Tetranucleotide Loops GAAA and UUCG in Fission Yeast

Total Page:16

File Type:pdf, Size:1020Kb

Tetranucleotide Loops GAAA and UUCG in Fission Yeast Proc. Natl. Acad. Sci. USA Vol. 90, pp. 5409-5413, June 1993 Biochemistry Functional interchangeability of the structurally similar tetranucleotide loops GAAA and UUCG in fission yeast signal recognition particle RNA (RNA structure/RNA-protein interactions) DAVID SELINGER, XIUBEI LIAOt, AND Jo ANN WISEt Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801 Communicated by Joan A. Steitz, February 10, 1993 (receivedfor review January 5, 1993) ABSTRACT Signal recognition particle (SRP) RNA exhib- in catalytic and informational RNAs as well (7, 8). This its significant primary sequence conservation only in domain prevalence was previously proposed to arise from their IV, a bulged hairpin capped by a GNRA (N, any nucleotide; R, ability to increase hairpin stability (9) but may instead be a purine) tetranucleotide loop except in plant homologs. Tetra- consequence of their well-defined three-dimensional confor- loops conforming to this sequence or to the consensus UNCG mations (10). Recently, solution structures of small synthetic enhance the stability of synthetic RNA hairpins and have RNAs containing each of these tetraloops have been solved strikingly similar three-dimensional structures. To determine by two-dimensional NMR spectroscopy (11, 12). Despite the biological relevance ofthis similarity, as well as to assess the their different sequences, they adopt quite similar structures relative contributions of sequence and structure to the function in which the first and fourth bases are hydrogen bonded, the of the domain IV tetraloop, we replaced the GAAA sequence in second base has little interaction with the remainder of the fission yeast SRP RNA with UUCG. Haploid strains harboring loop, and the phosphate backbone between the second and this substitution are viable, providing experimental evidence third nucleotides is extended as a consequence of S-type for the functional equivalence of the two tetraloops. We next sugar puckering. tested the two sequences found in plant SRP RNAs at this We previously reported the in vivo effects of point muta- location for function in the context of the Schizosaccharomyces tions in the domain IV tetraloop of fission yeast SRP RNA pombe RNA. While substitution of CUUC does not allow (nucleotides 160-163; wild-type sequence GAAA) (13). Both growth, a viable strain results from replacing GAAA with lethal alleles identified were transversions at G-160, which UUUC. Although the viable tetraloop substitution mutants had been implicated in SRP19 protein binding by RNase exhibit wild-type growth under normal conditions, all three protection studies (14, 15). However, a G at this position is express conditional defects. To determine whether this might also critical to the integrity of the tetraloop, and there is a be a consequence of structural perturbations, we performed strong correlation between the phenotypes of the remaining enzymatic probing. The results indicate that RNAs containing point mutants we examined and predicted perturbations of tetraloop substitutions exhibit subtle differences from the wild the structure. To gain further insight into the role of domain type not only in the tetraloop itself, but also in the 3-base pair IV, as well as to assess the relevance of recent in vitro adjoining stem. To directly assess the importance of the latter structural data to the situation in vivo, we analyzed both the structure, we disrupted it partially or completely and made the effects of en bloc tetraloop substitutions and the conse- compensatory mutations to restore the helix. Surprisingly, quences ofdisrupting and restoring the adjoining stem. Taken mutant RNAs with as little as one Watson-Crick base pair can together, the results of our studies imply that the in vivo support growth. function of this region is determined by its structure. Signal recognition particle (SRP) is an RNA-protein complex EXPERIMENTAL PROCEDURES that targets ribosomes translating presecretory proteins to Materials. Enzymes were purchased from BRL and New the endoplasmic reticulum membrane (reviewed in ref. 1). England Biolabs; mutagenesis reagents were from Amer- The extensively studied canine SRP is composed of six sham; DNA sequencing reagents were from United States polypeptides and one 300-nucleotide RNA (2, 3). SRP RNA Biochemical; RNases were from Pharmacia; and calf intes- (also referred to as 7SL) has been identified in a variety of tinal alkaline phosphatase was from Boehringer Mannheim. organisms (reviewed in ref. 4) and can be folded into a Sequencing primers and mutagenic oligonucleotides were phylogenetically conserved secondary structure consisting of synthesized at the Biotechnology Center at the University of four domains: a short base-paired region at the 5' end (domain Illinois. Radiolabeled [y_32P]ATP was from ICN. I); a long central helix that includes the 3' end (domain II); Site-Directed Mutagenesis. Targeted mutations were intro- and two internal stem-loop structures, one extensively base duced into the cloned SRP7 gene carried on the phagemid paired (domain III) and one containing several internal loops pWEC4.2 (16) by standard methods (17, 18) with the follow- (domain IV) (nomenclature according to ref. 5). The se- ing oligonucleotides: STL1 (5'-ATGTGCATTSC- quence, as well as the secondary structure, of domain IV is GAASAACCTCCATC-3'), replaces nucleotides 159-164 conserved in SRP RNA homologs from bacteria to humans with SUUCGS sequences where S is G or C; STL2 (5'- (4). This helix terminates in a tetranucleotide loop that ATTCCGAAGAACCTCCATC-3'), generates a variant not conforms to the consensus GNRA (N, any nucleotide; R, obtained with STL1; PTL1 (5'-TGTGCATTGGAAR- purine) except in plant SRP RNAs, which have four pyrim- CAACCTCCA-3'), replaces nucleotides 160-163 with the idines at this location. GNRA and UNCG tetraloops are corresponding segment of plant SRP RNA; PTL2 (5'- highly overrepresented in RNAs (6) and are found frequently Abbreviation: SRP, signal recognition particle. The publication costs of this article were defrayed in part by page charge tPresent address: Department of Molecular Biology, Research In- payment. This article must therefore be hereby marked "advertisement" stitute of Scripps Clinic, La Jolla, CA 92037. in accordance with 18 U.S.C. §1734 solely to indicate this fact. 1To whom reprint requests should be addressed. 5409 Downloaded by guest on September 26, 2021 5410 Biochemistry: Selinger et al. Proc. Natl. Acad. Sci. USA 90 (1993) TGTGCATTTGAARCAACCTCCA-3'), places a G-A pair Table 1. Phenotypes conferred by mutations targeted to the adjacent to the plant tetraloops; M3a (5'-ATGTGCAT- domain IV terminal region TG*TT*TCC*AACCTCCAT-3'), creates mutations at posi- Line Allele Sequence Growth OTS tions 159, 162, and 164 (45% degeneracy was allowed at the positions marked with an asterisk); BP2 and -3 (5'- 1 Wild type GGAAAC GATGTGCAT1T2GTTTCCA3A4CCTCCATCG-3'), creates 2 A162C GGACAC Viable + mismatches in the second and third base pairs flanking the 3 G159U/A162C UGACAC Dead tetraloop and changes the A-U pairs to C-G pairs (T1 = 50% 4 G159U/A162U UGAUAC Dead T/50% G, T2 = 50% T/50% C, A3 = 17% A/83% G, and A4 5 A162C/C164G GGACAG Viable +++ = 17% A/83% C); BP-C (5'-TGATGTGCAGCGTTTC- 6 STL1-3 GUUCGC Wild type +++ CGCCC-3'), replaces both A-U pairs with G-C pairs; D4-E 7 STL2-1 CUUCGG Viable ++ (5'-GATGTGCATTGCGTTTC*CGCAACCTCCATC-3'), 8 STL1-1 GUUCGG Dead inserts two G-C base pairs into the stem adjacent to the 9 STL1-2 CUUCGC Dead tetraloop, in the context of either the wild-type tetraloop or 10 PTL1-1 GUUUCC Viable ++ a lethal point mutant (G16OC) (50% C/50% G at the position 11 PTL1-2 GCUUCC Dead marked with an asterisk). 12 PTL 2C GCUUCA Dead Yeast Methods. Mutant alleles were confirmed by DNA 13 PTL 2U GUUUCA Dead sequencing and introduced into Schizosaccharomyces 14 D4E-1 UUGCGG ... CGCAA Dead pombe strain RM2a, heterozygous for disruption ofthe SRP7 15 D4E-2 UUGCCC ... CGCAA Dead gene (19). Transformation, random spore analysis, and test- 16 D4E-3 UUGG ... CGCAA Viable ing for sensitivity to high or low temperature and/or in- 17 G159C/C164G UUC ... GAA Cold creased osmotic strength were performed as described (13). sensitive + + + To determine generation times, cells were grown in rich 18 G159C/C164A UUC ... AAA Dead medium at 30°C and their density was monitored by counting 19 G159A UUA... CAA Viable +++ in a hemacytometer. 20 G159U UUU ... CAA Viable +++ Construction of the p77 Plasmid Series. Domain IV was 21 C164A UUG... AAA Viable ++ amplified by 25 cycles ofPCR under standard conditions with 22 G159A/C164U UUA ... UAA Viable the two primers D4-PCRI (5'-CTGGCAGTTAGGCCTTG- 23 G159U/C164A UUU ... AAA Viable TAGTACCGA-3'; identical to nucleotides 125-150, except 24 U157G GUG... CAA Viable for the underlined changes to create a Stu I site) and D4- 25 U158C UCG ... CAA Viable PCRII (5'-GCACTGCCCAGGATC-CT*GTAGTGATG-3'; 26 A165G UUG... CGA Viable complementary to positions 172-196 except at the underlined 27 A166C UUG ... CAC Viable ++ nucleotides, which create a BamHI site, and at the position 28 U157G/U158C GCG. .. CAA Viable marked with an asterisk, which restores pairing to the Stu I 29 U157G/A165G GUG ... CGA Viable + site) on pWEC4.2 DNA containing wild-type or mutant 7SL 30 U158C/A166C UCG ... CAC Dead sequences. The products were phenol extracted, digested 31 BP-Comp GCG . CGC Viable with Stu I and BamHI, and ligated into the same sites in pDW19 (a gift of Norman Pace, Indiana University), which critical residues. The striking similarities between the re- has a T7 promoter positioned such that transcription starts at cently determined solution structures of UUCG (11) and the first G of the Stu I site. GAAA (12) tetranucleotide loops prompted us to ask whether In Vitro Transcription. BamHI-digested p77 DNA was they are interchangeable in vivo. Both UUCG substitution transcribed with T7 RNA polymerase according to published mutants in which the flanking residues do not form Watson- procedures (20), and a 10-pmol sample was dephosphorylated Crick base pairs are inviable (Table 1, lines 8 and 9).
Recommended publications
  • Free-Energy Landscape of a Hyperstable RNA Tetraloop
    Free-energy landscape of a hyperstable RNA tetraloop Jacob C. Minera,b, Alan A. Chenc, and Angel E. Garcíaa,d,1 aCenter for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM 87545; bDepartment of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180; cDepartment of Chemistry, University at Albany, State University of New York, Albany, NY 12222; and dDepartment of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, Troy, NY 12180 Edited by Michael L. Klein, Temple University, Philadelphia, PA, and approved April 21, 2016 (received for review February 24, 2016) We report the characterization of the energy landscape and the through multiple configurational states (19, 21, 22, 28). This folding/unfolding thermodynamics of a hyperstable RNA tetraloop flexibility makes the GNRA tetraloop a useful target for ex- obtained through high-performance molecular dynamics simula- ploring both the accuracy of RNA force fields in recapitulating tions at microsecond timescales. Sampling of the configurational folded configurations and the heterogeneity of the folded free- landscape is conducted using temperature replica exchange molec- energy landscape. ular dynamics over three isochores at high, ambient, and negative In this report, we characterize the thermodynamics and folding pressures to determine the thermodynamic stability and the free- free-energy landscape for an oligonucleotide containing a GNRA energy landscape of the tetraloop. The simulations reveal reversible tetraloop sequence (r[gcGCAAgc]) through high-performance folding/unfolding transitions of the tetraloop into the canonical simulations and replica exchange molecular dynamics (REMD) A-RNA conformation and the presence of two alternative config- (29). The conformational ensembles are described in terms of urations, including a left-handed Z-RNA conformation and a compact global and local order parameters and reveal the formation of purine Triplet.
    [Show full text]
  • Structure and Thermodynamics of a Conserved U2 Snrna Domain from Yeast and Human
    JOBNAME: RNA 13#3 2007 PAGE: 1 OUTPUT: Wednesday January 17 20:23:55 2007 csh/RNA/131630/rna4184 Downloaded from rnajournal.cshlp.org on September 29, 2021 - Published by Cold Spring Harbor Laboratory Press Structure and thermodynamics of a conserved U2 snRNA domain from yeast and human DIPALI G. SASHITAL,1 VINCENZO VENDITTI,2 CORTNEY G. ANGERS,1,4 GABRIEL CORNILESCU,3 and SAMUEL E. BUTCHER1 1Department of Biochemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706, USA 2Biomolecular Structure Research Center and Dipartimento di Biologia Molecolare, Universita di Siena, I-53100 Siena, Italy 3National Magnetic Resonance Facility at Madison, Department of Biochemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706, USA ABSTRACT The spliceosome is a dynamic ribonucleoprotein complex responsible for the removal of intron sequences from pre-messenger RNA. The highly conserved 59 end of the U2 small nuclear RNA (snRNA) makes key base-pairing interactions with the intron branch point sequence and U6 snRNA. U2 stem I, a stem–loop located in the 59 region of U2, has been implicated in spliceosome assembly and may modulate the folding of the U2 and U6 snRNAs in the spliceosome active site. Here we present the NMR structures of U2 stem I from human and Saccharomyces cerevisiae. These sequences represent the two major classes of U2 stem I, distinguished by the identity of tandem wobble pairs (UU/UU in yeast and CA/GU in human) and the presence of post-transcriptional modifications (four 29-O-methyl groups and two pseudouracils in human). The structures reveal that the UU/UU and CA/GU tandem wobble pairs are nearly isosteric.
    [Show full text]
  • RNA Tertiary Structure Energetics Predicted by an Ensemble Model of the RNA Double Helix
    bioRxiv preprint doi: https://doi.org/10.1101/341107; this version posted June 6, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. TITLE RNA tertiary structure energetics predicted by an ensemble model of the RNA double helix 1 Joseph D. Yesselman * ​ ​ 2 Sarah K. Denny * ​ ​ Namita Bisaria1,† ​ Daniel Herschlag1,5,6,‡ ​ William J. Greenleaf2,3,4,5,7,‡ ​ Rhiju Das1,8,‡ ​ 1 Department​ of Biochemistry, Stanford University, Stanford, CA 94305, United States 2 Program​ in Biophysics, Stanford University, Stanford, CA 94305, United States 3 Department​ of Genetics, Stanford University, Stanford, CA 94305, United States 4 Department​ of Applied Physics, Stanford University, Stanford, CA 94305, United States 5 Department​ of Chemistry, Stanford University, Stanford, CA 94305, United States 6 Stanford​ ChEM-H (Chemistry, Engineering, and Medicine for Human Health), Stanford University, Stanford, California 94305, USA 7 Chan​ Zuckerberg Biohub, San Francisco, CA, United States 8 Department​ of Physics, Stanford University, Stanford, CA 94305, United States *These authors contributed equally † Current​ address: Whitehead Institute for Biomedical Research, Cambridge, MA 02142, United States ‡ Correspondence​ should be addressed to D.H. ([email protected]), W.J.G ​ ​ ([email protected]), or R.D. ([email protected]). ​ ​ ​ ​ Classification: Biological Sciences – Biophysics Keywords: Blind Prediction, RNA Energetics, High-throughput Data Short title: Blind Predictions of RNA Tertiary Assembly Energetics 1 bioRxiv preprint doi: https://doi.org/10.1101/341107; this version posted June 6, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder.
    [Show full text]
  • Unexpected Dynamics in the UUCG RNA Tetraloop
    bioRxiv preprint doi: https://doi.org/10.1101/690412; this version posted September 11, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 UneXPECTED Dynamics IN THE UUCG 2 RNA TETRALOOP 1,2* 3 3 3 SandrO BottarO , ParkER J. Nichols , Beat Vögeli , Michele 1 2* 4 Parrinello , KrESTEN Lindorff-Larsen *For CORRespondence: 1Atomistic Simulations LaborATORY, ISTITUTO ITALIANO DI Tecnologia, Genova, [email protected] (SB); 5 LINDORff@bio.ku.dk (KLL) Italy; 2StructurAL Biology AND NMR LaborATORY, Department OF Biology, 6 University OF Copenhagen, Copenhagen, Denmark; 3Department OF 7 Biochemistry AND Molecular Genetics, University OF ColorADO Denver, 8 Anschutz Medical Campus, AurORa, Colorado, USA. 9 10 Many RNA MOLECULES ARE dynamic, BUT CHARACTERIZING THEIR MOTIONS 11 AbstrACT BY EXPERIMENTS IS DIfficult, OFTEN REQUIRING APPLICATION OF COMPLEX NMR 12 Experiments. Computational METHODS SUCH AS MOLECULAR DYNAMICS simulations, 13 ON THE OTHER hand, STILL SUffER FROM DIffiCULTIES IN SAMPLING AND REMAINING FORCE 14 fiELD ERRors. Here, WE PROVIDE AN atomic-leVEL DESCRIPTION OF STRUCTURE AND 15 DYNAMICS OF THE 14-mer UUCG RNA stem-loop BY COMBINING MOLECULAR DYNAMICS 16 SIMULATIONS WITH EXACT NUCLEAR Overhauser ENHANCEMENT data. The INTEGRATION OF 17 EXPERIMENTS AND SIMULATION VIA A Bayesian/Maximum ENTROPY APPROACH ENABLES 18 US TO DISCOVER AND CHARACTERIZE A NEW STATE OF THIS molecule, WHICH WE SHOW 19 SAMPLES TWO DISTINCT states. The MOST STABLE CONFORMATION CORRESPONDS TO THE 20 native, CONSENSUS THRee-dimensional STRUCTURe.
    [Show full text]
  • Anrnafoldingmotif:Gnratetraloop^Receptor Interactions
    Quarterly Reviews of Biophysics , Page 1 of 42. f Cambridge University Press 2013 1 doi:10.1017/S0033583513000048 Printed in the United States of America An RNA folding motif : GNRA tetraloop^receptor interactions Julie L. Fiore and David J. Nesbitt* JILA, National Institute of Standards and Technology, Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309, USA Abstract. Nearly two decades after Westhof and Michel first proposed that RNA tetraloops may interact with distal helices, tetraloop–receptor interactions have been recognized as ubiquitous elements of RNA tertiary structure. The unique architecture of GNRA tetraloops (N=any nucleotide, R=purine) enables interaction with a variety of receptors, e.g., helical minor grooves and asymmetric internal loops. The most common example of the latter is the GAAA tetraloop–11 nt tetraloop receptor motif. Biophysical characterization of this motif provided evidence for the modularity of RNA structure, with applications spanning improved crystallization methods to RNA tectonics. In this review, we identify and compare types of GNRA tetraloop–receptor interactions. Then we explore the abundance of structural, kinetic, and thermodynamic information on the frequently occurring and most widely studied GAAA tetraloop–11 nt receptor motif. Studies of this interaction have revealed powerful paradigms for structural assembly of RNA, as well as providing new insights into the roles of cations, transition states and protein chaperones in RNA folding pathways. However, further research will clearly be necessary to characterize other tetraloop–receptor and long-range tertiary binding interactions in detail – an important milestone in the quantitative prediction of free energy landscapes for RNA folding.
    [Show full text]
  • Computational Design of Asymmetric Three-Dimensional RNA Structures and 2 Machines
    bioRxiv preprint doi: https://doi.org/10.1101/223479; this version posted November 21, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Title: Computational Design of Asymmetric Three-dimensional RNA Structures and 2 Machines. 3 4 Authors: Joseph D. Yesselman1, Daniel Eiler2, Erik D. Carlson3,4, 5, Alexandra N. 5 Ooms6, Wipapat Kladwang1, Xuesong Shi1, David A. Costantino2, Daniel Herschlag1,7, 8, 6 Michael C. Jewett3,4,5, Jeffrey S. Kieft2, Rhiju Das1,9,* 7 8 1 Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 9 94305, USA. 10 2 Department of Biochemistry and Molecular Genetics, University of Colorado Denver 11 School of Medicine, Aurora, Colorado 80045, USA. 12 3 Department of Chemical and Biological Engineering, Northwestern University, 2145 13 Sheridan Road, Tech E-136, Evanston, Illinois 60208, USA. 14 4 Chemistry of Life Processes Institute, Northwestern University, 2170 Campus Drive, 15 Evanston, Illinois 60208, USA. 16 4 Center for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Evanston, 17 Illinois 60208, USA. 18 6 Department of Cancer Genetics & Genomics, Stanford University School of Medicine, 19 Stanford, CA 94305, USA. 20 7 Department of Chemistry, Stanford University School of Medicine, Stanford, CA 94305, 21 USA. 22 8 Stanford ChEM-H (Chemistry, Engineering, and Medicine for Human Health), Stanford 23 University, Stanford, California 94305, USA. 24 9 Department of Physics, Stanford University, Stanford, CA 94305, USA. 25 26 *Correspondence should be addressed to R.D. ([email protected]) 27 1 bioRxiv preprint doi: https://doi.org/10.1101/223479; this version posted November 21, 2017.
    [Show full text]
  • Independent Evolution of Tetraloop in Enterovirus Oril Replicative Element and Its Putative Binding Partners in Virus Protein 3C
    Independent evolution of tetraloop in enterovirus oriL replicative element and its putative binding partners in virus protein 3C Maria A. Prostova1, Andrei A. Deviatkin1, Irina O. Tcelykh1,2, Alexander N. Lukashev1,3 and Anatoly P. Gmyl1,2,3 1 Chumakov Institute of Poliomyelitis and Viral Encephalitides, Moscow, Russia 2 Lomonosov Moscow State University, Moscow, Russia 3 Sechenov First Moscow State Medical University, Moscow, Russia ABSTRACT Background. Enteroviruses are small non-enveloped viruses with a (C) ssRNA genome with one open reading frame. Enterovirus protein 3C (or 3CD for some species) binds the replicative element oriL to initiate replication. The replication of enteroviruses features a low-fidelity process, which allows the virus to adapt to the changing environment on the one hand, and requires additional mechanisms to maintain the genome stability on the other. Structural disturbances in the apical region of oriL domain d can be compensated by amino acid substitutions in positions 154 or 156 of 3C (amino acid numeration corresponds to poliovirus 3C), thus suggesting the co-evolution of these interacting sequences in nature. The aim of this work was to understand co- evolution patterns of two interacting replication machinery elements in enteroviruses, the apical region of oriL domain d and its putative binding partners in the 3C protein. Methods. To evaluate the variability of the domain d loop sequence we retrieved all available full enterovirus sequences (>6;400 nucleotides), which were present in the NCBI database on February 2017 and analysed the variety and abundance of sequences in domain d of the replicative element oriL and in the protein 3C.
    [Show full text]
  • Free-Energy Landscape of a Hyperstable RNA Tetraloop
    Free-energy landscape of a hyperstable RNA tetraloop Jacob C. Minera,b, Alan A. Chenc, and Angel E. Garcíaa,d,1 aCenter for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM 87545; bDepartment of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180; cDepartment of Chemistry, University at Albany, State University of New York, Albany, NY 12222; and dDepartment of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, Troy, NY 12180 Edited by Michael L. Klein, Temple University, Philadelphia, PA, and approved April 21, 2016 (received for review February 24, 2016) We report the characterization of the energy landscape and the through multiple configurational states (19, 21, 22, 28). This folding/unfolding thermodynamics of a hyperstable RNA tetraloop flexibility makes the GNRA tetraloop a useful target for ex- obtained through high-performance molecular dynamics simula- ploring both the accuracy of RNA force fields in recapitulating tions at microsecond timescales. Sampling of the configurational folded configurations and the heterogeneity of the folded free- landscape is conducted using temperature replica exchange molec- energy landscape. ular dynamics over three isochores at high, ambient, and negative In this report, we characterize the thermodynamics and folding pressures to determine the thermodynamic stability and the free- free-energy landscape for an oligonucleotide containing a GNRA energy landscape of the tetraloop. The simulations reveal reversible tetraloop sequence (r[gcGCAAgc]) through high-performance folding/unfolding transitions of the tetraloop into the canonical simulations and replica exchange molecular dynamics (REMD) A-RNA conformation and the presence of two alternative config- (29). The conformational ensembles are described in terms of urations, including a left-handed Z-RNA conformation and a compact global and local order parameters and reveal the formation of purine Triplet.
    [Show full text]
  • Free Energy Landscape of GAGA and UUCG RNA Tetraloops” Authors: Sandro Bottaro, Pavel Banas, Jiri Sponer, and Giovanni Bussi
    Free Energy Landscape of GAGA and UUCG RNA Tetraloops Sandro Bottaro,∗,† Pavel Banáš,‡,¶ Jiríˇ Šponer,‡,¶ and Giovanni Bussi∗,† SISSA, International School for Advanced Studies 265, Via Bonomea I-34136 Trieste, Italy, Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, 17. Listopadu 12, 771 46 Olomouc, Czech Republic, and Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 65 Brno, Czech Republic E-mail: [email protected]; [email protected] arXiv:1609.07898v1 [q-bio.BM] 26 Sep 2016 ∗To whom correspondence should be addressed †SISSA, International School for Advanced Studies 265, Via Bonomea I-34136 Trieste, Italy ‡Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, 17. Listopadu 12, 771 46 Olomouc, Czech Republic ¶Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 65 Brno, Czech Republic 1 Reprinted with permission from: “Free Energy Landscape of GAGA and UUCG RNA Tetraloops” Authors: Sandro Bottaro, Pavel Banas, Jiri Sponer, and Giovanni Bussi. Journal: Journal of Physical Chemistry Letters. doi: 10.1021/acs.jpclett.6b01905. Copyright 2016 American Chemical Society. Abstract We report the folding thermodynamics of ccUUCGgg and ccGAGAgg RNA tetraloops us- ing atomistic molecular dynamics simulations. We obtain a previously unreported estimation of the folding free energy using parallel tempering in combination with well-tempered meta- dynamics. A key ingredient is the use of a recently developed metric distance, eRMSD, as a biased collective variable. We find that the native fold of both tetraloops is not the global free energy minimum using the AmbercOL3 force field.
    [Show full text]
  • Nucleic Acids: Theory and Computer Simulation, Y2K David L Beveridge* and Kevin J Mcconnell†
    Sba213.qxd 03/27/2000 12:45 Page 182 182 Nucleic acids: theory and computer simulation, Y2K David L Beveridge* and Kevin J McConnell† Molecular dynamics simulations on DNA and RNA that include dependent upon judicious approximations of the underly- solvent are now being performed under realistic environmental ing empirical force-field, simulation protocols and system conditions of water activity and salt. Improvements to force- preparation. Run lengths of even nanoseconds, a consider- fields and treatments of long-range interactions have able recent technical accomplishment, are still not long significantly increased the reliability of simulations. New studies enough to access many nucleic acid phenomena of inter- of sequence effects, axis bending, solvation and est; however, much can and has been done. In this review, conformational transitions have appeared. we describe the recent literature on all-atom MD applied to uncomplexed DNA and RNA systems, with an empha- Addresses sis on studies published during 1998–2000, that serve to Chemistry Department and Molecular Biophysics Program, Wesleyan document simulation protocols and provide validations of University, Middletown, CT 06459, USA the current level of accuracy of the simulations. *e-mail: [email protected] †e-mail: [email protected] This review builds, in particular, on the most recent Current Opinion in Structural Biology 2000, 10:182–196 Current Opinion in Structural Biology review on this subject, 0959-440X/00/$ — see front matter that by Auffinger and Westhof [2], as well as a number of © 2000 Elsevier Science Ltd. All rights reserved. others [3–6]. A multi-author treatise on nucleic acid struc- ture edited by Neidle [7•] contains a number of valuable Abbreviations FDPB finite difference Poisson Boltzmann reviews, particularly one on MD by Miller et al.
    [Show full text]
  • A General Module for RNA Crystallization Adrianr.Ferreâ-D'amareâ,Kaihongzhouandjennifera.Doudna*
    Article No. mb981789 J. Mol. Biol. (1998) 279, 621±631 A General Module for RNA Crystallization AdrianR.FerreÂ-D'AmareÂ,KaihongZhouandJenniferA.Doudna* Department of Molecular Crystallization of RNA molecules other than simple oligonucleotide Biophysics and Biochemistry duplexes remains a challenging step in structure determination by X-ray and Howard Hughes Medical crystallography. Subjecting biochemically, covalently and conformation- Institute, Yale University ally homogeneous target molecules to an exhaustive array of crystalliza- P.O. Box 208114, New Haven tion conditions is often insuf®cient to yield crystals large enough for CT 06520-8814, USA X-ray data collection. Even when large RNA crystals are obtained, they often do not diffract X-rays to resolutions that would lead to biochemi- cally informative structures. We reasoned that a well-folded RNA mol- ecule would typically present a largely undifferentiated molecular surface dominated by the phosphate backbone. During crystal nucleation and growth, this might result in neighboring molecules packing subtly out of register, leading to premature crystal growth cessation and disorder. To overcome this problem, we have developed a crystallization module consisting of a normally intramolecular RNA-RNA interaction that is recruited to make an intermolecular crystal contact. The target RNA molecule is engineered to contain this module at sites that do not affect biochemical activity. The presence of the crystallization module appears to drive crystal growth, in the course of which other, non-designed con- tacts are made. We have employed the GAAA tetraloop/tetraloop recep- tor interaction successfully to crystallize numerous group II intron domain 5-domain 6, and hepatitis delta virus (HDV) ribozyme RNA con- structs.
    [Show full text]
  • Stability in Nucleic Acid Hairpins
    The Pennsylvania State University The Graduate School Eberly College of Science STABILITY IN NUCLEIC ACID HAIRPINS: 1. MOLECULAR DETERMINANTS OF COOPERATIVITY AND 2. LINKAGE BETWEEN PROTON BINDING AND FOLDING A Thesis in Chemistry by Ellen M. Moody Copyright 2004 Ellen M. Moody Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy December 2004 The thesis of Ellen M. Moody was reviewed and approved* by the following: Philip C. Bevilacqua Associate Professor of Chemistry Thesis Advisor Chair of Committee Christopher Falzone Senior Lecturer of Chemistry Juliette T. J. Lecomte Associate Professor of Chemistry James G. Ferry Stanley Person Professor and Director Center for Microbial Structural Biology Ayusman Sen Professor of Chemistry Head of the Department *Signatures are on file in the Graduate School. ABSTRACT Nucleic acids are central to a wide range of biological processes. The structures as well as the sequence of these biopolymers can carry genetic information, perform catalysis, and are recognized by other components of the cell. Most nucleic acids exist as a combination of simple secondary structures that assemble into much larger, complex structures. The studies contained in this thesis use DNA and RNA hairpin loops as a model system to investigate expandability of loops, cooperativity of interactions, and proton binding. Thermodynamic and phylogenetic analysis have revealed stable DNA and RNA tri- and tetra-loop motifs. In this thesis, in vitro, combinatorial selection approaches have been used to isolate 4 stable DNA tetraloop motifs: d(cGNNAg), d(cGNABg), d(cCNNGg) and d(gCNNGc), where N = A, C, G, or T and B = C, G or T.
    [Show full text]