Mcqs in BIOCHEMISTRY

Total Page:16

File Type:pdf, Size:1020Kb

Mcqs in BIOCHEMISTRY This page intentionally left blank Copyright © 2008, New Age International (P) Ltd., Publishers Published by New Age International (P) Ltd., Publishers All rights reserved. No part of this ebook may be reproduced in any form, by photostat, microfilm, xerography, or any other means, or incorporated into any information retrieval system, electronic or mechanical, without the written permission of the publisher. All inquiries should be emailed to [email protected] ISBN (13) : 978-81-224-2627-4 PUBLISHING FOR ONE WORLD NEW AGE INTERNATIONAL (P) LIMITED, PUBLISHERS 4835/24, Ansari Road, Daryaganj, New Delhi - 110002 Visit us at www.newagepublishers.com Dedicated to PROF. DR. F.V. MANVI SecretarySecretarySecretary KLE Society, BELGAUM KARNATAKA. “To My First Pharmacy teacher with Love” This page intentionally left blank FOREWORD Competitive Examinations are the order of the day. All Colleges conducting professional courses at PG level are admitting students based on common entrance examination, which is of objective type. In Pharmacy, M.Pharm admissions are based on qualifying the GATE enterance examination conducted by Govt. of India. In this book, The author has done good work in preparing several objective questions which help the students to face the subject in the examination with poise and confidence. The book is well balanced and consists of multiple choice questions from all the important topics like carbohydrate metabolism and other important Biochemical aspects. The typesetting and quality of printing is good. The author is also well experienced in taking up this type of work. I recommend this book to all the students preparing for GATE examination and also for Medical and Pharmacy College libraries. PROF. B.G. SHIVANANDA Principal AL-AMEEN COLLEGE OF PHARMACY BANGALORE. WATER AND ELECTROLYTE BALANCE 289 PREFPREFPREFAAACECECE I have brought out this book basically for students who plan to appear for Biochemistry in the entrance examinations like JIPMER and other Medical, Pharmacy, Physiotherapy, Nursing and other Paramedical PG Entrance Examinations. There is a dearth of good entrance manual of Biochemistry for the above said examinations. Hence, I have prepared an exhaustive Question bank of around 5000 MCQs with answers covering a wide spectrum of basic Biochemical topics of the subject. Some of the important topics which are given a good coverage include Carbohydrate metabolism, Protein metabo- lism, Lipid metabolism, Nucleic acids, Enzymes, Vitamins and Mineral metabolism. The objective questions are prepared based on the background taken from previous question papers of Profes- sional medical and Paramedical competitive entrance examinations. The book serves as a ready reckoner for Biochemistry as far as objective pattern is concerned. I feel satisfied if the book serves the purpose for which it is intended. I have tried to minimize typographical errors but still some must have crept in. If they are brought to my notice, I will be rectifying them in the next edition. Constructive Criticism is always welcome G. Vidya Sagar AAACKNOWLEDGEMENTS I wish to express my profound gratitude and benevolence to the following who were the inspiring force in making this book a reality • Prof. Dr. Kishor Pramod Bhusari • Sadhvi Shilapiji Principal, Nagpur College of Pharmacy Chair person, Veerayatan Vidyapeeth, Nagpur. Jakhaniya, Kutch, Gujarat • Prof. Dr. R. Rangari • Prof. Dr. R.K. Goyal Principal, J.N. Chaturvedi College of Pharmacy L.M. College of Pharmacy Nagpur Ahmedabad, Gujarat • Prof. Dr. Anant Naik Nagappa • Prof. Dr. A.K. Saluja Pharmacy group, Birla Institute of Technology & A.R. College of Pharmacy Sciences Vallabh Vidyanagar Pilani, Rajasthan Gujarat • Prof. Dr. Srinivas Rao • Prof. J.V.L.N. Sheshagiri Rao Principal, VEL’s College of Pharmacy Dept. of Pharmaceutical Sciences Chennai Andhra University, Vishakhapatnam, A.P. Finally, I express my gratitude to Mr. Saumya Gupta. MD, New Age International (P) Limited, New Delhi, for his encouragement and support. Dr. G.Vidya Sagar SOME VVSOME ALUALUALUABLE COMMENTS This book is very useful for students appearing for GATE Exams. Recommended reading. Prof. Dr. Subhas C. Marihal Principal, Goa College of Pharmacy, Goa. Biochemistry made simple in the form of multiple choice questions. Strongly recommended. Prof. Dr. Vijaykumar Ishwar Hukkeri Principal, KLE College of Pharmacy, Hubli Dr. Vidya Sagar can be applauded for his untiring efforts in bringing out such a good book. Recommended for students and Library Dr. G. Devala Rao Principal, Sidhartha College of Pharmaceutical Sciences Vijaywada, A.P. This book will be very useful companion for students appearing for PG Medical, Pharmacy, Nursing and Physiotherapy competitive exams. Prof. Dr. T.K. Ravi Principal, Sri Ramakrishna Institute of Pharmaceutical Science Coimbatore. MCQs are well framed, mostly from previous entrance examinations. Commendable work. Prof. Madhukar R. Tajne Deptt. of Pharmaceutical Sciences, Nagpur University, Nagpur CCCONTENTSONTENTSONTENTS Preface (x) Chapter 1 INTRODUCTION TO BIOCHEMISTRY 111 CHAPTER 2 CARBOHYDRATES AND CARBOHYDRATE METTE METABOLISMABOLISMABOLISM 555 CHAPTER 3 PROPROPROTEINS & PROTEIN METTEIN METABOLISMABOLISMABOLISM 272727 CHAPTER 4 FFFAAATS & FTS FAAATTY ATTY ACID METCID METABOLISMABOLISMABOLISM 757575 CHAPTER 5 VITVITVITAMINSAMINSAMINS 113113113 CHAPTER 6 ENZYMESENZYMESENZYMES 141141141 CHAPTER 7 MINERAL METABOLISMABOLISMABOLISM 183183183 CHAPTER 8 HORMONE METABOLISMABOLISMABOLISM 209209209 CHAPTER 9 NUCLEIC ACIDSCIDSCIDS 237237237 CHAPTER 10 WWWAAATER & ELECTROLYTE BALANCE 281281281 This page intentionally left blank CHAPTER 111 I INTRODUCTION TOTOTO BBBIOCHEMISTRY 1. A drug which prevents uric acid synthesis 8. Which are the cholesterol esters that enter by inhibiting the enzyme xanthine cells through the receptor-mediated oxidase is endocytosis of lipoproteins hydrolyzed? (A) Aspirin (B) Allopurinol (A) Endoplasmin reticulum (C) Colchicine (D) Probenecid (B) Lysosomes (C) Plasma membrane receptor 2. Which of the following is required for crystallization and storage of the (D) Mitochondria hormone insulin? 9. Which of the following phospholipids is (A) Mn++ (B) Mg++ localized to a greater extent in the outer leaflet of the membrane lipid bilayer? (C) Ca++ (D) Zn++ (A) Choline phosphoglycerides 3. Oxidation of which substance in the body (B) Ethanolamine phosphoglycerides yields the most calories (C) Inositol phosphoglycerides (A) Glucose (B) Glycogen (D) Serine phosphoglycerides (C) Protein (D) Lipids 10. All the following processes occur rapidly 4. Milk is deficient in which vitamins? in the membrane lipid bilayer except (A) Vitamin C (B) Vitamin A (A) Flexing of fatty acyl chains (C) Vitamin B2 (D) Vitamin K (B) Lateral diffusion of phospholipids 5. Milk is deficient of which mineral? (C) Transbilayer diffusion of phopholipids (D) Rotation of phospholipids around their long (A) Phosphorus (B) Sodium axes (C) Iron (D) Potassium 11. Which of the following statement is 6. Synthesis of prostaglandinsis is inhibited correct about membrane cholesterol? by (A) The hydroxyl group is located near the centre (A) Aspirin (B) Arsenic of the lipid layer (C) Fluoride (D) Cyanide (B) Most of the cholesterol is in the form of a 7. HDL is synthesized and secreted from cholesterol ester (C) The steroid nucleus form forms a rigid, planar (A) Pancreas (B) Liver structure (C) Kidney (D) Muscle 2 MCQs IN BIOCHEMISTRY (D) The hydrocarbon chain of cholesterol projects (C) Dihydrolipoyl dehydrogenase into the extracellular fluid (C) All of these 12. Which one is the heaviest particulate 21. The most active site of protein synthesis component of the cell? is the (A) Nucleus (B) Mitochondria (A) Nucleus (B) Ribosome (C) Cytoplasm (D) Golgi apparatus (C) Mitochondrion (D) Cell sap 13. Which one is the largest particulate of the 22. The fatty acids can be transported into cytoplasm? and out of mitochondria through (A) Lysosomes (A) Active transport (B) Mitochondria (B) Facilitated transfer (C) Golgi apparatus (C) Non-facilitated transfer (D) Entoplasmic reticulum (D) None of these 14. The degradative Processess are categorized 23. Mitochondrial DNA is under the heading of (A) Circular double stranded (A) Anabolism (B) Catabolism (B) Circular single stranded (C) Metabolism (D) None of the above (C) Linear double helix 15. The exchange of material takes place (D) None of these (A) Only by diffusion 24. The absorption of intact protein from the (B) Only by active transport gut in the foetal and newborn animals (C) Only by pinocytosis takes place by (D) All of these (A) Pinocytosis (B) Passive diffusion (C) Simple diffusion (D) Active transport 16. The average pH of Urine is (A) 7.0 (B) 6.0 25. The cellular organelles called “suicide bags” are (C) 8.0 (D) 0.0 (A) Lysosomes (B) Ribosomes 17. The pH of blood is 7.4 when the ratio (C) Nucleolus (D) Golgi’s bodies between H2CO3 and NaHCO3 is (A) 1 : 10 (B) 1 : 20 26. From the biological viewpoint, solutions can be grouped into (C) 1 : 25 (C) 1 : 30 (A) Isotonic solution 18. The phenomenon of osmosis is opposite (B) Hypotonic solutions to that of (C) Hypertonic solution (A) Diffusion (B) Effusion (D) All of these (C) Affusion (D) Coagulation 27. Bulk transport across cell membrane is 19. The surface tension in intestinal lumen accomplished by between fat droplets and aqueous (A) Phagocytosis (B) Pinocytosis medium is decreased by (C) Extrusion (D) All of these (A) Bile Salts (B) Bile acids 28. The ability of the cell membrane to act as (C) Conc. H2SO4
Recommended publications
  • Magnesium Plays a Salient Role in the Cells
    341 Journal of Clinical and Biomedical Sciences Journal homepage: www.jcbsonline.ac.in Review Article Magnesium Plays a Salient Role in the Cells R Deepti1*, G Nalini2 Department of Biochemistry, Sri Muthukumaran Medical college Hospital and Research Institute, Chennai, Tamilnadu, India. Department of Biochemistry, Sri Ramachandra Medical college and Research Institute, Chennai, Tamilnadu, India. Received: 17th October-2014 Accepted: 11th December-2014 Published: 31st –December 2014. Abstract Magnesium is an important macromineral. Major amount of magnesium is present in the bones. Magnesium ab- sorption takes place at the small intestine and magnesium levels are maintained by the kidneys. Magnesium is a fundamen- tal mineral in the mammalian cells. Magnesium acts as a co-factor for many enzymes, especially enzymes involved in carbo- hydrate and lipid metabolism. Magnesium is necessary for muscle contraction by acting as a calcium antagonist, cellular proliferation, apoptosis, immune response, etc. Now a days hypomagnesemia is very commonly seen condition associated with predominant diseases like diabetes, hypertension, cardiovascular diseases, obesity, etc. Several authors have reported that low serum magnesium levels, insulin resistance and hyperlipidemia are interrelated. Hypomagnesemia may play an causative role in the development of diabetes, oxidative stress, thrombosis, atherosclerosis, etc. Hence magnesium impor- tances should be highlighted in the research field. Keywords: hypomagnesemia, hyperlipidemia and atherosclerosis. Introduction Magnesium Homeostasis Magnesium is the fourth most abundant cation and Recommended daily allowance (RDA) for magne- the second most abundant intracellular cation next to potas- sium is 400 mg for men and 300 mg for female. Major sium in the human body.(1,2) sources for magnesium are cereals, beans, leafy vegetables and fish.
    [Show full text]
  • Influence of Elastin-Derived Peptides on Metalloprotease Production in Endothelial Cells
    EXPERIMENTAL AND THERAPEUTIC MeDICINE 1: 1057-1060, 2010 Influence of elastin-derived peptides on metalloprotease production in endothelial cells KRZYSZTOF SIEMIANOWICZ, JAN GMINSKI, MALGORZATA GOSS, ToMASZ FRANCUZ, WIRGINIA LIKUS, TERESA JURCZAK and WOJCIECH GARCZORZ Department of Biochemistry, Silesian Medical University, 40-752 Katowice, Poland Received August 19, 2010; Accepted September 27, 2010 ReceiveDOI: 10.3892/etm.2010.157 Abstract. Matrix metalloproteases (MMPs) are a family of of the extracellular matrix (ECM). The timely breakdown of zinc-dependent endopeptidases that degrade extracellular ECM is essential for a variety of processes, including embry- matrix proteins. MMP-1 and MMP-2 are produced by endothe- onic development, morphogenesis, angiogenesis, reproduction, lial cells and are involved in specific vascular pathologies, osteogenesis, tissue resorption and vascular remodeling. including atherosclerosis and aortal aneurysm. One of the most MMP-1 (collagenase 1) hydrolyzes collagen types I, II, III, important differences between these two metalloproteases is VII, VIII, X and XI, as well as gelatin, fibronectin, vitronectin, the possibility of hydrolysis of elastin and collagen type IV laminin, tenascin and aggrecan, and links protein, myelin basic by MMP-2, but not by MMP-1. Elastin-derived peptides are protein and versican. MMP-2 (gellatinase) degrades collagen generated as a result of the degradation of elastin fibers. The types I, II, III, IV, V, VII, X and XI, gelatin, elastin, fibronectin, aim of our study was to compare the production of MMP-1 and vitronectin, laminin, entactin, tenascin, SPARC and aggrecan, MMP-2 in cultured human arterial endothelial cells derived and links protein, galectin-3, versican, decanin and myelin from vascular pathologies localized at three different sites, basic protein (1,2).
    [Show full text]
  • Acetic Acid (Activator-3) Is a Potent Activator of AMPK
    www.nature.com/scientificreports OPEN 2-[2-(4-(trifuoromethyl) phenylamino)thiazol-4-yl]acetic acid (Activator-3) is a potent Received: 29 June 2017 Accepted: 6 June 2018 activator of AMPK Published: xx xx xxxx Navneet Bung1, Sobhitha Surepalli2, Sriram Seshadri3, Sweta Patel3, Saranya Peddasomayajula2, Lalith Kumar Kummari 2,5,6, Sireesh T. Kumar4, Phanithi Prakash Babu4, Kishore V. L. Parsa2, Rajamohan Reddy Poondra2, Gopalakrishnan Bulusu1,2 & Parimal Misra2 AMPK is considered as a potential high value target for metabolic disorders. Here, we present the molecular modeling, in vitro and in vivo characterization of Activator-3, 2-[2-(4-(trifuoromethyl) phenylamino)thiazol-4-yl]acetic acid, an AMP mimetic and a potent pan-AMPK activator. Activator-3 and AMP likely share common activation mode for AMPK activation. Activator-3 enhanced AMPK phosphorylation by upstream kinase LKB1 and protected AMPK complex against dephosphorylation by PP2C. Molecular modeling analyses followed by in vitro mutant AMPK enzyme assays demonstrate that Activator-3 interacts with R70 and R152 of the CBS1 domain on AMPK γ subunit near AMP binding site. Activator-3 and C2, a recently described AMPK mimetic, bind diferently in the γ subunit of AMPK. Activator-3 unlike C2 does not show cooperativity of AMPK activity in the presence of physiological concentration of ATP (2 mM). Activator-3 displays good pharmacokinetic profle in rat blood plasma with minimal brain penetration property. Oral treatment of High Sucrose Diet (HSD) fed diabetic rats with 10 mg/kg dose of Activator-3 once in a day for 30 days signifcantly enhanced glucose utilization, improved lipid profles and reduced body weight, demonstrating that Activator-3 is a potent AMPK activator that can alleviate the negative metabolic impact of high sucrose diet in rat model.
    [Show full text]
  • Supplemental Methods
    Supplemental Methods: Sample Collection Duplicate surface samples were collected from the Amazon River plume aboard the R/V Knorr in June 2010 (4 52.71’N, 51 21.59’W) during a period of high river discharge. The collection site (Station 10, 4° 52.71’N, 51° 21.59’W; S = 21.0; T = 29.6°C), located ~ 500 Km to the north of the Amazon River mouth, was characterized by the presence of coastal diatoms in the top 8 m of the water column. Sampling was conducted between 0700 and 0900 local time by gently impeller pumping (modified Rule 1800 submersible sump pump) surface water through 10 m of tygon tubing (3 cm) to the ship's deck where it then flowed through a 156 µm mesh into 20 L carboys. In the lab, cells were partitioned into two size fractions by sequential filtration (using a Masterflex peristaltic pump) of the pre-filtered seawater through a 2.0 µm pore-size, 142 mm diameter polycarbonate (PCTE) membrane filter (Sterlitech Corporation, Kent, CWA) and a 0.22 µm pore-size, 142 mm diameter Supor membrane filter (Pall, Port Washington, NY). Metagenomic and non-selective metatranscriptomic analyses were conducted on both pore-size filters; poly(A)-selected (eukaryote-dominated) metatranscriptomic analyses were conducted only on the larger pore-size filter (2.0 µm pore-size). All filters were immediately submerged in RNAlater (Applied Biosystems, Austin, TX) in sterile 50 mL conical tubes, incubated at room temperature overnight and then stored at -80oC until extraction. Filtration and stabilization of each sample was completed within 30 min of water collection.
    [Show full text]
  • A Novel, Low Power Biosensor for Real Time Monitoring of Creatinine and Urea in Peritoneal Dialysis
    A Novel, Low Power Biosensor for Real Time Monitoring of Creatinine and Urea in Peritoneal Dialysis Bhusana Premanode*, Chris Toumazou** *Department of Bioengineering, Imperial College, London, UK **The Institute of Biomedical Engineering, Imperial College, London, UK ABSTRACT based on the immobilization of urease or creatinase onto the surface of the gate insulator [1]. Novel biosensors, based on immobilized creatininase, The FET-based potentiometric biosensors of creatinine creatinase and urease are developed, using ISFETs with have several disadvantages namely, that there is interference weak inversion at pH 6-8 and 37.0oC. The ISFETs with due to ammonia and other ionic substances [1]. Another circuitry, demonstrate a linear relationship of urea and major drawback is that the response is very non-linear, creatinine at the range of 0-200 mM and 0-20 mM, caused by the fact that the induced changes in pH and respectively. Preliminary results show that biosensors temperature decrease the enzyme activity and stability operating in weak inversion mode can eliminate many of the drastically [2]. Moreover, the devices generate undesired disadvantages of ISFETs operating in the strong inversion extra coulomb charges. region, providing a wide dynamic range output in nanoAmp. Such characteristics fit the analytical requirements for 2 THEORETICAL CONSIDERATIONS improving real-time monitoring in Peritoneal Dialysis (PD). Further work covers stability of ISFET sensors biased with 2.1 Chemical Reactions of Creatinine and Urea CMOS circuits in the weak inversion mode working in the room temperature of 15°C to 40°C. Creatinine and urea are important for diagnosis of renal, thyroid and muscle dysfunctions.
    [Show full text]
  • Folate Deficiency in the Livers of Diethylnitrosamine Treated Rats1
    [CANCER RESEARCH 36, 2775-2779, August 1976] Folate Deficiency in the Livers of Diethylnitrosamine treated Rats1 Yoon Sook Shin Buehring,2 Lionel A. Poirier, and E. L. R. Stokstad Department of Nutritional Sciences, University of California, Berkeley, California 94720 (V. S. S. B., E. L. R. 5,1, and Carcinogen Metabolism and Toxicology Branch, National Cancer Institute, Bethesda, Maryland 20014 fL. A. P.] SUMMARY activities of such agents as 2-acetylaminofluorene (22), N, N-dimethyl-4-aminoazobenzene (7, 19), DENA (27, 28), The effects of diethylnitrosamine on the metabolism of methylcholanthrene (24, 25), and 7,12-dimethyl folic acid and related compounds in rat liver were investi benz(a)anthracene (ii). Furthermore, the lipotropes methi gated. The administration, in the drinking water, of diethyl onine, vitamin B@9,andfolic acid are all prospective targets nitrosamine to rats for 3 weeks led to decreased hepatic . of the electrophilic activated form of 1 or more chemical levels of folate, S-adenosylmethionine, and 5-methyltetra carcinogens (12, 16, 20). The metabolic interrelations hyd rofolate :homocysteine methyltransferase . Liver methyl among the various lipotropes are very complex, and it is enetetrahydrofolate reductase levels were unaffected by ad impossible to alter the tissue levels or metabolism of one ministration of diethylnitrosamine. The polyglutamate frac without simultaneously altering the metabolism of each of tion of hepatic folates obtained from rats treated with dieth the others (3-5, 13, 42). We therefore decided to investigate ylnitrosamine for 3 weeks prior to injection with [3H]folate in detail the mechanism responsible for the folic acid defi contained less radioactivity than did the polyglutamate frac ciency observed in DENA-treated rats.
    [Show full text]
  • Inhibitors of Pyruvate Carboxylase Tonya N
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by epublications@Marquette Marquette University e-Publications@Marquette Biological Sciences Faculty Research and Biological Sciences, Department of Publications 1-1-2010 Inhibitors of Pyruvate Carboxylase Tonya N. Zeczycki University of Wisconsin - Madison Martin St. Maurice Marquette University, [email protected] Paul V. Attwood University of Western Australia Published version. The Open Enzyme Inhibition Journal, Vol. 3 (2010): 8-26. DOI. © 2010 Bentham Open. Used with permission. This is an open access article licensed under the terms of the Creative Commons Attribution Non- Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) 8 The Open Enzyme Inhibition Journal, 2010, 3, 8-26 Open Access Inhibitors of Pyruvate Carboxylase Tonya N. Zeczycki1, Martin St. Maurice2 and Paul V. Attwood3,* 1Department of Biochemistry, University of Wisconsin, Madison, WI 53726, USA 2Department of Biological Sciences, Marquette University, P.O. Box 1881, Milwaukee, WI 53201-1881, USA 3School of Biomedical, Biomolecular and Chemical Sciences, University of Western Australia, Crawley, WA6009, Australia Abstract: This review aims to discuss the varied types of inhibitors of biotin-dependent carboxylases, with an emphasis on the inhibitors of pyruvate carboxylase. Some of these inhibitors are physiologically relevant, in that they provide ways of regulating the cellular activities of the enzymes e.g. aspartate and prohibitin inhibition of pyruvate carboxylase. Most of the inhibitors that will be discussed have been used to probe various aspects of the structure and function of these enzymes. They target particular parts of the structure e.g. avidin – biotin, FTP – ATP binding site, oxamate – pyruvate binding site, phosphonoacetate – binding site of the putative carboxyphosphate intermediate.
    [Show full text]
  • Thermal Behavior of Fowl Feather Keratin
    Biosci. Biotechnol. Biochem., 68 (9), 1875–1881, 2004 Thermal Behavior of Fowl Feather Keratin y Koji TAKAHASHI,1; Hirosaburo YAMAMOTO,1 Yoshiko YOKOTE,2 and Makoto HATTORI1 1Department of Applied Biological Science, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan 2Department of Chemistry, Faculty of Science, Josai University, Saitama 350-0248, Japan Received March 19, 2004; Accepted June 22, 2004 Differential scanning calorimetry (DSC) was applied secondary structure of the sequence from fowl keratin to elucidate the thermal behavior of fowl feather by the methods of Lewis et al.3) and Chou and keratins (barbs, rachis, and calamus) with different Fasman4,5) indicated that the -sheet content of this morphological features. The DSC curves exhibited a region was about 30%, and that such other structures as clear and relatively large endothermic peak at about turn and coil covered the remaining parts.2) Tsuboi et al. 110–160 C in the wet condition. A considerable de- have reported from the results of infrared and Raman crease in transition temperature with urea and its microscopy that the anti-parallel pleated sheet and helical structure content estimated by Fourier trans- unordered structural contents were respectively about form infrared spectroscopy (FT-IR), and the disappear- 50%,6) although the details of the structures have not yet ance of one of the diffraction peaks with heating at been elucidated. Two types of physical models for 160 C for 30 min, indicated that DSC could be used to feather keratin have been proposed to accommodate evaluate the thermal behavior of keratin.
    [Show full text]
  • Downloaded from Mage and Compared
    bioRxiv preprint doi: https://doi.org/10.1101/527234; this version posted January 23, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Characterization of a thaumarchaeal symbiont that drives incomplete nitrification in the tropical sponge Ianthella basta Florian U. Moeller1, Nicole S. Webster2,3, Craig W. Herbold1, Faris Behnam1, Daryl Domman1, 5 Mads Albertsen4, Maria Mooshammer1, Stephanie Markert5,8, Dmitrij Turaev6, Dörte Becher7, Thomas Rattei6, Thomas Schweder5,8, Andreas Richter9, Margarete Watzka9, Per Halkjaer Nielsen4, and Michael Wagner1,* 1Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, University of Vienna, 10 Austria. 2Australian Institute of Marine Science, Townsville, Queensland, Australia. 3 Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of 15 Queensland, St Lucia, QLD, Australia 4Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg, Denmark. 20 5Institute of Marine Biotechnology e.V., Greifswald, Germany 6Division of Computational Systems Biology, Department of Microbiology and Ecosystem Science, University of Vienna, Austria. 25 7Institute of Microbiology, Microbial Proteomics, University of Greifswald, Greifswald, Germany 8Institute of Pharmacy, Pharmaceutical Biotechnology, University of Greifswald, Greifswald, Germany 9Division of Terrestrial Ecosystem Research, Department of Microbiology and Ecosystem Science, 30 University of Vienna, Austria. *Corresponding author: Michael Wagner, Department of Microbiology and Ecosystem Science, Althanstrasse 14, University of Vienna, 1090 Vienna, Austria. Email: wagner@microbial- ecology.net 1 bioRxiv preprint doi: https://doi.org/10.1101/527234; this version posted January 23, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder.
    [Show full text]
  • Download Author Version (PDF)
    MedChemComm Accepted Manuscript This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication. Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available. You can find more information about Accepted Manuscripts in the Information for Authors. Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains. www.rsc.org/medchemcomm Page 1 of 6 Journal Name Medicinal Chemistry Communications Dynamic Article Links ► Cite this: DOI: 10.1039/c0xx00000x www.rsc.org/xxxxxx ARTICLE TYPE Optimizing Glucokinase Activator Binding Kinetics to Lower in vivo Hypoglycemia Risk Manuscript Kris A. Borzilleri ‡ Jeffrey A. Pfefferkorn ╢, Angel Guzman-Perez ¥, Shenping Liu ‡, Xiayang Qiu ‡, Boris A. Chrunyk ‡, Xi Song ‡ Meihua Tu ╢, Kevin J. Filipski ╢, Robert Aiello ±, David R. Derksen ‡, Francis J. ‡ † ± ┴ ┼ ± 5 Bourbonais , James Landro , Patricia Bourassa , Theresa D’Aquila , Levenia Baker , Nicole Barrucci , John Litchfield ‡, Karen Atkinson ‡ Timothy P. Rolph ╢ and Jane M. Withka ‡* Received (in XXX, XXX) Xth XXXXXXXXX 200X, Accepted Xth XXXXXXXXX 200X DOI: 10.1039/b000000x Accepted Activation of glucokinase represents a promising strategy for the treatment of type 2 diabetes; however, 10 drug candidates have failed in clinical trials due to narrow therapeutic index between glucose-lowering efficacy and hypoglycemia.
    [Show full text]
  • Inhibitors of Pyruvate Carboxylase Tonya N
    Marquette University e-Publications@Marquette Biological Sciences Faculty Research and Biological Sciences, Department of Publications 1-1-2010 Inhibitors of Pyruvate Carboxylase Tonya N. Zeczycki University of Wisconsin - Madison Martin St. Maurice Marquette University, [email protected] Paul V. Attwood University of Western Australia Published version. The Open Enzyme Inhibition Journal, Vol. 3 (2010): 8-26. DOI. © 2010 Bentham Open. Used with permission. This is an open access article licensed under the terms of the Creative Commons Attribution Non- Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) 8 The Open Enzyme Inhibition Journal, 2010, 3, 8-26 Open Access Inhibitors of Pyruvate Carboxylase Tonya N. Zeczycki1, Martin St. Maurice2 and Paul V. Attwood3,* 1Department of Biochemistry, University of Wisconsin, Madison, WI 53726, USA 2Department of Biological Sciences, Marquette University, P.O. Box 1881, Milwaukee, WI 53201-1881, USA 3School of Biomedical, Biomolecular and Chemical Sciences, University of Western Australia, Crawley, WA6009, Australia Abstract: This review aims to discuss the varied types of inhibitors of biotin-dependent carboxylases, with an emphasis on the inhibitors of pyruvate carboxylase. Some of these inhibitors are physiologically relevant, in that they provide ways of regulating the cellular activities of the enzymes e.g. aspartate and prohibitin inhibition of pyruvate carboxylase. Most of the inhibitors that will be discussed have been used to probe various aspects of the structure and function of these enzymes. They target particular parts of the structure e.g. avidin – biotin, FTP – ATP binding site, oxamate – pyruvate binding site, phosphonoacetate – binding site of the putative carboxyphosphate intermediate. Keywords: Pyruvate carboxylase, biotin-dependent enzyme, avidin, biotin, nucleotide inhibitors, acetyl coenzyme A, allosteric inhibitors, chlorothricin.
    [Show full text]
  • Chemical Transformations Encoded by a Gene Cluster in Streptomyces Coelicolor Containing an Unusual Gtp Cyclohydrolase
    Chemical Transformations Encoded by a Streptomyces coelicolor Gene Cluster with an Unusual GTP Cyclohydrolase Item Type text; Electronic Dissertation Authors Spoonamore, James Edward Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 11/10/2021 06:44:52 Link to Item http://hdl.handle.net/10150/194825 CHEMICAL TRANSFORMATIONS ENCODED BY A GENE CLUSTER IN STREPTOMYCES COELICOLOR CONTAINING AN UNUSUAL GTP CYCLOHYDROLASE by James Edward Spoonamore ______________________________ A Dissertation Submitted to the Faculty of the DEPARTMENT OF BIOCHEMISTRY AND MOLECULAR BIOPHYSICS In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY In the Graduate College THE UNIVERSITY OF ARIZONA 2008 2 THE UNIVERSITY OF ARIZONA GRADUATE COLLEGE As members of the Dissertation Committee, we certify that we have read the dissertation prepared by James Edward Spoonamore entitled Chemical Transformations Encoded by a Gene Cluster in Streptomyces coelicolor Containing an Unusual GTP Cyclohydrolase and recommend that it be accepted as fulfilling the dissertation requirement for the Degree of Doctor of Philosophy _______________________________________________________________________ Date: April 16, 2008 Vahe Bandarian _______________________________________________________________________
    [Show full text]