Musa Species (Bananas and Plantains) Authors: Scot C
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Through the Zone of Nonbeing: a Reading of Black Skin, White Masks in Celebration of Fanon’S Eightieth Birthday*
Through the Zone of Nonbeing: A Reading of Black Skin, White Masks in Celebration of Fanon’s Eightieth Birthday* LEWIS R. GORDON Introduction anon was an ironic writer who was struggling with the complex question of paradoxical reason Fand paradoxical history. The modern collapse of “Reason” and “History” into all things European represented a failure of Reason and History that required self-deception regarding Europe’s scope. Put differently: Europe sought to become ontological; it sought to become what dialecticians call “Absolute Being.” Such Being stood in the way of human being or a human way of being. It thus presented itself as a theodicy. Theodicy is the branch of inquiry that attempts to account for the compatibility of God’s omnipotence, omniscience, and goodness in the face of injustice and evil. There are several formulations of the problem: If God has the power to do something about injustice and evil, why doesn’t He? If God has created everything, and God is perfect, how could God create imperfect (often evil) beings? If God has foreknowledge, how could we continue to insist on God’s goodness when He had advanced knowledge of the consequences of his creation? There have been many classical efforts to address this problem. The most influential has been St. Augustine’s insistence, in The City of God, that God’s love for humanity required human freedom, and freedom requires the ability to do right or wrong. The problem does not only emerge in the Western tradition. Among the Akan of Ghana, for instance, the problem emerges as well, and solutions similar to St. -
Introducing a Genetically Modified Banana in Uganda: Social Benefits
IFPRI Discussion Paper 00767 May 2008 Introducing a Genetically Modified Banana in Uganda Social Benefits, Costs, and Consumer Perceptions Enoch Kikulwe, Wageningen University Justus Wesseler, Wageningen University and José Falck-Zepeda, International Food Policy Research Institute Environment and Production Technology Division INTERNATIONAL FOOD POLICY RESEARCH INSTITUTE The International Food Policy Research Institute (IFPRI) was established in 1975. IFPRI is one of 15 agricultural research centers that receive principal funding from governments, private foundations, and international and regional organizations, most of which are members of the Consultative Group on International Agricultural Research (CGIAR). FINANCIAL CONTRIBUTORS AND PARTNERS IFPRI’s research, capacity strengthening, and communications work is made possible by its financial contributors and partners. IFPRI gratefully acknowledges the generous unrestricted funding from Australia, Canada, China, Finland, France, Germany, India, Ireland, Italy, Japan, Netherlands, Norway, Philippines, Sweden, Switzerland, United Kingdom, United States, and World Bank. Published by INTERNATIONAL FOOD POLICY RESEARCH INSTITUTE 2033 K Street, NW Washington, DC 20006-1002 USA Tel.: +1-202-862-5600 Fax: +1-202-467-4439 Email: [email protected] www.ifpri.org Notices 1 Effective January 2007, the Discussion Paper series within each division and the Director General’s Office of IFPRI were merged into one IFPRI–wide Discussion Paper series. The new series begins with number 00689, reflecting the prior publication of 688 discussion papers within the dispersed series. The earlier series are available on IFPRI’s website at www.ifpri.org/pubs/otherpubs.htm#dp. 2 IFPRI Discussion Papers contain preliminary material and research results. They have not been subject to formal external reviews managed by IFPRI’s Publications Review Committee but have been reviewed by at least one internal and/or external reviewer. -
Advancing Banana and Plantain R & D in Asia and the Pacific
Advancing banana and plantain R & D in Asia and the Pacific Proceedings of the 9th INIBAP-ASPNET Regional Advisory Committee meeting held at South China Agricultural University, Guangzhou, China - 2-5 November 1999 A. B. Molina and V. N. Roa, editors The mission of the International Network for the Improvement of Banana and Plantain is to sustainably increase the productivity of banana and plantain grown on smallholdings for domestic consumption and for local and export markets. The Programme has four specific objectives: · To organize and coordinate a global research effort on banana and plantain, aimed at the development, evaluation and dissemination of improved banana cultivars and at the conservation and use of Musa diversity. · To promote and strengthen collaboration and partnerships in banana-related activities at the national, regional and global levels. · To strengthen the ability of NARS to conduct research and development activities on bananas and plantains. · To coordinate, facilitate and support the production, collection and exchange of information and documentation related to banana and plantain. Since May 1994, INIBAP is a programme of the International Plant Genetic Resources Institute (IPGRI). The International Plant Genetic Resources Institute (IPGRI) is an autonomous international scientific organization, supported by the Consultative Group on International Agricultural Research (CGIAR). IPGRIs mandate is to advocate the conservation and use of plant genetic resources for the benefit of present and future generations. IPGRIs headquarters is based in Rome, Italy, with offices in another 14 countries worldwide. It operates through three programmes: (1) the Plant Genetic Resources Programme, (2) the CGIAR Genetic Resources Support Programme, and (3) the International Network for the Improvement of Banana and Plantain (INIBAP). -
Improvement of Cavendish Banana Cultivars Through Conventional Breeding
Improvement of Cavendish Banana Cultivars through Conventional Breeding J.F. Aguilar Morán Fundación Hondureña de Investigación Agrícola (FHIA) La Lima Honduras Keywords: Cavendish re-synthesis, female fertility, triploid × triploid crosses Abstract In their article “Banana breeding: polyploidy, disease resistance and productivity”, Stover and Buddenhagen (1986) reported the results of the evaluation of female fertility in Cavendish banana cultivars. They showed that the pollination of a few hundred bunches of ‘Valery’ (AAA) and other Cavendish clones with pollen from diploids did not yield seed. The authors concluded that “the apparent seed sterility of Cavendish cultivars (without any research to determine or overcome the blocks) precluded their use as female parents in conventional breeding programs”. The scientific community accepted these observations as fact and did not carry out additional tests, because the commercial cultivars of banana for export are all triploid and parthenocarpic. The triploid condition of the Cavendish banana causes them to produce many sterile eggs, and the process of parthenocarpy allows the development of fruit without ovule fertilization. On the assumption that Cavendish cultivars have low fertility, the Banana and Plantain Breeding Program at the Honduran Foundation for Agricultural Research (FHIA), starting in 2002, pollinated 20,000 bunches, approximately 2 million fingers, of the Cavendish cultivars ‘Grand Naine’ and ‘Williams’ with pollen from 10 Cavendish cultivars for the development of Cavendish tetraploids. As a result, 200 seeds with 40 viable embryos were obtained, from which 20 tetraploid hybrids were developed. These results confirmed the assumption that Cavendish cultivars have low fertility, which allows their use in conventional breeding methods to create new progenies. -
Monilochaetes and Allied Genera of the Glomerellales, and a Reconsideration of Families in the Microascales
available online at www.studiesinmycology.org StudieS in Mycology 68: 163–191. 2011. doi:10.3114/sim.2011.68.07 Monilochaetes and allied genera of the Glomerellales, and a reconsideration of families in the Microascales M. Réblová1*, W. Gams2 and K.A. Seifert3 1Department of Taxonomy, Institute of Botany of the Academy of Sciences, CZ – 252 43 Průhonice, Czech Republic; 2Molenweg 15, 3743CK Baarn, The Netherlands; 3Biodiversity (Mycology and Botany), Agriculture and Agri-Food Canada, Ottawa, Ontario, K1A 0C6, Canada *Correspondence: Martina Réblová, [email protected] Abstract: We examined the phylogenetic relationships of two species that mimic Chaetosphaeria in teleomorph and anamorph morphologies, Chaetosphaeria tulasneorum with a Cylindrotrichum anamorph and Australiasca queenslandica with a Dischloridium anamorph. Four data sets were analysed: a) the internal transcribed spacer region including ITS1, 5.8S rDNA and ITS2 (ITS), b) nc28S (ncLSU) rDNA, c) nc18S (ncSSU) rDNA, and d) a combined data set of ncLSU-ncSSU-RPB2 (ribosomal polymerase B2). The traditional placement of Ch. tulasneorum in the Microascales based on ncLSU sequences is unsupported and Australiasca does not belong to the Chaetosphaeriaceae. Both holomorph species are nested within the Glomerellales. A new genus, Reticulascus, is introduced for Ch. tulasneorum with associated Cylindrotrichum anamorph; another species of Reticulascus and its anamorph in Cylindrotrichum are described as new. The taxonomic structure of the Glomerellales is clarified and the name is validly published. As delimited here, it includes three families, the Glomerellaceae and the newly described Australiascaceae and Reticulascaceae. Based on ITS and ncLSU rDNA sequence analyses, we confirm the synonymy of the anamorph generaDischloridium with Monilochaetes. -
JAVELIN WG® Spray Must Be Deposited at the Larval Feeding Site
For Control of Insect Pests of Vegetables, Fruit and Field Crops ACTIVE INGREDIENT: Bacillus thuringiensis, subspecies kurstaki strain SA-11 solids, spores, and Lepidopteran active toxins* .............................................................................. 85.0% OTHER INGREDIENTS: ........................................................................................ 15.0% TOTAL 100.0% * The percentage active ingredient does not indicate product performance and potency measurements are not federally standardized. KEEP OUT OF REACH OF CHILDREN CAUTION See additional precautionary statements EPA REG. NO.: 70051-66 Lot No. EPA EST. NO.: Net Contents: Manufactured by: Certis USA LLC ESL 20160825 9145 Guilford Road, Suite 175 rev20191112 Columbia, MD 21046 This is a Specimen Label. It may not reflect the most-recent approved label for use in your state. Always refer to the label on the product packaging for approved use instructions. Please contact your Certis sales representative for more information. Page 1 of 17 PRECAUTIONARY STATEMENTS HAZARDS TO HUMANS AND DOMESTIC ANIMALS CAUTION. Harmful if absorbed through skin. Avoid contact with skin, eyes or clothing. Wash thoroughly with soap and water after handling and before eating, drinking, chewing gum, using tobacco, or using the toilet. Remove and wash contaminated clothing before reuse. Harmful if inhaled. Avoid breathing spray mist. Prolonged or frequently repeated skin contact may cause allergic reactions in some individuals. FIRST AID If on skin or clothing: Take off contaminated clothing. Rinse skin immediately with plenty of water for 15-20 minutes. If in eyes: Hold eye open and rinse slowly and gently with water for 15-20 minutes. Remove contact lenses, if present, after the first 5 minutes, then continue rinsing eye. If inhaled: Move person to fresh air. -
Introduction
Introduction illets are called so because many thousands of grains are Mharvested from each seed sown. Besides the two major millets- sorghum (Sorghum bicolor) and pearl millet (Pennisetum Barnyard Millet typhoides), there are several small millets like finger millet (Eleusine coracana), kodo millet (Paspalum scrobiculatam), proso millet (Panicum miliaceum), foxtail millet (Setaria italica), barnyard millet (Echinochloa colona), little millet (Panicum sumatrense) and Job’s tears (Coix lachryma-jobi), which are cultivated in India. They are all classified as “coarse cereals”. Such labeling has degraded their value, even though millets are the most nutritious of all cereals. Small millets have really small sized grains with 2.1 - 7.1 grams/1000 grains weight and 1.4 - 5.1 ml/1000 grain volume of the well filled grains, whose density ranges form 1.34 - 1.42 grams/ml. They are spherical to oval shaped and possess coloured seed coats (see key to the Indian millets and Table I). In this book, the two major millets cultivated in India, sorghum and pearl millets are also included along with the small millets mentioned above. 1 Millets are grown in arid, semi arid or montane zones as rainfed crops under marginal conditions of soil fertility and moisture, where little else can be grown. Their annual production is less than 2% of the total world grain production. However they are of great local importance as staples and as reserve crops in marginal areas. Thus, they are major source of energy and protein for millions of people and fodder for cattle in vast tracts of Asia and Africa. -
Women in the Banana Export Industry Regional Report on Latin America
Women in the Banana Export Industry Regional Report on Latin America Working paper - Series for the World Banana Forum by Anna Cooper, Banana Link May 2015 2 Summary Women in the Banana Export Industry Regional Report on Latin America is part of a global report on the economic aspects of gender issues in the banana sector. It is based on research conducted in Colombia, Ecuador, Honduras, Guatemala and Nicaragua with a primary focus on the situation for hired labour and analyses levels of women’s employment in the region and the key challenges for women workers. The report will inform the work of the World Banana Forum1. The average proportion of women employed in the Latin American banana industry is 12.5%, although this varies within and between countries. A key reason for this low rate of women's employment in the sector is the limited access of women to the whole range of work tasks on the plantation. Women tend to be restricted to work in the 'more controlled environment' of the packing shed in part due to the gender stereotyping of women. Many field tasks are perceived to be too technically difficult or too physically demanding for women to undertake but tend to be better paid. Women are viewed primarily as domestic actors and childcare providers. The occupational health and safety risks for women identified are particularly those related to the effects of agrochemical exposure on reproductive health. Other problems faced by women workers are sexual harassment, discrimination when pregnant, a lack of childcare provision and the additional burdens faced by women managing childcare, domestic duties and in some cases, trade union activity. -
Erionota Thrax)
® Tree and Forestry Science and Biotechnology ©2010 Global Science Books Bioecology and Management of the Banana Skipper (Erionota thrax) Justin N. Okolle1,2* • Abu Hassan Ahmad1 • Mashhor Mansor1 1 School of Biological Sciences, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia 2 Laboratory of Nematology/Entomology, Centre Africain de Recherches sur Bananiers et Plantains (CARBAP), BP 832, Douala, Cameroon Corresponding author : * [email protected], [email protected] ABSTRACT Bananas and plantains are important food crops to several people in the world. One of the most important folivorous insect pest on these crops is the banana skipper; Erionota thrax. The larvae of these large butterflies can cause mean leaf defoliation of about 60, leading to yield losses of about 20. Indigenous to Southeast Asia, life stages of the pest are attacked by several parasitoids of which Ooencyrtus erionotae, Cotesia erionotae and Brachymeria spp. are the major ones. Infestation and parasitism of the pest varies with plant growth stages, leaf ages, between interior and field edges, and seasons. Significantly higher infestation and parasitism found on pre-flowered plants, younger leaves and during the rainy season. In addition, eggs and larvae are randomly distributed while pupae are clumped and parasitized eggs and pupae are clumped while that of larvae is random. Although E. thrax has never been reported on non-Musa species or weeds, other smaller Erionota species have been recorded on Asystacia intrusa, Ipomoea cairica, Mimosa pudica -
History of the Banana
History of the Banana Bananas: The Same The World Over Banana is the common name for the fruit and herbaceous plant that is part of the genus Musa. Bananas are one of the world’s oldest and most popular fruits. They are very nutritious, generally inexpensive, and readily available. The banana plant is a large flowering plant that grows 6–7 meters tall. Each plant produces a bunch of bananas from a flowering stem. Whether eating a ripe banana in the United States or in Europe, these store-bought bananas tend to taste the same. Part of the banana’s popularity is due to its predictably delicious flavor. However, the uniformity that makes the banana so popular could also lead to its demise. A bunch of bananas hangs from the main stem of the Banana History plant. As humans’ hunter-gatherer ancestors roamed the jungle collecting food, they ignored the bananas they found. Wild bananas, which flower and reproduce sexually, produce hard seed cases with inedible seeds inside. Occasionally, prehistoric humans found fruit on wild banana plants that did not contain seeds. These seedless bananas, when peeled, contained sweet, edible flesh. This is the edible banana that people know and enjoy today. Today’s edible banana is a genetic mutation. The mutation produces tasty fruit but prevents proper seed development. The dark lines sometimes seen after biting into a banana are the stunted seeds. Banana Sexual Reproduction In nature, bananas reproduce through sexual reproduction. Sexual reproduction in flowering plants is similar to sexual reproduction in animals. Sperm cells are produced inside pollen grains. -
Colletotrichum – Names in Current Use
Online advance Fungal Diversity Colletotrichum – names in current use Hyde, K.D.1,7*, Cai, L.2, Cannon, P.F.3, Crouch, J.A.4, Crous, P.W.5, Damm, U. 5, Goodwin, P.H.6, Chen, H.7, Johnston, P.R.8, Jones, E.B.G.9, Liu, Z.Y.10, McKenzie, E.H.C.8, Moriwaki, J.11, Noireung, P.1, Pennycook, S.R.8, Pfenning, L.H.12, Prihastuti, H.1, Sato, T.13, Shivas, R.G.14, Tan, Y.P.14, Taylor, P.W.J.15, Weir, B.S.8, Yang, Y.L.10,16 and Zhang, J.Z.17 1,School of Science, Mae Fah Luang University, Chaing Rai, Thailand 2Research & Development Centre, Novozymes, Beijing 100085, PR China 3CABI, Bakeham Lane, Egham, Surrey TW20 9TY, UK and Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AB, UK 4Cereal Disease Laboratory, U.S. Department of Agriculture, Agricultural Research Service, 1551 Lindig Street, St. Paul, MN 55108, USA 5CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands 6School of Environmental Sciences, University of Guelph, Guelph, Ontario, N1G 2W1, Canada 7International Fungal Research & Development Centre, The Research Institute of Resource Insects, Chinese Academy of Forestry, Bailongsi, Kunming 650224, PR China 8Landcare Research, Private Bag 92170, Auckland 1142, New Zealand 9BIOTEC Bioresources Technology Unit, National Center for Genetic Engineering and Biotechnology, NSTDA, 113 Thailand Science Park, Paholyothin Road, Khlong 1, Khlong Luang, Pathum Thani, 12120, Thailand 10Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou 550006 PR China 11Hokuriku Research Center, National Agricultural Research Center, -
Costa Rican Banana Industry
The Growth of the Banana Industry in Costa Rica and Its Effect on Biodiversity: History and Loss of Biodiversity THE HISTORY OF BANANAS IN COSTA RICA Historically banana plantations have played an integral part in Costa Rica's economy. The first banana plantation was created in 1872 and commercial export began in 1879. By 1899, The United Fruit Company was formed and went on to become well established throughout Central America within several countries, which were known, as the "banana republics". However, by 1956, the Costa Rican government had become concerned about the number of plantations, which had been developed and abandoned due to "Panama Disease" (a root fungus), not to mention the careless use of the country’s natural resources by the United Fruit Company (Hernadez and Witter, 1996). At this point the government recruited the Standard Fruit Company (now Dole, a subsidiary of Castle and Cooke) who began purchasing small amounts of fruit from local growers. Unfortunately it was also at this point in time that the use of agro-chemicals was put into practice, with this came the use of large amounts of pesticides, fungicides, nematocides, (Astorga, 1996) and other chemicals, as well as other intensive field and processing management. As of 1967, the United Fruit Company became known as the United Brands Company and the Chiquita label was introduced into Costa Rica. In 1968 another company, Del Monte, through [its] subsidiary, BANDECO, started producing and exporting from the Atlantic Zone. These three companies, Dole, Chiquita, and Del Monte are known as the "Big Three" in Costa Rica (McCracken, 1998).