Osu1056980709.Pdf (5.18

Total Page:16

File Type:pdf, Size:1020Kb

Osu1056980709.Pdf (5.18 COORDINATION OF CELL CYCLE AND CELL DIFFERENTIATION BY RECEPTOR ACTIVATOR OF NF-KAPPA-B LIGAND DURING OSTEOCLAST DIFFERENTIATION DISSERTATION Presented in Partial Fulfillment of the Requirements for The Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Uma Sankar ***** The Ohio State University 2003 Dissertation Committee: Approved by Professor Michael C. Ostrowski, Adviser Professor Gustavo W. Leone Adviser Professor Natarajan Muthusamy Molecular, Cellular and Professor Russell J. Hill Developmental Biology ABSTRACT Osteoclasts are bone resorbing multinuclear cells formed by the fusion of hematopoietic mononuclear precursor cells of the macrophage/monocyte lineage. Microphthalmia transcription factor (MITF) is a basic helix-loop-helix leucine zipper transcription factor that is important for the differentiation of many cell types, including osteoclasts and melanocytes. MITF regulates the expression of osteoclast-differentiation marker genes, Tartrate-resistant acid phosphatase (TRAP) and cathepsin K. Deletion in arginine 215 in the basic domain of MITF results in severe osteopetrosis in homozygous recessive mice (Mitfmi/mi). A substitution of arginine 216, in the basic domain, with lysine results in age resolving osteopetrosis in mice in the homozygous condition (Mitfor/or). However, mice that are homozygous recessive for a substitution of isoleucine to asparagine in the basic domain of this transcription factor (Mitfwh/wh) do not exhibit any osteopetrosis. We identified several novel genes regulated by Mitf with potential roles in osteoclast differentiation via microarray analysis of cDNA from WT and Mitfmi/mi osteoclasts. In particular, Eos, HOX11L2, Hematopoietic cell phosphatase (HCP) and p9 were confirmed to be expressed in lower levels in Mitfmi/mi osteoclasts compared to the WT. We also observed that while TRAP mRNA levels were upregulated in Mitfor/or, similar to the levels in WT, Cathepsin ii K levels were lower in both Mitfmi/mi and Mitfor/or osteoclasts. Thus, Mitf-regulated genes could be classified into two groups based on their expression pattern in the Mitfor/or mutant. Osteoclast progenitors shift from a population of actively proliferating cells to that of committed, post-mitotic mononuclear precursor cells prior to becoming multinuclear osteoclasts. We observed that the cytokine, receptor activator of NF-kB ligand (RANKL), induces wildtype (WT) osteoclast progenitors to withdraw from cell cycle within 24 hours of its application. This event coincides with elevation in p27KIP1 (via the p38 MAPK pathway) and p21CIP1 and with decreased CDK2 activity. We also observed that p27KIP1 is required by osteoclast progenitors to exit from the cell cycle in response to RANKL and that p27KIP1-/- osteoclasts express lower levels of TRAP mRNA. However, deficiency in p21CIP1 does not affect any of these phenomena. We also observed that removal of p27KIP1 or p21CIP1 alone does not affect osteoclast differentiation or function, in vitro or in vivo. Osteoclast progenitors from p27KIP1-/-p21CIP1-/- double knockout mice do not withdraw from cell cycle in response to RANKL and express significantly lower levels of TRAP and Cathepsin K mRNA. p27KIP1-/-p21CIP1-/- mice exhibit age resolving osteopetrosis. In addition, precursors from the double mutant mice form fewer multinuclear functional osteoclasts in vitro. These data suggest that that only p27KIP1 has a role in cell cycle withdrawal during osteoclast differentiation while both p21CIP1 and p27KIP1 might have additional, potentially redundant roles, during osteoclast differentiation. iii Dedicated to my parents and to Keith, my best friend .… iv ACKNOWLEDGMENTS I would like to thank my adviser, Dr. Michael C. Ostrowski, for his guidance, support and for the helpful scientific discussions. I would also like to thank Drs. Gustavo W. Leone, Raj Muthusamy and Russell J. Hill, members of my dissertation committee, for their helpful guidance and support. In addition, I would like to thank all the past and present members of the Ostrowski laboratory for their support and discussions. I would also like to thank Dr. Thomas Rosol for his help with the analysis of the osteopetrotic phenotype in the mutant mice. I would also like to thank Drs. Andrew Koff and Ming You for providing us with the p27KIP1 and p21CIP1 knockout mice. Special thanks to the staff at the ULAR facility at the Ohio State University for the help with maintaining the mouse colonies and to Evelyn at the College of Veterinary Biosciences for help with the histological sections. Also, special thanks to Krupen Patel for help with maintaining the mouse colonies and help with the histochemical analysis. Finally, I would like to thank my family for their love and support and my husband Keith for his love and support during my graduate school career. v VITA May 1, 1968 ……………………………… Born, Trivandrum, India 1992 ………………………………………. BSc. (Agriculture), Kerala Agricultural University, India 1997……………………………………….. MS. Department of Horticulture and Crop Sciences, The Ohio State University PUBLICATIONS 1. Mansky, K. C., Sankar, U., Han, J., and Ostrowski, M. C. (2002). Microphthalmia transcription factor is a target of the p38 MAPK pathway in response to receptor activator of NF-kappa B ligand signaling. J Biol Chem 277, 11077-11083. 2. Bayoumi, M., Sankar, U., Muthusamy, N. (2002). Role of macrophage stimulating factor and osteoclast differentiation factor in osteoclastogenesis of bone marrow derived stem cells. Indian Journal of Experimental Biology. 40: 995-1000. 3. U. Sankar, K. D. Simcox, K. R. Davis and R. C. Pratt. (1997). "Detecting interactions of maize cDNA clones with MCDV proteins using the yeast Two- Hybrid system". Proceedings Annual Maize Genetics Conference, 39:87-87. FIELDS OF STUDY Major Field: Molecular, Cellular and Developmental Biology vi TABLE OF CONTENTS Page Abstract …………………...…………………………………………………………………… ii Dedication ……………….………………….………………………………………………… iv Acknowledgments ……...…..………………………………………………………………… v Vita ………………………..…………………………………………………………………… vi List of figures ……………..………….……………………….……………………………… xii List of tables …………….….……….……………………….………………………………. xv Abbreviations …………………………….………….……………………………………… xvi Chapters 1. Introduction ………………………………………………………………….………. 1 1.1 The Bone Tissue …………………………………………………….……… 2 1.1.1 Development of bone tissue ……………………………….……… 3 1.1.2 Structure of the long bone ……………………………….………. .3 1.1.3 Intramembraneous and endochondral ossifications ……………. 6 1.2 Cells in the Bone ……………………..………………….…………………11 1.2.1 Chrondrocytes .………………………………………………..….. 11 1.2.2 Osteoblasts ………….……………………………………………..12 1.2.3 Osteoclasts ………….………………………………….………… 13 1.2.3.1 Morphology of the osteoclast ..………...………………. 14 1.2.3.2 Mechanism of bone resorption by osteoclasts………... 16 1.2.3.2.1 Attachment to bone surface and consequent signaling events…………….……………... 16 1.2.3.2.2 Activation of osteoclasts…………………….... 19 1.2.3.2.3 Bone demineralization and resorption by osteoclasts………….…………………. 22 1.2.3.3 Stimulators and inhibitors of osteoclast activity…..….… 25 1.2.3.3.1 Stimulators of osteoclast activity………....….. 25 1.2.3.3.2 Inhibitors of osteoclast activity……………….. 27 1.2.3.4 Origin and differentiation of osteoclasts………………………………….……………….…….. 29 1.2.3.4.1 Origin of osteoclasts……………………….…..29 vii 1.2.3.4.2 Osteoclast precursors……………….……… 30 1.2.3.4.3 in vivo studies of osteoclast differentiation………………………..….….…………… 33 1.2.3.4.3 in vitro studies of osteoclast differentiation………………………………….……….… 34 1.2.3.5 Osteoclast differentiation and cell cycle arrest…….... 35 1.2.3.6 Molecules involved in osteoclast differentiation……... 37 1.2.3.6.1 M-CSF1……………………………………….. 37 1.2.3.6.2 OPG…………………………………………… 39 1.2.3.6.3 RANKL………………………………………... 39 1.2.3.6.4 RANK……………………………………….…. 41 1.2.3.6.5 TRAFs……………………………………….… 44 1.2.3.6.6 NFκB…………………………………………… 49 1.2.3.6.7 Activation of JNK, p38 and other signaling pathways………………………………….… 49 1.2.3.6.8 TNFa………………………………….……….. 53 1.2.3.7 Transcriptional control of osteoclast differentiation…………………………………………………… 53 1.2.3.8. Markers of osteoclast differentiation …………………. 57 1.2.3.8.1 MITF……………………………………………. 57 1.2.3.8.2 Regulation of Mitf……………………………... 66 1.2.3.8.3 Mitf and osteoclast-specific target gene expression……………………………………….. 68 1.2.3.8.4 Mutations in the Mitf locus………….………... 69 1.2.3.8.5 Osteopetrosis in Mitfmi/mi and Mitfor/or mutants…………………………………………….………. 79 1.3 Conclusion….……………………………...……………………………..… 83 2. Materials and Methods ……………….……………………………………………. 84 2.1 DNA Manipulations……………………………………….…………………84 2.1.1 Agarose gel electrophoresis…………………….……………….. 84 2.1.2 Polymerase chain reaction……………………………….………. 85 2.1.3 Cloning of DNA...………………………………….………………. 86 2.1.3.1 Restriction digests………………………..………..…….. 86 2.1.3.2 Alkaline phosphatase treatment and DNA ligation…… 86 2.1.3.3 Phenol-chloroform extraction and precipitation of DNA using ethanol…………….……….……………………….. 87 2.1.3.4 DNA transformation into E.coli competent cells…….... 88 2.1.3.4.1 Preparation of E.coli competent cells….……..88 2.1.3.4.2 DNA transformation into competent cells…….89 2.1.4 Plasmid mini and maxipreps………………………….…………...89 2.2 Preparation of recombinant RANKL and L-cell media containing CSF1………………………………………………………………………….91 2.2.1 Cloning of soluble RANKL cDNA……..…………………………. 91 2.2.2 Expression of pET32b-RANKL……………..……………………..92 2.2.3 Large scale purification of recombinant soluble RANKL……….93 2.2.4 Preparation of M-CSF1…………………………………………….95 2.3 Mouse lines and genotyping……………………………………………….95
Recommended publications
  • The National Economic Burden of Rare Disease Study February 2021
    Acknowledgements This study was sponsored by the EveryLife Foundation for Rare Diseases and made possible through the collaborative efforts of the national rare disease community and key stakeholders. The EveryLife Foundation thanks all those who shared their expertise and insights to provide invaluable input to the study including: the Lewin Group, the EveryLife Community Congress membership, the Technical Advisory Group for this study, leadership from the National Center for Advancing Translational Sciences (NCATS) at the National Institutes of Health (NIH), the Undiagnosed Diseases Network (UDN), the Little Hercules Foundation, the Rare Disease Legislative Advocates (RDLA) Advisory Committee, SmithSolve, and our study funders. Most especially, we thank the members of our rare disease patient and caregiver community who participated in this effort and have helped to transform their lived experience into quantifiable data. LEWIN GROUP PROJECT STAFF Grace Yang, MPA, MA, Vice President Inna Cintina, PhD, Senior Consultant Matt Zhou, BS, Research Consultant Daniel Emont, MPH, Research Consultant Janice Lin, BS, Consultant Samuel Kallman, BA, BS, Research Consultant EVERYLIFE FOUNDATION PROJECT STAFF Annie Kennedy, BS, Chief of Policy and Advocacy Julia Jenkins, BA, Executive Director Jamie Sullivan, MPH, Director of Policy TECHNICAL ADVISORY GROUP Annie Kennedy, BS, Chief of Policy & Advocacy, EveryLife Foundation for Rare Diseases Anne Pariser, MD, Director, Office of Rare Diseases Research, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health Elisabeth M. Oehrlein, PhD, MS, Senior Director, Research and Programs, National Health Council Christina Hartman, Senior Director of Advocacy, The Assistance Fund Kathleen Stratton, National Academies of Science, Engineering and Medicine (NASEM) Steve Silvestri, Director, Government Affairs, Neurocrine Biosciences Inc.
    [Show full text]
  • Supporting Information
    Supporting Information Torkamani et al. 10.1073/pnas.0802403105 Materials and Methods kinase sequences used to generate conserved motifs, as in Kannan Kinase Identifiers. Kinase protein and DNA reference sequences et al. (3), the Gibbs motif sampling method identifies characteristic were obtained from Kinbase. These reference sequences were motifs for each individual subdomain of the kinase catalytic core, used as the basis to assign various gene identifiers (including which are then used to generate high confidence motif-based Ensembl gene IDs, HGNC gene symbols, and Entrez gene IDs) Markov chain Monte Carlo multiple alignments based upon these to every known human protein kinase. Ultimately, only eukary- motifs (4). These subdomains compromise the core structural otic protein kinases, that is, all human protein kinases except components of the protein kinase catalytic core. Intervening re- those belonging to the atypical protein kinase family, were gions between these subdomains were not aligned. considered in this study. The various gene identifiers were assigned as follows: Ensembl Mapping to Multiple Alignments and Generation of Logo Figures. A Gene ID’s were determined for each protein kinase by BLAST- nonredundant set of SNPs was generated to be mapped to the ing the reference Kinbase protein sequence against the Ensembl alignment computationally. That is, if multiple disease or com- ࿝ database (www.ensembl.org/Homo sapiens/blastview). The En- mon SNPs have been observed at a particular position within a sembl Gene ID of the top hit was assigned to the protein kinase. particular protein kinase, it is only considered once in our The Ensembl Gene ID was then used as a query in Biomart analysis.
    [Show full text]
  • Repercussions of Inborn Errors of Immunity on Growth☆ Jornal De Pediatria, Vol
    Jornal de Pediatria ISSN: 0021-7557 ISSN: 1678-4782 Sociedade Brasileira de Pediatria Goudouris, Ekaterini Simões; Segundo, Gesmar Rodrigues Silva; Poli, Cecilia Repercussions of inborn errors of immunity on growth☆ Jornal de Pediatria, vol. 95, no. 1, Suppl., 2019, pp. S49-S58 Sociedade Brasileira de Pediatria DOI: https://doi.org/10.1016/j.jped.2018.11.006 Available in: https://www.redalyc.org/articulo.oa?id=399759353007 How to cite Complete issue Scientific Information System Redalyc More information about this article Network of Scientific Journals from Latin America and the Caribbean, Spain and Journal's webpage in redalyc.org Portugal Project academic non-profit, developed under the open access initiative J Pediatr (Rio J). 2019;95(S1):S49---S58 www.jped.com.br REVIEW ARTICLE ଝ Repercussions of inborn errors of immunity on growth a,b,∗ c,d e Ekaterini Simões Goudouris , Gesmar Rodrigues Silva Segundo , Cecilia Poli a Universidade Federal do Rio de Janeiro (UFRJ), Faculdade de Medicina, Departamento de Pediatria, Rio de Janeiro, RJ, Brazil b Universidade Federal do Rio de Janeiro (UFRJ), Instituto de Puericultura e Pediatria Martagão Gesteira (IPPMG), Curso de Especializac¸ão em Alergia e Imunologia Clínica, Rio de Janeiro, RJ, Brazil c Universidade Federal de Uberlândia (UFU), Faculdade de Medicina, Departamento de Pediatria, Uberlândia, MG, Brazil d Universidade Federal de Uberlândia (UFU), Hospital das Clínicas, Programa de Residência Médica em Alergia e Imunologia Pediátrica, Uberlândia, MG, Brazil e Universidad del Desarrollo,
    [Show full text]
  • Hypochondroplasia
    Arch Dis Child: first published as 10.1136/adc.53.11.868 on 1 November 1978. Downloaded from Arch Dis Child: first published as 10.1136/adc.53.11.868 on 1 November 1978. Downloaded from Archives of Disease in Childhood, 1978, 53, 868-872 Hypochondroplasia J. F. T. GLASGOW, N. C. NEVIN, AND P. S. THOMAS From the Departments of Child Health and Medical Genetics, Queen's University ofBelfast, and Department of Radiology, Royal Belfast Hospitalfor Sick Children SUMMARY Clinical, radiological, and genetic features are described in 3 patients with hypo- chondroplasia. Early recognition of this disorder is possible from the abnormal body proportions with short limbs and lumbar lordosis without facial stigmata of achondroplasia. Radiological confirmation is possible provided a full skeletal survey is made. Two of our patients had a large head. Hypochondroplasia is one of the milder varieties of Table 1 Anthropometric data in patients with chondrodystrophy, resembling a mild form of hypochondroplasia achondroplasia. Affected individuals are slightly Anthropometric data Case I Case 2 Case 3 short in stature with short arms and legs (Kozlowski, 1965, 1973; Beals, 1969; Dorst, 1969; Hall, 1969; At 3 At 7 Murdock, 1969; Walker et al., 1971). Although Age at measurement (years) 8-75 3.0 7.5 9-0 hypochondroplasia appears to be fairly common Height (cm) 107.7 (3) 92.7 (50) 113.7 (10) 119.0 (3) (Rimoin, 1975) there have been few cases described. Weight (kg) 21.6 (10) 16.4 (90) 20.0 (10) 35.6 (90) Skull circumference copyright. We describe the clinical, radiological, and genetic (cm) 53-7 52-5 56-0 50.5 features in 3 patients.
    [Show full text]
  • SKELETAL DYSPLASIA Dr Vasu Pai
    SKELETAL DYSPLASIA Dr Vasu Pai Skeletal dysplasia are the result of a defective growth and development of the skeleton. Dysplastic conditions are suspected on the basis of abnormal stature, disproportion, dysmorphism, or deformity. Diagnosis requires Simple measurement of height and calculation of proportionality [<60 inches: consideration of dysplasia is appropriate] Dysmorphic features of the face, hands, feet or deformity A complete physical examination Radiographs: Extremities and spine, skull, Pelvis, Hand Genetics: the risk of the recurrence of the condition in the family; Family evaluation. Dwarf: Proportional: constitutional or endocrine or malnutrition Disproportion [Trunk: Extremity] a. Height < 42” Diastrophic Dwarfism < 48” Achondroplasia 52” Hypochondroplasia b. Trunk-extremity ratio May have a normal trunk and short limbs (achondroplasia), Short trunk and limbs of normal length (e.g., spondylo-epiphyseal dysplasia tarda) Long trunk and long limbs (e.g., Marfan’s syndrome). c. Limb-segment ratio Normal: Radius-Humerus ratio 75% Tibia-Femur 82% Rhizomelia [short proximal segments as in Achondroplastics] Mesomelia: Dynschondrosteosis] Acromelia [short hands and feet] RUBIN CLASSIFICATION 1. Hypoplastic epiphysis ACHONDROPLASTIC Autosomal Dominant: 80%; 0.5-1.5/10000 births Most common disproportionate dwarfism. Prenatal diagnosis: 18 weeks by measuring femoral and humeral lengths. Abnormal endochondral bone formation: zone of hypertrophy. Gene defect FGFR fibroblast growth factor receptor 3 . chromosome 4 Rhizomelic pattern, with the humerus and femur affected more than the distal extremities; Facies: Frontal bossing; Macrocephaly; Saddle nose Maxillary hypoplasia, Mandibular prognathism Spine: Lumbar lordosis and Thoracolumbar kyphosis Progressive genu varum and coxa valga Wedge shaped gaps between 3rd and 4th fingers (trident hands) Trident hand 50%, joint laxity Pathology Lack of columnation Bony plate from lack of growth Disorganized metaphysis Orthopaedics 1.
    [Show full text]
  • Hypochondroplasia and Acanthosis Nigricans
    European Journal of Endocrinology (2008) 159 243–249 ISSN 0804-4643 CLINICAL STUDY Hypochondroplasia and acanthosis nigricans: a new syndrome due to the p.Lys650Thr mutation in the fibroblast growth factor receptor 3 gene? Lidia Castro-Feijo´o*, Lourdes Loidi1,*, Anxo Vidal2, Silvia Parajes1, Elena Roso´n3,AnaA´ lvarez4, Paloma Cabanas, Jesu´s Barreiro, Adela Alonso4, Fernando Domı´nguez1,2 and Manuel Pombo Unidad de Endocrinologı´a Pedia´trica, Crecimiento y Adolescencia, Departamento de Pediatrı´a, Hospital Clı´nico Universitario y Universidad de Santiago de Compostela, 15706 Santiago de Compostela, Spain, 1Unidad de Medicina Molecular, Fundacio´nPu´blica Galega de Medicina Xeno´mica, 15706 Santiago de Compostela, Spain, 2Departamento de Fisiologı´a, Universidad de Santiago de Compostela, 15702 Santiago de Compostella, Spain, 3Servicio de Dermatologı´a, Complejo Hospitalario de Pontevedra, 36001 Pontevedra, Spain and 4Servicio de Radiologı´a, Hospital Clı´nico Universitario de Santiago de Compostela, 15706 Santiago de Compostela, Spain (Correspondence should be addressed to M Pombo; Email: [email protected]) *L Castro-Feijo´o and L Loidi contributed equally to this work Abstract Background: Hypochondroplasia (HCH) is a skeletal dysplasia inherited in an autosomal dominant manner due, in most cases, to mutations in the fibroblast growth factor receptor 3 (FGFR3). Acanthosis nigricans (AN) is a velvety and papillomatous pigmented hyperkeratosis of the skin, which has been recognized in some genetic disorders more severe than HCH involving the FGFR3 gene. Objective and design: After initial study of the proband, who had been consulted for short stature and who also presented AN, the study was extended to the patient’s mother and to 12 additional family members.
    [Show full text]
  • The First Non-Invasive Prenatal Test That Screens for Single-Gene Disorders
    The first non-invasive prenatal test that screens for single-gene disorders the evolution of NIPT A non-invasive prenatal test that screens multiple genes for mutations causing severe genetic disorders in the fetus analyses circulating cell- free fetal DNA (cfDNA) from a maternal blood sample. The test is performed after 10 weeks of pregnancy. works as a complementary screen to traditional and genome- wide NIPT . It screens for several life-altering genetic disorders that are not screened with current NIPT technology, allowing a complete picture of the risk of a pregnancy being affected by a genetic disorder. 2 facilitates early diagnosis of single-gene disorders. It involves 3 different levels of screening: This test screens for 5 common inherited recessive genetic disorders, such as Cystic Fibrosis, Beta-Thalassemia, Sickle INHERITED cell anaemia, Deafness autosomal recessive type 1A, Deafness autosomal recessive type 1B. Genes screened: CFTR, CX26 (GJB2), CX30 (GJB6), HBB This test screens for 44 severe genetic disorders due to de novo mutations (a gene mutation that is not inherited) in 25 genes DE NOVO Genes screened: ASXL1, BRAF, CBL, CHD7, COL1A1, COL1A2 , COL2A1, FGFR2, FGFR3, HDAC8, JAG1, KRAS, MAP2K1, MAP2K2, MECP2, NIPBL, NRAS, NSD1, PTPN11, RAF1, RIT1, SETBP1, SHOC2, SIX3, SOS1 This test screens for both inherited and de novo single-gene disorders and represents a combination of the tests INHERITED COMPLETE and DE NOVO providing a complete picture of the pregnancy risk. 3 allows detection of common inherited genetic disorders in INHERITED the fetus GENE GENETIC DISORDER CFTR Cystic Fibrosis CX26 (GJB2) Deafness autosomal recessive type 1A CX30 (GJB6) Deafness autosomal recessive type 1B HBB Beta-Thalassemia HBB Sickle cell anemia The inherited recessive disorders screened by INHERITED are the most common in the European population 4 identifies fetal conditions that could be missed by traditional DE NOVO prenatal screening.
    [Show full text]
  • Supplemental Methods
    Supplemental Methods: Sample Collection Duplicate surface samples were collected from the Amazon River plume aboard the R/V Knorr in June 2010 (4 52.71’N, 51 21.59’W) during a period of high river discharge. The collection site (Station 10, 4° 52.71’N, 51° 21.59’W; S = 21.0; T = 29.6°C), located ~ 500 Km to the north of the Amazon River mouth, was characterized by the presence of coastal diatoms in the top 8 m of the water column. Sampling was conducted between 0700 and 0900 local time by gently impeller pumping (modified Rule 1800 submersible sump pump) surface water through 10 m of tygon tubing (3 cm) to the ship's deck where it then flowed through a 156 µm mesh into 20 L carboys. In the lab, cells were partitioned into two size fractions by sequential filtration (using a Masterflex peristaltic pump) of the pre-filtered seawater through a 2.0 µm pore-size, 142 mm diameter polycarbonate (PCTE) membrane filter (Sterlitech Corporation, Kent, CWA) and a 0.22 µm pore-size, 142 mm diameter Supor membrane filter (Pall, Port Washington, NY). Metagenomic and non-selective metatranscriptomic analyses were conducted on both pore-size filters; poly(A)-selected (eukaryote-dominated) metatranscriptomic analyses were conducted only on the larger pore-size filter (2.0 µm pore-size). All filters were immediately submerged in RNAlater (Applied Biosystems, Austin, TX) in sterile 50 mL conical tubes, incubated at room temperature overnight and then stored at -80oC until extraction. Filtration and stabilization of each sample was completed within 30 min of water collection.
    [Show full text]
  • A Novel, Low Power Biosensor for Real Time Monitoring of Creatinine and Urea in Peritoneal Dialysis
    A Novel, Low Power Biosensor for Real Time Monitoring of Creatinine and Urea in Peritoneal Dialysis Bhusana Premanode*, Chris Toumazou** *Department of Bioengineering, Imperial College, London, UK **The Institute of Biomedical Engineering, Imperial College, London, UK ABSTRACT based on the immobilization of urease or creatinase onto the surface of the gate insulator [1]. Novel biosensors, based on immobilized creatininase, The FET-based potentiometric biosensors of creatinine creatinase and urease are developed, using ISFETs with have several disadvantages namely, that there is interference weak inversion at pH 6-8 and 37.0oC. The ISFETs with due to ammonia and other ionic substances [1]. Another circuitry, demonstrate a linear relationship of urea and major drawback is that the response is very non-linear, creatinine at the range of 0-200 mM and 0-20 mM, caused by the fact that the induced changes in pH and respectively. Preliminary results show that biosensors temperature decrease the enzyme activity and stability operating in weak inversion mode can eliminate many of the drastically [2]. Moreover, the devices generate undesired disadvantages of ISFETs operating in the strong inversion extra coulomb charges. region, providing a wide dynamic range output in nanoAmp. Such characteristics fit the analytical requirements for 2 THEORETICAL CONSIDERATIONS improving real-time monitoring in Peritoneal Dialysis (PD). Further work covers stability of ISFET sensors biased with 2.1 Chemical Reactions of Creatinine and Urea CMOS circuits in the weak inversion mode working in the room temperature of 15°C to 40°C. Creatinine and urea are important for diagnosis of renal, thyroid and muscle dysfunctions.
    [Show full text]
  • Blueprint Genetics Craniosynostosis Panel
    Craniosynostosis Panel Test code: MA2901 Is a 38 gene panel that includes assessment of non-coding variants. Is ideal for patients with craniosynostosis. About Craniosynostosis Craniosynostosis is defined as the premature fusion of one or more cranial sutures leading to secondary distortion of skull shape. It may result from a primary defect of ossification (primary craniosynostosis) or, more commonly, from a failure of brain growth (secondary craniosynostosis). Premature closure of the sutures (fibrous joints) causes the pressure inside of the head to increase and the skull or facial bones to change from a normal, symmetrical appearance resulting in skull deformities with a variable presentation. Craniosynostosis may occur in an isolated setting or as part of a syndrome with a variety of inheritance patterns and reccurrence risks. Craniosynostosis occurs in 1/2,200 live births. Availability 4 weeks Gene Set Description Genes in the Craniosynostosis Panel and their clinical significance Gene Associated phenotypes Inheritance ClinVar HGMD ALPL Odontohypophosphatasia, Hypophosphatasia perinatal lethal, AD/AR 78 291 infantile, juvenile and adult forms ALX3 Frontonasal dysplasia type 1 AR 8 8 ALX4 Frontonasal dysplasia type 2, Parietal foramina AD/AR 15 24 BMP4 Microphthalmia, syndromic, Orofacial cleft AD 8 39 CDC45 Meier-Gorlin syndrome 7 AR 10 19 EDNRB Hirschsprung disease, ABCD syndrome, Waardenburg syndrome AD/AR 12 66 EFNB1 Craniofrontonasal dysplasia XL 28 116 ERF Craniosynostosis 4 AD 17 16 ESCO2 SC phocomelia syndrome, Roberts syndrome
    [Show full text]
  • MECHANISMS in ENDOCRINOLOGY: Novel Genetic Causes of Short Stature
    J M Wit and others Genetics of short stature 174:4 R145–R173 Review MECHANISMS IN ENDOCRINOLOGY Novel genetic causes of short stature 1 1 2 2 Jan M Wit , Wilma Oostdijk , Monique Losekoot , Hermine A van Duyvenvoorde , Correspondence Claudia A L Ruivenkamp2 and Sarina G Kant2 should be addressed to J M Wit Departments of 1Paediatrics and 2Clinical Genetics, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, Email The Netherlands [email protected] Abstract The fast technological development, particularly single nucleotide polymorphism array, array-comparative genomic hybridization, and whole exome sequencing, has led to the discovery of many novel genetic causes of growth failure. In this review we discuss a selection of these, according to a diagnostic classification centred on the epiphyseal growth plate. We successively discuss disorders in hormone signalling, paracrine factors, matrix molecules, intracellular pathways, and fundamental cellular processes, followed by chromosomal aberrations including copy number variants (CNVs) and imprinting disorders associated with short stature. Many novel causes of GH deficiency (GHD) as part of combined pituitary hormone deficiency have been uncovered. The most frequent genetic causes of isolated GHD are GH1 and GHRHR defects, but several novel causes have recently been found, such as GHSR, RNPC3, and IFT172 mutations. Besides well-defined causes of GH insensitivity (GHR, STAT5B, IGFALS, IGF1 defects), disorders of NFkB signalling, STAT3 and IGF2 have recently been discovered. Heterozygous IGF1R defects are a relatively frequent cause of prenatal and postnatal growth retardation. TRHA mutations cause a syndromic form of short stature with elevated T3/T4 ratio. Disorders of signalling of various paracrine factors (FGFs, BMPs, WNTs, PTHrP/IHH, and CNP/NPR2) or genetic defects affecting cartilage extracellular matrix usually cause disproportionate short stature.
    [Show full text]
  • Downloaded from Mage and Compared
    bioRxiv preprint doi: https://doi.org/10.1101/527234; this version posted January 23, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Characterization of a thaumarchaeal symbiont that drives incomplete nitrification in the tropical sponge Ianthella basta Florian U. Moeller1, Nicole S. Webster2,3, Craig W. Herbold1, Faris Behnam1, Daryl Domman1, 5 Mads Albertsen4, Maria Mooshammer1, Stephanie Markert5,8, Dmitrij Turaev6, Dörte Becher7, Thomas Rattei6, Thomas Schweder5,8, Andreas Richter9, Margarete Watzka9, Per Halkjaer Nielsen4, and Michael Wagner1,* 1Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, University of Vienna, 10 Austria. 2Australian Institute of Marine Science, Townsville, Queensland, Australia. 3 Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of 15 Queensland, St Lucia, QLD, Australia 4Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg, Denmark. 20 5Institute of Marine Biotechnology e.V., Greifswald, Germany 6Division of Computational Systems Biology, Department of Microbiology and Ecosystem Science, University of Vienna, Austria. 25 7Institute of Microbiology, Microbial Proteomics, University of Greifswald, Greifswald, Germany 8Institute of Pharmacy, Pharmaceutical Biotechnology, University of Greifswald, Greifswald, Germany 9Division of Terrestrial Ecosystem Research, Department of Microbiology and Ecosystem Science, 30 University of Vienna, Austria. *Corresponding author: Michael Wagner, Department of Microbiology and Ecosystem Science, Althanstrasse 14, University of Vienna, 1090 Vienna, Austria. Email: wagner@microbial- ecology.net 1 bioRxiv preprint doi: https://doi.org/10.1101/527234; this version posted January 23, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder.
    [Show full text]