by 2016 PROGRAM GUIDE SOUTH BAY - LOS ANGELES April 28 - May 1 ST. PETERSBURGSUNSCREEN FILM FESTIVAL 2016 , |FL1 SECTION SECTION SECTION SECTION Table of OF TABLE WHEN ALL OF YOU GET CONTENTS CONTENT BIG AND FAMOUS AND CONTENTS Welcome 4 CONTENT Box Office Information 5 Box Offices GO TO HOLLYWOOD Tickets & Passes Special Events Workshops PARTIES AND DRIVE Awards Ceremony & After Party AD Festival Schedule 6 - 7 Workshops & Panels 8 - 10 FLASHY CARS, Special Events Schedule 12 Opening Night Gala 13 Celebrity Guests 14 JUSTPAGE REMEMBER, Special Guests 15 - 20 Film Info and Schedule 22 - 48 Thursday • April 28 23 • 24 YOU’LL GET MORE FOR Friday • April 29 25 • 31 Saturday • April 30 32 • 40 YOUR MOVIE HERE. Sundauy • May 1 41 • 47 Sponsors 49 - 51 Get more for your movie here. PROUD SPONSOR OF THE SUNSCREEN FILM FESTIVAL 2 SUNSCREEN FILM FESTIVAL 2016 | 3 Sunscreen Film Festival ad 5x8.indd 1 4/7/2016 4:24:18 PM BOX OFFICE INFORMATION BOX OFFICE Regular Box Office opens Thursday, April 28 at the primary venue: American Stage, 163 3rd Street, North., St. Petersburg, Florida 33701. WELCOME BOX OFFICES INFORMATION Online Book tickets anytime day or night! Visit our website: www.SunscreenFilmFestival.com Festival Office American Stage. 163 3rd Street, North., St. Petersburg, Florida 33701 SOUTH BAY - LOS ANGELES Telephone Call (727) 259-8417 • Hours: 9:00 am - 5:00 pm • Monday - Sunday Visa and Mastercard, AMEX, Discover accepted at box office (at door) and Paypal accepted for advanced, online tickets and pass purchases. -
Models of the Atomic Nucleus
Models of the Atomic Nucleus Second Edition Norman D. Cook Models of the Atomic Nucleus Unification Through a Lattice of Nucleons Second Edition 123 Prof. Norman D. Cook Kansai University Dept. Informatics 569 Takatsuki, Osaka Japan [email protected] Additional material to this book can be downloaded from http://extras.springer.com. ISBN 978-3-642-14736-4 e-ISBN 978-3-642-14737-1 DOI 10.1007/978-3-642-14737-1 Springer Heidelberg Dordrecht London New York Library of Congress Control Number: 2010936431 © Springer-Verlag Berlin Heidelberg 2006, 2010 This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law. The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Cover design: WMXDesign GmbH, Heidelberg Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) Preface to the Second Edition Already by the 1970s, some theorists had declared that nuclear structure physics was a “closed chapter” in science, but since then it has repeatedly been found necessary to re-open this closed chapter to address old problems and to explain new phenom- ena. -
Fuel Geometry Options for a Moderated Low-Enriched Uranium Kilowatt-Class Space Nuclear Reactor T ⁎ Leonardo De Holanda Mencarinia,B,Jeffrey C
Nuclear Engineering and Design 340 (2018) 122–132 Contents lists available at ScienceDirect Nuclear Engineering and Design journal homepage: www.elsevier.com/locate/nucengdes Fuel geometry options for a moderated low-enriched uranium kilowatt-class space nuclear reactor T ⁎ Leonardo de Holanda Mencarinia,b,Jeffrey C. Kinga, a Nuclear Science and Engineering Program, Colorado School of Mines (CSM), 1500 Illinois St, Hill Hall, 80401 Golden, CO, USA b Subdivisão de Dados Nucleares - Instituto de Estudos Avançados (IEAv), Trevo Coronel Aviador José Alberto Albano do Amarante, n 1, 12228-001 São José dos Campos, SP, Brazil ABSTRACT A LEU-fueled space reactor would avoid the security concerns inherent with Highly Enriched Uranium (HEU) fuel and could be attractive to signatory countries of the Non-Proliferation Treaty (NPT) or commercial interests. The HEU-fueled Kilowatt Reactor Using Stirling Technology (KRUSTY) serves as a basis for a similar reactor fueled with LEU fuel. Based on MCNP6™ neutronics performance estimates, the size of a 5 kWe reactor fueled with 19.75 wt% enriched uranium-10 wt% molybdenum alloy fuel is adjusted to match the excess reactivity of KRUSTY. Then, zirconium hydride moderator is added to the core in four different configurations (a homogeneous fuel/moderator mixture and spherical, disc, and helical fuel geometries) to reduce the mass of uranium required to produce the same excess reactivity, decreasing the size of the reactor. The lowest mass reactor with a given moderator represents a balance between the reflector thickness and core diameter needed to maintain the multiplication factor equal to 1.035, with a H/D ratio of 1.81. -
Preparing for Nuclear Waste Transportation
Preparing for Nuclear Waste Transportation Technical Issues that Need to Be Addressed in Preparing for a Nationwide Effort to Transport Spent Nuclear Fuel and High-Level Radioactive Waste A Report to the U.S. Congress and the Secretary of Energy September 2019 U.S. Nuclear Waste Technical Review Board This page intentionally left blank. U.S. Nuclear Waste Technical Review Board Preparing for Nuclear Waste Transportation Technical Issues That Need to Be Addressed in Preparing for a Nationwide Effort to Transport Spent Nuclear Fuel and High-Level Radioactive Waste A Report to the U.S. Congress and the Secretary of Energy September 2019 This page intentionally left blank. U.S. Nuclear Waste Technical Review Board Jean M. Bahr, Ph.D., Chair University of Wisconsin, Madison, Wisconsin Steven M. Becker, Ph.D. Old Dominion University, Norfolk, Virginia Susan L. Brantley, Ph.D. Pennsylvania State University, University Park, Pennsylvania Allen G. Croff, Nuclear Engineer, M.B.A. Vanderbilt University, Nashville, Tennessee Efi Foufoula-Georgiou, Ph.D. University of California Irvine, Irvine, California Tissa Illangasekare, Ph.D., P.E. Colorado School of Mines, Golden, Colorado Kenneth Lee Peddicord, Ph.D., P.E. Texas A&M University, College Station, Texas Paul J. Turinsky, Ph.D. North Carolina State University, Raleigh, North Carolina Mary Lou Zoback, Ph.D. Stanford University, Stanford, California Note: Dr. Linda Nozick of Cornell University served as a Board member from July 28, 2011, to May 9, 2019. During that time, Dr. Nozick provided valuable contributions to this report. iii This page intentionally left blank. U.S. Nuclear Waste Technical Review Board Staff Executive Staff Nigel Mote Executive Director Neysa Slater-Chandler Director of Administration Senior Professional Staff* Bret W. -
Compliance Investigation Report, Volume 1
70-820 UNC RECOVERY SYSTEMS COMPLIANCE INVESTIGATION REPORT VOLTIJE 1 - REPORT DETAILS Rvec'd wf ltr dtd 8J14/64 _/| 1 THEATTACHED FILES ARE OFFICIAL RECORDS OF THE INFORMATION & REPORTS MANAGEMENT BRANCH. THEY HAVE BEEN CHARGED TO YOU FOR A LIMITED TIME PERIOD AND c MUST BE RETURNED TO THE RE- CORDS & ARCHIVES SERVICES SEC- TION P1-22 WHITE FLINT. PLEASE DO NOT SEND DOCUMENTS CHARGED 5 OUT THROUGH THE MAIL. REMOVAL CD OF ANY PAGE(S) FROM DOCUMENT co FOR REPRODUCTION MUST BE RE- o FERRED TO FILE PERSONNEL. COMPLI.ANCE INVESTIGATION REPORT- o~is~nbf Compliae R~egion I ((3 S.ubject? UNITE-.D NUCLEAR CORPORATION4 Scrp_.eovery Facpi jo~olR ver'Junc pRhode Islaind Licen8e N~o.' SNH-777 Type ""casec CrttqjjcaSy Iictde~t: C5. teSo~IvsLaio tul : 25, .4t Auut7 1964 INN I ws-gt~nTa:WalteR~ ezi Ra04t~on Lot~i~ I p~~t'~'. wzmi 4pop ~~.; * t~41i Iny) goei-qU - I Vlue r RepQ0t Deal 7 - d~gk TABLE OF CONTENTS I Reason for Investigation 3 Criticality Investigation (Browne) ....................Page 1 Criticality Investigation (Crocker) ....................Page 27 1 (with attachments) Evaluation of Health Physics Program (Bresson) ........ Page 36 Decontamination Procedures (Lorenz)... ........ .. ....Page 59 Environmental Surveys (Brandkamp)..................... Page 65 Inquiry on Film Badge Evaluation (Knapp) .............. Page 76 Vehicle Survey (Knapp) ............................... Page 81 I Activities at Rhode Island Hospital (Resner) .......... Page 86 ' Activities in Exposure Evaluations (1kesner) ........... Page 103 I_ I.. l REASON FOR INVESTIGATION Initial telephone notification that there had been a criticality accident at a United Nuclear Corporation plant at about 6 p.m. was reportedly made by Mr. -
Appendix: Key Concepts and Vocabulary for Nuclear Energy
Appendix: Key Concepts and Vocabulary for Nuclear Energy The likelihood of fission depends on, among other Power Plant things, the energy of the incoming neutron. Some In most power plants around the world, heat, usually nuclei can undergo fission even when hit by a low- produced in the form of steam, is converted to energy neutron. Such elements are called fissile. electricity. The heat could come through the burning The most important fissile nuclides are the uranium of coal or natural gas, in the case of fossil-fueled isotopes, uranium-235 and uranium-233, and the power plants, or the fission of uranium or plutonium plutonium isotope, plutonium-239. Isotopes are nuclei. The rate of electrical power production in variants of the same chemical element that have these power plants is usually measured in megawatts the same number of protons and electrons, but or millions of watts, and a typical large coal or nuclear differ in the number of neutrons. Of these, only power plant today produces electricity at a rate of uranium-235 is found in nature, and it is found about 1,000 megawatts. A much smaller physical only in very low concentrations. Uranium in nature unit, the kilowatt, is a thousand watts, and large contains 0.7 percent uranium-235 and 99.3 percent household appliances use electricity at a rate of a few uranium-238. This more abundant variety is an kilowatts when they are running. The reader will have important example of a nucleus that can be split only heard about the “kilowatt-hour,” which is the amount by a high-energy neutron. -
Nuclear Engineering
Academic Program Review Self-Study Report February 8-11, 2015 Table of Contents I. Executive Summary of the Self-Study Report ..................................................... 1 A. Message from the Department Head and Graduate Program Adviser ................................ 1 B. Charge to the External Review Team .................................................................................. 2 II. Introduction to Department ..................................................................................3 A. Brief departmental history ................................................................................................... 3 B. Mission and goals ................................................................................................................ 3 C. Administrative structure ...................................................................................................... 4 D. Advisory Council ................................................................................................................. 7 E. Department and program resources ..................................................................................... 8 1. Facilities ........................................................................................................................... 8 2. Institutes and Centers ..................................................................................................... 11 3. Finances ........................................................................................................................ -
A Study Guide by Cheryl Jakab
© ATOM 2015 A STUDY GUIDE BY CHERYL JAKAB http://www.metromagazine.com.au ISBN: 978-1-74295-598-8 http://www.theeducationshop.com.au Suitability: Highly recommended for science, arts and humanities Integrated study in Year 10 most Uranium has an atomic weight of 238. • We call it Uranium 238 and this U238 is the most commonly found Uranium on Earth. • In the world of atomic physics, these 238 protons and neutrons combine to make a huge nucleus. Running By contrast, the element Carbon usually has 12 time: protons and neutrons. This is why Uranium is often 3 x 51 mins described as a heavy element. approx • It’s this massive size of the nucleus at the centre of the Uranium atom that is the source of the strange energy first noticed by physicists at the turn of the 20th Century. We call it radiation. The great power that is • The central nucleus of the uranium atom struggles to hold itself together. We say it’s unstable. Uranium unleashed in ‘waking the spits out pieces of itself. Actual pieces, clumps of protons and neutrons and electrons and high energy dragon’ also involves great rays. This is radiation. risks. What are the costs and • When Uranium spits out this energy it changes it’s atomic weight. It goes from an atom with 238 the benefits of uranium? protons and neutrons at its centre, to an atom with a different number. » INTRODUCTION CONTENTS HYPERLINKS. CLICK ON ARROWS The year 2015 marks the seventieth anniversary of the most profound change in the history of human enterprise 3 The series at a glance on Earth: the unleashing of the elemental force within ura- nium, the explosion of an atomic bomb, the unleashing of 4 Overview of curriculum and education suitability the dragon. -
Northeastern Loggers Handrook
./ NORTHEASTERN LOGGERS HANDROOK U. S. Deportment of Agricnitnre Hondbook No. 6 r L ii- ^ y ,^--i==â crk ■^ --> v-'/C'^ ¿'x'&So, Âfy % zr. j*' i-.nif.*- -^«L- V^ UNITED STATES DEPARTMENT OF AGRICULTURE AGRICULTURE HANDBOOK NO. 6 JANUARY 1951 NORTHEASTERN LOGGERS' HANDBOOK by FRED C. SIMMONS, logging specialist NORTHEASTERN FOREST EXPERIMENT STATION FOREST SERVICE UNITED STATES GOVERNMENT PRINTING OFFICE - - - WASHINGTON, D. C, 1951 For sale by the Superintendent of Documents, Washington, D. C. Price 75 cents Preface THOSE who want to be successful in any line of work or business must learn the tricks of the trade one way or another. For most occupations there is a wealth of published information that explains how the job can best be done without taking too many knocks in the hard school of experience. For logging, however, there has been no ade- quate source of information that could be understood and used by the man who actually does the work in the woods. This NORTHEASTERN LOGGERS' HANDBOOK brings to- gether what the young or inexperienced woodsman needs to know about the care and use of logging tools and about the best of the old and new devices and techniques for logging under the conditions existing in the northeastern part of the United States. Emphasis has been given to the matter of workers' safety because the accident rate in logging is much higher than it should be. Sections of the handbook have previously been circulated in a pre- liminary edition. Scores of suggestions have been made to the author by logging operators, equipment manufacturers, and professional forest- ers. -
The Source Is Published Annually by the Department of Nuclear Engineering at the University of Tennessee
THESOURCE ALUMNI MAGAZINE • FALL 2018 The Right Stuff to Propel us to MARSpage 12 A Department on the Rise • Traveling to Mars • Nuclear Pinch Hitter From the Department Head Table of CONTENTS Department Head Message 1 Best of the Best 2 Department sets new record for PhD graduates in 2018 Before, During, and After the Bomb 6 John Auxier II prepares for the unthinkable Pinch-Hitter & Nuclear Grandpa 8 Lawrence Heilbronn is always on deck for students Moving On Up 10 Faculty and staff move up the Hill to make room for new facilities 2 On a Scientific Mission to Mars 12 Going nuclear to get to Mars PULSR Powers the Road to Mars 14 Senior design project powers a 20-year mission Coble Maintains Winning Faculty Energy 15 Coble recognized with university and ANS awards DEPARTMENTS This is a truly exciting time for us here on Rocky Top. When I say we grew out of our building, I really mean Faculty Notes 16 14 The university recently welcomed its largest freshman it. Last year, we had 368 students, our largest class Staff Notes 17 class and the quality of students is amazing. The Tickle ever. Our 132 PhD students was the largest nuclear Student Notes 18 College of Engineering also welcomed its largest- engineering PhD student class in the history of the ever freshman class, including a record percentage United States. Additionally, we graduated 24 PhDs, First Step Awards 20 of women. As for our department, we have 56 new which was the largest graduating class in US history, and Community Outreach 22 freshmen with 20 percent bringing in enough AP credits yes, they are all getting challenging jobs at government Around the Department 24 to make them sophomores and an average math ACT agencies, universities, and in industry.