Curriculum Vitae

Total Page:16

File Type:pdf, Size:1020Kb

Curriculum Vitae Arthur S. Aylsworth, M.D. CURRICULUM VITAE Personal Information Name Arthur Selden Aylsworth Home Address 714A Greenwood Road, Chapel Hill, NC 27514 Home Phone (919) 942-7817 Office Address CB# 7487 - UNC Campus The University of North Carolina at Chapel Hill (UNC-CH) Chapel Hill, NC 27599-7487 Office Phone - 919 966-4202; Fax - 919-966-3025 Email [email protected] Education 1982-1983 Visiting Associate Research Professor, Department of Medicine, Duke University, Durham, NC 1970-1971 Research Fellow, Florida Heart Association 1969-1971 Post-Doctoral Fellow, Department of Pediatrics and the Institutional Division of Genetics, Endocrinology, and Metabolism, University of Florida College of Medicine, Gainesville, FL 1967-1969 Intern and Resident in Pediatrics, University of Florida College of Medicine, Shands Teaching Hospital, Gainesville, FL 1967 M.D., University of Pennsylvania School of Medicine, Philadelphia, PA 1963 B. Engineering Physics, Cornell University College of Engineering, Ithaca, NY Professional Experience - Employment History 2001 - Research Professor, Dept. of Genetics, UNC-CH 2001 - Member, UNC-CH Center for Genome Science 1995 - 2004 Chief, Division of Genetics and Metabolism, Dept. of Pediatrics, UNC-CH 1991-95 Acting Div. Chief, Pediatric Genetics and Metabolism, UNC-CH 1993 - Professor, Dept. of Pediatrics, Div. of Genetics and Metabolism, UNC-CH 1980 - 1993 Associate Prof., Dept. of Pediatrics, Div. Genetics and Metabolism, UNC-CH. 1975 - 1980 Assistant Prof., Dept. of Pediatrics, Div. Genetics and Metabolism, UNC-CH. 1980 - 2001 Research Scientist, the Neuroscience Center at UNC-CH (formerly Brain and Development Research Center, formerly Biological Sciences Research Center) 1977 - 1995 Director, Genetic Counseling Program, UNC-CH (Acting Director, 1976 - 1977) 1974 - Member, UNC Craniofacial Center (formerly the Oral-Facial and Communicative Disorders Program), UNC-CH 1974 - Medical Staff, University of North Carolina Hospitals, Chapel Hill 1973 - 1975 Instructor, Dept. of Pediatrics, Div. of Genetics and Metabolism, UNC-CH. 1971 - 1973 Major, U.S. Air Force Medical Corps; Staff Pediatrician, Wilford Hall Medical Center, Lackland Air Force Base, Texas. 1 Arthur S. Aylsworth, M.D. Certification/Licensure American Board of Medical Genetics (#1016, Clinical Genetics, 3/19/82) Board of Medical Examiners, State of North Carolina (#19042, 1/26/74) American Board of Pediatrics (#15965, 5/14/73) Board of Medical Examiners, State of Florida (#14897, 3/6/70; inactive) National Board of Medical Examiners (#94856, 4/21/69) Professional Societies American Society of Human Genetics American College of Medical Genetics (Founding Fellow) North Carolina Pediatric Society North Carolina Medical Genetics Association Chairman, Dysmorphology Committee, 1990 - 92 Chairman, Planning and Advisory Committee, 1986-87 Chairman, 1985-86 Vice-Chairman, 1984-85 American Medical Association American Academy of Pediatrics Bone Dysplasia Society Special Honors and Awards “Best Doctors in America,” 2011 - 2014 The National Neurofibromatosis Foundation Recognition Award, 1989. Recipient, Travel Award from the American Society of Human Genetics for the Seventh International Congress of Human Genetics, Berlin, Sept., 1986. Kenan Leave, 7/1/82-6/30/83, The University of North Carolina PUBLICATIONS Contributions to Books and Series Aylsworth, AS: “The Spleen.” Chapter in Human Malformations, 3rd Ed, Oxford Monographs on Medical Genetics, RE Stevenson, JG Hall, DB Everman, BD Solomon, Eds. Oxford Press 2015. Includes entries on “Introduction,” “Accessory Spleens,” “Ectopic Spleen,” “Splenic Structural Variation,” “Splenic Fusion to Other Organs,” “Asplenia,” and “Polysplenia.” Aylsworth, AS: “Laterality.” Entries in Human Malformations, 3rd Ed, Oxford Monographs on Medical Genetics, RE Stevenson, JG Hall, DB Everman, BD Solomon, Eds. Oxford Press 2015. Includes entries on “Situs Ambiguus” and “Situs Inversus.” Watkins SE, Meyer RE, Strauss RP, Aylsworth AS: “Classification, Epidemiology, and Genetics of Orofacial Clefts,” Clin Plast Surg. 2014 Apr;41(2):149-63. PMID:24607185 2 Arthur S. Aylsworth, M.D. Krantz IA, Aylsworth AS: Liver, Gallbladder, and Pancreas. Chapter 27 in Human Malformations and Related Anomalies, 2nd Edition, Oxford Monographs on Medical Genetics, R.E. Stevenson, J.G. Hall, et al. Eds., Oxford Press, 2006. Aylsworth, A.S.: The Spleen. Chapter 5 Human Malformations and Related Anomalies, 2nd Edition, Oxford Monographs on Medical Genetics, R.E. Stevenson, J.G. Hall, et al, Eds., Oxford Press, 2006. Aylsworth, AS: Clinical Genetics and Phenotype Definition. Chapter 2 in Genetic Analysis of Complex Disease, 2nd edition. JL Hains and MA Pericak-Vance eds, New York: Wiley-Liss, Inc., 2006. Aylsworth AS: Genotype. Encyclopedia of Human Development, N. J. Salkind Ed, Sage Publications, 2005. Aylsworth AS: Phenotype. Encyclopedia of Human Development, N. J. Salkind Ed, Sage Publications, 2005. Aylsworth AS: Mechanisms of Inheritance. Encyclopedia of Genetics, Genomics, Proteomics, and Bioinformatics, Volume I Genetics, L. B. Jorde, Ed., John Wiley and Sons, 2005. Aylsworth AS: Defining Disease Phenotypes. Chapter 3 in Approaches to Gene Mapping in Complex Human Diseases, JL Hains and MA Pericak-Vance eds, Wiley-Liss, Inc., 1998. Aylsworth, A.S.: Genetic Considerations in Craniofacial Birth Defects. Chapter 2 in Principles and Management of Facial Clefting Disorders and Craniosynostosis. W.B. Saunders, Philadelphia, 1996. Aylsworth A.S., Sulik K.K.: Liver, Gallbladder, and Pancreas. Chapter 18 in Volume II of Human Malformations and Related Anomalies, Oxford Monographs on Medical Genetics no. 27, R.E. Stevenson, J.G. Hall, R.M. Goodman, Eds., Oxford Press, 1993, pp. 445 - 474. Aylsworth, A.S.: The Spleen. Chapter 11 in Volume II of Human Malformations and Related Anomalies, Oxford Monographs on Medical Genetics no. 27, R.E. Stevenson, J.G. Hall, R.M. Goodman, Eds., Oxford Press, 1993, pp. 307-321. Aylsworth, A.S.: Genetic counseling for patients with birth defects. Pediatric Clinics of North America, 39:229-253, 1992 Aylsworth, A.S.: The prediction of risk and genetic counseling for craniofacial abnormalities. In Risk Assessment in Dentistry. J.D. Bader, Ed., Published by the University of North Carolina Department of Dental Ecology, Chapel Hill, 1990, pp 261-266. Aylsworth, A.S.: Anus-Hand-Ear Syndrome. Birth Defects Encyclopedia, Center for Birth Defects Information Services, Cambridge, Mass. and Blackwell Scientific Publications, St. Louis, Mo., 1990 Aylsworth, A.S.: Genetic Considerations in Clefts of the Lip and Palate. Reprinted in Selected Readings in Plastic Surgery, vol. 5, #20, 1989. Aylsworth, A.S.: Genetic Considerations in Clefts of the Lip and Palate. Clinics in Plastic Surgery 12(4):533-542, 1985. Greenwood, R.S., Kahler, S.G., and Aylsworth, A.S.: Inherited metabolic diseases, Chapter 9 in Pediatric Neurology (3rd ed.), T.W. Farmer, Editor. Harper and Row, Philadelphia, 1983, pp. 281-401. Aylsworth, A.S., and Kirkman, H.N.: Genetic counseling for autosomal dominant disorders with incomplete penetrance. Birth Defects Original Article Series 15(5C):25-38, 1979. 3 Arthur S. Aylsworth, M.D. Buchanan, P.D., Rao, K.W., Doerr, C.L., and Aylsworth, A.S.: A complex translocation involving chromosomes 3,11, and 14 with an interstitial deletion, del (14) (q13-q22) in a child with congenital glaucoma and cleft lip and palate. Birth Defects Original Article Series 14(6C):317- 322, 1978. Rao, K.W., Buchanan, P.D., and Aylsworth, A.S.: Asymmetric clinical and cytogenetic findings in a 4-year-old girl with trisomy 18 mosaicism. Birth Defects Original Article Series 14(6C):349- 354, 1978. Wilson, W.G., Aylsworth, A.S., Folds, J.D., and Whisnant, J.K.: Cartilage-hair hypoplasia with combined immune deficiency: variable expression and development of immunologic function in siblings. Birth Defects Original Article Series 14 (6A):117-129, 1978. Aylsworth, A.S.: The burden and prevention of genetic diseases and their consequences. Part I: Malformations. In Perspectives in Primary Prevention. Proceedings of the Fourteenth Annual John W. Umstead Series of Distinguished Lectures. Published by the North Carolina Division of Mental Health and Mental Retardation Services, 1978, pp. 120-130. Submitted to Refereed Journals Warren J, Correa A, Herring AH, Olshan AF, Aylsworth AS, Langlois P,; Luben T, Stingone JA: Modeling Daily Windows of Susceptibility for Maternal PM2.5 Exposure and Congenital Heart Defects. Environmental Health Perspectives, submitted Nov 2014 Published in Refereed Journals Bronicki LM, Redin C, Drunat S, Piton A, Lyons M, Passemard S, Baumann C, Faivre L, Thevenon J, Rivière J-B, Isidor B, Gan G, Francannet C, Willems M, Gunel M, Jones JR, Gleeson JG, Mandel J-L, Stevenson RE, Friez MJ, Aylsworth AS: Ten New Cases Further Delineate the Syndromic Intellectual Disability Phenotype Caused by Mutations in DYRK1A. Submitted to European Journal of Human Genetics, In Press, 2015 Olney RC, Prickett TCR, Espiner EA, Mackenzie WG, Duker A, Ditro C, Zabel B, Hasegawa T, Kitoh H, Aylsworth AS, Bober MB: C-type natriuretic peptide (CNP) plasma levels are elevated in subjects with achondroplasia, hypochondroplasia, and thanatophoric dysplasia. In press, The Journal of Clinical Endocrinology & Metabolism. Nov, 2014. Parrott A, James J, Goldenberg P, Hinton RB, Miller E, Shikany A, Aylsworth AS, Kaiser-Rogers K, Ferns SJ, Lalani SR, and Ware SM: Aortopathy in the 7q11.23 microduplication syndrome. In Press, American Journal of Medical
Recommended publications
  • IDF Patient & Family Handbook
    Immune Deficiency Foundation Patient & Family Handbook for Primary Immunodeficiency Diseases This book contains general medical information which cannot be applied safely to any individual case. Medical knowledge and practice can change rapidly. Therefore, this book should not be used as a substitute for professional medical advice. FIFTH EDITION COPYRIGHT 1987, 1993, 2001, 2007, 2013 IMMUNE DEFICIENCY FOUNDATION Copyright 2013 by Immune Deficiency Foundation, USA. REPRINT 2015 Readers may redistribute this article to other individuals for non-commercial use, provided that the text, html codes, and this notice remain intact and unaltered in any way. The Immune Deficiency Foundation Patient & Family Handbook may not be resold, reprinted or redistributed for compensation of any kind without prior written permission from the Immune Deficiency Foundation. If you have any questions about permission, please contact: Immune Deficiency Foundation, 110 West Road, Suite 300, Towson, MD 21204, USA; or by telephone at 800-296-4433. Immune Deficiency Foundation Patient & Family Handbook for Primary Immunodeficency Diseases 5th Edition This publication has been made possible through a generous grant from Baxalta Incorporated Immune Deficiency Foundation 110 West Road, Suite 300 Towson, MD 21204 800-296-4433 www.primaryimmune.org [email protected] EDITORS R. Michael Blaese, MD, Executive Editor Francisco A. Bonilla, MD, PhD Immune Deficiency Foundation Boston Children’s Hospital Towson, MD Boston, MA E. Richard Stiehm, MD M. Elizabeth Younger, CPNP, PhD University of California Los Angeles Johns Hopkins Los Angeles, CA Baltimore, MD CONTRIBUTORS Mark Ballow, MD Joseph Bellanti, MD R. Michael Blaese, MD William Blouin, MSN, ARNP, CPNP State University of New York Georgetown University Hospital Immune Deficiency Foundation Miami Children’s Hospital Buffalo, NY Washington, DC Towson, MD Miami, FL Francisco A.
    [Show full text]
  • The National Economic Burden of Rare Disease Study February 2021
    Acknowledgements This study was sponsored by the EveryLife Foundation for Rare Diseases and made possible through the collaborative efforts of the national rare disease community and key stakeholders. The EveryLife Foundation thanks all those who shared their expertise and insights to provide invaluable input to the study including: the Lewin Group, the EveryLife Community Congress membership, the Technical Advisory Group for this study, leadership from the National Center for Advancing Translational Sciences (NCATS) at the National Institutes of Health (NIH), the Undiagnosed Diseases Network (UDN), the Little Hercules Foundation, the Rare Disease Legislative Advocates (RDLA) Advisory Committee, SmithSolve, and our study funders. Most especially, we thank the members of our rare disease patient and caregiver community who participated in this effort and have helped to transform their lived experience into quantifiable data. LEWIN GROUP PROJECT STAFF Grace Yang, MPA, MA, Vice President Inna Cintina, PhD, Senior Consultant Matt Zhou, BS, Research Consultant Daniel Emont, MPH, Research Consultant Janice Lin, BS, Consultant Samuel Kallman, BA, BS, Research Consultant EVERYLIFE FOUNDATION PROJECT STAFF Annie Kennedy, BS, Chief of Policy and Advocacy Julia Jenkins, BA, Executive Director Jamie Sullivan, MPH, Director of Policy TECHNICAL ADVISORY GROUP Annie Kennedy, BS, Chief of Policy & Advocacy, EveryLife Foundation for Rare Diseases Anne Pariser, MD, Director, Office of Rare Diseases Research, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health Elisabeth M. Oehrlein, PhD, MS, Senior Director, Research and Programs, National Health Council Christina Hartman, Senior Director of Advocacy, The Assistance Fund Kathleen Stratton, National Academies of Science, Engineering and Medicine (NASEM) Steve Silvestri, Director, Government Affairs, Neurocrine Biosciences Inc.
    [Show full text]
  • WHIM Syndrome: from Pathogenesis Towards Personalized Medicine and Cure
    Journal of Clinical Immunology (2019) 39:532–556 https://doi.org/10.1007/s10875-019-00665-w CME REVIEW WHIM Syndrome: from Pathogenesis Towards Personalized Medicine and Cure Lauren E. Heusinkveld1,2 & Shamik Majumdar1 & Ji-Liang Gao1 & David H. McDermott1 & Philip M. Murphy1 Received: 22 April 2019 /Accepted: 26 June 2019 /Published online: 16 July 2019 # This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2019 Abstract WHIM syndrome is a rare combined primary immunodeficiency disease named by acronym for the diagnostic tetrad of warts, hypogammaglobulinemia, infections, and myelokathexis. Myelokathexis is a unique form of non-cyclic severe congenital neutropenia caused by accumulation of mature and degenerating neutrophils in the bone marrow; monocytopenia and lympho- penia, especially B lymphopenia, also commonly occur. WHIM syndrome is usually caused by autosomal dominant mutations in the G protein-coupled chemokine receptor CXCR4 that impair desensitization, resulting in enhanced and prolonged G protein- and β-arrestin-dependent responses. Accordingly, CXCR4 antagonists have shown promise as mechanism-based treatments in phase 1 clinical trials. This review is based on analysis of all 105 published cases of WHIM syndrome and covers current concepts, recent advances, unresolved enigmas and controversies, and promising future research directions. Keywords Chemokine . CXCL12 . CXCR4 . CXCR2 . myelokathexis . human papillomavirus . plerixafor Historical Background [M:E] ratio with a “shift to the right”); and (3) numerous dysmorphic bone marrow neutrophils having cytoplasmic Myelokathexis was first described as a new type of severe hypervacuolation and hyperlobulated pyknotic nuclear lobes congenital neutropenia in 1964 by Krill and colleagues from connected by long thin strands (Fig.
    [Show full text]
  • Supporting Information
    Supporting Information Torkamani et al. 10.1073/pnas.0802403105 Materials and Methods kinase sequences used to generate conserved motifs, as in Kannan Kinase Identifiers. Kinase protein and DNA reference sequences et al. (3), the Gibbs motif sampling method identifies characteristic were obtained from Kinbase. These reference sequences were motifs for each individual subdomain of the kinase catalytic core, used as the basis to assign various gene identifiers (including which are then used to generate high confidence motif-based Ensembl gene IDs, HGNC gene symbols, and Entrez gene IDs) Markov chain Monte Carlo multiple alignments based upon these to every known human protein kinase. Ultimately, only eukary- motifs (4). These subdomains compromise the core structural otic protein kinases, that is, all human protein kinases except components of the protein kinase catalytic core. Intervening re- those belonging to the atypical protein kinase family, were gions between these subdomains were not aligned. considered in this study. The various gene identifiers were assigned as follows: Ensembl Mapping to Multiple Alignments and Generation of Logo Figures. A Gene ID’s were determined for each protein kinase by BLAST- nonredundant set of SNPs was generated to be mapped to the ing the reference Kinbase protein sequence against the Ensembl alignment computationally. That is, if multiple disease or com- ࿝ database (www.ensembl.org/Homo sapiens/blastview). The En- mon SNPs have been observed at a particular position within a sembl Gene ID of the top hit was assigned to the protein kinase. particular protein kinase, it is only considered once in our The Ensembl Gene ID was then used as a query in Biomart analysis.
    [Show full text]
  • Repercussions of Inborn Errors of Immunity on Growth☆ Jornal De Pediatria, Vol
    Jornal de Pediatria ISSN: 0021-7557 ISSN: 1678-4782 Sociedade Brasileira de Pediatria Goudouris, Ekaterini Simões; Segundo, Gesmar Rodrigues Silva; Poli, Cecilia Repercussions of inborn errors of immunity on growth☆ Jornal de Pediatria, vol. 95, no. 1, Suppl., 2019, pp. S49-S58 Sociedade Brasileira de Pediatria DOI: https://doi.org/10.1016/j.jped.2018.11.006 Available in: https://www.redalyc.org/articulo.oa?id=399759353007 How to cite Complete issue Scientific Information System Redalyc More information about this article Network of Scientific Journals from Latin America and the Caribbean, Spain and Journal's webpage in redalyc.org Portugal Project academic non-profit, developed under the open access initiative J Pediatr (Rio J). 2019;95(S1):S49---S58 www.jped.com.br REVIEW ARTICLE ଝ Repercussions of inborn errors of immunity on growth a,b,∗ c,d e Ekaterini Simões Goudouris , Gesmar Rodrigues Silva Segundo , Cecilia Poli a Universidade Federal do Rio de Janeiro (UFRJ), Faculdade de Medicina, Departamento de Pediatria, Rio de Janeiro, RJ, Brazil b Universidade Federal do Rio de Janeiro (UFRJ), Instituto de Puericultura e Pediatria Martagão Gesteira (IPPMG), Curso de Especializac¸ão em Alergia e Imunologia Clínica, Rio de Janeiro, RJ, Brazil c Universidade Federal de Uberlândia (UFU), Faculdade de Medicina, Departamento de Pediatria, Uberlândia, MG, Brazil d Universidade Federal de Uberlândia (UFU), Hospital das Clínicas, Programa de Residência Médica em Alergia e Imunologia Pediátrica, Uberlândia, MG, Brazil e Universidad del Desarrollo,
    [Show full text]
  • Hypochondroplasia
    Arch Dis Child: first published as 10.1136/adc.53.11.868 on 1 November 1978. Downloaded from Arch Dis Child: first published as 10.1136/adc.53.11.868 on 1 November 1978. Downloaded from Archives of Disease in Childhood, 1978, 53, 868-872 Hypochondroplasia J. F. T. GLASGOW, N. C. NEVIN, AND P. S. THOMAS From the Departments of Child Health and Medical Genetics, Queen's University ofBelfast, and Department of Radiology, Royal Belfast Hospitalfor Sick Children SUMMARY Clinical, radiological, and genetic features are described in 3 patients with hypo- chondroplasia. Early recognition of this disorder is possible from the abnormal body proportions with short limbs and lumbar lordosis without facial stigmata of achondroplasia. Radiological confirmation is possible provided a full skeletal survey is made. Two of our patients had a large head. Hypochondroplasia is one of the milder varieties of Table 1 Anthropometric data in patients with chondrodystrophy, resembling a mild form of hypochondroplasia achondroplasia. Affected individuals are slightly Anthropometric data Case I Case 2 Case 3 short in stature with short arms and legs (Kozlowski, 1965, 1973; Beals, 1969; Dorst, 1969; Hall, 1969; At 3 At 7 Murdock, 1969; Walker et al., 1971). Although Age at measurement (years) 8-75 3.0 7.5 9-0 hypochondroplasia appears to be fairly common Height (cm) 107.7 (3) 92.7 (50) 113.7 (10) 119.0 (3) (Rimoin, 1975) there have been few cases described. Weight (kg) 21.6 (10) 16.4 (90) 20.0 (10) 35.6 (90) Skull circumference copyright. We describe the clinical, radiological, and genetic (cm) 53-7 52-5 56-0 50.5 features in 3 patients.
    [Show full text]
  • SKELETAL DYSPLASIA Dr Vasu Pai
    SKELETAL DYSPLASIA Dr Vasu Pai Skeletal dysplasia are the result of a defective growth and development of the skeleton. Dysplastic conditions are suspected on the basis of abnormal stature, disproportion, dysmorphism, or deformity. Diagnosis requires Simple measurement of height and calculation of proportionality [<60 inches: consideration of dysplasia is appropriate] Dysmorphic features of the face, hands, feet or deformity A complete physical examination Radiographs: Extremities and spine, skull, Pelvis, Hand Genetics: the risk of the recurrence of the condition in the family; Family evaluation. Dwarf: Proportional: constitutional or endocrine or malnutrition Disproportion [Trunk: Extremity] a. Height < 42” Diastrophic Dwarfism < 48” Achondroplasia 52” Hypochondroplasia b. Trunk-extremity ratio May have a normal trunk and short limbs (achondroplasia), Short trunk and limbs of normal length (e.g., spondylo-epiphyseal dysplasia tarda) Long trunk and long limbs (e.g., Marfan’s syndrome). c. Limb-segment ratio Normal: Radius-Humerus ratio 75% Tibia-Femur 82% Rhizomelia [short proximal segments as in Achondroplastics] Mesomelia: Dynschondrosteosis] Acromelia [short hands and feet] RUBIN CLASSIFICATION 1. Hypoplastic epiphysis ACHONDROPLASTIC Autosomal Dominant: 80%; 0.5-1.5/10000 births Most common disproportionate dwarfism. Prenatal diagnosis: 18 weeks by measuring femoral and humeral lengths. Abnormal endochondral bone formation: zone of hypertrophy. Gene defect FGFR fibroblast growth factor receptor 3 . chromosome 4 Rhizomelic pattern, with the humerus and femur affected more than the distal extremities; Facies: Frontal bossing; Macrocephaly; Saddle nose Maxillary hypoplasia, Mandibular prognathism Spine: Lumbar lordosis and Thoracolumbar kyphosis Progressive genu varum and coxa valga Wedge shaped gaps between 3rd and 4th fingers (trident hands) Trident hand 50%, joint laxity Pathology Lack of columnation Bony plate from lack of growth Disorganized metaphysis Orthopaedics 1.
    [Show full text]
  • Hypochondroplasia and Acanthosis Nigricans
    European Journal of Endocrinology (2008) 159 243–249 ISSN 0804-4643 CLINICAL STUDY Hypochondroplasia and acanthosis nigricans: a new syndrome due to the p.Lys650Thr mutation in the fibroblast growth factor receptor 3 gene? Lidia Castro-Feijo´o*, Lourdes Loidi1,*, Anxo Vidal2, Silvia Parajes1, Elena Roso´n3,AnaA´ lvarez4, Paloma Cabanas, Jesu´s Barreiro, Adela Alonso4, Fernando Domı´nguez1,2 and Manuel Pombo Unidad de Endocrinologı´a Pedia´trica, Crecimiento y Adolescencia, Departamento de Pediatrı´a, Hospital Clı´nico Universitario y Universidad de Santiago de Compostela, 15706 Santiago de Compostela, Spain, 1Unidad de Medicina Molecular, Fundacio´nPu´blica Galega de Medicina Xeno´mica, 15706 Santiago de Compostela, Spain, 2Departamento de Fisiologı´a, Universidad de Santiago de Compostela, 15702 Santiago de Compostella, Spain, 3Servicio de Dermatologı´a, Complejo Hospitalario de Pontevedra, 36001 Pontevedra, Spain and 4Servicio de Radiologı´a, Hospital Clı´nico Universitario de Santiago de Compostela, 15706 Santiago de Compostela, Spain (Correspondence should be addressed to M Pombo; Email: [email protected]) *L Castro-Feijo´o and L Loidi contributed equally to this work Abstract Background: Hypochondroplasia (HCH) is a skeletal dysplasia inherited in an autosomal dominant manner due, in most cases, to mutations in the fibroblast growth factor receptor 3 (FGFR3). Acanthosis nigricans (AN) is a velvety and papillomatous pigmented hyperkeratosis of the skin, which has been recognized in some genetic disorders more severe than HCH involving the FGFR3 gene. Objective and design: After initial study of the proband, who had been consulted for short stature and who also presented AN, the study was extended to the patient’s mother and to 12 additional family members.
    [Show full text]
  • The First Non-Invasive Prenatal Test That Screens for Single-Gene Disorders
    The first non-invasive prenatal test that screens for single-gene disorders the evolution of NIPT A non-invasive prenatal test that screens multiple genes for mutations causing severe genetic disorders in the fetus analyses circulating cell- free fetal DNA (cfDNA) from a maternal blood sample. The test is performed after 10 weeks of pregnancy. works as a complementary screen to traditional and genome- wide NIPT . It screens for several life-altering genetic disorders that are not screened with current NIPT technology, allowing a complete picture of the risk of a pregnancy being affected by a genetic disorder. 2 facilitates early diagnosis of single-gene disorders. It involves 3 different levels of screening: This test screens for 5 common inherited recessive genetic disorders, such as Cystic Fibrosis, Beta-Thalassemia, Sickle INHERITED cell anaemia, Deafness autosomal recessive type 1A, Deafness autosomal recessive type 1B. Genes screened: CFTR, CX26 (GJB2), CX30 (GJB6), HBB This test screens for 44 severe genetic disorders due to de novo mutations (a gene mutation that is not inherited) in 25 genes DE NOVO Genes screened: ASXL1, BRAF, CBL, CHD7, COL1A1, COL1A2 , COL2A1, FGFR2, FGFR3, HDAC8, JAG1, KRAS, MAP2K1, MAP2K2, MECP2, NIPBL, NRAS, NSD1, PTPN11, RAF1, RIT1, SETBP1, SHOC2, SIX3, SOS1 This test screens for both inherited and de novo single-gene disorders and represents a combination of the tests INHERITED COMPLETE and DE NOVO providing a complete picture of the pregnancy risk. 3 allows detection of common inherited genetic disorders in INHERITED the fetus GENE GENETIC DISORDER CFTR Cystic Fibrosis CX26 (GJB2) Deafness autosomal recessive type 1A CX30 (GJB6) Deafness autosomal recessive type 1B HBB Beta-Thalassemia HBB Sickle cell anemia The inherited recessive disorders screened by INHERITED are the most common in the European population 4 identifies fetal conditions that could be missed by traditional DE NOVO prenatal screening.
    [Show full text]
  • Blueprint Genetics Craniosynostosis Panel
    Craniosynostosis Panel Test code: MA2901 Is a 38 gene panel that includes assessment of non-coding variants. Is ideal for patients with craniosynostosis. About Craniosynostosis Craniosynostosis is defined as the premature fusion of one or more cranial sutures leading to secondary distortion of skull shape. It may result from a primary defect of ossification (primary craniosynostosis) or, more commonly, from a failure of brain growth (secondary craniosynostosis). Premature closure of the sutures (fibrous joints) causes the pressure inside of the head to increase and the skull or facial bones to change from a normal, symmetrical appearance resulting in skull deformities with a variable presentation. Craniosynostosis may occur in an isolated setting or as part of a syndrome with a variety of inheritance patterns and reccurrence risks. Craniosynostosis occurs in 1/2,200 live births. Availability 4 weeks Gene Set Description Genes in the Craniosynostosis Panel and their clinical significance Gene Associated phenotypes Inheritance ClinVar HGMD ALPL Odontohypophosphatasia, Hypophosphatasia perinatal lethal, AD/AR 78 291 infantile, juvenile and adult forms ALX3 Frontonasal dysplasia type 1 AR 8 8 ALX4 Frontonasal dysplasia type 2, Parietal foramina AD/AR 15 24 BMP4 Microphthalmia, syndromic, Orofacial cleft AD 8 39 CDC45 Meier-Gorlin syndrome 7 AR 10 19 EDNRB Hirschsprung disease, ABCD syndrome, Waardenburg syndrome AD/AR 12 66 EFNB1 Craniofrontonasal dysplasia XL 28 116 ERF Craniosynostosis 4 AD 17 16 ESCO2 SC phocomelia syndrome, Roberts syndrome
    [Show full text]
  • MECHANISMS in ENDOCRINOLOGY: Novel Genetic Causes of Short Stature
    J M Wit and others Genetics of short stature 174:4 R145–R173 Review MECHANISMS IN ENDOCRINOLOGY Novel genetic causes of short stature 1 1 2 2 Jan M Wit , Wilma Oostdijk , Monique Losekoot , Hermine A van Duyvenvoorde , Correspondence Claudia A L Ruivenkamp2 and Sarina G Kant2 should be addressed to J M Wit Departments of 1Paediatrics and 2Clinical Genetics, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, Email The Netherlands [email protected] Abstract The fast technological development, particularly single nucleotide polymorphism array, array-comparative genomic hybridization, and whole exome sequencing, has led to the discovery of many novel genetic causes of growth failure. In this review we discuss a selection of these, according to a diagnostic classification centred on the epiphyseal growth plate. We successively discuss disorders in hormone signalling, paracrine factors, matrix molecules, intracellular pathways, and fundamental cellular processes, followed by chromosomal aberrations including copy number variants (CNVs) and imprinting disorders associated with short stature. Many novel causes of GH deficiency (GHD) as part of combined pituitary hormone deficiency have been uncovered. The most frequent genetic causes of isolated GHD are GH1 and GHRHR defects, but several novel causes have recently been found, such as GHSR, RNPC3, and IFT172 mutations. Besides well-defined causes of GH insensitivity (GHR, STAT5B, IGFALS, IGF1 defects), disorders of NFkB signalling, STAT3 and IGF2 have recently been discovered. Heterozygous IGF1R defects are a relatively frequent cause of prenatal and postnatal growth retardation. TRHA mutations cause a syndromic form of short stature with elevated T3/T4 ratio. Disorders of signalling of various paracrine factors (FGFs, BMPs, WNTs, PTHrP/IHH, and CNP/NPR2) or genetic defects affecting cartilage extracellular matrix usually cause disproportionate short stature.
    [Show full text]
  • Practice Parameter for the Diagnosis and Management of Primary Immunodeficiency
    Practice parameter Practice parameter for the diagnosis and management of primary immunodeficiency Francisco A. Bonilla, MD, PhD, David A. Khan, MD, Zuhair K. Ballas, MD, Javier Chinen, MD, PhD, Michael M. Frank, MD, Joyce T. Hsu, MD, Michael Keller, MD, Lisa J. Kobrynski, MD, Hirsh D. Komarow, MD, Bruce Mazer, MD, Robert P. Nelson, Jr, MD, Jordan S. Orange, MD, PhD, John M. Routes, MD, William T. Shearer, MD, PhD, Ricardo U. Sorensen, MD, James W. Verbsky, MD, PhD, David I. Bernstein, MD, Joann Blessing-Moore, MD, David Lang, MD, Richard A. Nicklas, MD, John Oppenheimer, MD, Jay M. Portnoy, MD, Christopher R. Randolph, MD, Diane Schuller, MD, Sheldon L. Spector, MD, Stephen Tilles, MD, Dana Wallace, MD Chief Editor: Francisco A. Bonilla, MD, PhD Co-Editor: David A. Khan, MD Members of the Joint Task Force on Practice Parameters: David I. Bernstein, MD, Joann Blessing-Moore, MD, David Khan, MD, David Lang, MD, Richard A. Nicklas, MD, John Oppenheimer, MD, Jay M. Portnoy, MD, Christopher R. Randolph, MD, Diane Schuller, MD, Sheldon L. Spector, MD, Stephen Tilles, MD, Dana Wallace, MD Primary Immunodeficiency Workgroup: Chairman: Francisco A. Bonilla, MD, PhD Members: Zuhair K. Ballas, MD, Javier Chinen, MD, PhD, Michael M. Frank, MD, Joyce T. Hsu, MD, Michael Keller, MD, Lisa J. Kobrynski, MD, Hirsh D. Komarow, MD, Bruce Mazer, MD, Robert P. Nelson, Jr, MD, Jordan S. Orange, MD, PhD, John M. Routes, MD, William T. Shearer, MD, PhD, Ricardo U. Sorensen, MD, James W. Verbsky, MD, PhD GlaxoSmithKline, Merck, and Aerocrine; has received payment for lectures from Genentech/ These parameters were developed by the Joint Task Force on Practice Parameters, representing Novartis, GlaxoSmithKline, and Merck; and has received research support from Genentech/ the American Academy of Allergy, Asthma & Immunology; the American College of Novartis and Merck.
    [Show full text]