Bananas and Plantains

Total Page:16

File Type:pdf, Size:1020Kb

Bananas and Plantains Genus Musa Section Eumusa Bananas and Plantains Section Eumusa Q Major species of economic importance – Musa acuminata (A genome) – Musa balbisiana (B genome) Family: Musaceae – Musa balbisiana (B genome) Q Ploidy levels of commercial bananas Genus: Musa – Diploid, AA and BB Species: – Triploid, AAA, AAB, ABB M. acuminata – Tetraploid, AAAA, AABB, ABBB M. balbisiana Q Major evolutionary events – Probably millennia ago Tropical Horticulture - Texas A&M University Types of Bananas Banana Origin and Domestication Q Banana – Desert banana, fresh Reached Europe consumption by 1516 – AAA ABB AAB ABBB Before 200 AD Q Plantain AB AAB Industry developed in Late 19th Century AAA ABB – Cooking, Meal, AA AABB AA AAAB Vegetable banana AAA Vegetable banana AAB – Plátano, banano macho – AAB or ABB Tropical Horticulture - Texas A&M University Tropical Horticulture - Texas A&M University Banana Cultivation and Climate Adaptation: Hot Humid Tropics Most Banana/Plantain Production within Region with Winter Temperate Greater than 15.5 C (60 F) and Q Temperature Rainfall greater than 1,270 mm (50”) – Frost free – Mean temperature of 27 C (80 F) January 15.5 C isotherm – Minimum winter temp of 15.5 C (60 F) 1,270 mm isohyets Q Moisture – Rain, 100 mm (4.0”) per month 1,270 mm isohyets Q Soil – Good drainage is needed – Good drainage is needed June 15.5 C isotherm – Slightly acid, pH 5.5 to 6.5 (Figure 6.1 from Simmonds, 1966) Tropical Horticulture - Texas A&M University Tropical Horticulture - Texas A&M University 1 Banana Cultivation and Climate Banana Cultivation and Climate Bananas Grown for Local Consumption Bananas Grown for Export = T January 15.5 C isotherm January 15.5 C isotherm B 1,270 mm isohyets B 1,270 mm isohyets B T B T B B B B B B B B B T T T B B B B B B B BT T B B B B T TTB B B B B T B B B B B B B T B B B 1,270 mm isohyets B B 1,270 mm isohyets B B B B T BB BBT T T T June 15.5 C isotherm June 15.5 C isotherm (Figure 6.1 from Simmonds, 1966) (Figure 6.1 from Simmonds, 1966) Tropical Horticulture - Texas A&M University Tropical Horticulture - Texas A&M University World Production Weather Problems (1,000s mt) Q Wind Region Bananas Plantains – 15-20 mph - leaf damage, twisting, breakage Africa 7,051 22,478 – 40 mph - considerable damage – 60 mph - complete destruction Asia 40,738 996 Q Why Americas 24,378 1,835 – Pseudostem not as strong as woody stem Total 72,167 25,309 – Large leaves that catch wind – Shallow root system FAOSTAT database, 2000-2002 Tropical Horticulture - Texas A&M University Tropical Horticulture - Texas A&M University World Production World Production (%) Leading Producing Countries Region Bananas Plantains Region Bananas Plantains Africa 10% 89% Africa Burundi, Uganda, Uganda, Rwanda, Egypt, Cameroon, Ghana, Nigeria, Congo Ivory Coast Asia 56% 4% Asia India, Philippines, Myanmar, Sri Lanka China, Indonesia, Americas 34% 7% Thailand Americas Ecuador, Brazil, Costa Colombia, Peru, Total (1,000s mt) 72,167 25,309 Rica, Colombia, Venezuela, Ecuador, Guatemala Cuba FAOSTAT database, 2000-2002 FAOSTAT database, 2000-2002 Tropical Horticulture - Texas A&M University Tropical Horticulture - Texas A&M University 2 World Production FAOSTAT database, 2000-2002 World Yields (mt/ha) Q Production Region Bananas Plantains – Bananas, 72 million MT (56% Asia) – Plantains, 25 million MT (89% Africa) Africa 6.5 5.6 Q Staple food for 70 million Africans – 90% grown on small farms and Asia 19.9 10.4 consumed locally – 10% exported from plantations Americas 18.7 10.0 Q Latin America and Caribbean region FAOSTAT database, 2000-2002 Tropical Horticulture - Texas A&M University Tropical Horticulture - Texas A&M University Plant Structure Monocot Banana Varieties Q Gros Michel (Big Mike) Q Perennial herb – Leading cv for 100 years – All leaves/inflorescence – Good production, cycle 13-15 months origin from under ground – Tall plants (4-8 m), wind damage corm – Good post harvest qualities Q Spreads via rhizomes Q Ripened uniformly Q Plants “walk” Q Resistant to bruising and discoloration – Largest plant without woody – Shipped as bunches trunk – Susceptible to Panama disease Q Pseudostem, leaf bases Q Replaced by Cavendish - resistant to Panama – Fruits once Replaced by Cavendish - resistant to Panama disease Tropical Horticulture - Texas A&M University Tropical Horticulture - Texas A&M University Many Locally Important Banana Varieties Varieties Q Cavendish – Currently the leading cv for export Q Active breeding – Heavy production, cycle 11 months – Heavy production, cycle 11 months in Africa, South – Smaller plant (2-3 m) - less wind damage America, and – Marginal post harvest qualities Asia Q Does not ripen uniformly - use special chambers Q Susceptible to bruising and discoloration – Shipped packed in boxes – Resistant to Panama disease Tropical Horticulture - Texas A&M University Tropical Horticulture - Texas A&M University 3 Banana Flower Structure flower Q Three types of flowers on inflorescence – Female flowers - develop into fruit Female – Hermaphroditic flowers – Male flowers Q Fruit is a berry Male Tropical Horticulture - Texas A&M University Tropical Horticulture - Texas A&M University Banana Botanically the Banana is a Berry flower One pistil One or many seed Female Three months from Other Berries flowering to harvest Tomato Kiwi Seed Remnants Grape Persimmon Male Tropical Horticulture - Texas A&M University Tropical Horticulture - Texas A&M University Planting Production Cycle Q Density Q Propagation – 2.9 m (8.5’) square – Vegetative – 1,812 pl/ha (725 pl/ac) – Rhizomes that are 6-8” diameter Q Size of export plantation – Planted within hours of digging – Need to supply 36,000 mt/year – Special fields for production of – Yield 40 mt/ha -> 1,000 ha rhizomes for new orchards – Supply 1,000 mt/ship every 10 days Q Nematode problems – Four years to attain commercial – Hot water treatment (65°C) production – Chemical dips Tropical Horticulture - Texas A&M University Tropical Horticulture - Texas A&M University 4 Production Training and Plant Selection Q Banana plants – Take 8-9 months to flower Q Banana plants “walk” Q 11-14 leaves – Select and train sucker for next crop Q Six leaves needed for good production to not interfere with growing bunch – Bunch take 3 months to develop – When harvest fruit the sucker should – Fruiting cycle for Dwarf Cavendish is be 2 m (5-6’) 11 months – Eliminate suckers that are Q Poorly positioned Q Banana plants “walk” Q Too small Q Unhealthy Tropical Horticulture - Texas A&M University Tropical Horticulture - Texas A&M University Production Panama Disease Fruiting Stem Q Fusarium oxysporum – Caused the demise of Gros Michel 1st Replacement – Plantains are generally resistant Daughter Q Control 2nd Replacement – Resistant varieties Grand daughter – New strain of the pathogen in Asia overcomes Cavendish resistance gene Fruiting Mat Q Need to develop a wider range of varieties for the export market Tropical Horticulture - Texas A&M University Tropical Horticulture - Texas A&M University Black Sigatoka Panama Disease Banana Leaf Spot Q Mycosphaerella - Cercospora – Native to Southeast Asia Q History – Early 1960s - Pacific and Asia – Early 1970s - Latin America – Late 1970s - Gabon in Africa - spread through Africa Q Symptoms – Small translucent pale yellow streaks – Necrotic lesions (light gray w/ yellow halo) – Lesions coalesce and destroy leaf Tropical Horticulture - Texas A&M University Tropical Horticulture - Texas A&M University 5 Black Sigatoka Bagging of the Fruit Banana Leaf Spot Q Weekly inspection – Last true hand is 4” long Q Yield Losses - by losing leaf area – Remove terminal end of bunch – This is generally not a problem in mixed – Mark with ribbon - colors change with the – 50% yield loss week – Also cause premature ripening in harvested – Cover with perforated polyethylene bag fruit Q Why Q Control – Protection – Mixed plantings Q Pests Q Generally not a serious problem Q Damage from leaves – Monoculture Q Dust and dirt Q Fungicides (Manzate) – Advance ripening Q Resistant varieties Tropical Horticulture - Texas A&M University Tropical Horticulture - Texas A&M University Supporting the Crop Fertility Q 52% of plant weight is the raceme – Prop with poles Q Forty tons of bananas per hectare – Guide lines to base of adjacent plant – 80 kg N = 80 kg N – Leaf pruning can reduce problems with wind damage – 20 kg P2O5 = 9 kg P with wind damage – 240 kg K2O = 200 kg K Tropical Horticulture - Texas A&M University Tropical Horticulture - Texas A&M University Harvest Q Crew harvests at 3-4 day intervals – Look for colored ribbons which indicate age of bunch Q Minimum size – 5 hands Q Cable system runs – Pick green, with certain size from banana field Q Banana bunch weighs 90-110 lbs to the packing – Two man operation house – Hung on hook on cable system Tropical Horticulture - Texas A&M University Tropical Horticulture - Texas A&M University 6 Fruit Packing and Grading Fruit Packing and Grading Q Pack in boxes Q Separate into – Only pack hands unblemished Q Wash to prevent fruit staining Q Pack in boxes Tropical Horticulture - Texas A&M University Tropical Horticulture - Texas A&M University Post Harvest Nutritional Value Q Storage temperature Q 100 gm edible pulp – 57 - 59 F – 85 calories, mostly carbohydrates – Below 56 F may cause chilling injury – Vitamin, A, C, B1, B2, niacin Q Bananas are ripened for marketing – Minerals, very high in K – 58-64 F Q Reduce risk of high blood pressure and strokes – Ethylene treatment Tropical Horticulture - Texas A&M University Tropical Horticulture - Texas A&M University Any Questions? 7.
Recommended publications
  • Advancing Banana and Plantain R & D in Asia and the Pacific
    Advancing banana and plantain R & D in Asia and the Pacific Proceedings of the 9th INIBAP-ASPNET Regional Advisory Committee meeting held at South China Agricultural University, Guangzhou, China - 2-5 November 1999 A. B. Molina and V. N. Roa, editors The mission of the International Network for the Improvement of Banana and Plantain is to sustainably increase the productivity of banana and plantain grown on smallholdings for domestic consumption and for local and export markets. The Programme has four specific objectives: · To organize and coordinate a global research effort on banana and plantain, aimed at the development, evaluation and dissemination of improved banana cultivars and at the conservation and use of Musa diversity. · To promote and strengthen collaboration and partnerships in banana-related activities at the national, regional and global levels. · To strengthen the ability of NARS to conduct research and development activities on bananas and plantains. · To coordinate, facilitate and support the production, collection and exchange of information and documentation related to banana and plantain. Since May 1994, INIBAP is a programme of the International Plant Genetic Resources Institute (IPGRI). The International Plant Genetic Resources Institute (IPGRI) is an autonomous international scientific organization, supported by the Consultative Group on International Agricultural Research (CGIAR). IPGRIs mandate is to advocate the conservation and use of plant genetic resources for the benefit of present and future generations. IPGRIs headquarters is based in Rome, Italy, with offices in another 14 countries worldwide. It operates through three programmes: (1) the Plant Genetic Resources Programme, (2) the CGIAR Genetic Resources Support Programme, and (3) the International Network for the Improvement of Banana and Plantain (INIBAP).
    [Show full text]
  • Introduction
    Introduction illets are called so because many thousands of grains are Mharvested from each seed sown. Besides the two major millets- sorghum (Sorghum bicolor) and pearl millet (Pennisetum Barnyard Millet typhoides), there are several small millets like finger millet (Eleusine coracana), kodo millet (Paspalum scrobiculatam), proso millet (Panicum miliaceum), foxtail millet (Setaria italica), barnyard millet (Echinochloa colona), little millet (Panicum sumatrense) and Job’s tears (Coix lachryma-jobi), which are cultivated in India. They are all classified as “coarse cereals”. Such labeling has degraded their value, even though millets are the most nutritious of all cereals. Small millets have really small sized grains with 2.1 - 7.1 grams/1000 grains weight and 1.4 - 5.1 ml/1000 grain volume of the well filled grains, whose density ranges form 1.34 - 1.42 grams/ml. They are spherical to oval shaped and possess coloured seed coats (see key to the Indian millets and Table I). In this book, the two major millets cultivated in India, sorghum and pearl millets are also included along with the small millets mentioned above. 1 Millets are grown in arid, semi arid or montane zones as rainfed crops under marginal conditions of soil fertility and moisture, where little else can be grown. Their annual production is less than 2% of the total world grain production. However they are of great local importance as staples and as reserve crops in marginal areas. Thus, they are major source of energy and protein for millions of people and fodder for cattle in vast tracts of Asia and Africa.
    [Show full text]
  • Thai Finest Delicious
    Chef woody’s selections BANGKOK BAY 24 Stir-fried shrimp, scallops, and calamari with asparagus, Chinese eggplant, red bell peppers, jumbo onions, long hot peppers, and basil leaves in spicy basil sauce BANANA PLA SAM ROD 29 Thai Finest Delicious Sautéed chili, tamarind sauce with jumbo onions, red bell peppers, and long hot peppers served on crisp whole red snapper STARTERS fillets GAENG NUA 21 THAI SPRING ROLLS 6 Slow Cooker beef Thai curry with coconut milk. Served with Four fried rolls stuffed with glass noodles, carrots, taro, and steamed broccoli, onions, ginger, carrots, and asparagus cabbage. Served with sweet & sour sauce RED OCEAN 25 THAI SUMMER ROLLS 6 Shrimp & scallop sautéed with roasted chili sauce, asparagus, Two non-fried rolls stuffed with shrimp, imitation crab meat, broccoli, onions, carrots, red bell peppers, long hot peppers, and green leaf lettuce, rice noodles, bean sprouts, and fresh basil basil leaves leaves. Served with peanut butter dipping sauce, topped with ground peanuts SALMON CHA CHA CHA 23 EDAMAME 4 Pan-grilled salmon with lesser galangal, kaffir lime leaves, Boiled Edamame soybeans in their pod, tossed with salt mushrooms, Chinese eggplant, red bell peppers, long hot peppers, young pepper seeds, and basil leaves GYOZA (JAPANESE POTSTICKERS) 6 Juicy on the inside, crispy and golden brown on the outside, these BA-RAM-U 39 pan-fried vegetable dumplings served with soy vinaigrette Thai-Style BBQ lamb chops served with broccoli, carrots, dipping sauce mushrooms, asparagus, onions, and red bell peppers, stir-fried
    [Show full text]
  • Banana Growing in the Florida Home Landscape1 Jonathan H
    HS10 Banana Growing in the Florida Home Landscape1 Jonathan H. Crane and Carlos F. Balerdi2 Scientific name: Musa acuminata and Musa balbisiana per plant than sweet bananas. The groups differ in whether the male parts of the inflorescence are persistent or absent. Common names for banana: English—banana, plantain; Spanish—banano, platano, guineo, cambur History and Distribution Common names for plantain: English—plantain, horse The banana and plantain are native to southeast Asia, banana; Spanish—platano where they have been cultivated for thousands of years. Bananas are believed to have been introduced to Africa in Family: Musaceae prehistoric times. Recent evidence suggests bananas were introduced into the New World (Ecuador) by southeast Relatives of banana within the Order Zingiberales: Asians around 200 BCE, and more recently by Portuguese Numerous ornamental plants including traveler’s palm, and Spanish explorers in the early 16th century. The bird-of-paradise, heliconia, and ginger. Portuguese introduced bananas into the Canary Islands and the Spanish to the Island of Hispaniola during the 1500s. Introduction Susceptibility to frost keeps the banana from spreading Bananas are vigorously growing, monocotyledonous beyond the tropics and the warm subtropics. However, herbaceous plants. There are two species of banana, Musa bananas are grown commercially in a number of subtropi- acuminata and M. balbisiana, and most banana cultivars cal areas such as Australia, Morocco, South Africa, Egypt, are hybrids of these species. Banana cultivars vary greatly Israel, the Canary Islands, and south Florida. In some areas, in plant and fruit size, plant morphology, fruit quality, and bananas are grown inside plastic or glass covered structures.
    [Show full text]
  • Banana Leaf Gluten Free Certified
    Disclaimer: Gluten-Free Soy-Sauce, hoisin & Oyster-Sauce are Banana Leaf Gluten Free Certified. The rest of ingredients are ONLY Best Estimates (Not Certified). Consumption is at your OWN RISK. Appetizers/ Salads/ Soup Gado-Gado jicama, lettuce, cucumber, seared tofu, peanut sauce $14.50 Satay Chicken $14.95, Beef or Combo Satay $17.95 cucumber, onion, peanut sauce Green Papaya & Mango Salad shrimps, roasted almond, kesom leaf $13.95 Fresh Hand Roll shrimps, bean sprouts, thai basil, rice paper, peanut sauce $12.50 Sambal Anchovy onion, cucumber $9.50 Tom Yam Soup hot & sour, seafoods or chicken, mushroom, kaffir lime leaf, lemon grass $14.95 (small) $17.50 (large) Galangal & Kaffir Lime Soup seafood or chicken, coconut milk, mushroom, galangal $14.95 (small) $17.50 (large) Poulty Mango Chicken green & red pepper in mango shells $16.95 Utama Basil Chicken selected veggie, red onion, thai chili $16.50 Singaporean Black Pepper Chicken eggplant, string beans $16.50 Rendang Chicken Malay curry sauce $16.50 Green or Red Curry Chicken varietal vegetables, soft tofu $16.50 Penang Sizzling Chicken green & red bell pepper, sweet onion, creamy shrimp paste $16.95 Beef & Lamb (Serving pastured beef shank & lamb, Certified Angus Steak) Rendang Braised Beef Shank malay curry $18.95 Green or Red Curry Beef certified angus steak, varietal vegetables, soft tofu $18.95 Nyonya Shaking Beef certified angus steak, anaheim chili, red bell peppers, sweet onion, thai chili $20.95 Utama Basil Beef certified angus steak, selected veggie, red onion, thai chili
    [Show full text]
  • Selection of Principal Starchy Food in a Livelihood System Based on Bananas: the Formation of Food Culture in Buganda, Central Uganda
    Selection of Principal Starchy Food in a Livelihood System Based on Bananas: The Formation of Food Culture in Buganda, Central Uganda YASUAKI SATO Osaka Sangyo University In part of the Great Lakes Region of East Mrica, people make their livelihoods by intensively using bananas as a principal starchy food (PSF) as well as a wide variety of other crops. This study examines the selection of the PSF in terms of the cropping patterns and the food-use system among the Ganda people of Central Uganda. Data on their crops suggest that combin­ ing production of bananas and other crops is essential for a stable food supply. The ecological characteristics of bananas and the decisions of each household have great influence on cropping patterns. Regarding food use, descriptions reveal that delicate techniques and sensibilities in preparing banana meals are remarkably developed and are also applied to other crops. In this way, an analysis of neither a framework of people's adaptations to external conditions nor one of food preferences is adequate to understand the complex people-nature relation in a study of food culture. Rather, it is crucial to use both frameworks in understanding the formation of food culture. Keywords: agriculture, banana, food culture, Ganda, principal starchy food (PSF), Uganda 1. INTRODUCTION 1.1. 'Ihe Ganda People and Bananas In part of the Great Lakes Region in East Mrica, including Uganda, Tanzania, Kenya, Rwanda, Burundi, and the eastern Democratic Republic of Congo, banana is an indispensable staple food crop. People heavily depend on banana crops in terms of agricultural landscape, subsistence economy, and local customs (c£ Sato & Shigeta 2006; Shigeta & Sato 2006).
    [Show full text]
  • Processing and Characterisation of Banana Leaf Fibre Reinforced Thermoplastic Cassava Starch Composites
    polymers Article Processing and Characterisation of Banana Leaf Fibre Reinforced Thermoplastic Cassava Starch Composites Ridhwan Jumaidin 1,* , Nuraliah Ahmad Diah 1, R. A. Ilyas 2,3 , Roziela Hanim Alamjuri 4,* and Fahmi Asyadi Md Yusof 5 1 Fakulti Teknologi Kejuruteraan Mekanikal dan Pembuatan, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, Durian Tunggal, Melaka 76100, Malaysia; [email protected] 2 School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, UTM Johor Bahru 81310, Malaysia; [email protected] 3 Centre for Advanced Composite Materials (CACM), Universiti Teknologi Malaysia, UTM Johor Bahru 81310, Malaysia 4 Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Malaysia 5 UNIKL MICET, Taboh Naning, Alor Gajah, Melaka 78000, Malaysia; [email protected] * Correspondence: [email protected] (R.J.); [email protected] (R.H.A.) Abstract: Increasing environmental concerns have led to greater attention to the development of biodegradable materials. The aim of this paper is to investigate the effect of banana leaf fibre (BLF) on the thermal and mechanical properties of thermoplastic cassava starch (TPCS). The biocomposites were prepared by incorporating 10 to 50 wt.% BLF into the TPCS matrix. The samples were charac- terised for their thermal and mechanical properties. The results showed that there were significant Citation: Jumaidin, R.; Diah, N.A.; increments in the tensile and flexural properties of the materials, with the highest strength and mod- Ilyas, R.A.; Alamjuri, R.H.; Yusof, ulus values obtained at 40 wt.% BLF content. Thermogravimetric analysis showed that the addition F.A.M.
    [Show full text]
  • Honduran Recipes
    Honduran ​Fried ripe plantains – Platanos maduros fritos Easy recipe for fried ripe plantains, a must-have side dish for so many Latin dishes. Honduran Platanos ​ Fritos are fried plantains which are a must have ingredient on the Honduran typical plate. Ingredients ● 2 black plantains ● oil for frying (enough for about ¼” deep oil in frying pan - You can use almost any kind of oil or shortening (not Olive Oil though) Instructions 1. Wash and peel the plantains 2. Slice the plantains, the best way to slice them is either diagonally or cut the plantain in half and slice lengthwise. The plantain can also be sliced lengthwise full size, but the smaller diagonal or half slices are easier to manage. 3. Heat the oil over medium heat in a large frying pan and add the plantains 4. The plantains will cook very quickly, make sure to turn them before they burn and cook until golden on each side. You can use a spatula or a fork to turn them. If the plantain flesh is still pink or white inside it means that it is not yet fully cooked. Turn the plantain when the natural sugars in the fruit ​ begin to carmelize (just starting to turn brow​n) - about 6 minutes 5. Thicker slices and less ripe plantains will need longer to cook, and maybe more oil. 6. Place the cooked plantains on a paper towel to drain any excess oil. 7. Serve warm. Voilá - you are a Honduran. ​ Nutrition Calories: ​109​kcal ​ | Carbohydrates: ​28​g ​ | Protein: ​1​g ​ | Sodium: ​3​mg ​ | Potassium: ​446​mg ​ | Fiber: ​2​g ​ | Sugar: ​13​g ​ | Vitamin A: ​1010​IU ​ | Vitamin C: ​16.5​mg ​ | Calcium: ​3​mg ​ | Iron: ​0.5​mg TAJADAS DE BANANO VERDE - Fried Green Bananas READY IN: 10mins ​ SERVES: 2 ​ ​ INGREDIENTS Nutrition 2 2 totally green bananas ​ salt, dash ​ oil for frying (enough for about ½” deep oil in frying pan - You can use almost any kind of oil 0r shortening (not Olive Oil though) DIRECTIONS To start you will first need to heat the oil in a skillet.About a 1/2 inch in oil.
    [Show full text]
  • Banana Root System: Towards a Better Understanding for Its Productive
    Banana Root System: towards a better understanding for its productive management Proceedings of an international symposium held in San José, Costa Rica, 3-5 November 2003 Sistema Radical del Banano: hacia un mejor conocimiento para su manejo productivo Memorias de un simposio internacional, San José, Costa Rica, 3-5 noviembre 2003 David W. Turner and Franklin E. Rosales, editors INIBAP – International Network for the Improvement of Banana and Plantain The mission of INIBAP is to sustainably increase the productivity of banana and plantain grown on smallholdings for domestic consumption and for local and export markets. The Programme has four specific objectives: • To organize and coordinate a global research effort on banana and plantain, aimed at the development, evaluation and dissemination of improved cultivars and at the conservation and use of Musa diversity • To promote and strengthen collaboration and partnerships in banana-related research activities at the national, regional and global levels • To strengthen the ability of NARS to conduct research and development activities on bananas and plantains • To coordinate, facilitate and support the production, collection and exchange of information and documentation related to banana and plantain. INIBAP is a network of the International Plant Genetic Resources Institute (IPGRI), a Future Harvest centre. MUSALAC – Banana and Plantain Research and Development Network for Latin America and the Caribbean MUSALAC was created under the umbrella of FORAGRO on 6 June 2000 in Cartagena de Indias, Colombia, following the signing of a Constitution Agreement. MUSALAC is composed of 15 national research and development institutions representing their respective country (Bolivia, Brazil, Colombia, Costa Rica, Cuba, Ecuador, Honduras, Jamaica, Mexico, Nicaragua, Panama, Peru, Puerto Rico, Dominican Republic and Venezuela) and 4 regional/international institutions (CATIE, CIRAD, IICA and INIBAP).
    [Show full text]
  • Musa Species (Bananas and Plantains) Authors: Scot C
    August 2006 Species Profiles for Pacific Island Agroforestry ver. 2.2 www.traditionaltree.org Musa species (banana and plantain) Musaceae (banana family) aga‘ (ripe banana) (Chamorro), banana, dessert banana, plantain, cooking banana (English); chotda (Chamorro, Guam, Northern Marianas); fa‘i (Samoa); hopa (Tonga); leka, jaina (Fiji); mai‘a (Hawai‘i); maika, panama (New Zealand: Maori); meika, mei‘a (French Polynesia); siaine (introduced cultivars), hopa (native) (Tonga); sou (Solomon Islands); te banana (Kiribati); uchu (Chuuk); uht (Pohnpei); usr (Kosrae) Scot C. Nelson, Randy C. Ploetz, and Angela Kay Kepler IN BRIEF h C vit Distribution Native to the Indo-Malesian, E El Asian, and Australian tropics, banana and C. plantain are now found throughout the tropics and subtropics. photo: Size 2–9 m (6.6–30 ft) tall at maturity. Habitat Widely adapted, growing at eleva- tions of 0–920 m (0–3000 ft) or more, de- pending on latitude; mean annual tempera- tures of 26–30°C (79–86°F); annual rainfall of 2000 mm (80 in) or higher for commercial production. Vegetation Associated with a wide range of tropical lowland forest plants, as well as nu- merous cultivated tropical plants. Soils Grows in a wide range of soils, prefer- ably well drained. Growth rate Each stalk grows rapidly until flowering. Main agroforestry uses Crop shade, mulch, living fence. Main products Staple food, fodder, fiber. Yields Up to 40,000 kg of fruit per hectare (35,000 lb/ac) annually in commercial or- Banana and plantain are chards. traditionally found in Pacific Intercropping Traditionally grown in mixed island gardens such as here in Apia, Samoa, although seri- cropping systems throughout the Pacific.
    [Show full text]
  • Advancing Banana and Plantain R & D in Asia and the Pacific
    AdvancingAdvancing bananabanana andand plantainplantain RR && DD inin AsiaAsia andand thethe PacificPacific -- VVol.ol. 1010 Proceedings of the 10th INIBAP-ASPNET Regional Advisory Committee meeting held at Bangkok, Thailand -- 10-11 November 2000 A.B. Molina, V.N. Roa and M.A.G. Maghuyop, editors The mission of the International Network for the Improvement of Banana and Plantain (INIBAP) is to sustainably increase the productivity of banana and plantain grown on smallholdings for domestic consumption and for local and export markets. The Programme has four specific objectives: • To organize and coordinate a global research effort on banana and plantain, aimed at the development, evaluation and dissemination of improved banana cultivars and at the conservation and use of Musa diversity. • To promote and strengthen collaboration and partnerships in banana-related activities at the national, regional and global levels. • To strengthen the ability of NARS to conduct research and development activities on bananas and plantains. • To coordinate, facilitate and support the production, collection and exchange of information and documentation related to banana and plantain. Since May 1994, INIBAP is a programme of the International Plant Genetic Resources Institute (IPGRI), a Future Harvest Centre. The International Plant Genetic Resources Institute (IPGRI) is an autonomous international scientific organization, supported by the Consultative Group on International Agricultural Research (CGIAR). IPGRI’s mandate is to advocate the conservation and use of plant genetic resources for the benefit of present and future generations. IPGRI’s headquarters is based in Rome, Italy, with offices in another 14 countries worldwide. It operates through three programmes: (1) the Plant Genetic Resources Programme, (2) the CGIAR Genetic Resources Support Programme, and (3) the International Network for the Improvement of Banana and Plantain (INIBAP).
    [Show full text]
  • Black Leaf Streak of Banana
    Plant Disease Sept. 2008 PD-50 Black Leaf Streak of Banana Scot Nelson Department of Plant and Environmental Protection Sciences lack leaf streak (BLS) is caused by the plant-patho- the relative proportion of Musa acuminata (A) and Musa genic fungus Mycosphaerella fijiensis. This prob- balbisiana (B) chromosome sets in their genome. Most lem,B also known as black Sigatoka, is the most important of the familiar, seedless, cultivated varieties (cultivars) of disease of banana (Musa species) worldwide. In Hawai‘i banana are triploid hybrids (AAA, AAB, ABB). Diploids it occurs most severely in high-rainfall areas. The disease (AA, AB, BB) and tetraploids (AAAA, AAAB, AABB, only affects banana and through reduced photosynthesis ABBB) are rare, being mostly experimental hybrids. and defoliation can severely reduce banana bunch yield There is a great diversity among native banana varieties and fruit quality. in the Pacific, particularly from Papua New Guinea and Depending on factors such as cultivar, location, cultur- the Solomon Islands. al practices, and fungicide(s) selected, up to 24 fungicide spray applications per year may be needed to produce The pathogen acceptable banana yields at large plantations in Hawai‘i. The fungus, M. fijiensis M. Morelet (anamorph: Paracer- However, with a sufficient fertilizer plan and the use of cospora fijiensis (M. Morelet) Deighton) infects leaves sound cultural practices, the average backyard grower of host plants (banana and plantain) and may develop can cope with BLS fairly well. locally distinct strains that vary in This publication discusses black virulence and in other traits, such as leaf streak disease of banana in resistance to certain fungicides.
    [Show full text]