Computational Design of Asymmetric Three-Dimensional RNA Structures and 2 Machines
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Free-Energy Landscape of a Hyperstable RNA Tetraloop
Free-energy landscape of a hyperstable RNA tetraloop Jacob C. Minera,b, Alan A. Chenc, and Angel E. Garcíaa,d,1 aCenter for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM 87545; bDepartment of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180; cDepartment of Chemistry, University at Albany, State University of New York, Albany, NY 12222; and dDepartment of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, Troy, NY 12180 Edited by Michael L. Klein, Temple University, Philadelphia, PA, and approved April 21, 2016 (received for review February 24, 2016) We report the characterization of the energy landscape and the through multiple configurational states (19, 21, 22, 28). This folding/unfolding thermodynamics of a hyperstable RNA tetraloop flexibility makes the GNRA tetraloop a useful target for ex- obtained through high-performance molecular dynamics simula- ploring both the accuracy of RNA force fields in recapitulating tions at microsecond timescales. Sampling of the configurational folded configurations and the heterogeneity of the folded free- landscape is conducted using temperature replica exchange molec- energy landscape. ular dynamics over three isochores at high, ambient, and negative In this report, we characterize the thermodynamics and folding pressures to determine the thermodynamic stability and the free- free-energy landscape for an oligonucleotide containing a GNRA energy landscape of the tetraloop. The simulations reveal reversible tetraloop sequence (r[gcGCAAgc]) through high-performance folding/unfolding transitions of the tetraloop into the canonical simulations and replica exchange molecular dynamics (REMD) A-RNA conformation and the presence of two alternative config- (29). The conformational ensembles are described in terms of urations, including a left-handed Z-RNA conformation and a compact global and local order parameters and reveal the formation of purine Triplet. -
Structure and Thermodynamics of a Conserved U2 Snrna Domain from Yeast and Human
JOBNAME: RNA 13#3 2007 PAGE: 1 OUTPUT: Wednesday January 17 20:23:55 2007 csh/RNA/131630/rna4184 Downloaded from rnajournal.cshlp.org on September 29, 2021 - Published by Cold Spring Harbor Laboratory Press Structure and thermodynamics of a conserved U2 snRNA domain from yeast and human DIPALI G. SASHITAL,1 VINCENZO VENDITTI,2 CORTNEY G. ANGERS,1,4 GABRIEL CORNILESCU,3 and SAMUEL E. BUTCHER1 1Department of Biochemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706, USA 2Biomolecular Structure Research Center and Dipartimento di Biologia Molecolare, Universita di Siena, I-53100 Siena, Italy 3National Magnetic Resonance Facility at Madison, Department of Biochemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706, USA ABSTRACT The spliceosome is a dynamic ribonucleoprotein complex responsible for the removal of intron sequences from pre-messenger RNA. The highly conserved 59 end of the U2 small nuclear RNA (snRNA) makes key base-pairing interactions with the intron branch point sequence and U6 snRNA. U2 stem I, a stem–loop located in the 59 region of U2, has been implicated in spliceosome assembly and may modulate the folding of the U2 and U6 snRNAs in the spliceosome active site. Here we present the NMR structures of U2 stem I from human and Saccharomyces cerevisiae. These sequences represent the two major classes of U2 stem I, distinguished by the identity of tandem wobble pairs (UU/UU in yeast and CA/GU in human) and the presence of post-transcriptional modifications (four 29-O-methyl groups and two pseudouracils in human). The structures reveal that the UU/UU and CA/GU tandem wobble pairs are nearly isosteric. -
RNA Tertiary Structure Energetics Predicted by an Ensemble Model of the RNA Double Helix
bioRxiv preprint doi: https://doi.org/10.1101/341107; this version posted June 6, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. TITLE RNA tertiary structure energetics predicted by an ensemble model of the RNA double helix 1 Joseph D. Yesselman * 2 Sarah K. Denny * Namita Bisaria1,† Daniel Herschlag1,5,6,‡ William J. Greenleaf2,3,4,5,7,‡ Rhiju Das1,8,‡ 1 Department of Biochemistry, Stanford University, Stanford, CA 94305, United States 2 Program in Biophysics, Stanford University, Stanford, CA 94305, United States 3 Department of Genetics, Stanford University, Stanford, CA 94305, United States 4 Department of Applied Physics, Stanford University, Stanford, CA 94305, United States 5 Department of Chemistry, Stanford University, Stanford, CA 94305, United States 6 Stanford ChEM-H (Chemistry, Engineering, and Medicine for Human Health), Stanford University, Stanford, California 94305, USA 7 Chan Zuckerberg Biohub, San Francisco, CA, United States 8 Department of Physics, Stanford University, Stanford, CA 94305, United States *These authors contributed equally † Current address: Whitehead Institute for Biomedical Research, Cambridge, MA 02142, United States ‡ Correspondence should be addressed to D.H. ([email protected]), W.J.G ([email protected]), or R.D. ([email protected]). Classification: Biological Sciences – Biophysics Keywords: Blind Prediction, RNA Energetics, High-throughput Data Short title: Blind Predictions of RNA Tertiary Assembly Energetics 1 bioRxiv preprint doi: https://doi.org/10.1101/341107; this version posted June 6, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. -
RNA Structural Motif Recognition Based on Least-Squares Distance
Downloaded from rnajournal.cshlp.org on October 1, 2021 - Published by Cold Spring Harbor Laboratory Press BIOINFORMATICS RNA structural motif recognition based on least-squares distance YING SHEN,1 HAU-SAN WONG,2,4 SHAOHONG ZHANG,3 and LIN ZHANG1 1School of Software Engineering, Tongji University, Shanghai 200092, China 2Department of Computer Science, City University of Hong Kong, Kowloon, Hong Kong 3Department of Computer Science, Guangzhou University, Guangzhou 510006, China ABSTRACT RNA structural motifs are recurrent structural elements occurring in RNA molecules. RNA structural motif recognition aims to find RNA substructures that are similar to a query motif, and it is important for RNA structure analysis and RNA function prediction. In view of this, we propose a new method known as RNA Structural Motif Recognition based on Least-Squares distance (LS-RSMR) to effectively recognize RNA structural motifs. A test set consisting of five types of RNA structural motifs occurring in Escherichia coli ribosomal RNA is compiled by us. Experiments are conducted for recognizing these five types of motifs. The experimental results fully reveal the superiority of the proposed LS-RSMR compared with four other state-of-the-art methods. Keywords: RNA structural motif; RNA motif recognition INTRODUCTION RNA molecule (i.e., the search space). There are two prevalent ways to search for RNA structural motifs. The first class of LongnoncodingRNA(ncRNA),whichconsistsof>200ntand methods is to find motifs based on their geometric features. has little or no protein-coding capability, is a remarkable class of RNAs. They are important in various biological processes NASSAM (Harrison et al. 2003) represents RNA motifs and (Dinger et al. -
Cross-Talk Between Overlap Interactions in Biomolecules: a Case Study of the Β-Turn Motif
molecules Article Cross-Talk between Overlap Interactions in Biomolecules: A Case Study of the b-Turn Motif Jayashree Nagesh Solid State and Structural Chemistry Unit, Indian Institute of Science Bangalore, Bengaluru 560012, Karnataka, India; [email protected] Abstract: Noncovalent interactions play a pivotal role in regulating protein conformation, stability and dynamics. Among the quantum mechanical (QM) overlap-based noncovalent interactions, n ! p∗ is the best understood with studies ranging from small molecules to b-turns of model proteins such as GB1. However, these investigations do not explore the interplay between multiple overlap interactions in contributing to local structure and stability. In this work, we identify and characterize all noncovalent overlap interactions in the b-turn, an important secondary structural element that facilitates the folding of a polypeptide chain. Invoking a QM framework of natural bond orbitals, we demonstrate the role of several additional interactions such as n ! s∗ and p ! p∗ that are energetically comparable to or larger than n ! p∗. We find that these interactions are sensitive to changes in the side chain of the residues in the b-turn of GB1, suggesting that the n ! p∗ may not be the only component in dictating b-turn conformation and stability. Furthermore, a database search of n ! s∗ and p ! p∗ in the PDB reveals that they are prevalent in most proteins and have significant interaction energies (∼1 kcal/mol). This indicates that all overlap interactions must be taken into account to obtain a comprehensive picture of their contributions to protein structure and energetics. Lastly, based on the extent of QM overlaps and interaction energies, we propose geometric criteria using which these additional interactions can be efficiently tracked in broad database searches. -
Unexpected Dynamics in the UUCG RNA Tetraloop
bioRxiv preprint doi: https://doi.org/10.1101/690412; this version posted September 11, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 UneXPECTED Dynamics IN THE UUCG 2 RNA TETRALOOP 1,2* 3 3 3 SandrO BottarO , ParkER J. Nichols , Beat Vögeli , Michele 1 2* 4 Parrinello , KrESTEN Lindorff-Larsen *For CORRespondence: 1Atomistic Simulations LaborATORY, ISTITUTO ITALIANO DI Tecnologia, Genova, [email protected] (SB); 5 LINDORff@bio.ku.dk (KLL) Italy; 2StructurAL Biology AND NMR LaborATORY, Department OF Biology, 6 University OF Copenhagen, Copenhagen, Denmark; 3Department OF 7 Biochemistry AND Molecular Genetics, University OF ColorADO Denver, 8 Anschutz Medical Campus, AurORa, Colorado, USA. 9 10 Many RNA MOLECULES ARE dynamic, BUT CHARACTERIZING THEIR MOTIONS 11 AbstrACT BY EXPERIMENTS IS DIfficult, OFTEN REQUIRING APPLICATION OF COMPLEX NMR 12 Experiments. Computational METHODS SUCH AS MOLECULAR DYNAMICS simulations, 13 ON THE OTHER hand, STILL SUffER FROM DIffiCULTIES IN SAMPLING AND REMAINING FORCE 14 fiELD ERRors. Here, WE PROVIDE AN atomic-leVEL DESCRIPTION OF STRUCTURE AND 15 DYNAMICS OF THE 14-mer UUCG RNA stem-loop BY COMBINING MOLECULAR DYNAMICS 16 SIMULATIONS WITH EXACT NUCLEAR Overhauser ENHANCEMENT data. The INTEGRATION OF 17 EXPERIMENTS AND SIMULATION VIA A Bayesian/Maximum ENTROPY APPROACH ENABLES 18 US TO DISCOVER AND CHARACTERIZE A NEW STATE OF THIS molecule, WHICH WE SHOW 19 SAMPLES TWO DISTINCT states. The MOST STABLE CONFORMATION CORRESPONDS TO THE 20 native, CONSENSUS THRee-dimensional STRUCTURe. -
Anrnafoldingmotif:Gnratetraloop^Receptor Interactions
Quarterly Reviews of Biophysics , Page 1 of 42. f Cambridge University Press 2013 1 doi:10.1017/S0033583513000048 Printed in the United States of America An RNA folding motif : GNRA tetraloop^receptor interactions Julie L. Fiore and David J. Nesbitt* JILA, National Institute of Standards and Technology, Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309, USA Abstract. Nearly two decades after Westhof and Michel first proposed that RNA tetraloops may interact with distal helices, tetraloop–receptor interactions have been recognized as ubiquitous elements of RNA tertiary structure. The unique architecture of GNRA tetraloops (N=any nucleotide, R=purine) enables interaction with a variety of receptors, e.g., helical minor grooves and asymmetric internal loops. The most common example of the latter is the GAAA tetraloop–11 nt tetraloop receptor motif. Biophysical characterization of this motif provided evidence for the modularity of RNA structure, with applications spanning improved crystallization methods to RNA tectonics. In this review, we identify and compare types of GNRA tetraloop–receptor interactions. Then we explore the abundance of structural, kinetic, and thermodynamic information on the frequently occurring and most widely studied GAAA tetraloop–11 nt receptor motif. Studies of this interaction have revealed powerful paradigms for structural assembly of RNA, as well as providing new insights into the roles of cations, transition states and protein chaperones in RNA folding pathways. However, further research will clearly be necessary to characterize other tetraloop–receptor and long-range tertiary binding interactions in detail – an important milestone in the quantitative prediction of free energy landscapes for RNA folding. -
Comparison of GHT-Based Approaches to Structural Motif Retrieval
Comparison of GHT-Based Approaches to Structural Motif Retrieval Alessio Ferone1 and Ozlem Ozbudak2 1 University of Naples Parthenope, Department of Applied Science, Centro Direzionale Napoli - Isola C4, 80143, Napoli, Italy [email protected] 2 Istanbul Technical University, Department of Electronics and Communication Engineering, 34469, Istanbul, Turkey [email protected] Abstract. The structure of a protein gives important information about its function and can be used for understanding the evolutionary relation- ships among proteins, predicting protein functions, and predicting pro- tein folding. A structural motif is a compact 3D protein block referring to a small specific combination of secondary structural elements which appears in a variety of molecules. In this paper we present a compari- son between few approaches for motif retrieval based on the Generalized Hough Transform (GHT). Performance comparisons, in terms of preci- sion and computation time, are presented considering the retrieval of motifs composed by three to five SSs for more than 15 million searches. The approaches object of this study can be easily applied to the retrieval of greater blocks, up to protein domains, or even entire proteins. Keywords: Hough transform, Protein motif retrieval, Protein structure comparison. 1 Introduction Proteins are central molecules in biological phenomena because they form the functional and structural cell components of every organisms and their function is determined, to a large extend, by their spatial structures. Starting from the linear sequence of amino acid given in Protein Data Bank (PDB) [1], two basic regular 3D structures can be envisaged [11], called SSs: helices and sheets.Small specific combinations of SSs, which appear in a variety of molecules, are called motifs, and can be considered as super-SSs [12]. -
For Use of the Conserved Helix-Turn-Helix Motif in DNA Binding (Escherichia Coli/Operator Recognition/Hydroxylamine Mutagenesis/Tetracycline Resistance) PAUL J
Proc. Natl. Acad. Sci. USA Vol. 82, pp. 6226-6230, September 1985 Genetics Dominant negative mutations in the TnIO tet repressor: Evidence for use of the conserved helix-turn-helix motif in DNA binding (Escherichia coli/operator recognition/hydroxylamine mutagenesis/tetracycline resistance) PAUL J. ISACKSON AND KEVIN P. BERTRAND Department of Microbiology and Molecular Genetics, California College of Medicine, University of California, Irvine, CA 92717 Communicated by Charles Yanofsky, May 20, 1985 ABSTRACT The Tn1O tet repressor regulates transcrip- not yet known. These observations have led several groups tion of the tetracycline-resistance determinant in transposon to propose that many sequence-specific DNA-binding pro- Tn1O. Previous DNA sequencing studies identified a region of teins use similar helix-turn-helix structures for DNA binding tet repressor (amino acids 26-47) that is homologous to the (19-21). helix-turn-helix regions of X Cro, X repressor, and catabolite We previously reported that an amino-terminal region of gene activator protein that are implicated in sequence-specific the TnJO tet repressor shows amino acid sequence homology DNA binding. Here we report the isolation of dominant tetR with the characteristic helix-turn-helix regions of Cro, X mutations that result in tet repressors deficient in tet operator repressor, and CAP (8). Here we report that mutations in binding but that retain some capacity to form dimers with, and TWJO tetR that impair repressor-operator binding, but not thereby inactivate, wild-type repressor monomers. The muta- tetracycline binding or subunit aggregation, are clustered in tions were isolated by transforming a MeMR+ tetA-lacZ fusion the region of helix-turn-helix sequence homology. -
Tetranucleotide Loops GAAA and UUCG in Fission Yeast
Proc. Natl. Acad. Sci. USA Vol. 90, pp. 5409-5413, June 1993 Biochemistry Functional interchangeability of the structurally similar tetranucleotide loops GAAA and UUCG in fission yeast signal recognition particle RNA (RNA structure/RNA-protein interactions) DAVID SELINGER, XIUBEI LIAOt, AND Jo ANN WISEt Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801 Communicated by Joan A. Steitz, February 10, 1993 (receivedfor review January 5, 1993) ABSTRACT Signal recognition particle (SRP) RNA exhib- in catalytic and informational RNAs as well (7, 8). This its significant primary sequence conservation only in domain prevalence was previously proposed to arise from their IV, a bulged hairpin capped by a GNRA (N, any nucleotide; R, ability to increase hairpin stability (9) but may instead be a purine) tetranucleotide loop except in plant homologs. Tetra- consequence of their well-defined three-dimensional confor- loops conforming to this sequence or to the consensus UNCG mations (10). Recently, solution structures of small synthetic enhance the stability of synthetic RNA hairpins and have RNAs containing each of these tetraloops have been solved strikingly similar three-dimensional structures. To determine by two-dimensional NMR spectroscopy (11, 12). Despite the biological relevance ofthis similarity, as well as to assess the their different sequences, they adopt quite similar structures relative contributions of sequence and structure to the function in which the first and fourth bases are hydrogen bonded, the of the domain IV tetraloop, we replaced the GAAA sequence in second base has little interaction with the remainder of the fission yeast SRP RNA with UUCG. Haploid strains harboring loop, and the phosphate backbone between the second and this substitution are viable, providing experimental evidence third nucleotides is extended as a consequence of S-type for the functional equivalence of the two tetraloops. -
Independent Evolution of Tetraloop in Enterovirus Oril Replicative Element and Its Putative Binding Partners in Virus Protein 3C
Independent evolution of tetraloop in enterovirus oriL replicative element and its putative binding partners in virus protein 3C Maria A. Prostova1, Andrei A. Deviatkin1, Irina O. Tcelykh1,2, Alexander N. Lukashev1,3 and Anatoly P. Gmyl1,2,3 1 Chumakov Institute of Poliomyelitis and Viral Encephalitides, Moscow, Russia 2 Lomonosov Moscow State University, Moscow, Russia 3 Sechenov First Moscow State Medical University, Moscow, Russia ABSTRACT Background. Enteroviruses are small non-enveloped viruses with a (C) ssRNA genome with one open reading frame. Enterovirus protein 3C (or 3CD for some species) binds the replicative element oriL to initiate replication. The replication of enteroviruses features a low-fidelity process, which allows the virus to adapt to the changing environment on the one hand, and requires additional mechanisms to maintain the genome stability on the other. Structural disturbances in the apical region of oriL domain d can be compensated by amino acid substitutions in positions 154 or 156 of 3C (amino acid numeration corresponds to poliovirus 3C), thus suggesting the co-evolution of these interacting sequences in nature. The aim of this work was to understand co- evolution patterns of two interacting replication machinery elements in enteroviruses, the apical region of oriL domain d and its putative binding partners in the 3C protein. Methods. To evaluate the variability of the domain d loop sequence we retrieved all available full enterovirus sequences (>6;400 nucleotides), which were present in the NCBI database on February 2017 and analysed the variety and abundance of sequences in domain d of the replicative element oriL and in the protein 3C. -
Free-Energy Landscape of a Hyperstable RNA Tetraloop
Free-energy landscape of a hyperstable RNA tetraloop Jacob C. Minera,b, Alan A. Chenc, and Angel E. Garcíaa,d,1 aCenter for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM 87545; bDepartment of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180; cDepartment of Chemistry, University at Albany, State University of New York, Albany, NY 12222; and dDepartment of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, Troy, NY 12180 Edited by Michael L. Klein, Temple University, Philadelphia, PA, and approved April 21, 2016 (received for review February 24, 2016) We report the characterization of the energy landscape and the through multiple configurational states (19, 21, 22, 28). This folding/unfolding thermodynamics of a hyperstable RNA tetraloop flexibility makes the GNRA tetraloop a useful target for ex- obtained through high-performance molecular dynamics simula- ploring both the accuracy of RNA force fields in recapitulating tions at microsecond timescales. Sampling of the configurational folded configurations and the heterogeneity of the folded free- landscape is conducted using temperature replica exchange molec- energy landscape. ular dynamics over three isochores at high, ambient, and negative In this report, we characterize the thermodynamics and folding pressures to determine the thermodynamic stability and the free- free-energy landscape for an oligonucleotide containing a GNRA energy landscape of the tetraloop. The simulations reveal reversible tetraloop sequence (r[gcGCAAgc]) through high-performance folding/unfolding transitions of the tetraloop into the canonical simulations and replica exchange molecular dynamics (REMD) A-RNA conformation and the presence of two alternative config- (29). The conformational ensembles are described in terms of urations, including a left-handed Z-RNA conformation and a compact global and local order parameters and reveal the formation of purine Triplet.