Inhibitors of Pyruvate Carboxylase Tonya N

Total Page:16

File Type:pdf, Size:1020Kb

Inhibitors of Pyruvate Carboxylase Tonya N Marquette University e-Publications@Marquette Biological Sciences Faculty Research and Biological Sciences, Department of Publications 1-1-2010 Inhibitors of Pyruvate Carboxylase Tonya N. Zeczycki University of Wisconsin - Madison Martin St. Maurice Marquette University, [email protected] Paul V. Attwood University of Western Australia Published version. The Open Enzyme Inhibition Journal, Vol. 3 (2010): 8-26. DOI. © 2010 Bentham Open. Used with permission. This is an open access article licensed under the terms of the Creative Commons Attribution Non- Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) 8 The Open Enzyme Inhibition Journal, 2010, 3, 8-26 Open Access Inhibitors of Pyruvate Carboxylase Tonya N. Zeczycki1, Martin St. Maurice2 and Paul V. Attwood3,* 1Department of Biochemistry, University of Wisconsin, Madison, WI 53726, USA 2Department of Biological Sciences, Marquette University, P.O. Box 1881, Milwaukee, WI 53201-1881, USA 3School of Biomedical, Biomolecular and Chemical Sciences, University of Western Australia, Crawley, WA6009, Australia Abstract: This review aims to discuss the varied types of inhibitors of biotin-dependent carboxylases, with an emphasis on the inhibitors of pyruvate carboxylase. Some of these inhibitors are physiologically relevant, in that they provide ways of regulating the cellular activities of the enzymes e.g. aspartate and prohibitin inhibition of pyruvate carboxylase. Most of the inhibitors that will be discussed have been used to probe various aspects of the structure and function of these enzymes. They target particular parts of the structure e.g. avidin – biotin, FTP – ATP binding site, oxamate – pyruvate binding site, phosphonoacetate – binding site of the putative carboxyphosphate intermediate. Keywords: Pyruvate carboxylase, biotin-dependent enzyme, avidin, biotin, nucleotide inhibitors, acetyl coenzyme A, allosteric inhibitors, chlorothricin. INTRODUCTION also a corresponding decrease in GSIS. The decreased PC activity and expression observed in the islets of diabetic rats, Pyruvate carboxylase (PC, EC 6.4.1.1), a regulatory which are insulin resistant and show little GSIS [9, 10] metabolic enzyme responsible for replenishing the interme- further suggests that PC plays an important role in both GSIS diates of the TCA cycle and catalyzing the first committed and -cell adaptation to insulin resistance in fully function- step in gluconeogenesis, is found in a wide variety of ing pancreatic cells. While the mechanism by which PC organisms including bacteria, fungi, plants, invertebrates and activity regulates and enhances GSIS is not completely un- vertebrates [1]. Eukaryotic PC is generally located in the derstood, it has been proposed by MacDonald [11] and oth- mitochondria with the exception of yeast, where the two iso- ers [12] that the metabolic cycling of pyruvate through PC forms of PC (Pyc1 and Pyc2) are encoded by different genes, and the subsequent formation of anaplerotic by-products, and fungal PC, both of which are localized in the cytoplasm including NADPH, aids in modulating GSIS in pancreatic [2]. islets. Abnormalities in PC activity and regulation have been Abnormally, high hepatic PC activity was initially associated with the occurrence of Type II diabetes [3] result- observed in diabetic rats [5, 9, 10]. Deterioration of the GSIS ing in impaired-glucose tolerance and insulin insensitivity pathway, due in part to chronic exposure to fatty acids, [4]. In pre-diabetic patients, pancreatic islets compensate for decreases the ability of the -cells to secrete insulin, and the escalating insulin-resistance by increasing glucose- stimulated insulin secretion (GSIS) [3, 5]. Studies performed can lead to the development of Type II diabetes [5, 13]. by Jensen and co-workers [6] proposed that GSIS activity Metabolic flux through hepatic PC is normally attenuated was tightly correlated with the PC-catalyzed anaplerotic flux by the insulin-signaling pathway [14], but is increased in through the TCA cycle and subsequent cycling of pyruvate Type II diabetics resulting in raised hepatic glucose produc- through the malate-pyruvate shuttle. Recently, the use of tion [3, 13]. The metabolic abnormalities in the regulation small interfering RNA (si-RNA) to partially suppress PC and activities of PC associated with Type II diabetes make activity in INS-1 83/13-derived cell lines by Hasan et al. [7] PC an attractive molecular target for the development of demonstrated that decreases in GSIS were directly propor- new therapeutic agents for the treatment of this progressive tional to decreases in PC activity. Furthermore, Liu et al. [8] disease. previously observed a 2-fold increase in in vivo PC -cell Fan and co-workers [15] have recently established a con- activity and GSIS in obese, non-diabetic, insulin-resistant nection between PC activity and the “mitochondria dysfunc- Zucker fatty rats as compared to non-insulin resistant Zucker tion” observed in malignant lung cancer [16]. 13C isotopomer lean rats. Inhibition of PC by the addition of phenylacetate analysis by NMR revealed direct evidence for increased resulted in not only a marked decrease in PC activity, but glycolytic activity in malignant tumor cells and further demonstrated that both PC expression and activity, in vivo, were activated in human lung cancer. Previously, a nearly *Address correspondence to this author at the School of Biomedical, Biomolecular and Chemical Sciences, University of Western Australia, 100-fold increase in PC’s anaplerotic activity was observed Crawley, WA6009, Australia; Tel: +61 8 6488 3329; Fax: +61 8 6488 1148; in in vitro studies of breast cancer cells [17] and PC’s E-mail: [email protected] gluconeogenic activity was found to be elevated in hepatic 1874-9402/10 2010 Bentham Open Inhibitors of Pyruvate Carboxylase The Open Enzyme Inhibition Journal, 2010, Volume 3 9 tumors in rats [18], demonstrating that increased PC activity PCs is highly regulated by acetyl CoA, PC from some bacte- correlates with the uncontroled proliferation of tumor cells. rial and fungi sources have no acetyl CoA dependence [1]. Therefore, the selective inhibition of PC activities in tumor Similar to other biotin-dependent carboxylases, including cells may prove to be a viable, alternative target for newly acetyl CoA carboxylase, propionyl CoA carboxylase and emerging antiproliferative cancer treatments. methyl malonyl CoA carboxylase, PC catalyses the carboxy- The connection between abnormal PC activity, Type II lation of pyruvate in two distinct steps which occur at diabetes and cancer substantiates the importance of under- discrete active sites (Fig. 1A). Biotin, which is covalently standing the structure, mechanism and inhibition of this attached to the -NH2 of a strictly conserved lysine residue regulatory enzyme. The native structure of PC from most located at the C-terminal end of the BCCP, is carboxylated at sources is an ()4 tetramer, where the biotin carboxylase the N-1 position in the BC domain via the ATP-dependent (BC), carboxyl transferase (CT), biotin-carboxyl carrier pro- activation of bicarbonate and formation of a putative tein (BCCP) and allosteric, or tetramerization, domains are carboxyphosphate intermediate [22]. Acting as a mobile contained on a single polypeptide chain, although it has been carboxyl carrier, carboxybiotin is then translocated from the shown that some bacterial PCs have an ()4 structure with BC domain to a neighbouring CT domain where it is decar- the BC domain forming the subunit and the CT and BCCP boxylated (Fig. 1B). Prior to carboxylation, the transfer of a domains forming the subunit. Recently, the structures of proton from pyruvate to biotin, facilitated by a strictly con- PC holoenzymes from Rhizobium etli [19] and Staphylococ- served Thr residue, is proposed to aid in the formation the cus aureus [20, 21] have been determined. These structures, nucleophilic enol-pyruvate [23]. The carboxyl group is then along with site directed mutagenic studies [19], revealed that transferred to the nucleophilic substrate, forming oxaloace- the covalently attached biotin moves between the BC domain tate (Fig. 1B). of one subunit to the CT domain of a neighbouring subunit A wealth of structural and kinetic data has been reported located on an opposing polypeptide chain [19] thus giving for PC, contributing greatly to a detailed description of the rise to a distinctive form of intersubunit catalysis. Further- PC mechanism. The aim of this review is to focus specifi- more, acetyl CoA, an allosteric activator of PC from several cally on the inhibition of PC as it relates to both the devel- sources, binds in the allosteric domain [19] and appears to opment of the current mechanistic model of PC activity and facilitate the interdomain movement of the BCCP and cova- the physiological regulation of the enzyme activity (Table 1). lently attached biotin. While the activity of most vertebrate (A) Biotin carboxylase domain H H H H H N N N N N O - O O O O N N N N H H N H O C - O O C O H B O O- O O C OH O O- O- OH O O - - Mg2+ O P O - O- Mg2+ O P O O P O 2+ - Mg - - 2+ O 2+ - O P O Mg O- Mg O- O P O ADP O ADP O carboxy ADP ADP ADP phosphate Carboxybiotin interdomain movement (B) Carboxyl transferase domain NH NH NH NH - O HN O HN O HN O HN N N N N C O HO H O H O O O Thr Thr Thr - HO O H O H C H Thr O C O C CH - CH3 2 CH2 O CH2 O O- O- O- O O O O O O O O +2 +2 Zn+2 Zn+2 Zn Zn Fig. (1). Overall PC-catalysed reaction. A) Biotin carboxylation occurring in the
Recommended publications
  • Magnesium Plays a Salient Role in the Cells
    341 Journal of Clinical and Biomedical Sciences Journal homepage: www.jcbsonline.ac.in Review Article Magnesium Plays a Salient Role in the Cells R Deepti1*, G Nalini2 Department of Biochemistry, Sri Muthukumaran Medical college Hospital and Research Institute, Chennai, Tamilnadu, India. Department of Biochemistry, Sri Ramachandra Medical college and Research Institute, Chennai, Tamilnadu, India. Received: 17th October-2014 Accepted: 11th December-2014 Published: 31st –December 2014. Abstract Magnesium is an important macromineral. Major amount of magnesium is present in the bones. Magnesium ab- sorption takes place at the small intestine and magnesium levels are maintained by the kidneys. Magnesium is a fundamen- tal mineral in the mammalian cells. Magnesium acts as a co-factor for many enzymes, especially enzymes involved in carbo- hydrate and lipid metabolism. Magnesium is necessary for muscle contraction by acting as a calcium antagonist, cellular proliferation, apoptosis, immune response, etc. Now a days hypomagnesemia is very commonly seen condition associated with predominant diseases like diabetes, hypertension, cardiovascular diseases, obesity, etc. Several authors have reported that low serum magnesium levels, insulin resistance and hyperlipidemia are interrelated. Hypomagnesemia may play an causative role in the development of diabetes, oxidative stress, thrombosis, atherosclerosis, etc. Hence magnesium impor- tances should be highlighted in the research field. Keywords: hypomagnesemia, hyperlipidemia and atherosclerosis. Introduction Magnesium Homeostasis Magnesium is the fourth most abundant cation and Recommended daily allowance (RDA) for magne- the second most abundant intracellular cation next to potas- sium is 400 mg for men and 300 mg for female. Major sium in the human body.(1,2) sources for magnesium are cereals, beans, leafy vegetables and fish.
    [Show full text]
  • Acetic Acid (Activator-3) Is a Potent Activator of AMPK
    www.nature.com/scientificreports OPEN 2-[2-(4-(trifuoromethyl) phenylamino)thiazol-4-yl]acetic acid (Activator-3) is a potent Received: 29 June 2017 Accepted: 6 June 2018 activator of AMPK Published: xx xx xxxx Navneet Bung1, Sobhitha Surepalli2, Sriram Seshadri3, Sweta Patel3, Saranya Peddasomayajula2, Lalith Kumar Kummari 2,5,6, Sireesh T. Kumar4, Phanithi Prakash Babu4, Kishore V. L. Parsa2, Rajamohan Reddy Poondra2, Gopalakrishnan Bulusu1,2 & Parimal Misra2 AMPK is considered as a potential high value target for metabolic disorders. Here, we present the molecular modeling, in vitro and in vivo characterization of Activator-3, 2-[2-(4-(trifuoromethyl) phenylamino)thiazol-4-yl]acetic acid, an AMP mimetic and a potent pan-AMPK activator. Activator-3 and AMP likely share common activation mode for AMPK activation. Activator-3 enhanced AMPK phosphorylation by upstream kinase LKB1 and protected AMPK complex against dephosphorylation by PP2C. Molecular modeling analyses followed by in vitro mutant AMPK enzyme assays demonstrate that Activator-3 interacts with R70 and R152 of the CBS1 domain on AMPK γ subunit near AMP binding site. Activator-3 and C2, a recently described AMPK mimetic, bind diferently in the γ subunit of AMPK. Activator-3 unlike C2 does not show cooperativity of AMPK activity in the presence of physiological concentration of ATP (2 mM). Activator-3 displays good pharmacokinetic profle in rat blood plasma with minimal brain penetration property. Oral treatment of High Sucrose Diet (HSD) fed diabetic rats with 10 mg/kg dose of Activator-3 once in a day for 30 days signifcantly enhanced glucose utilization, improved lipid profles and reduced body weight, demonstrating that Activator-3 is a potent AMPK activator that can alleviate the negative metabolic impact of high sucrose diet in rat model.
    [Show full text]
  • Inhibitors of Pyruvate Carboxylase Tonya N
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by epublications@Marquette Marquette University e-Publications@Marquette Biological Sciences Faculty Research and Biological Sciences, Department of Publications 1-1-2010 Inhibitors of Pyruvate Carboxylase Tonya N. Zeczycki University of Wisconsin - Madison Martin St. Maurice Marquette University, [email protected] Paul V. Attwood University of Western Australia Published version. The Open Enzyme Inhibition Journal, Vol. 3 (2010): 8-26. DOI. © 2010 Bentham Open. Used with permission. This is an open access article licensed under the terms of the Creative Commons Attribution Non- Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) 8 The Open Enzyme Inhibition Journal, 2010, 3, 8-26 Open Access Inhibitors of Pyruvate Carboxylase Tonya N. Zeczycki1, Martin St. Maurice2 and Paul V. Attwood3,* 1Department of Biochemistry, University of Wisconsin, Madison, WI 53726, USA 2Department of Biological Sciences, Marquette University, P.O. Box 1881, Milwaukee, WI 53201-1881, USA 3School of Biomedical, Biomolecular and Chemical Sciences, University of Western Australia, Crawley, WA6009, Australia Abstract: This review aims to discuss the varied types of inhibitors of biotin-dependent carboxylases, with an emphasis on the inhibitors of pyruvate carboxylase. Some of these inhibitors are physiologically relevant, in that they provide ways of regulating the cellular activities of the enzymes e.g. aspartate and prohibitin inhibition of pyruvate carboxylase. Most of the inhibitors that will be discussed have been used to probe various aspects of the structure and function of these enzymes. They target particular parts of the structure e.g. avidin – biotin, FTP – ATP binding site, oxamate – pyruvate binding site, phosphonoacetate – binding site of the putative carboxyphosphate intermediate.
    [Show full text]
  • Download Author Version (PDF)
    MedChemComm Accepted Manuscript This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication. Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available. You can find more information about Accepted Manuscripts in the Information for Authors. Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains. www.rsc.org/medchemcomm Page 1 of 6 Journal Name Medicinal Chemistry Communications Dynamic Article Links ► Cite this: DOI: 10.1039/c0xx00000x www.rsc.org/xxxxxx ARTICLE TYPE Optimizing Glucokinase Activator Binding Kinetics to Lower in vivo Hypoglycemia Risk Manuscript Kris A. Borzilleri ‡ Jeffrey A. Pfefferkorn ╢, Angel Guzman-Perez ¥, Shenping Liu ‡, Xiayang Qiu ‡, Boris A. Chrunyk ‡, Xi Song ‡ Meihua Tu ╢, Kevin J. Filipski ╢, Robert Aiello ±, David R. Derksen ‡, Francis J. ‡ † ± ┴ ┼ ± 5 Bourbonais , James Landro , Patricia Bourassa , Theresa D’Aquila , Levenia Baker , Nicole Barrucci , John Litchfield ‡, Karen Atkinson ‡ Timothy P. Rolph ╢ and Jane M. Withka ‡* Received (in XXX, XXX) Xth XXXXXXXXX 200X, Accepted Xth XXXXXXXXX 200X DOI: 10.1039/b000000x Accepted Activation of glucokinase represents a promising strategy for the treatment of type 2 diabetes; however, 10 drug candidates have failed in clinical trials due to narrow therapeutic index between glucose-lowering efficacy and hypoglycemia.
    [Show full text]
  • GTP Activator and Dntp Substrates of HIV-1 Restriction Factor SAMHD1
    GTP activator and dNTP substrates of HIV-1 restriction PNAS PLUS factor SAMHD1 generate a long-lived activated state Erik C. Hansen, Kyle J. Seamon, Shannen L. Cravens, and James T. Stivers1 Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21205-2185 Edited by Myron F. Goodman, University of Southern California, Los Angeles, CA, and accepted by the Editorial Board March 26, 2014 (received for review January 27, 2014) The HIV-1 restriction factor sterile α-motif/histidine-aspartate phatases (14). Presumably, degradation to the level of nucleoside domain-containing protein 1 (SAMHD1) is a tetrameric protein that rather than deoxynucleoside diphosphate (dNDP) or deoxy- catalyzes the hydrolysis of all dNTPs to the deoxynucleoside and nucleoside monophosphate (dNMP) is to make the process tripolyphosphate, which effectively depletes the dNTP substrates energetically or kinetically costly to reverse, with the additional of HIV reverse transcriptase. Here, we establish that SAMHD1 is possibility that the neutral nucleoside will be irreversibly trans- activated by GTP binding to guanine-specific activator sites (A1) as ported out of the cell (9). The unusual triphosphohydrolase activity well as coactivation by substrate dNTP binding to a distinct set of of SAMHD1 in quiescent immune cells has received significant nonspecific activator sites (A2). Combined activation by GTP and attention, because HIV-1 and HSV-1 are severely restricted in their dNTPs results in a long-lived tetrameric form of SAMHD1 that ability to infect quiescent cells that have severely depressed dNTP persists for hours, even after activating nucleotides are withdrawn pools, which has been directly linked to SAMHD1 enzymatic ac- from the solution.
    [Show full text]
  • Mcqs in BIOCHEMISTRY
    This page intentionally left blank Copyright © 2008, New Age International (P) Ltd., Publishers Published by New Age International (P) Ltd., Publishers All rights reserved. No part of this ebook may be reproduced in any form, by photostat, microfilm, xerography, or any other means, or incorporated into any information retrieval system, electronic or mechanical, without the written permission of the publisher. All inquiries should be emailed to [email protected] ISBN (13) : 978-81-224-2627-4 PUBLISHING FOR ONE WORLD NEW AGE INTERNATIONAL (P) LIMITED, PUBLISHERS 4835/24, Ansari Road, Daryaganj, New Delhi - 110002 Visit us at www.newagepublishers.com Dedicated to PROF. DR. F.V. MANVI SecretarySecretarySecretary KLE Society, BELGAUM KARNATAKA. “To My First Pharmacy teacher with Love” This page intentionally left blank FOREWORD Competitive Examinations are the order of the day. All Colleges conducting professional courses at PG level are admitting students based on common entrance examination, which is of objective type. In Pharmacy, M.Pharm admissions are based on qualifying the GATE enterance examination conducted by Govt. of India. In this book, The author has done good work in preparing several objective questions which help the students to face the subject in the examination with poise and confidence. The book is well balanced and consists of multiple choice questions from all the important topics like carbohydrate metabolism and other important Biochemical aspects. The typesetting and quality of printing is good. The author is also well experienced in taking up this type of work. I recommend this book to all the students preparing for GATE examination and also for Medical and Pharmacy College libraries.
    [Show full text]
  • The Glycolytic Enzyme PFKFB3 Is Involved in Estrogen-Mediated Angiogenesis Via GPER1 S
    Supplemental material to this article can be found at: http://jpet.aspetjournals.org/content/suppl/2017/03/27/jpet.116.238212.DC1 1521-0103/361/3/398–407$25.00 https://doi.org/10.1124/jpet.116.238212 THE JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS J Pharmacol Exp Ther 361:398–407, June 2017 Copyright ª 2017 by The American Society for Pharmacology and Experimental Therapeutics The Glycolytic Enzyme PFKFB3 Is Involved in Estrogen-Mediated Angiogenesis via GPER1 s Annalisa Trenti, Serena Tedesco, Carlotta Boscaro, Nicola Ferri, Andrea Cignarella, Lucia Trevisi, and Chiara Bolego Department of Pharmaceutical and Pharmacological Sciences (A.T., S.T., Ca.B., N.F., L.T., Ch.B) and Department of Medicine (A.C.), University of Padova, Padova, Italy Received October 6, 2016; accepted March 22, 2017 Downloaded from ABSTRACT The endogenous estrogen 17b-estradiol (E2) is a key factor in vein endothelial cells (HUVECs); in addition, E2 treatment promoting endothelial healing and angiogenesis. Recently, upregulated PFKFB3 expression in a time- and concentration- proangiogenic signals including vascular endothelial growth dependent manner. Such an effect peaked at 3 hours and was factor and others have been shown to converge in endothelial also induced by G-1 and abolished by pretreatment with the cell metabolism. Because inhibition of the glycolytic enzyme GPER1 antagonist G-15 or GPER1 siRNA, consistent with activator phosphofructokinase-2/fructose-2,6-bisphosphatase engagement of membrane ER. Experiments with the PFKFB3 jpet.aspetjournals.org 3 (PFKFB3) reduces pathologic angiogenesis and estrogen inhibitor 3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one showed receptor (ER) signaling stimulates glucose uptake and glycolysis that PFKFB3 activity was required for estrogen-mediated by inducing PFKFB3 in breast cancer, we hypothesized that E2 HUVEC migration via GPER1.
    [Show full text]
  • Pharmacological Activation of Glucose-6- Phosphate Dehydrogenase (G6PD) to Extend
    Pharmacological Activation of Glucose-6- Phosphate Dehydrogenase (G6PD) to Extend Lifespan Ashley Sue Ann Wong Thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy School of Medical Sciences, Faculty of Medicine University of New South Wales Sydney Supervisors: Dr. Lindsay E. Wu University of New South Wales Sydney, NSW, Australia Professor David A. Sinclair University of New South Wales Sydney, NSW, Australia Harvard Medical School, Boston MA, United States of America March 2019 THE UNIVERSITY OF NEW SOUTH WALES SYDNEY Thesis/Dissertation Sheet Surname/Family Name: Wong First Name: Ashley Middle Name: Sue Ann Abbreviation for degree as given in the University calendar: PhD Faculty: Medicine School: Medical Sciences Thesis Title: Pharmacological Activation of Endogenous Glucose-6-Phosphate Dehydrogenase (G6PD) to Extend Lifespan __________________________________________________________________________________________________________ Aged cells face multiple biochemical challenges including diminished de novo nucleotide synthesis for faithful DNA replication, impaired redox capacity, and decreased NAD+ required to maintain sirtuin activity. A common thread running through these challenges is the requirement for the pentose phosphate pathway, which declines with age due to reduced activity of the rate-limiting enzyme glucose-6-phosphate dehydrogenase (G6PD). Over-expression of G6PD extends lifespan in Drosophila and mice, alongside improvements in metabolic homeostasis and motor coordination in old age. Outside of this genetic approach, pharmacological approaches to enhance endogenous G6PD activity could offer a clinically relevant opportunity to recapitulate the improved late-life health and extended lifespan observed during G6PD over-expression. We have performed a small molecule screen and identified a series of novel G6PD activators with drug-like properties that enhance G6PD activity, which work through allosteric modulation and stabilisation of the enzyme.
    [Show full text]
  • In Enzyme Function + and K + Role of Na
    Role of Na+ and K+ in Enzyme Function Michael J. Page and Enrico Di Cera Physiol Rev 86:1049-1092, 2006. doi:10.1152/physrev.00008.2006 You might find this additional information useful... This article cites 372 articles, 121 of which you can access free at: http://physrev.physiology.org/cgi/content/full/86/4/1049#BIBL Medline items on this article's topics can be found at http://highwire.stanford.edu/lists/artbytopic.dtl on the following topics: Biochemistry .. Proteolytic Enzymes Oncology .. Protein Engineering Physiology .. Blood Clotting Chemistry .. Cations Chemistry .. Ion Transport Updated information and services including high-resolution figures, can be found at: http://physrev.physiology.org/cgi/content/full/86/4/1049 Downloaded from Additional material and information about Physiological Reviews can be found at: http://www.the-aps.org/publications/prv This information is current as of October 2, 2006 . physrev.physiology.org on October 2, 2006 Physiological Reviews provides state of the art coverage of timely issues in the physiological and biomedical sciences. It is published quarterly in January, April, July, and October by the American Physiological Society, 9650 Rockville Pike, Bethesda MD 20814-3991. Copyright © 2005 by the American Physiological Society. ISSN: 0031-9333, ESSN: 1522-1210. Visit our website at http://www.the-aps.org/. Physiol Rev 86: 1049–1092, 2006; doi:10.1152/physrev.00008.2006. Role of Naϩ and Kϩ in Enzyme Function MICHAEL J. PAGE AND ENRICO DI CERA Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri I. Introduction 1049 A. Historical perspective 1050 B.
    [Show full text]
  • 31, 5' CYCLOPHOSPHATE* Esterase.8 in Skeletal
    ON THE MECHANISM OF ACTION OF ADENOSINE 31, 5' CYCLOPHOSPHATE* By FR. HuIJINGt AND J. LARNER DEPARTMENT OF BIOCHEMISTRY, COLLEGE OF MEDICAL SCIENCES, UNIVERSITY OF MINNESOTA, MINNEAPOLIS Communicated by Henry Lardy, June 17, 1966 Experiments with intact tissues indicate that adenosine 3',5' cyclophosphate exerts an important regulatory role in several reactions, including glycogen degra- dation and synthesisl-4 and lipolysis.' The cyclic nucleotide is formed from ATP together with pyrophosphate by a cyclizing enzyme6 localized primarily in the cell membrane in nucleated erythrocytes. It is hydrolyzed to 5' AMP by a phosphodi- esterase.8 In skeletal muscle,1 diaphragm,5 heart,2 I and smooth muscle,9 adeno- sine 3',5' cyclophosphate concentrations increase rapidly two- to threefold under the influence of epinephrine (for a recent review, see ref. 10). In glycogen degradation, adenosine 3',5' cyclophosphate exerts its control in the phosphorylase b kinase activation reaction.1' In glycogen synthesis, the cyclic nucleotide controls the transferase I kinase which converts the glucose 6-phosphate independent (I) form of (UDPG: a-1,4-glucan a4-glucosyl) transferase (EC 2.4.1.11) to the dependent (D) form.'2 Both the activation of phosphorylase b kinase, and the conversion of the independent (I) form of transferase into the de- pendent (D) form can also be achieved in two different ways, namely, through the action of Ca++ and a protein factor, or by mild tryptic action."' 13 Krebs et al.'4 have described cell-free systems in which phosphorylase b kinase is minimally activated in the absence of the cyclic nucleotide.
    [Show full text]
  • A Simple, Robust, Universal Assay for Real-Time Enzyme Monitoring by Signalling Changes in Cite This: Chem
    Chemical Science View Article Online EDGE ARTICLE View Journal | View Issue A simple, robust, universal assay for real-time enzyme monitoring by signalling changes in Cite this: Chem. Sci.,2019,10,5373 All publication charges for this article nucleoside phosphate anion concentration using have been paid for by the Royal Society III † of Chemistry a europium( )-based anion receptor Sarah H. Hewitt,a Rozee Ali,a Romain Mailhot,a Chloe R. Antonen,a Charlotte A. Dodson b and Stephen J. Butler *a Enzymes that consume and produce nucleoside polyphosphate (NPP) anions represent major targets in drug discovery. For example, protein kinases are one of the largest classes of drug targets in the fight against cancer. The accurate determination of enzyme kinetics and mechanisms is a critical aspect of drug discovery research. To increase confidence in the selection of lead drug compounds it is crucial that pharmaceutical researchers have robust, affordable assays to measure enzyme activity accurately. We present a simple, sensitive microplate assay for real-time monitoring of a range of pharmaceutically Creative Commons Attribution 3.0 Unported Licence. important enzyme reactions that generate NPP anions, including kinases and glycosyltransferases. Our assay utilises a single, stable europium(III) complex that binds reversibly to NPP anions, signalling the dynamic changes in NPP product/substrate ratio during an enzyme reaction using time-resolved luminescence. This supramolecular approach to enzyme monitoring overcomes significant limitations in existing
    [Show full text]
  • Cell Hybridization and the 24 Homan Gene Maps
    2 CELL HYBRIDIZATION AND THE 24 HOMAN GENE MAPS Thomas B. Shows 1. INTRODUCTION The transfer of genes is an ancient phenomenon in the biology and evolution of organisms, as is evidenced by a variety of microorganisms. In bacteria during their sexual reproductive phase, cell-to-cell transfer of single-stranded DNA has been demonstrated (Lederberg, 1947; Wollman et ai., 1956). In addition, DNA isolated from one genotype could stably change the phenotype of another bac­ terium (Avery et al., 1944). Similarly, the infection of bacteria by a certain bacteriophage involves transfer of phage DNA into a bacterium and integration into the bacterial genome. When phage replication takes place, the phage genome sometimes acquires a bacterial gene that was closely linked to the inserted phage genome. Subsequent bacterial infections by this phage can transfer the bacterial gene to another bacterial genome (Zinder and Lederberg, 1952; Lennox, 1955). In the life cycle offungi, the entire haploid genome is transferred by the formation of heterokaryons after fusion of hyphae from different genomes (Fincham, 1966). In eukaryotes, fertilization of an egg could be considered a form of gene transfer, since an entire haploid genome is transferred. Thus, there are biological mech­ anisms for cells to accept new genetic material and propagate it through cell division. Understanding the principles of gene transfer in mammals, especially Homo sapiens, will teach us much about genetic mechanisms, gene expression, cell growth and differentiation, gene mapping, mutagenesis, and both normal and abnormal human biology. This information promises to be essential for understanding and possibly treating disease. Cell fusion resulting in multinucleated mammalian cells, termed "polykar­ yocytes," was first observed over 100 years ago after viral infection and was thought to be the first step in tumorigenesis (Langhans, 1868).
    [Show full text]