SKELETAL DYSPLASIA Dr Vasu Pai
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The National Economic Burden of Rare Disease Study February 2021
Acknowledgements This study was sponsored by the EveryLife Foundation for Rare Diseases and made possible through the collaborative efforts of the national rare disease community and key stakeholders. The EveryLife Foundation thanks all those who shared their expertise and insights to provide invaluable input to the study including: the Lewin Group, the EveryLife Community Congress membership, the Technical Advisory Group for this study, leadership from the National Center for Advancing Translational Sciences (NCATS) at the National Institutes of Health (NIH), the Undiagnosed Diseases Network (UDN), the Little Hercules Foundation, the Rare Disease Legislative Advocates (RDLA) Advisory Committee, SmithSolve, and our study funders. Most especially, we thank the members of our rare disease patient and caregiver community who participated in this effort and have helped to transform their lived experience into quantifiable data. LEWIN GROUP PROJECT STAFF Grace Yang, MPA, MA, Vice President Inna Cintina, PhD, Senior Consultant Matt Zhou, BS, Research Consultant Daniel Emont, MPH, Research Consultant Janice Lin, BS, Consultant Samuel Kallman, BA, BS, Research Consultant EVERYLIFE FOUNDATION PROJECT STAFF Annie Kennedy, BS, Chief of Policy and Advocacy Julia Jenkins, BA, Executive Director Jamie Sullivan, MPH, Director of Policy TECHNICAL ADVISORY GROUP Annie Kennedy, BS, Chief of Policy & Advocacy, EveryLife Foundation for Rare Diseases Anne Pariser, MD, Director, Office of Rare Diseases Research, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health Elisabeth M. Oehrlein, PhD, MS, Senior Director, Research and Programs, National Health Council Christina Hartman, Senior Director of Advocacy, The Assistance Fund Kathleen Stratton, National Academies of Science, Engineering and Medicine (NASEM) Steve Silvestri, Director, Government Affairs, Neurocrine Biosciences Inc. -
Multiple Hereditary Exostoses Abstract Book, 2005
CONFERENCE ON Multiple Hereditary Exostoses InsightsInsights IntoInto PathogenesisPathogenesis November 3-5, 2005 Shriners Hospital of Houston 6977 Main Street Houston, Texas and the Houston Marriott Medical Center 6580 Fannin Street Houston, Texas Organizers: Dan Wells, Ph.D., Jacqueline Hecht, Ph.D., Sarah Ziegler Sponsored By: The Shriners Hospital The National Institutes of Health American Association of Enchondroma Diseases March of Dimes Birth Defects Foundation The Orthopaedic Research Society The MHE Coalition Gene Dx, DNA Diagnostic Services The Mizutani Foundation for Glycoscience HME: Insights into Pathogenesis. Schedule of Events Thursday November 3, 2005 8:30-9:00 Arrive at Shriners (Coffee and Pastries) 9:00-9:10 Dan Wells, Ph.D. Welcome to conference 9:10-9:30 Jacqueline Hecht, Ph.D. Introduction to genetics and natural history MHE ORTHOPAEDICS AND CLINICAL GENETICS (Christine Alvarez) 9:30-10:10 Christine Alvarez, M.D. Introduction of orthopaedics and defining severity of Hereditary Multiple Exostosis 10:10-10:40 Luca Sangiorgi, M.D., Ph.D. Mutational analysis and clinical expression of disease in patients with HME. 10:40-11:00 BREAK 11:00-11:30 Wim Wuyts, Ph.D. Mutation detection strategies for molecular screening in patients with HME. 11:30-12:00 George Thompson, M.D. Clinical treatments and surgical procedures. 12:00-1:15 LUNCH BONE DEVELOPMENT (Dan Wells) 1:15-1:45 John R. Hassell, Ph.D. FGF binding to percelan isolated from the growth plate. 1:45-2:15 David Ornitz, M.D., Ph.D. FGF that regulate growth plate development. 2:15-2:45 Maurizio Pacifici, M.D., Ph.D. -
Bone and Soft Tissue Tumors Have Been Treated Separately
EPIDEMIOLOGY z Sarcomas are rare tumors compared to other BONE AND SOFT malignancies: 8,700 new sarcomas in 2001, with TISSUE TUMORS 4,400 deaths. z The incidence of sarcomas is around 3-4/100,000. z Slight male predominance (with some subtypes more common in women). z Majority of soft tissue tumors affect older adults, but important sub-groups occur predominantly or exclusively in children. z Incidence of benign soft tissue tumors not known, but Fabrizio Remotti MD probably outnumber malignant tumors 100:1. BONE AND SOFT TISSUE SOFT TISSUE TUMORS TUMORS z Traditionally bone and soft tissue tumors have been treated separately. z This separation will be maintained in the following presentation. z Soft tissue sarcomas will be treated first and the sarcomas of bone will follow. Nowhere in the picture….. DEFINITION Histological z Soft tissue pathology deals with tumors of the classification connective tissues. of soft tissue z The concept of soft tissue is understood broadly to tumors include non-osseous tumors of extremities, trunk wall, retroperitoneum and mediastinum, and head & neck. z Excluded (with a few exceptions) are organ specific tumors. 1 Histological ETIOLOGY classification of soft tissue tumors tumors z Oncogenic viruses introduce new genomic material in the cell, which encode for oncogenic proteins that disrupt the regulation of cellular proliferation. z Two DNA viruses have been linked to soft tissue sarcomas: – Human herpes virus 8 (HHV8) linked to Kaposi’s sarcoma – Epstein-Barr virus (EBV) linked to subtypes of leiomyosarcoma z In both instances the connection between viral infection and sarcoma is more common in immunosuppressed hosts. -
Marble Bone Disease: a Rare Bone Disorder
Open Access Case Report DOI: 10.7759/cureus.339 Marble Bone Disease: A Rare Bone Disorder Eswaran Arumugam 1 , Maheswari Harinathbabu 2 , Ranjani Thillaigovindan 1 , Geetha Prabhu 1 1. Prosthodontics, Thai Moogambigai Dental College and Hospital 2. Oral Medicine and Radiology, Siva Multi Speciality Dental Clinic Corresponding author: Eswaran Arumugam, [email protected] Abstract Osteopetrosis, or marble bone disease, is a rare skeletal disorder due to a defective function of the osteoclasts. This defect renders bones more susceptible to osteomyelitis due to decreased vascularity. This disorder is inherited as autosomal dominant and autosomal recessive. Healthcare professionals should urge these patients to maintain their oral health as well as general health, as this condition makes these patients more susceptible to frequent infections and fractures. This case report emphasizes the signs and symptoms of marble bone disease and presents clinical and radiographic findings. Categories: Physical Medicine & Rehabilitation, Miscellaneous Keywords: osteopetrosis, marble bone disease, autosomal recessive, dense sclerotic bone Introduction Osteopetrosis (literally "stone bone," also known as marble bone disease or Albers-Schonberg disease) is an extremely rare inherited disorder where the bones harden and become denser. The disorder can cause osteosclerosis. The estimated prevalence of osteopetrosis is 1 in 100,000 to 500,000. It presents in two major clinical forms-a benign autosomal dominant form and a malignant autosomal recessive form. The autosomal dominant adult (benign) form is associated with few, if any, symptoms, and the autosomal recessive infantile (malignant) form is typically fatal during infancy or early childhood if untreated [1]. A rarer autosomal recessive (intermediate) form presents during childhood with some signs and symptoms of malignant osteopetrosis. -
Advances in the Pathogenesis and Possible Treatments for Multiple Hereditary Exostoses from the 2016 International MHE Conference
Connective Tissue Research ISSN: 0300-8207 (Print) 1607-8438 (Online) Journal homepage: https://www.tandfonline.com/loi/icts20 Advances in the pathogenesis and possible treatments for multiple hereditary exostoses from the 2016 international MHE conference Anne Q. Phan, Maurizio Pacifici & Jeffrey D. Esko To cite this article: Anne Q. Phan, Maurizio Pacifici & Jeffrey D. Esko (2018) Advances in the pathogenesis and possible treatments for multiple hereditary exostoses from the 2016 international MHE conference, Connective Tissue Research, 59:1, 85-98, DOI: 10.1080/03008207.2017.1394295 To link to this article: https://doi.org/10.1080/03008207.2017.1394295 Published online: 03 Nov 2017. Submit your article to this journal Article views: 323 View related articles View Crossmark data Citing articles: 1 View citing articles Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=icts20 CONNECTIVE TISSUE RESEARCH 2018, VOL. 59, NO. 1, 85–98 https://doi.org/10.1080/03008207.2017.1394295 PROCEEDINGS Advances in the pathogenesis and possible treatments for multiple hereditary exostoses from the 2016 international MHE conference Anne Q. Phana, Maurizio Pacificib, and Jeffrey D. Eskoa aDepartment of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA, USA; bTranslational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA ABSTRACT KEYWORDS Multiple hereditary exostoses (MHE) is an autosomal dominant disorder that affects about 1 in 50,000 Multiple hereditary children worldwide. MHE, also known as hereditary multiple exostoses (HME) or multiple osteochon- exostoses; multiple dromas (MO), is characterized by cartilage-capped outgrowths called osteochondromas that develop osteochondromas; EXT1; adjacent to the growth plates of skeletal elements in young patients. -
Exostoses, Enchondromatosis and Metachondromatosis; Diagnosis and Management
Acta Orthop. Belg., 2016, 82, 102-105 ORIGINAL STUDY Exostoses, enchondromatosis and metachondromatosis; diagnosis and management John MCFARLANE, Tim KNIGHT, Anubha SINHA, Trevor COLE, Nigel KIELY, Rob FREEMAN From the Department of Orthopaedics, Robert Jones Agnes Hunt Hospital, Oswestry, UK We describe a 5 years old girl who presented to the region of long bones and are composed of a carti- multidisciplinary skeletal dysplasia clinic following lage lump outside the bone which may be peduncu- excision of two bony lumps from her fingers. Based on lated or sessile, the knee is the most common clinical examination, radiolographs and histological site (1,10). An isolated exostosis is a common inci- results an initial diagnosis of hereditary multiple dental finding rarely requiring treatment. Disorders exostosis (HME) was made. Four years later she developed further lumps which had the radiological associated with exostoses include HME, Langer- appearance of enchondromas. The appearance of Giedion syndrome, Gardner syndrome and meta- both exostoses and enchondromas suggested a possi- chondromatosis. ble diagnosis of metachondromatosis. Genetic testing Enchondroma are the second most common be- revealed a splice site mutation at the end of exon 11 on nign bone tumour characterised by the formation of the PTPN11 gene, confirming the diagnosis of meta- hyaline cartilage in the medulla of a bone. It occurs chondromatosis. While both single or multiple exosto- most frequently in the hand (60%) and then the feet. ses and enchondromas occur relatively commonly on The typical radiological features are of a well- their own, the appearance of multiple exostoses and defined lucent defect with endosteal scalloping and enchondromas together is rare and should raise the differential diagnosis of metachondromatosis. -
Supporting Information
Supporting Information Torkamani et al. 10.1073/pnas.0802403105 Materials and Methods kinase sequences used to generate conserved motifs, as in Kannan Kinase Identifiers. Kinase protein and DNA reference sequences et al. (3), the Gibbs motif sampling method identifies characteristic were obtained from Kinbase. These reference sequences were motifs for each individual subdomain of the kinase catalytic core, used as the basis to assign various gene identifiers (including which are then used to generate high confidence motif-based Ensembl gene IDs, HGNC gene symbols, and Entrez gene IDs) Markov chain Monte Carlo multiple alignments based upon these to every known human protein kinase. Ultimately, only eukary- motifs (4). These subdomains compromise the core structural otic protein kinases, that is, all human protein kinases except components of the protein kinase catalytic core. Intervening re- those belonging to the atypical protein kinase family, were gions between these subdomains were not aligned. considered in this study. The various gene identifiers were assigned as follows: Ensembl Mapping to Multiple Alignments and Generation of Logo Figures. A Gene ID’s were determined for each protein kinase by BLAST- nonredundant set of SNPs was generated to be mapped to the ing the reference Kinbase protein sequence against the Ensembl alignment computationally. That is, if multiple disease or com- database (www.ensembl.org/Homo sapiens/blastview). The En- mon SNPs have been observed at a particular position within a sembl Gene ID of the top hit was assigned to the protein kinase. particular protein kinase, it is only considered once in our The Ensembl Gene ID was then used as a query in Biomart analysis. -
Repercussions of Inborn Errors of Immunity on Growth☆ Jornal De Pediatria, Vol
Jornal de Pediatria ISSN: 0021-7557 ISSN: 1678-4782 Sociedade Brasileira de Pediatria Goudouris, Ekaterini Simões; Segundo, Gesmar Rodrigues Silva; Poli, Cecilia Repercussions of inborn errors of immunity on growth☆ Jornal de Pediatria, vol. 95, no. 1, Suppl., 2019, pp. S49-S58 Sociedade Brasileira de Pediatria DOI: https://doi.org/10.1016/j.jped.2018.11.006 Available in: https://www.redalyc.org/articulo.oa?id=399759353007 How to cite Complete issue Scientific Information System Redalyc More information about this article Network of Scientific Journals from Latin America and the Caribbean, Spain and Journal's webpage in redalyc.org Portugal Project academic non-profit, developed under the open access initiative J Pediatr (Rio J). 2019;95(S1):S49---S58 www.jped.com.br REVIEW ARTICLE ଝ Repercussions of inborn errors of immunity on growth a,b,∗ c,d e Ekaterini Simões Goudouris , Gesmar Rodrigues Silva Segundo , Cecilia Poli a Universidade Federal do Rio de Janeiro (UFRJ), Faculdade de Medicina, Departamento de Pediatria, Rio de Janeiro, RJ, Brazil b Universidade Federal do Rio de Janeiro (UFRJ), Instituto de Puericultura e Pediatria Martagão Gesteira (IPPMG), Curso de Especializac¸ão em Alergia e Imunologia Clínica, Rio de Janeiro, RJ, Brazil c Universidade Federal de Uberlândia (UFU), Faculdade de Medicina, Departamento de Pediatria, Uberlândia, MG, Brazil d Universidade Federal de Uberlândia (UFU), Hospital das Clínicas, Programa de Residência Médica em Alergia e Imunologia Pediátrica, Uberlândia, MG, Brazil e Universidad del Desarrollo, -
Saethre-Chotzen Syndrome
Saethre-Chotzen syndrome Authors: Professor L. Clauser1 and Doctor M. Galié Creation Date: June 2002 Update: July 2004 Scientific Editor: Professor Raoul CM. Hennekam 1Department of craniomaxillofacial surgery, St. Anna Hospital and University, Corso Giovecca, 203, 44100 Ferrara, Italy. [email protected] Abstract Keywords Disease name and synonyms Excluded diseases Definition Prevalence Management including treatment Etiology Diagnostic methods Genetic counseling Antenatal diagnosis Unresolved questions References Abstract Saethre-Chotzen Syndrome (SCS) is an inherited craniosynostotic condition, with both premature fusion of cranial sutures (craniostenosis) and limb abnormalities. The most common clinical features, present in more than a third of patients, consist of coronal synostosis, brachycephaly, low frontal hairline, facial asymmetry, hypertelorism, broad halluces, and clinodactyly. The estimated birth incidence is 1/25,000 to 1/50,000 but because the phenotype can be very mild, the entity is likely to be underdiagnosed. SCS is inherited as an autosomal dominant trait with a high penetrance and variable expression. The TWIST gene located at chromosome 7p21-p22, is responsible for SCS and encodes a transcription factor regulating head mesenchyme cell development during cranial tube formation. Some patients with an overlapping SCS phenotype have mutations in the FGFR3 (fibroblast growth factor receptor 3) gene; especially the Pro250Arg mutation in FGFR3 (Muenke syndrome) can resemble SCS to a great extent. Significant intrafamilial -
Inherited Renal Tubulopathies—Challenges and Controversies
G C A T T A C G G C A T genes Review Inherited Renal Tubulopathies—Challenges and Controversies Daniela Iancu 1,* and Emma Ashton 2 1 UCL-Centre for Nephrology, Royal Free Campus, University College London, Rowland Hill Street, London NW3 2PF, UK 2 Rare & Inherited Disease Laboratory, London North Genomic Laboratory Hub, Great Ormond Street Hospital for Children National Health Service Foundation Trust, Levels 4-6 Barclay House 37, Queen Square, London WC1N 3BH, UK; [email protected] * Correspondence: [email protected]; Tel.: +44-2381204172; Fax: +44-020-74726476 Received: 11 February 2020; Accepted: 29 February 2020; Published: 5 March 2020 Abstract: Electrolyte homeostasis is maintained by the kidney through a complex transport function mostly performed by specialized proteins distributed along the renal tubules. Pathogenic variants in the genes encoding these proteins impair this function and have consequences on the whole organism. Establishing a genetic diagnosis in patients with renal tubular dysfunction is a challenging task given the genetic and phenotypic heterogeneity, functional characteristics of the genes involved and the number of yet unknown causes. Part of these difficulties can be overcome by gathering large patient cohorts and applying high-throughput sequencing techniques combined with experimental work to prove functional impact. This approach has led to the identification of a number of genes but also generated controversies about proper interpretation of variants. In this article, we will highlight these challenges and controversies. Keywords: inherited tubulopathies; next generation sequencing; genetic heterogeneity; variant classification. 1. Introduction Mutations in genes that encode transporter proteins in the renal tubule alter kidney capacity to maintain homeostasis and cause diseases recognized under the generic name of inherited tubulopathies. -
Hypochondroplasia
Arch Dis Child: first published as 10.1136/adc.53.11.868 on 1 November 1978. Downloaded from Arch Dis Child: first published as 10.1136/adc.53.11.868 on 1 November 1978. Downloaded from Archives of Disease in Childhood, 1978, 53, 868-872 Hypochondroplasia J. F. T. GLASGOW, N. C. NEVIN, AND P. S. THOMAS From the Departments of Child Health and Medical Genetics, Queen's University ofBelfast, and Department of Radiology, Royal Belfast Hospitalfor Sick Children SUMMARY Clinical, radiological, and genetic features are described in 3 patients with hypo- chondroplasia. Early recognition of this disorder is possible from the abnormal body proportions with short limbs and lumbar lordosis without facial stigmata of achondroplasia. Radiological confirmation is possible provided a full skeletal survey is made. Two of our patients had a large head. Hypochondroplasia is one of the milder varieties of Table 1 Anthropometric data in patients with chondrodystrophy, resembling a mild form of hypochondroplasia achondroplasia. Affected individuals are slightly Anthropometric data Case I Case 2 Case 3 short in stature with short arms and legs (Kozlowski, 1965, 1973; Beals, 1969; Dorst, 1969; Hall, 1969; At 3 At 7 Murdock, 1969; Walker et al., 1971). Although Age at measurement (years) 8-75 3.0 7.5 9-0 hypochondroplasia appears to be fairly common Height (cm) 107.7 (3) 92.7 (50) 113.7 (10) 119.0 (3) (Rimoin, 1975) there have been few cases described. Weight (kg) 21.6 (10) 16.4 (90) 20.0 (10) 35.6 (90) Skull circumference copyright. We describe the clinical, radiological, and genetic (cm) 53-7 52-5 56-0 50.5 features in 3 patients. -
Peds Ortho: What Is Normal, What Is Not, and When to Refer
Peds Ortho: What is normal, what is not, and when to refer Future of Pedatrics June 10, 2015 Matthew E. Oetgen Benjamin D. Martin Division of Orthopaedic Surgery AGENDA • Definitions • Lower Extremity Deformity • Spinal Alignment • Back Pain LOWER EXTREMITY ALIGNMENT DEFINITIONS coxa = hip genu = knee cubitus = elbow pes = foot varus valgus “bow-legged” “knock-knee” apex away from midline apex toward midline normal varus hip (coxa vara) varus humerus valgus ankle valgus hip (coxa valga) Genu varum (bow-legged) Genu valgum (knock knee) bow legs and in toeing often together Normal Limb alignment NORMAL < 2 yo physiologic = reassurance, reevaluate @ 2 yo Bow legged 7° knock knee normal Knock knee physiologic = reassurance, reevaluate in future 4 yo abnormal 10 13 yo abnormal + pain 11 Follow-up is essential! 12 Intoeing 1. Femoral anteversion 2. Tibial torsion 3. Metatarsus adductus MOST LIKELY PHYSIOLOGIC AND WILL RESOLVE! BRACES ARE HISTORY! Femoral Anteversion “W” sitters Internal rotation >> External rotation knee caps point in MOST LIKELY PHYSIOLOGIC AND MAY RESOLVE! Internal Tibial Torsion Thigh foot angle MOST LIKELY PHYSIOLOGIC AND WILL RESOLVE BY SCHOOL AGE Foot is rotated inward Internal Tibial Torsion (Fuchs 1996) Metatarsus Adductus • Flexible = correctible • Observe vs. casting CURVED LATERAL BORDER toes point in NOT TO BE CONFUSED WITH… Clubfoot talipes equinovarus adductus internal varus rotation equinus CAN’T DORSIFLEX cavus Clubfoot START19 CASTING JUST AFTER BIRTH Calcaneovalgus Foot • Intrauterine positioning • Resolve