For Use of the Conserved Helix-Turn-Helix Motif in DNA Binding (Escherichia Coli/Operator Recognition/Hydroxylamine Mutagenesis/Tetracycline Resistance) PAUL J

Total Page:16

File Type:pdf, Size:1020Kb

For Use of the Conserved Helix-Turn-Helix Motif in DNA Binding (Escherichia Coli/Operator Recognition/Hydroxylamine Mutagenesis/Tetracycline Resistance) PAUL J Proc. Natl. Acad. Sci. USA Vol. 82, pp. 6226-6230, September 1985 Genetics Dominant negative mutations in the TnIO tet repressor: Evidence for use of the conserved helix-turn-helix motif in DNA binding (Escherichia coli/operator recognition/hydroxylamine mutagenesis/tetracycline resistance) PAUL J. ISACKSON AND KEVIN P. BERTRAND Department of Microbiology and Molecular Genetics, California College of Medicine, University of California, Irvine, CA 92717 Communicated by Charles Yanofsky, May 20, 1985 ABSTRACT The Tn1O tet repressor regulates transcrip- not yet known. These observations have led several groups tion of the tetracycline-resistance determinant in transposon to propose that many sequence-specific DNA-binding pro- Tn1O. Previous DNA sequencing studies identified a region of teins use similar helix-turn-helix structures for DNA binding tet repressor (amino acids 26-47) that is homologous to the (19-21). helix-turn-helix regions of X Cro, X repressor, and catabolite We previously reported that an amino-terminal region of gene activator protein that are implicated in sequence-specific the TnJO tet repressor shows amino acid sequence homology DNA binding. Here we report the isolation of dominant tetR with the characteristic helix-turn-helix regions of Cro, X mutations that result in tet repressors deficient in tet operator repressor, and CAP (8). Here we report that mutations in binding but that retain some capacity to form dimers with, and TWJO tetR that impair repressor-operator binding, but not thereby inactivate, wild-type repressor monomers. The muta- tetracycline binding or subunit aggregation, are clustered in tions were isolated by transforming a MeMR+ tetA-lacZ fusion the region of helix-turn-helix sequence homology. strain with hydroxylamine-mutagenized leiR plasmid DNA and then screening for increased lacZ expression, DNA sequence MATERIALS analysis of 35 independent isolates identified seven different AND METHODS mutations, five of which are in the region of helix-turn-helix Bacterial Strains, Phages, and Plasmids. NK5031 (6) and sequence homology. In vitro binding studies indicate that the MO (6) are E. coli K-12 strains. XRStetl58-50 (22) is a bet' mutations in this region of let repressor reduce the affinity of gam' cIII' cI derivative of the TnlO tetA-lacZ operon let repressor for tet operator DNA by at least a factor of 1000 fusion phage XRStetl58-43 (6). NK5031(XRStetl58-50) but have no significant effect on the affinity of tet repressor for srlC300::TnlO was constructed by transduction of NK5031- tetracycline. These results provide strong support for the (ARStetl58-50) with a Plvir lysate prepared on JC10240 (23). proposal that tet repressor utilizes the conserved helix-turn- Plasmids pBT402 (8) and pBI501 have the 701-base-pair (bp) helix structural motif in binding to let operator DNA. tetR' HincIH fragment of TnWO inserted in the HincII sites of pACYC177 (24) and pUC8 (25), respectively. The tetracycline-resistance determinant in transposon TnJO Mutant Selection. pBT402 DNA (20 pug) was incubated in 1 consists of two genes, the resistance gene (tetA) and the ml of 0.8 M hydroxylamine HCl (Sigma)/50 mM sodium repressor gene (tetR), that are transcribed from divergent phosphate, pH 6/1 mM Na2EDTA for 48 hr at 370C. The overlapping promoters (1-3). Tetracycline induces transcrip- mutagenized DNA was diluted with 5 vol of water, dialyzed tion ofboth tetA and tetR by binding to tet repressor, thereby against 20 mM Tris HCl, pH 8/20mM NaCl/1 mM Na2EDTA reducing tet repressor's affinity for two operator sites that at 40C, ethanol precipitated, and then used to transform overlap the tet promoters (2-6). Both the free and operator- NK5031(Xtetl58-50) srlC300: :TnJO. Transformants were se- bound forms of tet repressor are dimers ofthe 23,300-Da tetR lected on lactose/MacConkey agar (26) containing 100 tug of polypeptide (4, 7, 8). neomycin sulfate per ml. After overnight incubation at 370C The three-dimensional structures of three sequence-spe- and 2-4 days at room temperature, pink colonies were visible cific DNA-binding proteins-the X Cro protein (9), the amongst a background of 1000-10,000 white colonies per Escherichia coli catabolite gene activator protein (CAP) plate. complex with cAMP (10), and the amino-terminal DNA- DNA Sequencing. Plasmid DNA was prepared from 2-ml binding domain ofthe XcI repressor (11)-have recently been cultures (27), incubated with RNase A (50 ,Ag/ml) for 15 min determined. Model building studies based on the protein at 370C, phenol extracted, ethanol precipitated, linearized by crystal structures, chemical-protection and chemical-modi- digestion with BamHI, phenol extracted, and ethanol pre- ficatioh data, and genetic analyses have led to detailed cipitated. One-fourth of the sample was annealed with 2.5 ng predictions about the way in which these three proteins of a tetR-specific oligonucleotide primer by heating for 5 min contact their DNA binding sites (12-19). Each of these at 950C and quickly cooling on ice. The template-primer proteins binds to operator DNA as a dimer. In the proposed mixture was then treated according to standard dideoxy- models, each protein uses pairs of a-helices (one from each sequencing procedures (28). Primer 1 (5'-CTCTACA- subunit ofthe protein) to contact successive major grooves in CCTAGC-3') corresponds to amino acids 34-38 of tet re- right-handed B-DNA. The backbone structures of these pressor; primer 2 (TGCCAGCTTTCCC) corresponds to a-helical units-two a-helices connected by a a-turn-are in amino acids 73-76; primer 3 (CATAAAAAGGCTA) corre- each case nearly identical. Moreover, there is limited but sponds to amino acids 118-121; primer 4 (AGCGACTTGAT- significant amino acid sequence homology between the GCTC) corresponds to amino acids 150-154; primer 5 helix-turn-helix regions of Cro, X repressor, and CAP and (CTAATCCGCATATGA) corresponds to amino acids regions of other DNA-binding proteins whose structures are 193-197; and primer 6 (ATCTTGGTTACCG) corresponds to the region 41-53 bp 3' to tetR. The publication costs of this article were defrayed in part by page charge payment. This article must therefore be hereby marked "advertisement" Abbreviations: CAP, catabolite gene activator protein; bp, base in accordance with 18 U.S.C. §1734 solely to indicate this fact. pair(s). 6226 Downloaded by guest on September 23, 2021 Genetics: Isackson and Bertrand Proc. Natl. Acad. Sci. USA 82 (1985) 6227 fi-Galactosidase Assays. /3-Galactosidase was assayed as colonies. Under the conditions of mutagenesis that we used, described by Miller (26). Derivatives of NK5031 were grown the frequency of pink colonies (putative tetR-d/tetR+ at 370C in LB medium (26) with or without 100 Ag of heterogenotes) was 10-3 to 10-4. Only 1-10% of all neomycin sulfate per ml, as appropriate. hydroxylamine-induced tetR- mutations appear to have a Overexpression of tet Repressors and Preparation of Ex- dominant phenotype as judged by this screening procedure. tracts for in Vitro Binding Studies. The 701-bp tetR HincII DNA Sequencing and in Vivo Characterization of Mutations. fragments from pBT402 and tetR- derivatives of pBT402 Putative tetR d mutations were initially characterized by were gel-purified and ligated with HinclI-digested pUC8 dideoxy sequencing using tetR-specific primers and plasmid DNA to generate plasmids pBI501 (tetR+) and tetR- deriv- DNA prepared directly from the tetR d/tetR+ heteroge- atives of pBI501 in which tetR transcription is under the notes. Primer 2, which allows sequencing of the helix-turn- control of the pUC8 lac promoter. Plasmid-containing deriv- helix region of tetR, was used in the initial screen. Of the 46 atives of strain MO were grown to stationary phase in 50 ml mutants examined, 32 had base changes that could be of LB medium containing 100 Ag of ampicillin per ml. Cells identified by sequencing with this primer. These comprised were harvested by centrifugation, resuspended in 15 ml of 10 six different mutations in or near the helix-turn-helix region mM TrisHCl, pH 7.6/200 mM NaCI/7 mM 2-mercapto- (Table 1). Representative isolates ofthese six mutations were ethanol, and disrupted by sonication. Phenylmethylsulfonyl selected, and their tetR genes were completely sequenced to fluoride (Sigma) was added to 0.2 mM, cell debris was confirm the presence of a single base-pair change in tetR. removed by centrifugation, and tet repressor was precipitat- Mutation 38am is an amber mutation (CAG -* TAG); how- ed from the supernatant by addition of (NH4)2SO4 to 55% ever, NK5031 contains an efficient amber suppressor (supF), saturation. The pellets were resuspended in 0.5 ml of 10 mM and the tetRd character of38am reflects the properties ofthe Tris-HCl, pH 7.6/200 mM NaCl/0.1 mM Na2EDTA/7 mM suppressed protein, which is predicted to contain a tyrosine 2-mercaptoethanol, yielding cell extracts with 10-16 mg of residue at position 38 (unpublished data). total protein per ml. To further characterize the mutant repressors, isolated DNA Binding Assays. DNA fragments containing the left- plasmid DNA was transformed into both tetR- and tetR' ward TnJO tet operator (OL) were prepared from a plasmid in tetA-lacZ strains. In contrast to pBT402, none of the mutant which the rightward tet operator (OR) is deleted (3). The plasmids significantly represses B-galactosidase synthesis in 155-bp Alu I/Hae III OL fragment from this plasmid was the tetR- background (Table 1). Thus, all six tetR d muta- inserted into the Sma I site of pUC8, and the 171-bp tions in or near the helix-turn-helix region appear to dramat- EcoRI/Sal I OL fragment from the PUC8-OL plasmid was ically reduce the affinity of tet repressor for tet operator. The used for DNA binding assays.
Recommended publications
  • The Future of Protein Secondary Structure Prediction Was Invented by Oleg Ptitsyn
    biomolecules Review The Future of Protein Secondary Structure Prediction Was Invented by Oleg Ptitsyn 1, 1, 1 2 1,3 Daniel Rademaker y, Jarek van Dijk y, Willem Titulaer , Joanna Lange , Gert Vriend and Li Xue 1,* 1 Centre for Molecular and Biomolecular Informatics (CMBI), Radboudumc, 6525 GA Nijmegen, The Netherlands; [email protected] (D.R.); [email protected] (J.v.D.); [email protected] (W.T.); [email protected] (G.V.) 2 Bio-Prodict, 6511 AA Nijmegen, The Netherlands; [email protected] 3 Baco Institute of Protein Science (BIPS), Mindoro 5201, Philippines * Correspondence: [email protected] These authors contributed equally to this work. y Received: 15 May 2020; Accepted: 2 June 2020; Published: 16 June 2020 Abstract: When Oleg Ptitsyn and his group published the first secondary structure prediction for a protein sequence, they started a research field that is still active today. Oleg Ptitsyn combined fundamental rules of physics with human understanding of protein structures. Most followers in this field, however, use machine learning methods and aim at the highest (average) percentage correctly predicted residues in a set of proteins that were not used to train the prediction method. We show that one single method is unlikely to predict the secondary structure of all protein sequences, with the exception, perhaps, of future deep learning methods based on very large neural networks, and we suggest that some concepts pioneered by Oleg Ptitsyn and his group in the 70s of the previous century likely are today’s best way forward in the protein secondary structure prediction field.
    [Show full text]
  • Chapter 4 the Three-Dimensional Structure of Proteins
    Chapter 4 The Three-Dimensional Structure of Proteins Multiple Choice Questions 1. Answer: D All of the following are considered “weak” interactions in proteins, except: A) hydrogen bonds. B) hydrophobic interactions. C) ionic bonds. D) peptide bonds. E) van der Waals forces. 2. Answer: D In an aqueous solution, protein conformation is determined by two major factors. One is the formation of the maximum number of hydrogen bonds. The other is the: A) formation of the maximum number of hydrophilic interactions. B) maximization of ionic interactions. C) minimization of entropy by the formation of a water solvent shell around the protein. D) placement of hydrophobic amino acid residues within the interior of the protein. E) placement of polar amino acid residues around the exterior of the protein. 3. 3 Answer: A In the diagram below, the plane drawn behind the peptide bond indicates the: A) absence of rotation around the C—N bond because of its partial double-bond character. B) plane of rotation around the C—N bond. C) region of steric hindrance determined by the large C=O group. D) region of the peptide bond that contributes to a Ramachandran plot. E) theoretical space between –180 and +180 degrees that can be occupied by the and angles in the peptide bond. 4. Answer: D Which of the following best represents the backbone arrangement of two peptide bonds? A) C—N—C—C—C—N—C—C B) C—N—C—C—N—C C) C—N—C—C—C—N D) C—C—N—C—C—N Chapter 4 The Three-Dimensional Structure of Proteins E) C—C—C—N—C—C—C 5.
    [Show full text]
  • Conformational Properties of Constrained Proline Analogues and Their Application in Nanobiology”
    UNIVERSITAT POLITÈCNICA DE CATALUNYA DEPARTAMENT D’ENGINYERIA QUÍMICA “CONFORMATIONAL PROPERTIES OF CONSTRAINED PROLINE ANALOGUES AND THEIR APPLICATION IN NANOBIOLOGY” Alejandra Flores Ortega Supervisors: Dr. Carlos Alemán Llansó and Dr. Jordi Casanovas Salas. th Barcelona, 27 January 2009 “Chance is a word void of sense; nothing can exist without a cause”. François-Marie Arouet, Voltaire “Imagination will often carry us to worlds that never were. But without it, we go nowhere”. Carl Sagan iii ACKNOWLEDGEMENTS I would like to acknowledge to Dr. Carlos Aleman and Dr. Jordi Cassanovas Salas for an interesting research theme, and scientific support. I gratefully acknowledge to Dr. David Zanuy for interesting suggestions and strong discussions, without their support this would be an unfulfilled task. Also I, would like to address my thanks to all my colleagues in my group and department, specially Elaine Armelin for assiting me in many different ways. I thank not only my friends, but also colleagues for helping me to overcome the stressful time, without whom it would have been difficult to cope up. I wish to express my gratefulness to my parents, specially to my mother, María Esther, for all his care, and support. Also I will like to thanks to my friends and specially Jesus, Merches, Laura y Arturo. My PhD thesis have been finished for all this support. I am greatly indepted to Dr. Ruth Nussinov at NCI, Dr. Carlos Cativiela at the University of Zaragoza and Ana I. Jiménez at the “Instituto de Ciencias de Materiales de Aragon” for a collaborative effort. I wish to thank all my colleague in the “Chimie et Biochimie Théoriques, Faculté des Sciences et Techniques” in Nancy France, I will be grateful to have worked with : Pr.
    [Show full text]
  • 2. Proteins Have Hierarchies of Structure
    27 2. Proteins have Hierarchies of Structure Protein structure is usually described at four different levels (Fig. II.2.1). The first level, called the primary structure, describes the linear sequence of the amino acids in the chain. The different primary structures correspond to the different sequences in which the amino acids are covalently linked together. The secondary structure describes two common patterns of structural repetition in proteins: the coiling up into helices of segments of the chain, and the pairing together of strands of the chain into β-sheets. The tertiary structure is the next higher level of organization, the overall arrangement of secondary structural elements. The quaternary structure describes how different polypeptide chains are assembled into complexes. Figure II.2.1. Different levels of protein structure. A protein chain’s primary structure is its amino acid sequence. Secondary structure consists of the regular organization of helices and sheets. The example shown is a schematic representation of an α helix. Tertiary structure is a polypeptide chain’s three- dimensional native conformation, which often involves compact packing of secondary structure elements. The example given in the figure is a schematic drawing of one of the four polypeptide chains (subunits) of hemoglobin, the protein that transports oxygen in the blood. α-helices along the chain are represented as cylinders. N is the amino terminus and C is the carboxyl terminus of the polypeptide chain. Quaternary structure is the arrangement of multiple polypeptide chains (subunits) to form a functional biomolecular structure. The figure shows the quaternary arrangement of four subunits to form the functional hemoglobin molecule.
    [Show full text]
  • Introduction to Proteins and Amino Acids Introduction
    Introduction to Proteins and Amino Acids Introduction • Twenty percent of the human body is made up of proteins. Proteins are the large, complex molecules that are critical for normal functioning of cells. • They are essential for the structure, function, and regulation of the body’s tissues and organs. • Proteins are made up of smaller units called amino acids, which are building blocks of proteins. They are attached to one another by peptide bonds forming a long chain of proteins. Amino acid structure and its classification • An amino acid contains both a carboxylic group and an amino group. Amino acids that have an amino group bonded directly to the alpha-carbon are referred to as alpha amino acids. • Every alpha amino acid has a carbon atom, called an alpha carbon, Cα ; bonded to a carboxylic acid, –COOH group; an amino, –NH2 group; a hydrogen atom; and an R group that is unique for every amino acid. Classification of amino acids • There are 20 amino acids. Based on the nature of their ‘R’ group, they are classified based on their polarity as: Classification based on essentiality: Essential amino acids are the amino acids which you need through your diet because your body cannot make them. Whereas non essential amino acids are the amino acids which are not an essential part of your diet because they can be synthesized by your body. Essential Non essential Histidine Alanine Isoleucine Arginine Leucine Aspargine Methionine Aspartate Phenyl alanine Cystine Threonine Glutamic acid Tryptophan Glycine Valine Ornithine Proline Serine Tyrosine Peptide bonds • Amino acids are linked together by ‘amide groups’ called peptide bonds.
    [Show full text]
  • Detection of Trans-Cis Flips and Peptide-Plane Flips in Protein Structures
    research papers Detection of trans–cis flips and peptide-plane flips in protein structures ISSN 1399-0047 Wouter G. Touw,a* Robbie P. Joostenb and Gert Vrienda* aCentre for Molecular and Biomolecular Informatics, Radboud University Medical Center, Geert Grooteplein-Zuid 26-28, 6525 GA Nijmegen, The Netherlands, and bDepartment of Biochemistry, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands. *Correspondence e-mail: [email protected], Received 4 February 2015 [email protected] Accepted 27 April 2015 A coordinate-based method is presented to detect peptide bonds that need Edited by G. J. Kleywegt, EMBL–EBI, Hinxton, correction either by a peptide-plane flip or by a trans–cis inversion of the peptide England bond. When applied to the whole Protein Data Bank, the method predicts 4617 trans–cis flips and many thousands of hitherto unknown peptide-plane flips. Keywords: peptide conformation; cis peptide A few examples are highlighted for which a correction of the peptide-plane bond; structure validation; structure correction. geometry leads to a correction of the understanding of the structure–function relation. All data, including 1088 manually validated cases, are freely available and the method is available from a web server, a web-service interface and through WHAT_CHECK. 1. Introduction Peptide bonds connect adjacent amino acids in proteins. The partial double-bond character of the peptide bond restricts its torsion. The dihedral angle ! (CiÀ1—CiÀ1—Ni—Ci ) typically has values around 180 (trans)or0 (cis), although exceptions are possible (Berkholz et al., 2012). The Ci–1—Ci distance is around 3.81 A˚ in the trans conformation and around 2.94 A˚ in the cis conformation.
    [Show full text]
  • The Α-Helix Forms Within a Continuous Strech of the Polypeptide Chain
    The α-helix forms within a continuous strech of the polypeptide chain N-term prototypical φ = -57 ° ψ = -47 ° 5.4 Å rise, 3.6 aa/turn ∴ 1.5 Å/aa C-term α-Helices have a dipole moment, due to unbonded and aligned N-H and C=O groups β-Sheets contain extended (β-strand) segments from separate regions of a protein prototypical φ = -139 °, ψ = +135 ° prototypical φ = -119 °, ψ = +113 ° (6.5Å repeat length in parallel sheet) Antiparallel β-sheets may be formed by closer regions of sequence than parallel Beta turn Figure 6-13 The stability of helices and sheets depends on their sequence of amino acids • Intrinsic propensity of an amino acid to adopt a helical or extended (strand) conformation The stability of helices and sheets depends on their sequence of amino acids • Intrinsic propensity of an amino acid to adopt a helical or extended (strand) conformation The stability of helices and sheets depends on their sequence of amino acids • Intrinsic propensity of an amino acid to adopt a helical or extended (strand) conformation • Interactions between adjacent R-groups – Ionic attraction or repulsion – Steric hindrance of adjacent bulky groups Helix wheel The stability of helices and sheets depends on their sequence of amino acids • Intrinsic propensity of an amino acid to adopt a helical or extended (strand) conformation • Interactions between adjacent R-groups – Ionic attraction or repulsion – Steric hindrance of adjacent bulky groups • Occurrence of proline and glycine • Interactions between ends of helix and aa R-groups His Glu N-term C-term
    [Show full text]
  • And Beta-Helical Protein Motifs
    Soft Matter Mechanical Unfolding of Alpha- and Beta-helical Protein Motifs Journal: Soft Matter Manuscript ID SM-ART-10-2018-002046.R1 Article Type: Paper Date Submitted by the 28-Nov-2018 Author: Complete List of Authors: DeBenedictis, Elizabeth; Northwestern University Keten, Sinan; Northwestern University, Mechanical Engineering Page 1 of 10 Please doSoft not Matter adjust margins Soft Matter ARTICLE Mechanical Unfolding of Alpha- and Beta-helical Protein Motifs E. P. DeBenedictis and S. Keten* Received 24th September 2018, Alpha helices and beta sheets are the two most common secondary structure motifs in proteins. Beta-helical structures Accepted 00th January 20xx merge features of the two motifs, containing two or three beta-sheet faces connected by loops or turns in a single protein. Beta-helical structures form the basis of proteins with diverse mechanical functions such as bacterial adhesins, phage cell- DOI: 10.1039/x0xx00000x puncture devices, antifreeze proteins, and extracellular matrices. Alpha helices are commonly found in cellular and extracellular matrix components, whereas beta-helices such as curli fibrils are more common as bacterial and biofilm matrix www.rsc.org/ components. It is currently not known whether it may be advantageous to use one helical motif over the other for different structural and mechanical functions. To better understand the mechanical implications of using different helix motifs in networks, here we use Steered Molecular Dynamics (SMD) simulations to mechanically unfold multiple alpha- and beta- helical proteins at constant velocity at the single molecule scale. We focus on the energy dissipated during unfolding as a means of comparison between proteins and work normalized by protein characteristics (initial and final length, # H-bonds, # residues, etc.).
    [Show full text]
  • PA28: New Insights on an Ancient Proteasome Activator
    biomolecules Review PA28γ: New Insights on an Ancient Proteasome Activator Paolo Cascio Department of Veterinary Sciences, University of Turin, Largo P. Braccini 2, 10095 Grugliasco, Italy; [email protected] Abstract: PA28 (also known as 11S, REG or PSME) is a family of proteasome regulators whose members are widely present in many of the eukaryotic supergroups. In jawed vertebrates they are represented by three paralogs, PA28α, PA28β, and PA28γ, which assemble as heptameric hetero (PA28αβ) or homo (PA28γ) rings on one or both extremities of the 20S proteasome cylindrical structure. While they share high sequence and structural similarities, the three isoforms significantly differ in terms of their biochemical and biological properties. In fact, PA28α and PA28β seem to have appeared more recently and to have evolved very rapidly to perform new functions that are specifically aimed at optimizing the process of MHC class I antigen presentation. In line with this, PA28αβ favors release of peptide products by proteasomes and is particularly suited to support adaptive immune responses without, however, affecting hydrolysis rates of protein substrates. On the contrary, PA28γ seems to be a slow-evolving gene that is most similar to the common ancestor of the PA28 activators family, and very likely retains its original functions. Notably, PA28γ has a prevalent nuclear localization and is involved in the regulation of several essential cellular processes including cell growth and proliferation, apoptosis, chromatin structure and organization, and response to DNA damage. In striking contrast with the activity of PA28αβ, most of these diverse biological functions of PA28γ seem to depend on its ability to markedly enhance degradation rates of regulatory protein by 20S proteasome.
    [Show full text]
  • RNA Structural Motif Recognition Based on Least-Squares Distance
    Downloaded from rnajournal.cshlp.org on October 1, 2021 - Published by Cold Spring Harbor Laboratory Press BIOINFORMATICS RNA structural motif recognition based on least-squares distance YING SHEN,1 HAU-SAN WONG,2,4 SHAOHONG ZHANG,3 and LIN ZHANG1 1School of Software Engineering, Tongji University, Shanghai 200092, China 2Department of Computer Science, City University of Hong Kong, Kowloon, Hong Kong 3Department of Computer Science, Guangzhou University, Guangzhou 510006, China ABSTRACT RNA structural motifs are recurrent structural elements occurring in RNA molecules. RNA structural motif recognition aims to find RNA substructures that are similar to a query motif, and it is important for RNA structure analysis and RNA function prediction. In view of this, we propose a new method known as RNA Structural Motif Recognition based on Least-Squares distance (LS-RSMR) to effectively recognize RNA structural motifs. A test set consisting of five types of RNA structural motifs occurring in Escherichia coli ribosomal RNA is compiled by us. Experiments are conducted for recognizing these five types of motifs. The experimental results fully reveal the superiority of the proposed LS-RSMR compared with four other state-of-the-art methods. Keywords: RNA structural motif; RNA motif recognition INTRODUCTION RNA molecule (i.e., the search space). There are two prevalent ways to search for RNA structural motifs. The first class of LongnoncodingRNA(ncRNA),whichconsistsof>200ntand methods is to find motifs based on their geometric features. has little or no protein-coding capability, is a remarkable class of RNAs. They are important in various biological processes NASSAM (Harrison et al. 2003) represents RNA motifs and (Dinger et al.
    [Show full text]
  • Bending, Twisting and Turning: Protein Modeling and Visualization
    List of papers This thesis is based on the following papers, which are referred to in the text by their Roman numerals. I U. H. Danielsson, M. Lundgren and A. J. Niemi, Gauge field theory of chirally folded homopolymers with applications to folded proteins, Phys. Rev. E 82, 021910 (2010) II M. N. Chernodub, M. Lundgren and A. J. Niemi, Elastic energy and phase structure in a continuous spin Ising chain with applications to chiral homopolymers, Phys. Rev. E 83, 011126 (2011) III S. Hu, M. Lundgren and A. J. Niemi, Discrete Frenet frame, inflection point solitons, and curve visualization with applications to folded proteins, Phys. Rev. E 83 061908 (2011) IV M. Lundgren, A. J. Niemi and F. Sha, Protein loops, solitons and side-chain visualization with applications to the left-handed helix region, arXiv:1104.2261 [q-bio.BM]. Submitted to Phys. Rev. E. V M. Lundgren and A. J. Niemi, Backbone covalent bond dynamical symmetry breaking and side-chain geometry of folded proteins, arXiv:1109.0423 [q-bio.BM]. Submitted to Phys. Rev. E. Reprints were made with permission from the publishers. Contents 1 Introduction and background ...................................................................... 7 1.1 A quick guide to protein folding ..................................................... 7 1.2 Outline ............................................................................................ 15 Part I: Protein Geometry and Visualization 2 Main chain geometry ................................................................................. 19 2.1
    [Show full text]
  • Cross-Talk Between Overlap Interactions in Biomolecules: a Case Study of the Β-Turn Motif
    molecules Article Cross-Talk between Overlap Interactions in Biomolecules: A Case Study of the b-Turn Motif Jayashree Nagesh Solid State and Structural Chemistry Unit, Indian Institute of Science Bangalore, Bengaluru 560012, Karnataka, India; [email protected] Abstract: Noncovalent interactions play a pivotal role in regulating protein conformation, stability and dynamics. Among the quantum mechanical (QM) overlap-based noncovalent interactions, n ! p∗ is the best understood with studies ranging from small molecules to b-turns of model proteins such as GB1. However, these investigations do not explore the interplay between multiple overlap interactions in contributing to local structure and stability. In this work, we identify and characterize all noncovalent overlap interactions in the b-turn, an important secondary structural element that facilitates the folding of a polypeptide chain. Invoking a QM framework of natural bond orbitals, we demonstrate the role of several additional interactions such as n ! s∗ and p ! p∗ that are energetically comparable to or larger than n ! p∗. We find that these interactions are sensitive to changes in the side chain of the residues in the b-turn of GB1, suggesting that the n ! p∗ may not be the only component in dictating b-turn conformation and stability. Furthermore, a database search of n ! s∗ and p ! p∗ in the PDB reveals that they are prevalent in most proteins and have significant interaction energies (∼1 kcal/mol). This indicates that all overlap interactions must be taken into account to obtain a comprehensive picture of their contributions to protein structure and energetics. Lastly, based on the extent of QM overlaps and interaction energies, we propose geometric criteria using which these additional interactions can be efficiently tracked in broad database searches.
    [Show full text]