Endversion Vor Checks

Total Page:16

File Type:pdf, Size:1020Kb

Endversion Vor Checks Dissertation Cross-talk between two-component systems in Escherichia coli Miriam Fischer May 2016 Dissertation submitted to the Combined Faculties for the Natural Sciences and for Mathematics of the Ruperto-Carola University of Heidelberg, Germany for the degree of Doctor of Natural Sciences presented by Diplom-Biologin Miriam Fischer born in Frankfurt am Main Oral examination: August 2016 Cross-talk between two-component systems in Escherichia coli Referees: Prof. Dr. Victor Sourjik PD Dr. Axel Mogk Acknowledgements I would like to thank Prof. Dr. Victor Sourjik for his supervision and support during the last years. I also want to thank my thesis advisory committee members PD Dr. Axel Mogk and Prof. Dr Rüdiger Hell for valuable advice and input. I would to thank the present and former members of the Sourjik lab, who are always very helpful and willing to share their experience and an occasional banter with me. I am grateful for the encouragement by my friends and family. I especially want to thank my parents for their consistent support and love. Contents 1 Introduction 17 1.1 Signaling in bacteria 17 1.2 Two-component systems 18 1.3 TCS structure and signaling mechanisms 21 1.3.1 Histidine kinases 21 1.3.2 Response regulators 25 1.3.3 Hybrid HKs and phosphorelays 26 1.3.4 Pathway specificity and pathway variants 27 1.3.5 Cross-talk among two-component systems 30 1.4 Copper homeostasis and sensing 32 1.4.1 Copper homeostasis in bacterial cells 32 1.4.2 Copper sensing in E. coli 34 1.5 Aims of this work 36 2 Materials and Methods 39 2.1 Chemicals and consumables 39 2.1.1 Media and plates 39 2.1.2 Buffers and stock solutions 40 2.1.3 Reaction Kits 40 2.2 Strains 41 2.2.1 Gene deletion strains derived from Keio collection 41 2.2.2 Deletion strains derived from genomic integration of PCR products 41 2.3 Plasmids 42 2.4 Cloning strategies 42 2.4.1 Primers 42 2.4.2 Polymerase Chain Reaction (PCR) 42 2.4.3 Mutation of conserved protein sites 43 9 Contents 2.4.4 Introduction of mutations using overlap PCR 44 2.4.5 Introduction of mutations into plasmid DNA 44 2.4.6 Restriction Digest 45 2.4.7 Phosphatase treatment 45 2.4.8 Ligation 45 2.5 Competent cells 46 2.5.1 Preparation of chemical competent cells 46 2.5.2 Preparation of competent cells for electroporation 46 2.5.3 Transformation of chemical competent cells 46 2.5.4 Transformation of electro competent cells for genomic integration 47 2.6 Cultures 47 2.7 Acceptor photobleaching experiments 47 2.8 Promoter activation 48 2.9 RNA Isolation and Deep Sequencing 49 2.10 Membrane protein pull-down 50 2.11 Data Analysis 51 2.11.1 Promoter activation and FRET data 51 2.11.2 RNA sequencing data 51 2.12 Software 52 3 Results 53 3.1 In vivo interactions among TCSs 53 3.1.1 FRET measurements of interaction of cognate TCS components 53 3.1.2 FRET measurements of TCS cross-talk 55 3.1.3 Cross-talk among the CusS/ CusR, YedV/ YedW and BaeS/ BaeR TCSs 56 3.1.4 Pull-down of membrane-integral HKs 59 3.2 Promoter activation experiments 62 3.2.1 Promoter activation by CusS/ CusR and YedV/ YedW TCSs 62 3.2.2 Complementation of CusS deletion 65 10 Contents 3.2.3 Effect of YedV on gene expression 66 3.2.4 Screen for YedV/ YedW activating stimulus 70 3.3 Transcriptomic analysis of TCS 70 3.3.1 Gene regulation by the CusS/ CusR TCS 72 3.3.2 Gene regulation by the BaeS/ BaeR TCS 82 3.3.3 Gene regulation by the YedV/ YedW TCS 90 4 Discussion 109 4.1 Protein interactions and cross-talk 109 4.2 Effects of interactions on gene expression 112 4.2.1 Effect on expression of promoter-GFP reporter 112 4.2.2 Effect on transcriptomic data 114 5 Conclusion and Outlook 121 6 Literature 123 7 Appendix 143 7.1 Tables 143 7.2 Figures 183 8 List of Figures and Tables 186 11 Contents 12 Zusammenfassung Mikroorganismen sind einer Vielzahl von Umweltbedingungen ausgesetzt. Sie nutzen Zweikomponenten-Signalsysteme um diese zu erfassen und ihren Stoffwechsel anzupassen. Zweikomponentensysteme kommen in Genomen von Bakterien, Archaeen und niederen Eukaryoten sehr häufig vor. Sie bestehen aus einer Sensor-Histidinkinase und einem 'Response Regulator', der als Transkriptionsfaktor die Genexpression reguliert. Eine Anregung der Signalübertragung durch Zweikomponentensysteme führt zur Autophosphorylierung der Histidinkinase mit nachfolgender Phosphoryl- gruppenübertragung auf den 'Response Regulator'. Ähnlichkeiten sowohl in der Struktur als auch der Proteinsequenzen verschiedener Komponenten können eine Signalverknüpfung zwischen verschiedenen Zweikomponentensystemen in unter- schiedlichen Abschnitten des Signalübertragungswegs herbeiführen. Während dieser 'cross-talk' zwischen nicht-verwandten Komponenten der Zweikomponentensysteme in vitro untersucht wurde, ist über das in vivo Verhalten wenig bekannt. In dieser Arbeit haben wir in vivo Wechselwirkungen der Zweikomponentensysteme in dem Enterobakterium Escherichia coli mit Hilfe von FRET Mikroskopie identifiziert, und die physiologisch bedeutsamen Wechselwirkungen der nicht-verwandten Komponenten des CusS/ CusR and YedV/ YedW Zweikomponentensystems beschrieben. Unsere Studien mit 'promoter-reportern', sowie Transkriptionsanalysen haben zwei Ebenen der Signalkopplung nachgewiesen, eine zwischen den Histidinkinasen und den nicht- verwandten 'response regulatoren', eine weitere auf dem Genexpressions- induktionsniveau. Unsere Ergebnisse vermitteln somit ein genaues Verständnis der gegenseitigen Regulation der Zielgene und des 'cross-talks' zwischen den CusS/ CusR and YedV/ YedW Zweikomponentensystemen. 13 14 Summary Microorganisms are faced with a huge variety of environmental conditions. They use two-component signaling systems to sense and adjust their metabolism accordingly. Such two-component systems are highly abundant in genomes of bacteria, archaea and lower eukaryotes. They are comprised of a sensor histidine kinase and a response regulator which serves as a transcription factor regulating gene expression. Induction of two-component system signaling leads to autophosphorylation of the histidine kinase and the subsequent transfer of the phosphoryl-group to the response regulator. Both modularity and protein sequence similarities can give rise to signal integration between two-component systems at different levels of their signaling pathways. While cross-talk between non-cognate components of two-component systems has been assessed in vitro, not much is yet known about cross-talk in vivo. In this work, we identified in vivo interactions of two-component systems in the enterobacterium Escherichia coli using FRET microscopy. We have also characterized physiological relevant interactions of non-cognate components of the CusS/ CusR and YedV/ YedW two-component systems. In addition, our studies with promoter reporters and transcriptomic analysis showed two interconnection mechanisms, one between the histidine kinases and the non-cognate response regulators, the other on the level of induction of gene expression. Our data provide a detailed understanding of this cooperative regulation of target genes and cross-talk between the CusS/ CusR and YedV/ YedW two-component systems. 15 16 1 Introduction This work is focused on studying signal transduction in two-component systems (TCSs) of the Gram-negative model microorganism Escherichia coli [1]. We are interested in how the activation of signal transduction of the 30 E. coli TCSs in response to environmental stimuli gets integrated into a particular cell response [2]. Here we focus on cross-talk among different TCSs. The cross-talk among TCSs associated with the response to an extracellular copper stimulus exemplifies how cells regulate the integration of signals in order to respond to pressing conditions. 1.1 Signaling in bacteria Prokaryotes are ubiquitous in a wide range of environments on earth which challenge them for instance with fluctuations in temperature, oxygen and nutrient availability. To alter their metabolism, lifestyle or response to stress and external signals, bacteria regulate differential gene expression via signal transduction. External signals can be small molecules which enter the cell and function as effectors, but in many cases the signal is detected by a sensor which transmits to the regulatory machinery of the cell [3]. One-component systems have a sensor input and an output domain in one protein. They make up a vast part of intracellular prokaryotic signaling systems [4]. In eukaryotes signal transduction is predominantly mediated by Ser/Thr/Tyr kinases. They are less abundant in prokaryotes where the second most important signal transduction pathway are two-component systems (TCSs). Both systems rely on phosphoryl-transfer as a means of signal transduction [5], [2]. Other intracellular signaling systems utilize small molecules like cyclic-di-GMP, guanosine tetraphosphate (ppGpp) or cyclic adenosine monophosphate (cAMP). It has also been shown that the uptake and phosphorylation of sugars by the phosphotransferase systems (PTS) impacts global regulators as well as small regulatory RNAs, which are for instance involved in bacterial quorum sensing and can play a role in the regulation of gene expression in response to stimuli [6],[7]. The unique feature of TCSs among the described signaling systems is the extracellular or 17 1 Introduction periplasmic sensing whereas the others require the stimulus to enter the cell before detection. 1.2 Two-component systems The wide range of signal recognition and regulation of physiological processes, cell division and virulence by TCSs makes them an interesting subject when studying signaling networks in bacteria. After one-component systems TCSs are the second most predominant signaling system in bacteria [2]. They are also involved in the signaling of archaea and eukaryotes with the exception of the animal kingdom where no genes encoding for TCSs have been found yet [8]. The number of TCSs genes in bacterial genomes can vary greatly and is correlated with the lifestyle and the environmental conditions the cell faces.
Recommended publications
  • The Link Between Independent Acquisition of Intracellular Gamma-Endosymbionts and Concerted Evolution in Tremblaya Princeps
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Frontiers - Publisher Connector ORIGINAL RESEARCH published: 25 June 2015 doi: 10.3389/fmicb.2015.00642 The link between independent acquisition of intracellular gamma-endosymbionts and concerted evolution in Tremblaya princeps Sergio López-Madrigal 1, Amparo Latorre 1, 2, Andrés Moya 1, 2 and Rosario Gil 1* 1 Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, València, Spain, 2 Área de Genómica y Salud de la Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO) – Salud Pública, València, Spain Many insect species establish mutualistic symbiosis with intracellular bacteria that complement their unbalanced diets. The betaproteobacterium “Candidatus Tremblaya” maintains an ancient symbiosis with mealybugs (Hemiptera: Pseudococcidae), which are classified in subfamilies Phenacoccinae and Pseudococcinae. Most Phenacoccinae Edited by: mealybugs have “Candidatus Tremblaya phenacola” as their unique endosymbiont, while Joerg Graf, University of Connecticut, USA most Pseudococcinae mealybugs show a nested symbiosis (a bacterial symbiont placed Reviewed by: inside another one) where every “Candidatus Tremblaya princeps” cell harbors several John M. Chaston, cells of a gammaproteobacterium. Genomic characterization of the endosymbiotic Brigham Young University, USA consortium from Planococcus citri, composed by “Ca. Tremblaya princeps” and Huan Qiu, Rutgers University, USA “Candidatus Moranella endobia,” unveiled several atypical features of the former’s *Correspondence: genome, including the concerted evolution of paralogous loci. Its comparison with the Rosario Gil, genome of “Ca. Tremblaya phenacola” PAVE, single endosymbiont of Phenacoccus Institut Cavanilles de Biodiversitat i avenae, suggests that the atypical reductive evolution of “Ca.
    [Show full text]
  • Articles Catalytic Cycling in Β-Phosphoglucomutase: a Kinetic
    9404 Biochemistry 2005, 44, 9404-9416 Articles Catalytic Cycling in â-Phosphoglucomutase: A Kinetic and Structural Analysis†,‡ Guofeng Zhang, Jianying Dai, Liangbing Wang, and Debra Dunaway-Mariano* Department of Chemistry, UniVersity of New Mexico, Albuquerque, New Mexico 87131-0001 Lee W. Tremblay and Karen N. Allen* Department of Physiology and Biophysics, Boston UniVersity School of Medicine, Boston, Massachusetts 02118-2394 ReceiVed March 26, 2005; ReVised Manuscript ReceiVed May 18, 2005 ABSTRACT: Lactococcus lactis â-phosphoglucomutase (â-PGM) catalyzes the interconversion of â-D-glucose 1-phosphate (â-G1P) and â-D-glucose 6-phosphate (G6P), forming â-D-glucose 1,6-(bis)phosphate (â- G16P) as an intermediate. â-PGM conserves the core domain catalytic scaffold of the phosphatase branch of the HAD (haloalkanoic acid dehalogenase) enzyme superfamily, yet it has evolved to function as a mutase rather than as a phosphatase. This work was carried out to identify the structural basis underlying this diversification of function. In this paper, we examine â-PGM activation by the Mg2+ cofactor, â-PGM activation by Asp8 phosphorylation, and the role of cap domain closure in substrate discrimination. First, the 1.90 Å resolution X-ray crystal structure of the Mg2+-â-PGM complex is examined in the context of + + previously reported structures of the Mg2 -R-D-galactose-1-phosphate-â-PGM, Mg2 -phospho-â-PGM, and Mg2+-â-glucose-6-phosphate-1-phosphorane-â-PGM complexes to identify conformational changes that occur during catalytic turnover. The essential role of Asp8 in nucleophilic catalysis was confirmed by demonstrating that the D8A and D8E mutants are devoid of catalytic activity.
    [Show full text]
  • Characterization of the Multidrug Resistance Protein Expressed in Cell Clones Stably Transfected with the Mouse Mdrl Cdna1
    [CANCER RESEARCH 49, 2729-2734, May 15, 1989] Characterization of the Multidrug Resistance Protein Expressed in Cell Clones Stably Transfected with the Mouse mdrl cDNA1 Erwin Schurr,2 Martine Raymond,3 John C. Bell,4 and Philippe Gros5 Department of Biochemistry, Faculty of Medicine, McGill University, Montreal, Canada, H3GIY6 ABSTRACT of the nucleotide and predicted amino acid sequences of this clone indicated that the encoded polypeptide was most likely a Structural features of the multidrug resistance protein encoded by the membrane glycoprotein, highly similar or identical to P-glyco mouse mdrl gene were studied in multidrug-resistant cell clones stably protein, which contained 12 putative transmembrane domains transfected with a biologically active cDNA clone. Independently derived and a cluster of /V-linked glycosylation sites near the amino transfectant cell clones, initially selected in Adriamycin, were shown to be cross-resistant to several drugs, including actinomycin D, amsacrine, terminus. It is formed by the internal duplication of a structural mitoxantrone, VP-16, and vinblastine but remained sensitive to cis- unit which encodes three transmembrane loops and a putative platinum, 5-fluorouracil, ¡trabinocytosine, and bleomycin. In drug-resist nucleotide binding fold (7). The duplicated segment is highly ant transfectants the mdrl gene product was greatly overexpressed as a homologous to the energy coupling subunit of bacterial trans polypeptide of apparent molecular weight 160,000-170,000. This protein port proteins particularly HlyB, a protein that participates in was present in membrane enriched fractions and could be metabolically the extracellular transport of haemolysin in Escherichia coli labeled with |3H]glucosamine, confirming that the transfected mdrl gene (14).
    [Show full text]
  • 35 Disorders of Purine and Pyrimidine Metabolism
    35 Disorders of Purine and Pyrimidine Metabolism Georges van den Berghe, M.- Françoise Vincent, Sandrine Marie 35.1 Inborn Errors of Purine Metabolism – 435 35.1.1 Phosphoribosyl Pyrophosphate Synthetase Superactivity – 435 35.1.2 Adenylosuccinase Deficiency – 436 35.1.3 AICA-Ribosiduria – 437 35.1.4 Muscle AMP Deaminase Deficiency – 437 35.1.5 Adenosine Deaminase Deficiency – 438 35.1.6 Adenosine Deaminase Superactivity – 439 35.1.7 Purine Nucleoside Phosphorylase Deficiency – 440 35.1.8 Xanthine Oxidase Deficiency – 440 35.1.9 Hypoxanthine-Guanine Phosphoribosyltransferase Deficiency – 441 35.1.10 Adenine Phosphoribosyltransferase Deficiency – 442 35.1.11 Deoxyguanosine Kinase Deficiency – 442 35.2 Inborn Errors of Pyrimidine Metabolism – 445 35.2.1 UMP Synthase Deficiency (Hereditary Orotic Aciduria) – 445 35.2.2 Dihydropyrimidine Dehydrogenase Deficiency – 445 35.2.3 Dihydropyrimidinase Deficiency – 446 35.2.4 Ureidopropionase Deficiency – 446 35.2.5 Pyrimidine 5’-Nucleotidase Deficiency – 446 35.2.6 Cytosolic 5’-Nucleotidase Superactivity – 447 35.2.7 Thymidine Phosphorylase Deficiency – 447 35.2.8 Thymidine Kinase Deficiency – 447 References – 447 434 Chapter 35 · Disorders of Purine and Pyrimidine Metabolism Purine Metabolism Purine nucleotides are essential cellular constituents 4 The catabolic pathway starts from GMP, IMP and which intervene in energy transfer, metabolic regula- AMP, and produces uric acid, a poorly soluble tion, and synthesis of DNA and RNA. Purine metabo- compound, which tends to crystallize once its lism can be divided into three pathways: plasma concentration surpasses 6.5–7 mg/dl (0.38– 4 The biosynthetic pathway, often termed de novo, 0.47 mmol/l). starts with the formation of phosphoribosyl pyro- 4 The salvage pathway utilizes the purine bases, gua- phosphate (PRPP) and leads to the synthesis of nine, hypoxanthine and adenine, which are pro- inosine monophosphate (IMP).
    [Show full text]
  • Determination of Pk, Values of the Histidine Side
    Protein Science (1997), 6:1937-1944. Cambridge University Press. Printed in the USA Copyright 0 1997 The Protein Society Determination of pK, values of the histidine side chains of phosphatidylinositol-specific phospholipase C from Bacillus cereus by NMR spectroscopy and site-directed mutagenesis TUN LIU, MARGRET RYAN, FREDERICK W. DAHLQUIST, AND 0. HAYES GRIFFITH Institute of Molecular Biology and Department of Chemistry, University of Oregon, Eugene, Oregon 97403 (RECEIVEDDecember 4, 1996: ACCEPTEDMay 19, 1997) Abstract Two active site histidine residues have been implicated in the catalysis of phosphatidylinositol-specific phospholipase C (PI-PLC). In this report, we present the first study of the pK,, values of histidines of a PI-PLC. All six histidines of Bacillus cereus PI-PLC were studied by 2D NMR spectroscopy and site-directed mutagenesis. The protein was selec- tively labeled with '3C"-histidine. A series of 'H-I3C HSQC NMR spectra were acquired over a pH range of 4.0-9.0. Five of the six histidines have been individually substituted with alanine to aid the resonance assignments in the NMR spectra. Overall, the remaining histidines in the mutants show little chemical shift changes in the 'H-"C HSQC spectra, indicating that the alanine substitution has no effect on the tertiary structure of the protein. H32A and H82A mutants are inactive enzymes, while H92A and H61A are fully active, and H81A retains about 15% of the wild-type activity. The active site histidines, His32 and His82, display pK,, values of 7.6 and 6.9, respectively. His92 and His227 exhibit pK, values of 5.4 and 6.9.
    [Show full text]
  • DNA Unwinding Step-Size of E. Coli Recbcd Helicase Determined from Single Turnover Chemical Quenched-flow Kinetic Studies
    B doi:10.1016/S0022-2836(02)01067-7 available online at http://www.idealibrary.com on w J. Mol. Biol. (2002) 324, 409–428 DNA Unwinding Step-size of E. coli RecBCD Helicase Determined from Single Turnover Chemical Quenched-flow Kinetic Studies Aaron L. Lucius1, Alessandro Vindigni1, Razmic Gregorian1 Janid A. Ali1, Andrew F. Taylor2, Gerald R. Smith2 and Timothy M. Lohman1* 1Department of Biochemistry The mechanism by which Escherichia coli RecBCD DNA helicase unwinds and Molecular Biophysics duplex DNA was examined in vitro using pre-steady-state chemical Washington University School quenched-flow kinetic methods. Single turnover DNA unwinding experi- of Medicine, 660 S. Euclid Ave. ments were performed by addition of ATP to RecBCD that was pre- Box 8231, St. Louis, MO 63110 bound to a series of DNA substrates containing duplex DNA regions USA ranging from 24 bp to 60 bp. In each case, the time-course for formation of completely unwound DNA displayed a distinct lag phase that 2Fred Hutchinson Cancer increased with duplex length, reflecting the transient formation of Research Center, 1100 Fairview partially unwound DNA intermediates during unwinding catalyzed by Ave. North, Seattle, WA 98109 RecBCD. Quantitative analysis of five independent sets of DNA unwind- USA ing time courses indicates that RecBCD unwinds duplex DNA in discrete steps, with an average unwinding “step-size”, m ¼ 3.9(^1.3) bp step21, ^ 21 with an average unwinding rate of kU ¼ 196( 77) steps s ^ 21 (mkU ¼ 790( 23) bp s ) at 25.0 8C (10 mM MgCl2, 30 mM NaCl (pH 7.0), 5% (v/v) glycerol).
    [Show full text]
  • Nucleotide Metabolism
    NUCLEOTIDE METABOLISM General Overview • Structure of Nucleotides Pentoses Purines and Pyrimidines Nucleosides Nucleotides • De Novo Purine Nucleotide Synthesis PRPP synthesis 5-Phosphoribosylamine synthesis IMP synthesis Inhibitors of purine synthesis Synthesis of AMP and GMP from IMP Synthesis of NDP and NTP from NMP • Salvage pathways for purines • Degradation of purine nucleotides • Pyrimidine synthesis Carbamoyl phosphate synthesisOrotik asit sentezi • Pirimidin nükleotitlerinin yıkımı • Ribonükleotitlerin deoksiribonükleotitlere dönüşümü Basic functions of nucleotides • They are precursors of DNA and RNA. • They are the sources of activated intermediates in lipid and protein synthesis (UDP-glucose→glycogen, S-adenosylmathionine as methyl donor) • They are structural components of coenzymes (NAD(P)+, FAD, and CoA). • They act as second messengers (cAMP, cGMP). • They play important role in carrying energy (ATP, etc). • They play regulatory roles in various pathways by activating or inhibiting key enzymes. Structures of Nucleotides • Nucleotides are composed of 1) A pentose monosaccharide (ribose or deoxyribose) 2) A nitrogenous base (purine or pyrimidine) 3) One, two or three phosphate groups. Pentoses 1.Ribose 2.Deoxyribose •Deoxyribonucleotides contain deoxyribose, while ribonucleotides contain ribose. •Ribose is produced in the pentose phosphate pathway. Ribonucleotide reductase converts ribonucleoside diphosphate deoxyribonucleotide. Nucleotide structure-Base 1.Purine 2.Pyrimidine •Adenine and guanine, which take part in the structure
    [Show full text]
  • Generated by SRI International Pathway Tools Version 25.0, Authors S
    An online version of this diagram is available at BioCyc.org. Biosynthetic pathways are positioned in the left of the cytoplasm, degradative pathways on the right, and reactions not assigned to any pathway are in the far right of the cytoplasm. Transporters and membrane proteins are shown on the membrane. Periplasmic (where appropriate) and extracellular reactions and proteins may also be shown. Pathways are colored according to their cellular function. Gcf_000238675-HmpCyc: Bacillus smithii 7_3_47FAA Cellular Overview Connections between pathways are omitted for legibility.
    [Show full text]
  • Families and the Structural Relatedness Among Globular Proteins
    Protein Science (1993), 2, 884-899. Cambridge University Press. Printed in the USA. Copyright 0 1993 The Protein Society -~~ ~~~~ ~ Families and the structural relatedness among globular proteins DAVID P. YEE AND KEN A. DILL Department of Pharmaceutical Chemistry, University of California, San Francisco, California94143-1204 (RECEIVEDJanuary 6, 1993; REVISEDMANUSCRIPT RECEIVED February 18, 1993) Abstract Protein structures come in families. Are families “closely knit” or “loosely knit” entities? We describe a mea- sure of relatedness among polymer conformations. Based on weighted distance maps, this measure differs from existing measures mainly in two respects: (1) it is computationally fast, and (2) it can compare any two proteins, regardless of their relative chain lengths or degree of similarity. It does not require finding relative alignments. The measure is used here to determine the dissimilarities between all 12,403 possible pairs of 158 diverse protein structures from the Brookhaven Protein Data Bank (PDB). Combined with minimal spanning trees and hier- archical clustering methods,this measure is used to define structural families. It is also useful for rapidly searching a dataset of protein structures for specific substructural motifs.By using an analogy to distributions of Euclid- ean distances, we find that protein families are not tightly knit entities. Keywords: protein family; relatedness; structural comparison; substructure searches Pioneering work over the past 20 years has shown that positions after superposition. RMS is a useful distance proteins fall into families of related structures (Levitt & metric for comparingstructures that arenearly identical: Chothia, 1976; Richardson, 1981; Richardson & Richard- for example, when refining or comparing structures ob- son, 1989; Chothia & Finkelstein, 1990).
    [Show full text]
  • Corynebacterium Glutamicum Mycoredoxin 3 Protects Against Multiple Oxidative Stresses
    Advance Publication J. Gen. Appl. Microbiol. doi 10.2323/jgam.2019.10.003 ©2020 Applied Microbiology, Molecular and Cellular Biosciences Research Foundation Full Paper 1 Corynebacterium glutamicum Mycoredoxin 3 protects against multiple oxidative stresses 2 and displays thioredoxin-like activity 3 (Received September 24, 2019; Accepted October 28, 2019; J-STAGE Advance publication date: October 30, 2020) 4 Tao Su#, Chengchuan Che#, Ping Sun, Xiaona Li, Zhijin Gong, Jinfeng Liu, Ge Yang * 5 6 College of Life Sciences, Qufu Normal University, Qufu, Shandong 273165, China; 7 8 Running title: Feature of C. glutamicum mycoredoxin 3 9 10 11 # These authors contributed equally to this work. 12 13 * Corresponding authors: 14 Ge Yang 15 16 E-mail [email protected] 17 Tel: 86-13953760056 18 19 20 21 22 23 24 25 26 27 Abstract 28 Glutaredoxins (Grxs) and thioredoxins (Trxs) play a critical role in resistance to oxidative 29 conditions. However, physiological and biochemical roles of Mycoredoxin 3 (Mrx3) that shared a 30 high amino acid sequence similarity to Grxs remain unknown in Corynebacterium glutamicum. 31 Here we showed that mrx3 deletion strains of C. glutamicum was involved in the protection 32 against oxidative stress. Recombinant Mrx3 not only catalytically reduced the disulfide bonds in 33 ribonucleotide reductase (RNR), insulin and 5, 5’-dithiobis-(2-nitro-benzoicacid) (DTNB), but 34 also reduced the mixed disulphides between mycothiol (MSH) and substrate, which was 35 exclusively linked to the thioredoxin reductase (TrxR) electron transfer pathway by a dithiol 36 mechanism. Site-directed mutagenesis confirmed that the conserved Cys17 and Cys20 in Mrx3 37 were necessary to maintain its activity.
    [Show full text]
  • Generate Metabolic Map Poster
    Authors: Peter D. Karp Suzanne Paley Julio Collado-Vides John L Ingraham Ingrid Keseler Markus Krummenacker Cesar Bonavides-Martinez Robert Gunsalus An online version of this diagram is available at BioCyc.org. Biosynthetic pathways are positioned in the left of the cytoplasm, degradative pathways on the right, and reactions not assigned to any pathway are in the far right of the cytoplasm. Transporters and membrane proteins are shown on the membrane. Carol Fulcher Ian Paulsen Socorro Gama-Castro Robert LaRossa Periplasmic (where appropriate) and extracellular reactions and proteins may also be shown. Pathways are colored according to their cellular function. EcoCyc: Escherichia coli K-12 substr. MG1655 Cellular Overview Connections between pathways are omitted for legibility. Anamika Kothari Amanda Mackie Alberto Santos-Zavaleta succinate phosphate succinate N-acetyl-DL-methionine + L-ornithine glutathione + L-methionine S-oxide D-fructofuranose γ Ag+ molybdate ferroheme b L,L-homocystine asp lys cys L-alanyl- -D- D-mannopyranose 6-phosphate 2+ 2+ H D-methionine 2-deoxy-D-glucose succinate formate formate succinate D-tartrate putrescine agmatine cadaverine L-tartrate D-fructofuranose 6-phosphate + nitrate nitrate Cu thiosulfate deoxycholate L,L-homocystine D-cystine D-cycloserine methyl β-D-glucoside putrescine asp spermidine (S)-2-hydroxybutanoate (S)-2-hydroxybutanoate arg L-homoserine lactone magnesium hydrogenphosphate magnesium hydrogenphosphate antimonous acid glutamyl-meso- Co2+ Cd2+ lactulose poly-β-1,6- met cob(I)inamide 2,3-dioxo-
    [Show full text]
  • Lawrence Berkeley National Laboratory Recent Work
    Lawrence Berkeley National Laboratory Recent Work Title What we can deduce about metabolism in the moderate halophile chromohalobacter salexigens from its genomic sequence Permalink https://escholarship.org/uc/item/1df4q5m5 Authors Csonka, Laszlo N. O'Connor, Kathleen Larimer, Frank et al. Publication Date 2005 eScholarship.org Powered by the California Digital Library University of California 1 Biodata of Laszlo N. Csonka, author of “What We Can Deduce about Metabolism in the Moderate Halophile Chromohalobacter salexigens from its Genomic Sequence” Dr. Laszlo Csonka is a professor in the Department of Biological Sciences at Purdue University. He received his Ph. D. in 1975 at Harvard Medical School in the laboratory of Dr. Dan Fraenkel, studying the pathways of NADPH formation in Escherichia coli. His main research interests are the analysis of the response to osmotic stress in bacteria and plants, the connection between osmotic adaptation and thermotolerance, and carbon- source metabolism in bacteria. E-mail: [email protected] 2 3 WHAT WE CAN DEDUCE ABOUT METABOLISM IN THE MODERATE HALOPHILE CHROMOHALOBACTER SALEXIGENS FROM ITS GENOMIC SEQUENCE LASZLO N. CSONKA1, KATHLEEN O’CONNOR1, FRANK LARIMER2, PAUL RICHARDSON3, ALLA LAPIDUS3, ADAM D. EWING4, BRADLEY W. GOODNER4 and AHARON OREN5 1Department of Biological Sciences, Purdue University, West Lafayette IN 47907-1392, USA; 2Genome Analysis and Systems Modeling, Life Sciences Division, Oak Ridge National Laboratory, Oak Ridge TN 37831, USA; 3DOE Joint Genome Institute, Walnut Creek CA 94598, USA; 4Department of Biology, Hiram College, Hiram OH 44234, USA; 5The Institute of Life Science, and the Moshe Shilo Minerva Center for Marine Biogeochemistry, The Hebrew University of Jerusalem, 91904, Israel 1.
    [Show full text]