Corynebacterium Glutamicum Mycoredoxin 3 Protects Against Multiple Oxidative Stresses

Total Page:16

File Type:pdf, Size:1020Kb

Corynebacterium Glutamicum Mycoredoxin 3 Protects Against Multiple Oxidative Stresses Advance Publication J. Gen. Appl. Microbiol. doi 10.2323/jgam.2019.10.003 ©2020 Applied Microbiology, Molecular and Cellular Biosciences Research Foundation Full Paper 1 Corynebacterium glutamicum Mycoredoxin 3 protects against multiple oxidative stresses 2 and displays thioredoxin-like activity 3 (Received September 24, 2019; Accepted October 28, 2019; J-STAGE Advance publication date: October 30, 2020) 4 Tao Su#, Chengchuan Che#, Ping Sun, Xiaona Li, Zhijin Gong, Jinfeng Liu, Ge Yang * 5 6 College of Life Sciences, Qufu Normal University, Qufu, Shandong 273165, China; 7 8 Running title: Feature of C. glutamicum mycoredoxin 3 9 10 11 # These authors contributed equally to this work. 12 13 * Corresponding authors: 14 Ge Yang 15 16 E-mail [email protected] 17 Tel: 86-13953760056 18 19 20 21 22 23 24 25 26 27 Abstract 28 Glutaredoxins (Grxs) and thioredoxins (Trxs) play a critical role in resistance to oxidative 29 conditions. However, physiological and biochemical roles of Mycoredoxin 3 (Mrx3) that shared a 30 high amino acid sequence similarity to Grxs remain unknown in Corynebacterium glutamicum. 31 Here we showed that mrx3 deletion strains of C. glutamicum was involved in the protection 32 against oxidative stress. Recombinant Mrx3 not only catalytically reduced the disulfide bonds in 33 ribonucleotide reductase (RNR), insulin and 5, 5’-dithiobis-(2-nitro-benzoicacid) (DTNB), but 34 also reduced the mixed disulphides between mycothiol (MSH) and substrate, which was 35 exclusively linked to the thioredoxin reductase (TrxR) electron transfer pathway by a dithiol 36 mechanism. Site-directed mutagenesis confirmed that the conserved Cys17 and Cys20 in Mrx3 37 were necessary to maintain its activity. The mrx3 deletion mutant showed decreased resistance to 38 various stress, and these sensitive phenotypes were almost fully restored in the complementary 39 strain. The physiological roles of Mrx3 in resistance to various stress were further supported by 40 the induced expression of mrx3 under various stress conditions, directly under the control of the 41 stress-responsive extracytoplasmic function-sigma (ECF-σ) factor SigH. Thus, we presented the 42 first evidence that Mrx3 protected against various oxidative stresses by acting as a disulfide 43 oxidoreductase behaving like Trx. 44 Keywords: Glutaredoxin-like proteins; Mycoredoxin 3; enzyme activity; redox active disulfide; 45 redox regulation 46 47 48 Introduction 49 Adverse environment conditions, such as oxidants, low pH, heavy metal, high temperature, 50 diamide and antibiotic (gentamicin), induced the production of deleterious reactive oxygen species ·- 51 (ROS), including the highly destructive hydroxyl radicals (OH ), hydrogen peroxide (H2O2), ─ ·- 1 52 peroxynitrite (ONOO ), superoxide radical (O2 ), singlet oxygen ( O2), and organic 53 hydroperoxides (OHPs) [Mols and Abee, 2011]. The elevated ROS levels could destroy the 54 intracellular redox state and cause detrimental effects including oxidation of sulfhydryl groups in 55 proteins that led to protein disulfide bond formation, eventually resulting in the loss of function. 56 To protect cells against the damage, cells produced many antioxidant enzymes for continuously 57 monitoring the change in the intracellular redox state and facilitating the proper folding of proteins 58 [Trivedi, 2009; Rietsch and Beckwith 1998]. 59 Two small redox active proteins (molecular mass, 9-12 kDa) thioredoxins (Trxs) and 60 glutaredoxins (Grxs) were distributed throughout the field of organisms. They were major 61 thiol-disulphide reductases and involved in the reduction of a wide variety of protein disulfides, 62 such as insulin, 3-phosphoadenosine 5-phosphosulfate (PAPS), ribonucleotide reductase (RNR), 63 thiol peroxidase, and the mixed disulphide [Holmgren, 1985 ].They had also been shown to have a 64 large number of functions in cell growth, such as redox control of transcription factors [Dalton, 65 1999], or defense against oxidative stress and apoptosis [Arnér, 2000; Jordan, 1998]. Glutathione 66 (GSH)-dependent Grxs, heat-stable proteins with a typical Trx-fold structure, catalyzed 67 glutathione-protein mixed disulfides by monothiol mechanism or protein disulfides by a dithiol 68 mechanism [Holmgren, 1985; Herrero, 2007; Eberle, 2018]. During catalysis, the thiolate of the 69 active site nucleophilic cysteine of Grx attacked the disulfide bond of a S-glutathiolated protein 70 (P-SSG) or protein (P-S-S-P), releasing the protein thiol in the reduced form while becoming itself 71 glutathiolated or disulfide bond. Then, GSH attacked the glutathiolated Grx or disulfide 72 bond-containing Grx, releasing reduced Grx and GSSG. However, Trxs reduced protein disulfides 73 by a dithiol mechanism. In reaction, the reduced Trxs transferred reducing equivalents to disulfide 74 bonds on target proteins, allowing modulation of target enzymatic activities and leading to the 75 formation of oxidized Trx, Trx-S2. Oxidized Trxs depended on thioredoxin reductase (TrxR) for 76 reduction [Holmgren, 1985]. 77 Corynebacterium glutamicum not only was non-pathogenic Mycobacteria often used as a 78 model to study, but also a widespread Gram-positive bacterium of industrial importance. C. 79 glutamicum produced significant amounts of various L-amino acids, including L-lysine and 80 L-glutamate, and vitamins [Oide, 2015]. However, during culture, C. glutamicum inevitably 81 encountered adverse circumstances, such as high osmotic pressure, low pH, and oxidation 82 [Atichartpongkul, 2001], causing a serious problem-oxidative stress [Lee, 2013]. Oxidative stress 83 caused detrimental effects including oxidation of sulfhydryl groups in proteins that led to loss of 84 function. To conquer this, C. glutamicum hosted several redox active molecules such as the major 85 low-molecular-weight thiol mycothiol (MSH), Trxs, and mycoredoxins (Mrxs), participating in 86 oxidative stress defense and reducing enzymes that were oxidized to form a disulfide [Liu, 2013; 87 Van Laer, 2012]. MSH, present in millimolar concentrations in C. glutamicum, was considered as 88 the equivalent of GSH. MSH played an important role in the defense against several external 89 stresses including oxidative stress, alkylating agents and antibiotics [Liu, 2013]. C. glutamicum 90 Trx reduced protein disulfides by a dithiol mechanism. In C. glutamicum, Mrx1 and Mrx2, two 91 small proteins (both ~10 kDa) with a glutaredoxin-like sequence, were reported [Van Laer, 2012; 92 Ordóñez, 2009]. C. glutamicum Mrx1 and Mrx2 reduced the mixed disulfide, in which Mrx1 and 93 Mrx2 acted in combination with mycothiol (MSH) and mycothiol disulfide reductase (Mtr) as a 94 biological relevant monothiol reducing system [Van Laer, 2012; Rosado, 2017]. C. glutamicum 95 Mrx2, also named NrdH, has been shown to share structural and functional identity with Trx [Si, 96 2014]. However, the biological and biochemical properties of a Grx-like protein, encoded by the 97 ncgl0401 gene, remained unknown. Here, we focus on the description of the function of Ncgl0401, 98 providing an important understanding toward the intracellular redox network of C. glutamicum. 99 Material and methods 100 Bacterial strains and culture conditions 101 The bacterial strains and plasmids that were in this study listed in Table S1. Luria-Bertani (LB) 102 broth or LB agar plates were used for growing Escherichia coli or C. glutamicum. E. coli and C. 103 glutamicum were cultivated at 37 °C and 30 °C under vigorous agitation (220 rpm) as previously 104 reported, respectively [Shen, 2005]. 0.5 M sorbitol-containing brain-heart broth medium (BHIS) 105 was used for producing and maintaining mutant of a gene in C. glutamicum [Shen, 2005]. To 106 create a mrx3 (ncgl0401) gene deletion in C. glutamicum wild type (WT) strain, the 107 pK18mobsacB-Δmrx3 plasmids were transformed into C. glutamicum WT through electroporation 108 and then integrated into the chromosome of C. glutamicum through homologous recombination to 109 perform single crossover [Shen, 2005]. The transconjugants were selected on LB agar plate 110 containing nalidixic acid and kanamycin. Nalidixic acid and 20% sucrose-containing LB agar 111 plates were used to carry out counter-selection for markerless in-frame deletion [Schäfer, 1994]. 112 Strains growing on this plate were detected for kanamycin sensitivity by parallel picking on LB 113 plates with nalidixic acid and kanamycin or nalidixic acid and sucrose. Sucrose-resistant and 114 kanamycin-sensitive strains were detected for in-frame deletion by PCR using the 115 DMrx3-F1/DMrx3-R2 primer pair (Table S2) and verified by DNA sequencing. To complement 116 mrx3 expression in Δmrx3 mutants, the pXMJ19-mrx3 derivatives were transformed into Δmrx3 117 mutants by electroporation, creating complementary strains [Si, 2018a]. 0.5 mM isopropyl 118 β-D-thiogalactopyranoside (IPTG) was added into medium to induce the expression of mrx3 gene 119 on the pXMJ19-mrx3 derivatives in complementary strains. For constructing chromosomal fusion 120 reporter strains, the plasmid pK18mobsacB-Pmrx3::lacZY was transformed into relevant C. 121 glutamicum strains by electroporation. The chromosomal pK18mobsacB-Pmrx3::lacZY fusion 122 reporter strain was selected on LB agar plates with kanamycin and nalidixic acid. All chemicals 123 were of Analytical Reagent Grade purity or higher. Antibiotics were added at the following 124 concentrations: kanamycin, 50 µg ml-1 for E. coli and 25 µg ml-1 for C. glutamicum; nalidixic acid, 125 40 µg ml-1 for C. glutamicum; chloramphenicol,
Recommended publications
  • Generate Metabolic Map Poster
    Authors: Peter D. Karp Suzanne Paley Julio Collado-Vides John L Ingraham Ingrid Keseler Markus Krummenacker Cesar Bonavides-Martinez Robert Gunsalus An online version of this diagram is available at BioCyc.org. Biosynthetic pathways are positioned in the left of the cytoplasm, degradative pathways on the right, and reactions not assigned to any pathway are in the far right of the cytoplasm. Transporters and membrane proteins are shown on the membrane. Carol Fulcher Ian Paulsen Socorro Gama-Castro Robert LaRossa Periplasmic (where appropriate) and extracellular reactions and proteins may also be shown. Pathways are colored according to their cellular function. EcoCyc: Escherichia coli K-12 substr. MG1655 Cellular Overview Connections between pathways are omitted for legibility. Anamika Kothari Amanda Mackie Alberto Santos-Zavaleta succinate phosphate succinate N-acetyl-DL-methionine + L-ornithine glutathione + L-methionine S-oxide D-fructofuranose γ Ag+ molybdate ferroheme b L,L-homocystine asp lys cys L-alanyl- -D- D-mannopyranose 6-phosphate 2+ 2+ H D-methionine 2-deoxy-D-glucose succinate formate formate succinate D-tartrate putrescine agmatine cadaverine L-tartrate D-fructofuranose 6-phosphate + nitrate nitrate Cu thiosulfate deoxycholate L,L-homocystine D-cystine D-cycloserine methyl β-D-glucoside putrescine asp spermidine (S)-2-hydroxybutanoate (S)-2-hydroxybutanoate arg L-homoserine lactone magnesium hydrogenphosphate magnesium hydrogenphosphate antimonous acid glutamyl-meso- Co2+ Cd2+ lactulose poly-β-1,6- met cob(I)inamide 2,3-dioxo-
    [Show full text]
  • The Role of Intermembrane Space Redox Factors in Glutathione Metabolism and Intracellular Redox Equilibrium Hatice Kubra Ozer University of South Carolina
    University of South Carolina Scholar Commons Theses and Dissertations 2015 The Role of Intermembrane Space Redox Factors In Glutathione Metabolism And Intracellular Redox Equilibrium Hatice Kubra Ozer University of South carolina Follow this and additional works at: https://scholarcommons.sc.edu/etd Part of the Chemistry Commons Recommended Citation Ozer, H. K.(2015). The Role of Intermembrane Space Redox Factors In Glutathione Metabolism And Intracellular Redox Equilibrium. (Doctoral dissertation). Retrieved from https://scholarcommons.sc.edu/etd/3702 This Open Access Dissertation is brought to you by Scholar Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. THE ROLE OF INTERMEMBRANE SPACE REDOX FACTORS IN GLUTATHIONE METABOLISM AND INTRACELLULAR REDOX EQUILIBRIUM by Hatice Kubra Ozer Bachelor of Science Uludag University, 2004 Master of Food Science and Nutrition Clemson University, 2010 Submitted in Partial Fulfillment of the Requirements For the Degree of Doctor of Philosophy in Chemistry College of Arts and Sciences University of South Carolina 2015 Accepted by: Caryn E. Outten, Major Professor F. Wayne Outten, Committee Chair Erin Connolly, Committee Member Andrew B. Greytak, Committee Member Lacy K. Ford, Senior Vice Provost and Dean of Graduate Studies © Copyright by Hatice Kubra Ozer, 2015 All Rights Reserved. ii ACKNOWLEDGEMENTS First, I would like to thank my advisor, Dr. Caryn E. Outten for her patience, guidance, expertise, and confidence in me to complete the work contained herein. She has been an excellent mentor during my graduate program. She is also the only person beside myself who is guaranteed to have read every word of this manuscript and to review every presentations in the past and her insight was irreplaceable.
    [Show full text]
  • Role of GSH and Iron-Sulfur Glutaredoxins in Iron Metabolism—Review
    molecules Review Role of GSH and Iron-Sulfur Glutaredoxins in Iron Metabolism—Review 1, 1, 1 1 Trnka Daniel y , Hossain Md Faruq y , Jordt Laura Magdalena , Gellert Manuela and Lillig Christopher Horst 2,* 1 Institute for Medical Biochemistry and Molecular Biology, University Medicine, University of Greifswald, 17475 Greifswald, Germany; [email protected] (T.D.); [email protected] (H.M.F.); [email protected] (J.L.M.); [email protected] (G.M.) 2 Christopher Horst Lillig, Institute for Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany * Correspondence: [email protected]; Tel.: +49-3834-865407; Fax: +49-3834-865402 These authors contributed equally to this work. y Academic Editor: Pál Perjési Received: 29 July 2020; Accepted: 22 August 2020; Published: 25 August 2020 Abstract: Glutathione (GSH) was initially identified and characterized for its redox properties and later for its contributions to detoxification reactions. Over the past decade, however, the essential contributions of glutathione to cellular iron metabolism have come more and more into focus. GSH is indispensable in mitochondrial iron-sulfur (FeS) cluster biosynthesis, primarily by co-ligating FeS clusters as a cofactor of the CGFS-type (class II) glutaredoxins (Grxs). GSH is required for the export of the yet to be defined FeS precursor from the mitochondria to the cytosol. In the cytosol, it is an essential cofactor, again of the multi-domain CGFS-type Grxs, master players in cellular iron and FeS trafficking. In this review, we summarize the recent advances and progress in this field. The most urgent open questions are discussed, such as the role of GSH in the export of FeS precursors from mitochondria, the physiological roles of the CGFS-type Grx interactions with BolA-like proteins and the cluster transfer between Grxs and recipient proteins.
    [Show full text]
  • Biochemical and Biophysical Characterization of a Mycoredoxin
    International Journal of Biological Macromolecules 107 (2018) 1999–2007 Contents lists available at ScienceDirect International Journal of Biological Macromolecules j ournal homepage: www.elsevier.com/locate/ijbiomac Biochemical and biophysical characterization of a mycoredoxin protein glutaredoxin A1 from Corynebacterium pseudotuberculosis a a a b a Raphael J. Eberle , Liege A. Kawai , Fabio R. de Moraes , Ljubica Tasic , Raghuvir K. Arni , a,∗ Monika A. Coronado a Multiuser Center for Biomolecular Innovation, Departament of Physics, Instituto de Biociências Letras e Ciências Exatas (Ibilce), Universidade Estadual Paulista (UNESP), São Jose do Rio Preto, SP, 15054-000, Brazil b Institute of Chemistry, University of Campinas (UNICAMP), Campinas, SP, 13083-970, Brazil a r t i c l e i n f o a b s t r a c t Article history: Glutaredoxin A1 from Corynebacterium pseudotuberculosis was shown to be a mycoredoxin protein. In Received 25 July 2017 this study, we established a process to overexpress and purify glutaredoxin A1. The aim of this study Received in revised form 6 October 2017 was the investigation of the Glutaredoxin A1 from C. pseudotuberculosis behavior under different redox Accepted 11 October 2017 environments and the identification of lead molecules, which can be used for specific inhibitor develop- Available online 16 October 2017 ment for this protein family. A quantitative assay was performed measuring the rate of insulin reduction spectrophotometrically at 640 nm through turbidity formation from the precipitation of the free insulin. Keywords: Glutaredoxin A1, at 5 ␮M concentration, accelerated the reduction process of 0.2 mM insulin and 1 mM Corynebacterium pseudotuberculosis Glutaredoxin DTT.
    [Show full text]
  • Supplementary Information
    Supplementary information (a) (b) Figure S1. Resistant (a) and sensitive (b) gene scores plotted against subsystems involved in cell regulation. The small circles represent the individual hits and the large circles represent the mean of each subsystem. Each individual score signifies the mean of 12 trials – three biological and four technical. The p-value was calculated as a two-tailed t-test and significance was determined using the Benjamini-Hochberg procedure; false discovery rate was selected to be 0.1. Plots constructed using Pathway Tools, Omics Dashboard. Figure S2. Connectivity map displaying the predicted functional associations between the silver-resistant gene hits; disconnected gene hits not shown. The thicknesses of the lines indicate the degree of confidence prediction for the given interaction, based on fusion, co-occurrence, experimental and co-expression data. Figure produced using STRING (version 10.5) and a medium confidence score (approximate probability) of 0.4. Figure S3. Connectivity map displaying the predicted functional associations between the silver-sensitive gene hits; disconnected gene hits not shown. The thicknesses of the lines indicate the degree of confidence prediction for the given interaction, based on fusion, co-occurrence, experimental and co-expression data. Figure produced using STRING (version 10.5) and a medium confidence score (approximate probability) of 0.4. Figure S4. Metabolic overview of the pathways in Escherichia coli. The pathways involved in silver-resistance are coloured according to respective normalized score. Each individual score represents the mean of 12 trials – three biological and four technical. Amino acid – upward pointing triangle, carbohydrate – square, proteins – diamond, purines – vertical ellipse, cofactor – downward pointing triangle, tRNA – tee, and other – circle.
    [Show full text]
  • TRACE: Tennessee Research and Creative Exchange
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 8-2009 Structure-Function Studies of the Large Subunit of Ribonucleotide Reductase from Homo sapiens and Saccharomyces cerevisiae James Wesley Fairman University of Tennessee - Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Biochemistry, Biophysics, and Structural Biology Commons Recommended Citation Fairman, James Wesley, "Structure-Function Studies of the Large Subunit of Ribonucleotide Reductase from Homo sapiens and Saccharomyces cerevisiae. " PhD diss., University of Tennessee, 2009. https://trace.tennessee.edu/utk_graddiss/49 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by James Wesley Fairman entitled "Structure- Function Studies of the Large Subunit of Ribonucleotide Reductase from Homo sapiens and Saccharomyces cerevisiae." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Doctor of Philosophy, with a major in Biochemistry and Cellular and Molecular Biology. Chris G. Dealwis,
    [Show full text]
  • Glutaredoxin Function for the Carboxyl-Terminal Domain of the Plant-Type 5؅-Adenylylsulfate Reductase
    Proc. Natl. Acad. Sci. USA Vol. 95, pp. 8404–8409, July 1998 Plant Biology Glutaredoxin function for the carboxyl-terminal domain of the plant-type 5*-adenylylsulfate reductase JULIE-ANN BICK*, FREDRIK ÅSLUND†,YICHANG CHEN*, AND THOMAS LEUSTEK*‡ *Biotech Center and Plant Science Department, Rutgers University, New Brunswick, NJ 08901-8250; and †Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115 Edited by Bob B. Buchanan, University of California, Berkeley, CA, and approved May 14, 1998 (received for review November 21, 1997) ABSTRACT 5*-Adenylylsulfate (APS) reductase (EC the basis of their similar catalytic requirements and molecular 1.8.99.-) catalyzes the reduction of activated sulfate to sulfite weights (4, 6). The major difference is that the product of the in plants. The evidence presented here shows that a domain of sulfotransferase is believed to be an organic thiosulfate (1), the enzyme is a glutathione (GSH)-dependent reductase that whereas the reductase may produce sulfite (4), although the functions similarly to the redox cofactor glutaredoxin. The actual reaction product has not been determined for either APR1 cDNA encoding APS reductase from Arabidopsis thali- enzyme. APS reductase is distinguished from the cysH product ana is able to complement the cysteine auxotrophy of an by its preference for APS over PAPS and by its ability to Escherichia coli cysH [3*-phosphoadenosine-5*-phosphosul- function in an E. coli thioredoxinyglutaredoxin double mutant fate (PAPS) reductase] mutant, only if the E. coli strain (4). These properties may be due to its unusual two-domain produces glutathione. The purified recombinant enzyme structure, consisting of a reductase domain (R domain) at the (APR1p) can use GSH efficiently as a hydrogen donor in vitro, amino terminus, showing homology with the cysH product; and ' showing a Km[GSH] of 0.6 mM.
    [Show full text]
  • A Strategy to Address Dissociation-Induced Compositional and Transcriptional Bias for Single-Cell Analysis of the Human Mammary Gland
    bioRxiv preprint doi: https://doi.org/10.1101/2021.02.11.430721; this version posted February 11, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. A strategy to address dissociation-induced compositional and transcriptional bias for single-cell analysis of the human mammary gland Lisa K. Engelbrecht1,9,*,‡, Alecia-Jane Twigger1,2,*, Hilary M. Ganz1, Christian J. Gabka4, Andreas R. Bausch5,8, Heiko Lickert6,7,8, Michael Sterr6, Ines Kunze6, Walid T. Khaled2,3 & Christina H. Scheel1,10,‡ Affiliations 1 Institute of Stem Cell Research, Helmholtz Center for Health and Environmental Research Munich, Neuherberg 85764, Germany 2 Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, UK 3 Cancer Research UK Cambridge Cancer Center, Cambridge CB2 0RE, UK 4 Nymphenburg Clinic for Plastic and Aesthetic Surgery, Munich 80637, Germany 5 Chair of Biophysics E27, Technical University Munich, 85747 Garching, Germany 6 Institute of Diabetes and Regeneration Research, Helmholtz Center for Health and Environmental Research Munich, Neuherberg 85764, Germany 7 German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany 8 Technical University of Munich, 80333 Munich, Germany. 9 Present address: Chair of Biophysics E27, Technical University Munich, 85747 Garching, Germany 10 Present address: Department of Dermatology, St. Josef Hospital, Ruhr-University Bochum, 44791 Bochum, Germany * These authors contributed equally to this work. ‡ Corresponding author. Correspondence to: [email protected] or [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.02.11.430721; this version posted February 11, 2021.
    [Show full text]
  • Generate Metabolic Map Poster
    Authors: Pallavi Subhraveti Ron Caspi Peter Midford Peter D Karp An online version of this diagram is available at BioCyc.org. Biosynthetic pathways are positioned in the left of the cytoplasm, degradative pathways on the right, and reactions not assigned to any pathway are in the far right of the cytoplasm. Transporters and membrane proteins are shown on the membrane. Ingrid Keseler Periplasmic (where appropriate) and extracellular reactions and proteins may also be shown. Pathways are colored according to their cellular function. Gcf_000301935Cyc: Acinetobacter baumannii AB_2008-15-52 Cellular Overview Connections between pathways are omitted for legibility.
    [Show full text]
  • Regulating Enzyme, Glutaredoxin 2 in Porcine Ocular Tissues
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Dissertations & Theses in Veterinary and Veterinary and Biomedical Sciences, Biomedical Science Department of 8-2012 Expression and Distribution of Thiol- regulating Enzyme, Glutaredoxin 2 in Porcine Ocular Tissues Bijaya Prasad Upadhyaya University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/vetscidiss Part of the Veterinary Medicine Commons Upadhyaya, Bijaya Prasad, "Expression and Distribution of Thiol- regulating Enzyme, Glutaredoxin 2 in Porcine Ocular Tissues" (2012). Dissertations & Theses in Veterinary and Biomedical Science. 12. https://digitalcommons.unl.edu/vetscidiss/12 This Article is brought to you for free and open access by the Veterinary and Biomedical Sciences, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Dissertations & Theses in Veterinary and Biomedical Science by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. EXPRESSION AND DISTRIBUTION OF THIOL- REGULATING ENZYME, GLUTAREDOXIN 2 IN PORCINE OCULAR TISSUES by Bijaya Prasad Upadhyaya A THESIS Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfillment of Requirements For the Degree of Master of Science Major: Veterinary Science Under the Supervision of Professor Marjorie F. Lou Lincoln, Nebraska August, 2012 EXPRESSION AND DISTRIBUTION OF THIOL- REGULATING ENZYME, GLUTAREDOXIN 2 IN PORCINE OCULAR TISSUES Bijaya Prasad Upadhyaya, M.S. University of Nebraska, 2012 Advisor: Marjorie F. Lou Glutaredoxin 2 (Grx2), a thiol-regulating enzyme of oxidoreductase family and a mitochondrial isozyme of glutaredoxin 1, was discovered 11 years ago in our laboratory. Grx2 is present in the lens where it shows dethiolase, peroxidase, and ascorbate recycling activities.
    [Show full text]
  • Nucleotide Biosynthesis Links Glutathione Metabolism to Ferroptosis Sensitivity
    bioRxiv preprint doi: https://doi.org/10.1101/2021.07.14.452394; this version posted July 15, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Nucleotide Biosynthesis Links Glutathione Metabolism to Ferroptosis Sensitivity Amy Tarangelo1,3, Joon Tae Kim2, Jonathan Z. Long2, Scott J. Dixon1,4 1Department of Biology, Stanford University, 327 Campus Drive, Stanford, CA 94305, USA 2Department of Pathology and Stanford ChEM-H, Stanford University School of Medicine 291 Campus Drive, Stanford, CA 94305, USA 3Current address: Children’s Medical Center Research Institute, UT Southwestern, 6000 Harry Hines Blvd, Dallas, TX 75235 4Contact: [email protected] Key words: Cell death, iron, p53, p21 Running title: Nucleotide metabolism and ferroptosis bioRxiv preprint doi: https://doi.org/10.1101/2021.07.14.452394; this version posted July 15, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract Nucleotide synthesis is a metabolically demanding process essential for cell division. Several anti-cancer drugs that inhibit nucleotide metabolism induce apoptosis. How inhibition of nucleotide metabolism impacts non-apoptotic cell death is less clear. Here, we report that inhibition of nucleotide metabolism by the p53 pathway is sufficient to suppress the non-apoptotic cell death process of ferroptosis.
    [Show full text]
  • Saccharomyces Cerevisiae Glutaredoxin 5-Deficient Cells Subjected To
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Repositori d'Objectes Digitals per a l'Ensenyament la Recerca i la Cultura Saccharomyces cerevisiae glutaredoxin 5-deficient cells subjected to constitutive oxidizing conditions are affected in the expression of specific sets of genes* Gemma Bellí‡, María Micaela Molina‡, José García-Martínez§, José E. Pérez-Ortín§ and Enrique Herrero‡¶ ‡Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina, Universitat de Lleida, Rovira Roure 44, 25198-Lleida, Spain, and §Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas and Servicio de Chips de DNA-S.C.S.I.E., Universitat de València, 46100-Burjassot, Valencia, Spain Running title: Transcriptome of Grx5-deficient yeast cells Keywords: Yeast, Glutaredoxin, Aft1, Hap4, Oxidation ¶To whom correspondence should be addressed: Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina, Universitat de Lleida, Rovira Roure 44, 25198-Lleida, Spain. Tel.: 34-973-702409; Fax: 34-973-702426; E-mail: [email protected] *This work was supported by grants GEN2001-4707-CO8-06 and GEN2001- 4707-CO8-07 from the Spanish Ministry of Science and Technology (to E.H. and J.E.P-O. respectively) and by grant 2001SGR00305 from the Generalitat de Catalunya (to E.H.). M.M.M. received a predoctoral grant from the Generalitat de Catalunya. 1 1 The abbreviations used are: ROS, reactive oxygen species; PCR, polymerase chain reaction; KAPA, 7-keto 8-aminoperlargonic; t-BOOH, t-butyl hydroperoxide; MAP kinase: mitogen-activated protein kinase 2 SUMMARY. The Saccharomyces cerevisiae GRX5 gene codes for a mitochondrial glutaredoxin involved in the synthesis of iron/sulfur clusters.
    [Show full text]